Intelligence Service Schema:
A Semantic Metadata Model for Service Discovery in the Intelligence Layer
The problem of engrained intelligence functionality in Internet of Things (IoT) applications is discussed. Offering intelligence services to applications through a separate layer is discussed as an alternative. Two important advantages are improved life-cycle management and increased potential of value sharing. A solution that allows device owners to install intelligence services that can be used by local applications is suggested. This thesis explores discovery process and the representation of such intelligence services through the use of a metadata schema, the Intelligence Service Schema. This schema allows for semantic description of intelligence services which makes advanced service discovery possible through the semantic query language SPARQL.

Keywords: Intelligence Service Discovery, Semantics, AI Distribution, Intelligence Description, Intelligence Market

Language: English
Acknowledgements

I want to thank Edgar Ramos for the opportunity and guidance. It was a pleasure to work at Nomadic Lab Ericsson!

Doorwerth, June 15, 2020

Timon Schneider
Contents

1 Introduction Statement ... 6
1.1 Problem Statement .. 9
1.2 Research Questions .. 11
1.3 Structure of the Thesis ... 12

2 Background .. 13
2.1 Artificial Intelligence .. 13
2.1.1 Machine Intelligence .. 14
2.1.2 Machine Learning ... 15
2.2 Intelligence Stratum ... 16
2.2.1 Intelligence Broker ... 16
2.2.2 Applications ... 16
2.2.3 Intelligence Data Provider 17
2.2.4 Intelligence Provider ... 17
2.2.5 Intelligence Service ... 17
2.2.6 Operations Control ... 18
2.3 Semantic Web Technology .. 19
2.3.1 Resource Description Framework 19
2.3.2 Semantic Web Services .. 20
2.3.3 SPARQL: Semantic Query Language 21

3 Implementation .. 22
3.1 Intelligence Discovery ... 23
3.1.1 Discovery API ... 25
3.1.2 Registration API ... 26
3.1.3 Recall API ... 26
3.1.4 Intelligence Service Selection by the Application De-

veloper. ... 27
3.2 Intelligence Service Metadata Model 29
3.2.1 Intelligence Service ... 29
3.2.2 Implementation .. 30
Chapter 1

Introduction Statement

Intelligence is considered one of the most important functionalities of Internet of things devices and is already used in many IoT solutions [16]. Experts estimate that by 2020, 15 to 30 billion connected devices will be in use [16]. The expected production of data is anywhere from 44 to 600 zettabytes per year [19, 32]. Efficiently capturing the value of this enormous amount of data requires machines instead of humans. Automatic processing and machine intelligence functions like optimization, anomaly detection, prediction, and error correction can be applied to autonomously derive knowledge from the data, report, or optimize the operations of the device without human interference.

As of right now, the deployment of such machine intelligence functionality is done in a centralized manner. Execution of the algorithms and models often takes place in remote or local data centers. Either way, the algorithms and models are often trained centrally with data reused for multiple machine intelligence implementations leading to dataset bias [43] and a limited ability to customize and control the devices’ machine intelligence functionality. There are also other reasons to have intelligence functionality within the device. In certain situations it is preferred or necessary that the data is processed locally. The data might be too sensitive to transfer over the web and is required to stay on the device. Another reason could be that the device is expected to keep full functionality when it loses network connection.

When the intelligence functionality is executed locally, it is often highly engrained in the application layer. This works well if the systems and applications are tightly integrated, the boundaries are well defined, the environment is not expected to change, the intelligence functionality remains the same, and the task and goal do not change. For environments where the need for intelligence functionality is susceptible to change, the limitations of integrating intelligence into the application are obvious; once the intelligence
task changes, the whole application needs to be updated. This leads to a significant amount of overhead work.

Decoupling intelligence from the application layer, as shown in Figure 1.1, can address this problem by making the intelligence as independent of the application as possible. Now, the intelligence becomes a separate stratum that provides services to applications in the same way that other layers and platforms provide services [38]. In this way, intelligence functionality can be changed, updated or upgraded without the need of changing the application.

Figure 1.1: Layering of legacy architecture stack and layering of intelligence layered architecture stack. Adapted from [38].

The decoupling of intelligence functionality from the application layer is a relatively new concept. There are many aspects of the architecture that need further research and testing. Figure 1.2 is an overview of an ecosystem that would enable the decoupling of intelligence services in devices while having full intelligence functionality locally available on the device. The intelligence broker stores intelligence services uploaded by intelligence providers. Applications on a device would request intelligence functionality from an intelligence layer that hosts intelligence services. The intelligence layer can perform centralized directory-based semantic searches [23] and find and install services that provide functionality to the application.
Such an architecture poses questions such as: how are the intelligence services hosted in the device? How is the intelligence functionality exposed to the applications (Cf. (b) in Figure 1.2)? How is the life cycle management of the intelligence services done? This thesis aims to explore what happens if an application requests (Cf. (a) in Figure 1.2) intelligence functionality that is not yet available in the device, a process that [38] calls Outward Intelligence Service Discovery (Cf. (c) in Figure 1.2).

![Figure 1.2: Overview of an ecosystem that enables the decoupling of intelligence functionality from applications in IoT devices.](image)

As part of the Outward Intelligence Service Discovery, the intelligence layer contacts one or multiple intelligence service brokers to search for intelligence services that can fulfill the intelligence request from the application. This search does not only consider the requested intelligence service, also the device’s capability, policies and specific domain constraints are important criteria and are part of the query. When a match is found with offered intelligence services, the results are sent to the intelligence layer of the device so that the user can pick one.
1.1 Problem Statement

The decoupling of intelligence functionality from applications has much to offer. It offers the potential of intelligence models to be searched for, installed, updated or retrained without the need for changes in the applications. These capabilities come in useful when an device owner or device manufacturer would like to update artificial intelligence functionality of the device. For example, a consumer buys a camera system with the ability to recognize when people enter their property through a machine learning algorithm. When the manufacturer improves the algorithm to make distinction between mailmen, children and other persons, the intelligence layer would take care of that upgrade.

This framework also opens the door value sharing. The manufacturer of the camera system might be known for its capable hardware but might not have the best intelligence algorithms. Specialized intelligence providers can monetize their intelligence algorithms through a centralized intelligence broker.

In practice any model could be installed in the intelligence layer, but without the right coordination, this functionality will only increase the amount of manual model selection that has to be done by the user to find the right models. Hence, the decoupling the intelligence models from the application will have to go hand in hand with compatibility measures. In the process of model discovery the offered intelligence models have to be matched with the search requests. Opposed to a web search request, there is some criteria that have to be accurately matched for the model to be able to do function as it is meant to. Therefore, in the process of intelligence model discovery, an uniform way of representing these criteria is necessary to be known with all stakeholders.

Here are some of the criteria that will be taken into account in this thesis. Machine learning models need the right execution environment to be available locally on the device. The execution of the models could potentially be done with the use of a runtime, a virtual machine, an interpreter or even compiled code. Though, there is many constrained IoT devices that will not have the capabilities to host these enablers. Information on the execution environment in the device needs to be modeled so that it can be taken into account in the query. There might be hardware requirements too. The right RAM size to load the data needs to be available and the CPU performance should be of such a level that the inference speed is adequate for the use of the model. Many machine learning models can only do a meaningful inference when the right data in the right structured format is fed to the model. The same goes
for the output data, the compatibility of the model and the application is strongly dependent on consensus of the structure and meaning of the data.

Lastly, and in the case of this thesis maybe most importantly, to let the user adequately search for models that fit his or her application there needs to be a formal description of what the models are trying to achieve. This is a complicated task to fulfil. There is many criteria, as listed above, that have to be taken into account. Many of these criteria can be captured with the common data types such as integers and strings. For example, conveying the information that a model takes input data in the form of a three-dimensional array with 28 by 28 float values is not very complicated. Describing the goal of an intelligence model will be harder to achieve as developers could virtually make models with any purpose.
1.2 Research Questions

The objective of this thesis is to research and implement the process of Outward Intelligence Service Discovery. The focus will be in finding a standardized way of representing meta-information about intelligence services. The implementation, that allows for storing and querying meta-data, serves as a test of the effectiveness of the solution and is not necessarily a goal on itself. The implementation stores meta-data of intelligence service models, according to the meta-data model, in a server that can be queried. This server represents an intelligence broker.

This thesis aims to reach this goal through answering the following research questions. There is a separation between questions that concern (a) the theoretical problem of representing the metadata of the intelligence services and (b) the engineering questions that concern the implementation.

a) How can Outward Intelligence Service Discovery be enabled through a metadata-model of Intelligence Services?

- How to define intelligence services with a metadata-model?
- What metadata schemas for services exist and do they suffice?
- What are the shortcomings of these schemas in the context of this thesis?

b) How to implement the process of Outward Intelligence Service Discovery?

- What metadata syntaxes allow for representation of intelligence services?
- What query languages are fit for matching an intelligence request with intelligence services?
- What database provides the functionality for storing and querying the meta data?
1.3 Structure of the Thesis

This thesis is about the outward intelligence discovery for IoT devices with an intelligence layer. Chapter 2 starts by giving some definitions often used in this thesis. Then it gives an explanation of ecosystem in which the intelligence layer operates and an overview of technologies that are used in the implementation. Chapter 3 breaks down the process of intelligence discovery and details how Intelligence Service Schema enables representation and discovery of intelligence services. Chapter 4 give an evaluation of the implementation, discusses its shortcomings and provides some suggestions for further research. Chapter 5 contains the conclusion of this thesis.
Chapter 2

Background

This chapter starts by explaining the main concepts behind artificial intelligence. Then an overview of the intelligence layer ecosystem is laid out. Lastly, an overview of the semantic web technologies used in the implementation is given.

2.1 Artificial Intelligence

The Cambridge English dictionary gives simple definition for intelligence:

The ability to learn, understand, and make judgments or have opinions that are based on reason. [37]

Intelligence is a term that is quite broad and can be used in many different contexts. In this thesis, I will be using the word intelligence regularly in the context of artificial intelligence or more specifically machine intelligence. It is useful to take a closer look at the definition of these terms and how they are defined in leading literature.

The term artificial intelligence has been proven to be a loosely defined term. The artificial intelligence effect is called after the fluidity of the term [45]. The artificial intelligence effect takes place when a new algorithm solves a complex problem. In Machines Who Think, Pamela McCorduck says that “practical AI successes, computational programs that actually achieved intelligent behavior, were soon assimilated into whatever application domain they were found to be useful in, and became silent partners alongside other problem-solving approaches, which left AI researchers to deal only with the ‘failures’, the tough nuts that couldn’t yet be cracked” [29]. This would define artificial intelligence as anything that has not been done yet.

Historically, the definitions of artificial intelligence were concerned with reasoning, behavior and reaching human performance with rationality as
ideal measure performance [41]. Haugeland and Bellman, respectively in 1985 and 1978, wrote that the goal was to make computers think and create “machines with minds”, citing thinking humanly as goal [9, 21].

Slightly different definitions were offered by Charniak and McDermott, and Winston [12, 46], calling thinking rationally the goal of artificial intelligence. Winston said that artificial intelligence concerns “the study of the computations that make it possible to perceive, reason, and act” [46].

Rich and Knight, already understanding the artificial intelligence effect in 1991, wrote that artificial intelligence concludes “the study of how to make computers do things at which, at the moment, people are better”, citing acting humanly as goal [40].

Finally, in an effort to narrow the definition, Poole et al. and Nilsson wrote that acting rationally is the goal of artificial intelligence [33, 36]. Poole et al. wrote that “intelligence is the study of the design of intelligent agents” and Nilsson wrote that artificial intelligence “is concerned with intelligent behavior in artifacts.”

The idea that there would come an intelligent machine with the ability to act and think rationally or humanly was central in the field of AI. Though, the paradigm within the field of artificial intelligence has changed significantly, as Darwiche explains in [17]. The field of AI has been surging after a prolonged period of no breakthroughs. Machine learning techniques has lead the field into a new era that lead to students, even outside the fields of computer science and artificial intelligence, to practice and work with the techniques of machine learning and more particularly deep learning. These techniques have proven to be extremely powerful for smaller constraint problems that can be mathematically defined. With this paradigm change, artificial intelligence researchers have been focussing more on solving smaller problems, opposed to the historical goals cited earlier, which brings us to machine intelligence.

2.1.1 Machine Intelligence

Machine intelligence does not have the goal to reach human level of intelligence [25]. Instead, machine intelligence is concerned with a smaller task that is considered intelligent. A algorithm using a live image stream to detect traffic signs would be considered machine intelligence. Such algorithms capitalise on the ability to mathematically formalize the problem at hand. Through intrinsic or acquired ability encapsulated in a computer program, the computer machine is able to carry out actions that achieve a predetermined goal. A task like the detection of traffic signs or translating text are specific enough to be considered machine intelligence tasks. An autonomous driving algorithm is not.
The ability to execute the task at hand might be represented by a function or model specifically fit for the task. The acquisition of this ability is done through a process called learning. In the case of machine learning, this is done through fitting a model to data. This learned model can then perform an intelligent task with novel data.

2.1.2 Machine Learning

Machine learning has lead to a breakthrough in artificial and machine intelligence. Expert systems, systems that emulate the decision making process of human experts, were often giving disappointing results. Expert systems were often expected and promised to solve complex problems as well or better than human experts even though this was rarely the case [8]. The rediscovery of the backpropagation algorithm, together with the increased availability of processing power of today, caused a resurgence in machine learning research resulting in algorithms outperforming human experts in some specific fields. Some example tasks where machine learning algorithms excel are language translation, activity detection or anomaly detection.

In machine learning many algorithms can be used to fit data to a mathematical model. Over time new data can be used as evidence to improve the model over-time. Machine learning problems covers three types of major problems:

- **Supervised classification**, concerns learning patterns in labeled sample observations in order to map new data points to categories (classes), e.g., predicting objects shown in an image.

- **Regression**, estimates the relationship (continuous value) of a dependent variable from one or multiple independent variables, e.g., the prediction of tomorrow’s temperature.

- **Unsupervised methods (clustering)**, divides a set of data points into groups (clusters), which minimize the dissimilarity between samples in each group. Problems like pattern recognition and data structure discovery are based on clustering.

Furthermore, machine learning techniques can be divided in supervised or unsupervised. Supervised techniques require large amounts of labeled data to learn patterns during the training process. Due to this problem specific training, supervised techniques can achieve good accuracy for that specific problem only and are barely reusable in different conditions. On the other side there are unsupervised techniques aimed to build models from unlabeled data.
2.2 Intelligence Stratum

The intelligence stratum architecture aims to move the machine learning functionality from the application layer and create an intelligence layer that runs a local service, say intelligence service. As the intelligence layer hosts the machine learning models, applications can make calls to the service. On the other hand, life cycle management is made much easier as the intelligence models are excluded from the applications. That is in a nutshell the value of the intelligence stratum. In this section, the architecture and features of the intelligence stratum will be explained as suggested by Ramos, Morabito, and Kainulainen [39].

The intelligence layer will interact with the following actors and provide services to them. Short descriptions of the functions of the several actors in the ecosystem of the intelligence stratum will provide a better overview of the architecture.

2.2.1 Intelligence Broker

The intelligence broker is a trusted rendezvous point and mediator between intelligence providers and the devices. The intelligence broker has the responsibility to manage the life cycle management of the distributed intelligence among the devices and supports the interactions between the actors within the ecosystem. It can be seen as an intelligence market. The broker provides the devices a single contact point through which the life cycle management of the intelligence services in the intelligence layer are is done. The devices register to the broker to gain a secure connection through which the device can make requests for discovery and provision of intelligence.

2.2.2 Applications

The applications are located in the application layer of the IoT devices. In the context of the intelligence stratum the applications are considered the users as they make calls on the intelligence services provided by the intelligence layer. What intelligence services are available in the intelligence layer depends on several aspects. Applications will communicate with the intelligence layer what services it needs. If these services are not yet available in the device, a process of intelligence discovery will be initiated in order to find out where such a service is available. The broker acts as the mediator through which intelligence services, provided by registered intelligence providers, can be navigated through, filtered and queried. When a suitable service is picked, the intelligence layer in the device will be provisioned with
the intelligence service. Intelligence services can be realized in the intelligence layer in different ways. One way is that a machine learning model is executed in a local runtime. A second option is provisioning the device with a piece of code is executed in a virtual execution environment that directly serves the application. A third option is a service that redirects every call from the application layer to a remotely executed intelligence function.

2.2.3 Intelligence Data Provider

When needed, Data Providers can provide data to the intelligence layer. For some models it is beneficial to retrain locally. When a device can not provide the intelligence service with all the data that is needed for a certain inference, it might be provided by an external Data Provider. When external data is needed, the intelligence layer must provide the application with storage, pre- and post-processing capabilities, and access control to ensure confidentiality and integrity. This Data Provider may be the same actor as the intelligence provider.

2.2.4 Intelligence Provider

The Intelligence Provider defines, configures, and initializes the intelligence service that will be made available to the application through the intelligence layer. It designs the algorithm. This could be a simple regression model that takes raw local data as input. On the other hand, an algorithm could consist of a pipeline that executes several pre-processing tasks before it executes a neural network classification task. The intelligence provider takes care of training of machine learning models if necessary or provides data for local training.

2.2.5 Intelligence Service

Within the intelligence layer, Intelligence Service can be seen as an Intelligence Actor. These services are composed by Intelligence Providers and later maintained through the life cycle management functionality. A service can be divided in two levels of granularity. A simple service might be a function that executes a normalization of a certain batch of data. This type of services is called Atomic Intelligent Services. The second type is called Fine-Grained Intelligent Services which are more complex services often existing out of a pipeline of multiple Atomic Intelligent Services. Intelligence Providers design these pipelines in a way that inputs and outputs are concatenated and
together form a more complete intelligence function. An example of a Fine-Grained Intelligence services is a pipeline of functions that together execute a linear regression including the needed pre- and post-processing of the data. The life cycle management applies to both the Atomic Intelligent Services as well as the Fine-Grained Intelligent Services. When updating intelligence actors, the dependencies created by the composition of services is kept track of by the intelligence layer. Through management policies updates and modifications of actors must be verified and authorized. Also, the execution environment of the Intelligence Actors have to be taken into account. Examples of devices conditions that are significant for the execution of intelligence services are load, inference, concurrency, mobility state, internet connection, and memory. A capability management system keeps track of the capabilities of the device. The intelligence layer will then consider the requirements and performance metrics of intelligence services to deploy and find the best domain to deploy the Intelligence Actor.

2.2.6 Operations Control

Devices need configuration, monitoring and operation. All this happens through the Operations Control that is in direct control of the operations in the intelligence layer. Through the Operations Control policies for data handling, accessibility of the device’s resources and functionality, and use of intelligence services are configured and maintained.
2.3 Semantic Web Technology

The intelligence stratum architecture relies on the high degree of interoperability between all the different agents that play a role in the ecosystem [7]. When the intelligence service is created by the intelligence provider, metadata about the intelligence service should be precisely registered and stored to be consulted for accurate intelligence service discovery. This ecosystem aims to be compatible with a large share of heterogeneous devices in the IoT domain. This means that the capabilities of the devices will vary and this has to be taken into account. Information about the capabilities and requirements of intelligence services will have to be matched with the capabilities and requirements of the devices to guarantee the compatibility.

Semantic Web technology can play a pivotal role in the intelligence stratum, an ecosystem of inter-connected agents. Semantic Web technology can be implemented and utilized in the various agents to ensure interoperability. Researchers have suggested that, through the use of semantic data models, heterogeneous nature of devices and services in the IoT domain [6].

2.3.1 Resource Description Framework

The resource description framework (RDF) is a simple data model for processing metadata. By providing a framework for machine understandable descriptions of resources, RDF provides interoperability between applications. RDF can describe any resources that can be identified by a Uniform Resource Identifier (URI) [34].

Statements, in the form of a triple, describe the resource. Properties are specified using predicates, pointing to other resources or literals, describing the resource. In Figure 2.1, Document 1 (subject), Author (predicate) and Author_001 (object) represent one triple. In other words, Author_001 is the Author of Document 1. As shown in Figure 2.1, a set of multiple triples combined form a directed graph and allow the description of relevant information.
CHAPTER 2. BACKGROUND

Figure 2.1: RDF example. Adapted from [30]

RDF allows communities to define semantics as a form of standardization. Metadata schemas allow communities to precisely define terminology for the description of resources of a certain domain. This is useful as terms might have a different meaning or implications when used in different contexts. For this reason, RDF allows for unique identification of the used semantics through the namespace mechanism. Instead of using the bare predicate “Author”, users can look up a predefined vocabulary written by a governing authority. This improves interoperability and prevents ambiguity. For example, we could use terminology from Dublin Core (DC), a schema for representing metadata about web documents. Using the standardized predicate “creator”, described by DC as “An entity primarily responsible for making the resource”, instead of using own predicate for can improve interoperability [5].

RDF is a powerful yet simple model for the description of resources. Triples are written in a machine-readable files allowing communication among applications. Historically, RDF-XML is used as the syntax for RDF metadata. Nowadays, many other syntaxes are used, e.g., Turtle or JSON-LD. In this paper I will use Turtle, as it is the easily readable.

2.3.2 Semantic Web Services

Semantic web services are services offered through the web and advertised with a semantic description in machine-understandable form with schemas-based annotations. Through annotations, the web service description defines how to use the service and what it does [23].
Many specifications, languages and formats for semantic service descriptions exist. Prominent ones are OWL-S (Web Ontology Language for Web Services) [28], WSML (Web Service Modeling Language) [13], SAWSDL (Semantic Annotations for WSDL and XML Schema) [18] or Hydra [24]. These specifications serve slightly different purposes but all define web services. Therefore, these specifications are tightly coupled with their technology stack (HTTP-based, SOAP-based or defining RESTful APIs). In this thesis, we aim to present a data model and semantic schema that allows users to define intelligence services independently of its technology stack.

2.3.3 SPARQL: Semantic Query Language

SPARQL is a semantic query language that can be used to manipulate and query RDF data. It is standardized by W3C for information retrieval concerning semantic data. As RDF can be seen as graph data, SPARQL is essentially a graph matching query language. It supports multi-attribute and range queries of both natively stored RDF data and RDF via middleware (e.g. a triplestore).

SPARQL has grown to become the most popular technology concerning discovery services and is standardized as a W3C recommendation [20]. In “A Categorization of Discovery Technologies for the Internet of Things”, Bröring et al. concluded that SPARQL is most fit for semantic discovery based directories due to its ability to produce rich queries and rank matched objects [11].

SPARQL uses four different query forms. All these query forms use pattern matching and return result sets or RDF graphs in several different formats, e.g., JSON-LD, Turtle or XML.

- **SELECT**, returns the variables requested or bound in a query pattern match.
- **CONSTRUCT**, returns an RDF graph with the requested variables in a form dictated by the query.
- **ASK**, returns *true* or *false*, indicating if the queried pattern exists or not.
- **DESCRIBE**, returns an RDF graph describing the queried resource.
Chapter 3
Implementation

In this chapter I will further break down the intelligence discovery in the intelligence layer. As this framework has many different agents, that might have different interests and policies, the process of intelligence discovery will be proven to be a complex one. First I will explain the distinction between intelligence discovery within the intelligence layer and outward intelligence discovery, show important aspects, such as policies, that has to be taken care of and how these processes could be implemented. In Section 3.1, I will describe the process of intelligence discovery within the intelligence layer. This is a process that encompasses interaction between a certain application and the intelligence layer. I will explain how a semantic API could be used to accommodate this communication. The basis for this semantic API is an intelligence layer data model according the Resource Description Framework. In Section 3.2.5, a specification of this model will be given. Then I will describe an example implementation of the outward intelligence discovery. This implementation will serve as a proof of concept and demo of how the RDF intelligence service metadata model works in practice.

An important note to this chapter is that, at the point of writing this thesis, there is no implementation of the intelligence layer yet. My contribution to this framework will contain out of stating my vision of how the intelligence discovery, within the framework, as a whole would work best. Besides that, I deliver an implementation of the outward intelligence discovery.
3.1 Intelligence Discovery

Value sharing is one of the main features of the intelligence layer framework. Through intelligence brokers and providers, application developers can potentially be provided with greater supply of machine learning algorithms that they could use in their application without much effort.

Many machine learning algorithms are multi-purpose. A neural network can be used for many different goals. The other way around, for a certain goal, say facial expression recognition, many successful algorithms have been developed [42]. This is one of the challenges, although certainly not the only one, that makes autonomous search of goal-specific intelligence services complex. This thesis is an effort to simplify the discovery of goal-specific intelligence services.

An important step towards autonomous discovery of such services is having a data model for representing intelligence services. This data model needs to be able to contain all the necessary metadata about the intelligence service. This includes information about the requirements of the device, such as computing power, and metadata about the format of input and output data. But I also aim to provide a framework along which it would be possible to capture the goal of an intelligence service. Using this semantic model intelligence providers should be able to describe what their intelligence service aims to achieve. Once intelligence providers can describe the goal of their intelligence service, application developers can use that same intelligence service description framework to request intelligence services from the intelligence layer.
Figure 3.1: Context view of semantic API discovery process.
3.1.1 Discovery API

First of all, the semantic API provides functionality to search for intelligence services (Cf. (a) in Figure 3.1). Through this call, criteria and filters, such as input, output, goal and domain (see Section 3.1.4, Intelligence Service Selection by the Application Developer), can be set as parameters which are then sent to the intelligence layer.

![Diagram of intelligence service discovery process](image)

- (a) API call: Discovery (Intelligence service criteria, Discovery options)
- (b) API return: Semantic description of locally and/or non-locally matched intelligence services
- (c) Data: Discovery call
- (d) Data: Discovery return
- (e) Match discovery call with local intelligence services
- (f) Get policy and device capabilities
- (g) Create query: Goal, Input, Output, Policy, Capabilities
- (h) Query return: semantic description of matched intelligence services (XML)

Figure 3.2: Process view of the intelligence service discovery.

It is possible that the intelligence layer already hosts intelligence services that match the criteria in the discovery call in which case outward discovery might not be necessary. This could be the case if application A uses intelligence service X and B is searching for similar functionality as X offers. In other cases, the user might want to do outward discovery only. Parameters in the discovery function will allow to set the preferred course of action.

When outward discovery is preferred, management services gathers information about the device’s policy and capabilities (Cf. (e) and (f) in Figure 3.1.1. Policy and capability information, together with the application’s dis-
covery criteria, form the criteria used to match with intelligence services’ metadata in the intelligence broker.

The intelligence broker stores information of the available intelligence services in a metadata repository. Querying against this repository returns all necessary information about the intelligence service. The results of the query are returned to the application in RDF format (e.g. XML syntax).

The discovery process is not an obligatory process to take place in order to use the intelligence layer. It is possible that the developer already knows what intelligence service is fit for the application. The developer already has a default intelligence service that guarantees the correct workings of the application. In this case, the application is not required to use the discovery functionality, the application can simply request registration (Cf. (b) in Figure 3.1.3) for that particular intelligence service.

3.1.2 Registration API

With a registration call, the application requests access to recall functionality of a particular intelligence service. After the intelligence layer performed a policy and capability check the application gets registered for that particular. The intelligence layer creates a unique token for the registration, stores the application, intelligence service and token in a register and returns the token to the application. The token is utilized by the intelligence layer as an identifier of the application.

If the device’s policies and capabilities allow it, it is possible for an application to register for multiple intelligence services. The application gets a new token for every registration.

Applications can unregister intelligence services. When an application no longer needs the intelligence service, the registration can be removed. In theory, the application is allowed to register and unregister to intelligence services as it sees fit. Unreasonable use of this functionality could be limited by device policies.

3.1.3 Recall API

With the received tokens the application can make intelligence recalls to the intelligence services hosted in the intelligence layer. An input, together with the right token, is sent to the application layer to do an inference for the application. The intelligence layer returns an the output of the calculation.

The input and output format are known to the application as the application has the intelligence service metadata. With this information the application knows the format and datatype(s) the input is supposed to have
in order for to make a correct inference as well as what format and datatype(s) the result of the inference will be.

![Diagram](image)

Figure 3.3: Context view of the intelligence service API functionality available to the application.

3.1.4 Intelligence Service Selection by the Application Developer.

When an application developers decides to use the intelligence layer for a certain task in their application, he or she should define that task using the intelligence service metadata model (Cf. (a) in Figure 3.1). The application developer is required to define three parts to be able to register to the intelligence layer. First, the problem needs to be defined. The problem definition is will be a combination of predefined and publicly available semantic concepts (later in this thesis I will explain this further together with some examples).
Secondly, to make the installments and execution of the intelligence services seamless, the inputs and outputs of the intelligence services needs to fit the application very precisely. Therefore, precise information about the needed format of input and output data need to be included in the request.

With this task defined, the application can make a discovery call and get a list of the matched intelligence services. How this list of results from the discovery call is handled and how the selection if the intelligence service is made, is for the application developer to decide. Here is some options with considerations.

An autonomous choice could be made with predefined criteria hard-coded in the application. An application developer could only be interested in intelligence services from a certain intelligence provider. This intelligence provider, say a certain company with a good reputation concerning the intelligence layer, might have a number of intelligence providers for different tasks. The task definition together with the name of the intelligence provider could be enough to autonomously find the right intelligence services.

Another option is to involve the device owner in the process of intelligence discovery. The functionality of intelligence discovery through the intelligence layer could be seen as seen as an interesting feature to the application user that adds increased flexibility in the app’s usage. Through a custom user interface the application developer could allow the user to set some of the discovery criteria and pick their preferred option. There might be multiple intelligence services that achieve the same task but with different performance.
3.2 Intelligence Service Metadata Model

The intelligence service metadata model allows intelligence providers to declare that a certain intelligence service exists and store critical information for execution of the intelligence service. It describes the mapping from input data to output data, but without describing the internals of the functions. It describes execution related requirements for the intelligence service to run on the device. Furthermore, a task definition of the intelligence service allows the intelligence developer to semantically describe the goal of the service.

The intelligence service metadata model consists of several classes. Instances of these classes together describe one intelligence service. It is possible that one intelligence includes multiple instances of one particular class, e.g. an intelligence service can consist of multiple atomic services.

In this section, I will lay out the classes of the metadata model and describe the purpose of them. A full RDF Turtle serialization of the intelligence service metadata model can be found in Appendix B.1. In Subsections 3.2.1 and 3.2.2, I will explain the classes forming the skeleton of this data model by using of parts of the DeepSpeech example in Subsection 3.2.5.

3.2.1 Intelligence Service

This class declares an intelligence service and its metadata. An intelligence service is a service, hosted by the intelligence layer. Through the api of the intelligence layer an intelligence service takes input from an application. It then executes a set of calculations and returns an output to the application. This class inherits properties datatype properties from its parent class unique-entity. These datatype store information about the intelligence service and can be queried in the discovery process.

For the demonstration of the Intelligence Service Schema an intelligence service called DeepSpeech Plain English will be used. DeepSpeech Plain English is an intelligence service that offers speech recognition functionality. More specifically, the service is specialized in recognizing English commands for personal assistants, e.g. checking the calendar, creating appointments or calling somebody. Subsection 3.2.5 goes into further detail about this example.

In Listing 3.1 it is shown how the intelligence service is declared using the Intelligence Service Schema. DeepSpeech Plain English is a owl:NamedIndividual of the iss:intelligence-service class. The intelligence service class allows a unique identifier, name, description, version, date of creation, goal and domain to be declared. Furthermore, the predicates iss:upload
CHAPTER 3. IMPLEMENTATION

3.2.2 Implementation

An implementation contains information about how an intelligence service is implemented. The underlying idea behind the separation of the implementation class and the intelligence service class is that an intelligence service could potentially have multiple implementations. In the DeepSpeech example, the only implementation defined uses a neural network to do speech recognition. The property iss:hasMethod

An intelligence service with a particular goal might have implementations for devices with different capabilities. Properties in the implementation class, e.g. hasRequiredRam and hasRecommendedCpuScore, can be used by the intelligence provider to define hardware requirements for a certain implementation.

Machine learning algorithms can differ significantly in their required resources. Different implementations will have a different hasServicePipeline. An hasServicePipeline is a rdf:List [10] which functions as an ordered array of URI's, in this case atomic-service's.

As intelligence providers create and publish intelligence services, it will be possible to use external intelligence services as part of another intelligence service. The property usesExternalService can be used to declare the usage of an external service as part of an implementation. The intelligence layer then knows that the installation of that external service is required.

Listing 3.2 demonstrates how an implementation of the DeepSpeech Plain English intelligence service is declared.
CHAPTER 3. IMPLEMENTATION

There is several approaches to describing a goal of an intelligence service. From an high-level point of view we could say that a service is merely a mapping of input data to output data. This is true for every function-based service and can be done by describing the input’s and output’s data format. The Web Service Description Language did this successfully for web services [13]. With this information applications know how to execute a service.

From the data structure and format we cannot always derive the goal of the service. From an machine intelligence point of view, we could give extra meaning to intelligence services by capturing what task the main algorithm tries to solve. In a recent paper called "Machine learning for internet of things data analysys: a survey", Mahdavinejad et al. [27] discussed how a taxonomy could help find the right algorithm for a problem. Mahdavinejad et al. found the following categories to be useful for describing the task of machine learning algorithms in the Iot domain:

- To discover the structure of unlabeled data;
- to find unusual data points and anomalies;
- to predict values and classified sequenced data;
- to predict the categories of data; and
- to extract features of data.

These categories state the goal of machine learning algorithms, but indirectly also the mapping of the service. The intelligence service schema uses these categories as semantic concepts to describe the services’ goal.

Lastly, this schema also aims to describe intelligence services on a lower level and allows users to describe their intelligence services with semantic descriptors from taxonomies of relevant domains. These semantic annotations will give the machine readable mapping, the data structure and format of the mapping, a human understandable context. In other words, not only the data format of the input and output are described, but also what the input and output data represents and in what context. I will give specific example, which I will go into detail about in subsection 3.2.5. DeepSpeech is a speech recognition service that takes audio as an input and returns the recognized speech in textual form. In the example the input and output are annotated with semantic descriptors and concepts from the Iot Domain
and the Speech and Language Domain. These domains are represented by their own taxonomies. These taxonomies is a set of concepts organized in a hierarchy starting with the most general concept and gets more specific and defined as you go down the hierarchy. Figure 3.4 and Figure 3.5 are simplified visualizations the respectively the Iot Domain and the Speech and Language Domain. These annotations can be used as filters in the SPARQL query and allow for precise and effective intelligence service discovery.

3.2.3 Domain Specificity

The goal of the intelligence service schema is to enable rich and efficient description of intelligence services from any domain or context. A rich description would mean that any intelligence service can be described in a precise manner. Efficient description would exist out of descriptors from standardized taxonomies that can be effectively used in the discovery process.

To allow for rich description of intelligence services, a wide variety of semantic descriptors should be available to the intelligence provider to describe their services. Chun et al. [14] argued that semantic information models aimed to describe heterogeneous resources, should be modeled with the use of ontologies. These ontologies can represent a set of common concepts relevant to the context of the resource that is being described. Such domain specific ontologies can provide formal expressiveness, avoid ambiguity in the description and increase the ability to analyze and inference the resources autonomously.

Domain specific taxonomies with context specific descriptors will also allow for more efficient description of the intelligence services. For the discovery process to be efficient the intelligence providers is required annotate their intelligence services in such a way that the intelligence services can be matched with the requests from the applications. With a standardized number of taxonomies, each specifically developed for effective semantic description of intelligence services from a certain context, ambiguity can be minimized [44]. Therefore, domain specific description can increase the interoperability among service providers, service consumers, data providers, data consumers and facilitate semantic interpretation and service integration.

Existing ontologies are often not specific enough to fully rely upon. Therefore, multiple taxonomies may be necessary to describe an intelligence service adequately and those taxonomies might have overlap. In the case of the Deep-Speech example, the Iot taxonomy and the Speech and Language taxonomy, respectively Figure 3.4 and Figure 3.5, were used to describe the intelligence services. These are simplified examples of such domain taxonomies, but show how multiple domain taxonomies together provide sufficient semantic
descriptors for rich annotation.

These taxonomies should, as much as possible, be put together with semantic descriptors from existing ontologies. Overlap between ontologies can be overcome with the use of built-in OWL properties such as `owl:sameAs`, `owl:equivalentClass` and `owl:equivalentProperty` [31]. Within domain taxonomies, subdomains could be modeled to further increase specificity. Such hierarchical modeling allows reasoning to take place at the intelligence broker’s server side after it received the query request from a device.
Figure 3.4: An example domain taxonomy that can be used to annotate intelligence services. Using a hierarchical structure the Iot domain has several subdomains; Object Detection, Speech recognition and Scheduling. Those subdomains contain descriptors that can be used to annotate intelligence services. In some cases values are categorical and are modeled as concepts (E.g. Language and Specificity). In other cases the descriptors come as datatype properties.
CHAPTER 3. IMPLEMENTATION

Figure 3.5: A simplified example domain taxonomy intelligence providers could use to annotate their intelligence services with semantic descriptors from a speech and language context.

3.2.4 Classes

These are the classes of the intelligence service schema. Figure 3.6 visualizes the relationships between the classes.

- **unique-entity**: Unique entities, such as intelligence services, atomic services, dependencies, execution environments, and implementations, inherit datatype properties from this class.

- **intelligence-service**: This class declares an intelligence service and its metadata. An intelligence service is a service, hosted by the intelligence layer, that takes input from an application, executes a set of calculations and returns an output in the context of the intelligence layer.

- **account**: Intelligence services can be uploaded through and managed by an online account. The account can be owned by, and therefore represent, a person or company.

- **person**: This class represents a person. In this context a person can be the creator of an intelligence service or holder of an account.

- **goal**: The goal of the intelligence service from a machine learning perspective.

- **method**: The method implemented to achieve the goal of the intelligence service.

- **domain**: The domain provides context in which the intelligence service operates. A domain taxonomy contains semantic descriptors used for input and output annotation.
• **implementation**: An intelligence service can have multiple implementations that serve the same goal. Different implementations could implement different atomic services, environment requirements, and data input and outputs.

• **execution-environment**: The execution environment contains information about the system that executes the code.

• **dependency**: Dependencies describe software modules necessary to execute the implementation.

• **atomic-service**: A service that is directly invokable. An atomic service has no subprocesses and is executed in one step. A pipeline of atomic services can form an implementation of an intelligence service.

• **dataset**: Contains information about the dataset that is used to train the algorithm.

• **label**: Labels of categories captured by the dataset.

• **data-entity**: Contains metadata about a data object. A data entity can be described by a domain and the semantic descriptors in the domain’s taxonomy.

• **input**: Describes the input the the intelligence service requires from the application. An input can be described by a domain and the semantic descriptors in the domain’s taxonomy.

• **output**: Describe the output the intelligence service returns to the application. An output can be described by a domain and the semantic descriptors in the domain’s taxonomy.

• **annotated-entity**: A dataset, goal, output, and input are subclasses of annotated entity. These classes inherit properties from annotated entity.

• **data-tensor**: This class represents a data tensor of an input or output. A tensor has at least one dimension.

• **dimension**: A data tensor can have has at least one dimension. Every dimension stores an amount of values.

• **data-category**: The category of data. Either audio, text, image or tensor. Respectively, the first three classes are subclasses of tensor.
Figure 3.6: Visualization of classes of the Intelligence Service Schema and their relationships. Tool for visualization: WebVOWL 1.1.7 [26]
3.2.5 Example: DeepSpeech Plain English

This subsection lays out how the Intelligence Service Schema can be used to semantically describe an intelligence service using RDF. The example concerns the DeepSpeech Plain English intelligence service. This description, fully listed in Appendix A, contains the metadata about the intelligence service that is used for the discovery of the service. After discovery and successful installation of the service in the intelligence layer, this service can be called by applications through the semantic API. In short, this service retrieves the audio file, filters out the noise of the audio, carries out speech recognition and return the result in textual form through the API to the application. \texttt{deepspeech.plain.english} is a definition of an intelligence service.

The intelligence service \texttt{deepspeech.plain.english} has as goal \texttt{iss:categoryprediction} and is uploaded by \texttt{account7466}. This account is owned by \texttt{person8293}, whose name is "HenkJanSmits" and has a reputation score of "77". These values are attached to the account and can be used as a filter in the search for services.

1	deepspeech.plain.english a owl:NamedIndividual, iss:intelligence-service ;
2	iss:identifier "3384" xsd:string ;
3	iss:hasName "DeepSpeech" xsd:string ;
4	iss:description "DeepSpeech for personal secretary services in plain English" xsd:string ;
5	iss:hasVersion "1.3.2" xsd:string ;
6	iss:created "01-01-2020" xsd:date ;
7	iss:hasGoal iss:category-prediction ;
8	iss:hasDomain iss:speechRecognition ;
9	iss:uploadedBy :account7466 ;
10	iss:hasImplementation :NeuralNetworkImplementation .

Listing 3.3: This listing shows how the DeepSpeech Plain English service is described.

One implementation of the service is defined as \texttt{NeuralNetworkImplementation} on line 1 in Listing 3.4. The implementation \texttt{NeuralNetworkImplementation} has the name "DeepSpeechPersonalSecretary". The method of this implementation is \texttt{iss:neural-network}. This implementation executes a pipeline of two atomic services, \texttt{wavcleaner} and \texttt{DeepSpeechOnnx}, as declared on line 11 in Listing 3.4.

1	:NeuralNetworkImplementation a owl:NamedIndividual, iss:implementation ;
2	iss:hasIdentifier "9283" xsd:string ;
3	iss:hasName "DeepSpeech Personal Secretary" xsd:string ;
4	iss:hasVersion "1.3.2" xsd:string ;
5	iss:hasDescription "This implementation uses a deep neural network." xsd:string ;
6	iss:created "01-01-2020" xsd:date ;
7	iss:hasImplementationScore "89" xsd:integer ;
8	iss:hasMethod iss:neural-network ;
9	iss:requires :PythonDependency ;
10	iss:requires :OnnxruntimeDependency ;
11	iss:hasServicePipeline (:wavcleaner :DeepSpeechOnnx) .

Listing 3.4: Definition of the service’s implementation.
CHAPTER 3. IMPLEMENTATION

:wavcleaner is the first atomic service in the service pipeline of this implementation. Therefore, :lst:wavcleaner contains metadata about the input of the whole service. The second and last atomic service, :DeepSpeech Onnx, contains metadata about the output. Listing 3.5 shows how an atomic service is described and how the input is attached to the atomic service (line 5 of 3.5).

Listing 3.5: This listing shows how the atomic service :wavcleaner is declared.

The implementation requires the dependencies PythonDependency and OnnxruntimeDependency, respectively declared on line 9 and 10 of Listing 3.4, to be available on the device. The description of the PythonDependency is shown in Listing 3.6. It stores the name and version necessary of the dependency necessary for the service to be functioning.

Listing 3.6: This listing shows how the Python dependency is declared.

The description of the format is required for autonomous communication between applications and the api. The data-tensor stores metadata about the in- and output of a service. Listing 3.7 shows how WavInput’s data format is described by a data-tensor (line 3). This tensor stores information about the format of the input. A tensor could have multiple dimensions but since :wavcleaner takes a file as input, the tensor only has one dimension (line 5) with one value (line 8) storing the path to the audio file. This is declared as follows:

Listing 3.7: This listing shows how the input’s format is described using the data-tensor class.

In order to describe the service’s expected input, the input is annotated with semantic descriptors the Intelligence Service Schema and the two example domain taxonomies, the iot:speechRecognition domain and the lin:linguistics-domain domain, declared respectively on line 6 and 13 in the
Listing 3.8. These annotations describe the functioning of the service and can be used as filter in the discovery query.

The input has a `iss:hasDataCategory` of `iss:audio`, on line 4 in Listing 3.8, declaring that the service expects audio data in some form. The descriptors are used to state that this service is specifically effective recognizing spoken questions and commands (respectively line 16 and 19) typically spoken to personal secretary devices (line 9). The algorithm is specifically trained to process Australian English (line 17–18) language. Furthermore, the service takes the audio input in the form of a WAV-file with a sample rate of 48000Hz (line 10-11).

```
1 :WavInput a owl:NamedIndividual , iss:input ;
2 iss:isFile "true" xsd:boolean ;
3 iss:hasMetaData :locatorDataTensor ;
4 iss:hasDataCategory iss:audio ;
5
6 iss:hasDomain iot:speechRecognition ;
7 # The following properties are part of the
8 # IoT domain, subdomain: speechRecognition.
9 iot:specificity "personal-secretary" xsd:string ;
10 ebu:sampleRate "48000" xsd:integer ;
11 ebu:hasAudioFormat "WAV" xsd:string ;
12
13 iss:hasDomain lin:linguistics-domain ;
14 # The following properties are part of the
15 # Linguistics domain.
16 gold:LinguisticExpression gold:SpokenLinguisticExpression ;
17 gold:Language "English" xsd:string ;
18 gold:Dialect "Australian" xsd:string ;
```

Listing 3.8: Definition of the service’s input.
CHAPTER 3. IMPLEMENTATION

3.3 Implementation: Metadata Repository

For the implementation of the outward intelligence discovery I have chosen to work with Apache Jena Fuseki [2]. Jena is an open-source framework that allows for the manipulation of RDF graphs [3]. Fuseki adds an HTTP interface to the server which allows remote querying and updating through ARQ, the SPARQL engine of Jena [1].

Jena Fuseki comes with TDB, a database that stores semantic triples [4]. A TDB dataset contains one or more graphs, which contain triples. In the implementation of the intelligence service schema, every intelligence service is a named graph. A SPARQL query can be matched against all intelligence service graphs and return the matches.

When the intelligence layer receives the request from an application, the SPARQL engine creates a query for discovery (Cf. (g) in Figure 3.1.1). The SPARQL engine gathers the relevant data about the device, such as capabilities and policies, and autonomously creates a query. As shown in Listing 3.9, a SPARQL query exist out of triples containing information to be matched with intelligence service descriptions hosted by the intelligence broker. Because of the structural simplicity of SPARQL queries, it is simple to programmatically put a query together based on the data offered to the SPARQL engine. Variables can be left out of the query in case they are considered irrelevant. Starting from a baseline query, lines with necessary namespaces and to be matched triples and filters can be appended to the query.

Listing 3.9 is showing just one example of how a query, sent from the intelligence layer, could look like. Essentially, this query will match graphs and return the variables used in the query from those graphs. The strictly relevant variables are the identifiers of the intelligence service and the implementation of the matched intelligence services as those will be necessary for the installation process. Another option is to use returned variables to autonomously choose the best intelligence service.

This query will return all variables used in the query. SPARQL is an elaborate query language that allows for the use of a vast variety of matching patterns. As shown in Listing 3.9 line 7–8, this query only matches services newer than 2019-01-01. Besides certain required variables for a match, this query only match intelligence services that have a recommended RAM memory lower than 150Mb. The intelligence service is required to work well with Questions as a type of speech. With the OPTIONAL match pattern, on line 24, the query will return any other type of speeches the intelligence service works well with.
Listing 3.9: Example intelligence service discovery query
Chapter 4

Evaluation and Discussion

The implementation as presented in this thesis solves the problem initially described for the DeepSpeech example. However, this thesis just contains one use case of the Intelligence Service Schema presenting the functioning of the schema. In practice, this example might prove itself to be more useful as an example of how to implement this first version of the Intelligence Service Schema rather than a proof that it will function in production. Further testing will have to be done before a full evaluation of the solution can be made.

The Intelligence Service Schema was developed as a part of an ambitious project in Ericsson’s internet of things research and development department that aims to decouple intelligence from applications in devices. Thusfar, this project has been in conceptual state and Intelligence Service Schema is a first step towards a semantic schema that can be used to describe intelligence services in the multi-agent environment of the internet of things.

The Intelligence Service Schema allows intelligence services to be semantically annotated according to their goal independent of the technology stack. Well known languages and formats, such as OWL-S, WSML, WSDL and SAWSDL, serve a similar purposes although they all are tightly coupled with their web technology stack. The Intelligence Service Schema is technology independent. Another important feature of the schema presented in this thesis is the capability to annotate services with external taxonomies. Only SAWSDL shares this capability [18].

The outward discovery of intelligence services is detailed, though many other topics, e.g., the installation and execution of the intelligence services, have to be addressed and implemented to successfully allow decoupling of intelligence in internet of things applications. Besides that, more use cases should be created to further test the Intelligence Service Schema and consider additional improvements accordingly.
The decoupling of the intelligence layer comes with complications of which many have to be further researched. These are challenges relevant for future research relevant to the intelligence discovery process:

- **Policy Check in Intelligence Discovery**: policies of devices, applications and intelligence services will have to be managed within the intelligence layer. The description of these policies are not covered by the Intelligence Service Schema but still will have represented in a common language and coordinated.

- **Scalability of the Intelligence Broker**: Klusch et al. writes that where a centralized semantic search directory can serve as a intermediary between service providers and consumers, it also represents a potential single point-of-failure [23]. A decentralized directory search for semantic search, e.g. a structured peer-to-peer network with a query routing protocol, or directory-less search, e.g. an unstructured peer-to-peer network without an overlay structure, are potential alternatives that should be investigated. Such distributed solutions might be more suitable for real-world scenarios for their high scalability and low dependability [15, 22, 35].

- **String Search**: String search functionality can improve the results of outward discovery queries or explore intelligence services. String search would be useful, e.g., for browsing intelligence services through partial matching of intelligence service titles and descriptions.

- **Partial Matching**: In the case of no match, partial matching can improve the further search process. Systematic prioritization of matched triples needs to be implemented in order to rank the partial matches.
Chapter 5

Conclusions

The goal of the thesis was to find a technology stack independent semantic schema that can be used to define intelligence services and therefore allow discovery of intelligence services. Existing schemas were not exactly fit for this purpose. The Intelligence Service Schema, presented in this thesis, should be able to describe all information necessary to find out if intelligence services would be fit for an application on a given device. This is done through providing a set of semantic classes and properties to describe dependencies, runtimes, intelligence services, implementations, accounts, inputs, outputs, files and metadata of all these classes.

Besides that, this schema also aims to provide a framework of systematic semantic annotation in order to describe the intelligence service’s goal. Through semantic annotation of the input and output, the semantic definition of the mapping of the service’s function, the goal is described. The semantic descriptors can be taken from the domain specific taxonomies that will have to be defined in the future. In my thesis you will find an example taxonomies and the implementation. When intelligence service’s are defined, they’re stored and queried from a Jena Fuseki server, a semantic repository, using SPARQL.

The intelligence layer is a promising project and the Intelligence Service Schema is a step towards autonomous discovery of intelligence services. However, it is an innovation that is mostly in conceptual stage and it needs further work. One of the challenges would be to define domain specific taxonomies that can describe inputs and outputs. It might be fairly easy to come up with a taxonomy that could describe some example intelligence services. Though, in the past, promises of semantic technology have often times been bigger than the results, hence the need for development and testing of the Intelligence Service Schema. It is considered to be difficult, even for field experts, and time consuming to make useful domain ontologies (specific enough to
be useful, not too specific so that it’s too difficult and unworkable). Defin-
ing such taxonomies with experts would be key to progress in the field of
semantic intelligence discovery and description.
Bibliography

Appendix A

Example: DeepSpeech Plain English

In this appendix the complete metadata definition of the DeepSpeech Plain English service is shown in a listing. It makes use of the Intelligence Service Schema.

```xml
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix isss: <http://www.ericsson.com/2019/intelligence-service-schema/> .
@prefix list: <http://jena.apache.org/ARQ/list#> .
@prefix ebu: <http://www.ebu.ch/metadata/ontologies/ebucore/ebucore#> .
@prefix gold: <http://purl.org/linguistics/gold/> .
@prefix iot: <http://www.ericsson.com/2019/iot-domain#> .
@prefix lin: <http://www.ericsson.com/2019/linguistics-domain#> .
@prefix : <http://example.com/> .

:deepspeech_plain_english a owl:NamedIndividual , isss:intelligence-service ;
  isss:identifier "3384" xsd:string ;
  isss:hasName "DeepSpeech" xsd:string ;
  isss:description "DeepSpeech for personal secretary services in plain English" xsd:string ;
  isss:hasVersion "1.3.2" xsd:string ;
  isss:created "01-01-2020" xsd:date ;
  isss:hasGoal isss:category-prediction ;
  isss:hasDomain iot:speechRecognition ;
  isss:uploadedBy :account7466 ;
  isss:hasImplementation :NeuralNetworkImplementation .

:account7466 a owl:NamedIndividual , isss:account ;
  isss:accountName "Voice Inc" xsd:string ;
  isss:fromOrganization "Voice Incorporated" xsd:string ;

:person8293 a owl:NamedIndividual , isss:person ;
  isss:hasName "Henk-Jan Smits" xsd:string ;
  isss:hasReputationScore "77" xsd:integer .

:NeuralNetworkImplementation a owl:NamedIndividual , isss:implementation ;
  isss:hasIdentifier "9283" xsd:string ;
  isss:hasName "DeepSpeech Personal Secretary" xsd:string ;
  isss:hasDescription "This implementation uses a deep neural network." xsd:string ;
  isss:created "01-01-2020" xsd:date ;
  isss:hasImplementationScore "89" xsd:integer ;
  isss:hasMethod isss:neural-network ;
  isss:requires :PythonDependency ;
  isss:requires :OnnxruntimeDependency ;
  isss:hasServicePipeline { :wavcleaner :DeepSpeechOnnx } .
```
APPENDIX A. EXAMPLE: DEEPSPEECH Plain English

```python
: PythonDependency a owl:NamedIndividual, iss:dependency ;
  iss:hasName "Python"ˆˆxsd:string ;
  iss:hasVersion "3.7.1"ˆˆxsd:string .

: OnnxruntimeDependency a owl:NamedIndividual, iss:dependency ;
  iss:hasName "Onnxruntime"ˆˆxsd:string ;
  iss:hasVersion "5.3.2"ˆˆxsd:string .

: wavcleaner a owl:NamedIndividual, iss:atomic-service ;
  iss:hasIdentifier "2783"ˆˆxsd:string ;
  iss:hasName "Wav cleaner"ˆˆxsd:string ;
  iss:hasDescription "This atomic service takes the location of an wav file as input and reduces noise in the audio."ˆˆxsd:string ;
  iss:hasInput :WavInput .

: WavInput a owl:NamedIndividual, iss:input ;
  iss:isFile "true"ˆˆxsd:boolean ;
  iss:hasMetaData :locatorDataTensor ;
  iss:hasDataCategory iss:audio ;
  iss:hasDomain iot:speechRecognition ;
  @ the following properties are part of the iot domain, subdomain:
  speechRecognition
    int:specificity "personal-secretary"ˆˆxsd:string ;
    ebu:sampleRate "48000"ˆˆxsd:integer ;
    ebu:hasAudioFormat "WAV"ˆˆxsd:string ;
  iss:hasDomain lin:linguistics-domain ;
  @ the following properties are part of the linguistics domain
  gold: LinguisticExpression gold:SpokenLinguisticExpression ;
  gold:Language "English"ˆˆxsd:string ;
  gold:Dialect "Australian"ˆˆxsd:string ;

: locatorDataTensor a owl:NamedIndividual, iss:data-tensor ;
  iss:elementDataType xsd:string ;
  iss:hasDimensions ( :dimension0 ) .

: dimension0 a owl:NamedIndividual, iss:dimension ;
  iss:dimensionValue "1"ˆˆxsd:integer .

: DeepSpeechOnnx a owl:NamedIndividual, iss:atomic-service ;
  iss:hasIdentifier "1102"ˆˆxsd:string ;
  iss:hasName "DeepSpeech Onnx"ˆˆxsd:string ;
  iss:hasDescription "This atomic service executes the deepspeech neural network using the onnxruntime."ˆˆxsd:string ;
  iss:hasOutput :DeepSpeechOnnxOutput .

: DeepSpeechOnnxOutput a owl:NamedIndividual, iss:output ;
  iss:hasDomain iss:linguistics-domain ;
  @ the following properties are part of the linguistics domain
  gold: LinguisticExpression gold:WrittenLinguisticExpression ;
  gold:Domain "IOT"ˆˆxsd:string ;
  iss:hasDomain iot:domain ;
  @ the following properties are part of the iot domain, subdomain:
  speechRecognition
    iot:format iot:Language ;
    iss:hasMetaData :outputDataTensor .

: outputDataTensor a owl:NamedIndividual, iss:output-tensor ;
  iss:elementDataType xsd:string ;
  iss:hasDimensions ( :dimension10 ) ;
  iss:hasDataCategory iss:text .

: dimension10 a owl:NamedIndividual, iss:dimension ;
  iss:dimensionValue "1"ˆˆxsd:integer .
```
Appendix B

The Intelligence Service Schema

This appendix lists the complete source code of the Intelligence Service Schema.

```xml
@prefix : <http://www.ericsson.com/2019/intelligence-service-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix fno: <http://www.fno.io/spec/> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@base <http://www.ericsson.com/2019/intelligence-service-schema> .

  <http://purl.org/dc/terms/description> "Intelligence Service Schema is an effort to develop a schema to describe intelligence services within internet of things devices"@en ;
  <http://purl.org/dc/terms(hasVersion)> 1.0 ;
  <http://purl.org/dc/terms/title> "Intelligence Service Schema"@en ;
  owl:imports <http://xmlns.com/foaf/0.1/> ;

# Annotation properties
# http://purl.org/dc/terms/description

# hasVersion
# http://purl.org/dc/terms/hasVersion

# title
# http://purl.org/dc/terms/title

# Data types
xsd:date rdf:type rdfs:Datatype .
xsd:string rdf:type rdfs:Datatype .
xsd:integer rdf:type rdfs:Datatype .
xsd:boolean rdf:type rdfs:Datatype .

# Data properties
:hasIdentifier rdf:type owl:DatatypeProperty ;
  rdfs:domain  rdfs:unique-entity ;
  rdfs:range xsd:string ;
  owl:equivalentProperty dct:identifier .
```
APPENDIX B. THE INTELLIGENCE SERVICE SCHEMA

50 : hasName rdfs: type owl: DatatypeProperty ;
51 rdfs: domain unique: entity ;
52 rdfs: range xsd: string ;
53 owl: equivalentProperty dct:title .
54
55 : hasVersion rdfs: type owl: DatatypeProperty ;
56 rdfs: domain unique: entity ;
57 rdfs: range xsd: string ;
58 owl: equivalentProperty dct: hasVersion .
59
60 : description rdfs: type owl: DatatypeProperty ;
61 rdfs: domain unique: entity ;
62 rdfs: range xsd: string ;
63 owl: equivalentProperty dct:description .
64
65 : created rdfs: type owl: DatatypeProperty ;
66 rdfs: domain unique: entity ;
67 rdfs: range xsd: date ;
68 owl: equivalentProperty dct: created .
69
70 : hasRecommendedRam rdfs: type owl: DatatypeProperty ;
71 rdfs: domain implementation ;
72 rdfs: range xsd: integer .
73
74 : hasRecommendedCpuScore rdfs: type owl: DatatypeProperty ;
75 rdfs: domain implementation ;
76 rdfs: range xsd: integer .
77
78 : hasRecommendedStorage rdfs: type owl: DatatypeProperty ;
79 rdfs: domain implementation ;
80 rdfs: range xsd: integer .
81
82 : hasRequiredRam rdfs: type owl: DatatypeProperty ;
83 rdfs: domain implementation ;
84 rdfs: range xsd: integer .
85
86 : hasRequiredCpuScore rdfs: type owl: DatatypeProperty ;
87 rdfs: domain implementation ;
88 rdfs: range xsd: integer .
89
90 : hasRequiredStorage rdfs: type owl: DatatypeProperty ;
91 rdfs: domain implementation ;
92 rdfs: range xsd: integer .
93
94 : dimensionValue rdfs: type owl: DatatypeProperty ;
95 rdfs: domain implementation ;
96 rdfs: range xsd: integer .
97
98 : isFile rdfs: type owl: DatatypeProperty ;
99 rdfs: domain input ;
100 rdfs: range xsd: boolean .
101
102 : accountName rdfs: type owl: DatatypeProperty ;
103 rdfs: domain : account ;
104 rdfs: range xsd: string ;
105 owl: equivalentProperty foaf: accountName .
106
107 : fromOrganization rdfs: type owl: DatatypeProperty ;
108 rdfs: domain : account ;
109 rdfs: range xsd: string .
110
111 : hasReputationScore rdfs: type owl: DatatypeProperty ;
112 rdfs: domain : person ;
113 rdfs: range xsd: integer .
114
115 : hasImplementationScore rdfs: type owl: DatatypeProperty ;
116 rdfs: domain : person ;
117 rdfs: range xsd: integer .
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Object properties

Object properties

: hasImplementation rdfs: type owl:ObjectProperty ;
 rdfs: domain intelligence:service ;
 rdfs: range implementation ;
 rdfs: comment "Connect intelligence service to an implementation." @en ;
 rdfs: isDefinedBy ;
 rdfs: label "has implementation" @en .

: hasGoal rdfs: type owl:ObjectProperty ;
APPENDIX B. THE INTELLIGENCE SERVICE SCHEMA

```plaintext
rdfs:domain :intelligence-service ;
rdfs:range :goal ;
rdfs:comment ""@en ;
rdfs:isDefinedBy ;
rdfs:label "has goal"@en .

uploadedBy rdf:type owl:ObjectProperty ;
rdfs:domain :intelligence-service ;
rdfs:range :account ;
rdfs:comment "Connects an intelligence service with the account it is uploaded by"@en ;
rdfs:isDefinedBy ;
rdfs:label "uploaded by"@en .

hasCreator rdf:type owl:ObjectProperty ;
rdfs:domain :intelligence-service ;
rdfs:range :person ;
rdfs:comment "Connects an intelligence service with the person who created the service."@en ;
rdfs:isDefinedBy ;
rdfs:label "has creator"@en .

hasOwner rdf:type owl:DatatypeProperty ;
rdfs:domain :account ;
rdfs:range :person ;
rdfs:comment "Connects an account with the owner of the account."@en ;
rdfs:isDefinedBy ;
rdfs:label "has owner"@en .

usesExternalService rdf:type owl:ObjectProperty ;
rdfs:domain :implementation ;
rdfs:range :intelligence-service ;
rdfs:comment "Connects an implementation with external intelligence services part of its service pipeline."@en ;
rdfs:isDefinedBy ;
rdfs:label "uses external service"@en .

hostedIn rdf:type owl:ObjectProperty ;
rdfs:domain :implementation ;
rdfs:range :execution-environment ;
rdfs:comment "Connects an implementation with an execution environment in which it is executed."@en ;
rdfs:isDefinedBy ;
rdfs:label "hosted in"@en .

requires rdf:type owl:ObjectProperty ;
rdfs:domain :implementation ;
rdfs:range :dependency ;
rdfs:comment "Connects an implementation with its necessary dependencies."@en ;
rdfs:isDefinedBy ;
rdfs:label "requires"@en .

trainedWith rdf:type owl:ObjectProperty ;
rdfs:domain :atomic-service ;
rdfs:range :dataset ;
rdfs:comment "Connects an atomic service with the dataset it is trained with."@en ;
rdfs:isDefinedBy ;
rdfs:label "trained with"@en .

hasOutput rdf:type owl:ObjectProperty ;
rdfs:domain :atomic-service ;
rdfs:range :output ;
rdfs:comment "Connects an atomic service with its output."@en ;
rdfs:isDefinedBy ;
rdfs:label "has output"@en .

hasInput rdf:type owl:ObjectProperty ;
rdfs:domain :atomic-service ;
rdfs:range :input ;
rdfs:comment "Connects an atomic service with its input."@en ;
rdfs:isDefinedBy ;
rdfs:label "has input"@en .

hasMetadata rdf:type owl:ObjectProperty ;
rdfs:domain :data-entity ;
rdfs:range :data-tensor ;
rdfs:comment "Connects input and output entities with their data tensor. The data tensor contains metadata about the data entity."@en ;
rdfs:isDefinedBy ;
rdfs:label "has metadata"@en .

hasDimensions rdf:type owl:ObjectProperty ;
```
APPENDIX B. THE INTELLIGENCE SERVICE SCHEMA

rdfs:domain :data-tensor ;
rdfs:range rdf:List ;
rdfs:comment "Connects a data tensor with a list of at least one dimension."@en ;
rdfs:isDefinedBy ;
rdfs:label "has dimensions"@en .

:hasLabels rdf:type owl:ObjectProperty ;
rdfs:domain :dataset ;
rdfs:range rdf:Bag ;
rdfs:comment "Connects a dataset with semantic annotations of its labels."@en ;
rdfs:isDefinedBy ;
rdfs:label "has labels"@en .

:hasDomain rdf:type owl:ObjectProperty ;
rdfs:domain :annotated-entity ;
rdfs:range :domain ;
rdfs:comment "Connection between annotated entities."@en ;
rdfs:isDefinedBy ;
rdfs:label "has domain"@en .

:hasGoal rdf:type owl:ObjectProperty ;
rdfs:domain :intelligence-service ;
rdfs:range :goal ;
rdfs:comment "Connection between an intelligence service and a goal."@en ;
rdfs:isDefinedBy ;
rdfs:label "has goal"@en .

:hasMethod rdf:type owl:ObjectProperty ;
rdfs:domain :implementation ;
rdfs:range :method ;
rdfs:comment "Connection between an implementation and a method."@en ;
rdfs:isDefinedBy ;
rdfs:label "has method"@en .

:hasServicePipeline rdf:type owl:ObjectProperty ;
rdfs:domain :implementation ;
rdfs:range rdf:List ;
rdfs:comment "Connection between an implementation and a list of at least one atomic service."@en ;
rdfs:isDefinedBy ;
rdfs:label "has service pipeline"@en .

:hasInputType rdf:type owl:ObjectProperty ;
rdfs:domain :input ;
rdfs:range :inputType ;
rdfs:comment "Connects input with a input type."@en ;
rdfs:isDefinedBy ;
rdfs:label "has input type"@en .

:elementDataType rdf:type owl:ObjectProperty ;
rdfs:domain :data-entity ;
rdfs:range rdf:Datatype ;
rdfs:comment "Describes the datatype of the elements in the data tensor."@en .

#############################
Classes
#############################

http://www.w3.org/1999/02/22-rdf-syntax-ns#List
rdfs:List rdf:type owl:Class .

http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag
rdfs:Bag rdf:type owl:Class .

:unique-entity rdf:type owl:Class ;
rdfs:comment "Unique entities, such as intelligence services, atomic services, dependencies, execution environments, and implementations, inherit datatype properties from this class."@en ;
rdfs:isDefinedBy ;
rdfs:label "Unique Entity"@en .

:intelligence-service rdf:type owl:Class ;
rdfs:comment "A declaration of an intelligence service. An intelligence service is a service that takes input from an application, executes a set of calculations and returns an output in the context of the intelligence layer."@en ;
rdfs:isDefinedBy ;
rdfs:label "Intelligence Service"@en ;
rdfs:subClassOf :unique-entity .

:account rdf:type owl:Class ;
APPENDIX B. THE INTELLIGENCE SERVICE SCHEMA

Intelligence services can be uploaded through and managed by an online account. The account can be owned by, and therefore represent, a person or company.

- **Online Account**: A person, or the company they represent, can own an online account.

- **Person**: A person can be the creator of an intelligence service or holder of an account.

- **Goal**: The goal of the intelligence service from a machine learning perspective.

- **Method**: The method implemented to achieve the goal of the intelligence service.

- **Domain**: The domain provides context in which the intelligence service operates. A domain taxonomy contains semantic descriptors used for input and output annotation.

- **Implementation**: An intelligence service can have multiple implementations that serve the same goal. Different implementations could implement different atomic services, environment requirements, and data input and outputs.

- **Execution Environment**: The execution environment contains information about the system that executes the code.

- **Dependency**: Dependencies describe software modules necessary to execute the implementation.

- **Atomic Service**: A service that is directly invokable. An atomic service has no subprocesses and is executed in one step. A pipeline of atomic services can form an implementation of an intelligence service.

- **Dataset**: Contains information about the dataset that is used to train the algorithm.

- **Data Entity**: Contains metadata about a data object. A data entity can be described by a domain and the semantic descriptors in the domain's taxonomy.
APPENDIX B. THE INTELLIGENCE SERVICE SCHEMA

Listing B.1: Full RDF Turtle serialization of the intelligence service meta data model.