The hsp150Δ-carrier Confers Secretion Competence to the Rat Nerve Growth Factor Receptor Ectodomain in Saccharomyces cerevisiae

MARJO SIMONEN, HELENA VIHNEN, EIJA JÄMSÄ, URMAS ARUMÄE, NISSE KALKKINEN AND MARIA MAKAROW*

Institute of Biotechnology, PO Box 56, 00014 University of Helsinki, Finland

Received 17 August 1995; accepted 3 November 1995

When the extracellular domain of rat low-affinity nerve growth factor receptor (NGFR_e) was synthesized in Saccharomyces cerevisiae with the signal peptide of invertase, NGFR_e was translocated to the endoplasmic reticulum (ER) and retained there. However, when NGFR_e was fused to the C-terminus of the hsp150Δ-carrier, the hsp150Δ-NGFR_e fusion protein was efficiently secreted to the growth medium with no apparent retention in the ER. The NGFR_e portion was disulphide-bonded and its single N-glycosylation site was occupied. The hsp150Δ-carrier is an N-terminal signal peptide-containing fragment of a yeast secretory glycoprotein. Hsp150Δ-NGFR_e harvested from the culture medium, inhibited the cross-linking of [125I]NGF to authentic NGFR on the surface of human melanoma cells. Moreover, [125I]NGF could be chemically cross-linked to secretory hsp150Δ-NGFR_e, suggesting that the NGFR_e portion had adopted a ligand-binding conformation. However, inhibition of the cross-linking by unlabelled NGF was less effective than in the case of the authentic receptor. The hsp150Δ-carrier may have potential in the production of mammalian proteins, which require elaborate folding and disulphide formation in the ER.

KEY WORDS — yeast; NGFR; secretion; protein production; hsp150 protein

INTRODUCTION

A prime requirement for successful production of secretory mammalian proteins in Saccharomyces cerevisiae is that the heterologous protein folds properly in the endoplasmic reticulum (ER) to a biologically active and secretion-competent conformation. However, many heterologous proteins with authentic or yeast-derived signal peptides are inactive and fail to be secreted (Romanos et al., 1992). Intracellular transport of a number of such proteins has been rescued by fusing them to the C-terminus of the prepro-region of yeast α-factor, or in some cases to that of killer toxin (Brake et al., 1984; Hadfield et al., 1993). Both homologous and heterologous secretory proteins are retained in the yeast ER when their conformation is distorted for example by in vivo reduction (Jämsä et al., 1994; Simonen et al., 1994).

We have recently shown that an N-terminal fragment of the yeast secretory glycoprotein hsp150 promoted efficient secretion of Escherichia coli β-lactamase to the culture medium of S. cerevisiae, allowing the β-lactamase portion to adopt an enzymatically active conformation in the ER (Simonen et al., 1994). The hsp150Δ-carrier consists of a signal peptide, followed by subunit I that is cleaved off in the Golgi, and 11 tandem repeats of a peptide of 19 amino acids (Jämsä et al., 1995). Here we studied the ability of the hsp150Δ-carrier to allow secretion and proper folding of the extracellular domain of rat low-affinity nerve growth factor receptor (NGFR_e). NGFR, also called p75NGFR and p75, binds all neurotrophic factors with low affinity and functions in neuronal development (Barbacid, 1995). Proper folding of NGFR_e should pose a challenge for the folding machinery of the yeast ER, since most if not all of the 24 cysteines of authentic NGFR_e form disulphide bonds (Banner et al., 1993; Baldwin and Shooter, 1994). When fused to the C-terminus of the hsp150Δ-carrier, the NGFR_e portion adopted a ligand-binding...
conformation, and the fusion protein was efficiently secreted in large quantities to the culture medium of *S. cerevisiae*.

MATERIALS AND METHODS

Strains and media

Plasmid constructions were performed using *E. coli* DH5α, grown in L-broth supplemented with 100 μg/ml of ampicillin. *S. cerevisiae* strains H23 (Mata hsp150::URA3 ura3-1 his3-11,15 leu2-3,112 trp1-1 ade2-1 canl-100), H1 (SEY2101a, MATα, ura3-52 leu2-1,112 ade2-101 suc2-49 gal2), and sec18 (mBy12-6D, Mata sec18-1 trpl-289 leu2-3,112 ura3-52 his3) were grown at 24°C in YPD-medium or synthetic complete (SC) medium.

Plasmid construction

The DNA fragment coding for NGFR_e was synthesized with polymerase chain reaction using *EcoR* polymerase (Stratagene). Rat p75 NGFR cDNA in pGEM-4Z vector (Promega) was used as a template, and oligonucleotides A (5′-ACATGGTACCAAGGAGACATGTCCACAG-3′) and B (5′-ACATAAGCTTATAGGGTGCGGTGTTGC-3′) as primers. Oligonucleotide A created a KpnI site to the 5′ end of NGFR_e, and oligonucleotide B an in-frame stop codon and a HindIII site to its 3′ end. The DNA fragment encoding residues 1–223 of mature NGFR was ligated between the repetitive region of HSP150, and the *ADCl* terminator (Russo et al., 1992; Simonen et al., 1994), using KpnI and HindIII sites. The construct in the plasmid obtained, pKTH4594, was verified by sequencing. The fusion gene was transferred as a blunt-ended EcoRV-SpeI fragment to the Smal site of the integrative shuttle vector pFL26 (Bonneaud et al., 1991). The resulting plasmid, pKTH4600, was digested with *Alu*I at the LEU2 locus, and introduced into strains H23 and sec18 (Hill et al., 1991), creating strains H426 and H458, respectively. The copy number and location of the fusion gene in the genome of H426 were studied by Southern analysis. To create a *SUC2–NGFR_e* construct, *HSP150Δ–NGFR_e* was transferred from pKTH4594 to pFL35 (Bonneaud et al., 1991) and the *HSP150* portion was replaced by a 1 kb EcoRI–SalI fragment from pMB2A (Bielefeld and Hollenberg, 1992), containing the *SUC2* promoter and signal sequence. To get the *SUC2* fragment and the NGFR_e portion in the same reading frame, the SalI site at the 3′ end of the *SUC2* signal sequence was converted blunt-ended by digestion with *Mung bean* nuclease (Boehringer Mannheim), and the *Apol* site at the 5′ end of the NGFR_e portion was filled in with the Klenow fragment of DNA polymerase I (Promega). The *SUC2–NGFR_e* junction in the resulting plasmid pKTH4613 was verified by sequencing. Then the 2 μ ori from YEp24 was inserted into the *EcoR*I site of the plasmid as a 2241 bp fragment. The obtained plasmid pKTH4616 was introduced into H23 to create H487. A multicopy plasmid was used here due to the low expression level driven by the *SUC2* promoter.

Metabolic labelling, immunoprecipitation and immunoblotting

Metabolic labelling of cells (2 × 10⁸ cells/400 μl) with [*³⁵S]*methionine/cysteine (1000 Ci/mm, Amersham), lysis of cells, and immunoprecipitations with anti-hsp150 (1:100) (Russo et al., 1992), anti-NGFR (1:100, polyclonal antibodies against the ligand-binding domain of NGFR), and anti-hsp150Δ–NGFR_e (1:50) were as described (Jämä et al., 1994). Immunoblotting was performed as described (Simonen et al., 1994) using anti-hsp150 (1:1000).

Purification of hsp150Δ–NGFR_e

The overnight culture supernatant was separated from cells by centrifugation, and dialysed at 4°C for 24 h against 10 mM-Tris–HCl, pH 8.0. The Q-Sepharose Fast Flow column (Pharmacia, 2.5 × 5.5 cm, flow rate 4 ml/min) was equilibrated with 10 mM-Tris–HCl, pH 8.0. Elution was with the same buffer containing 0.5 mM-NaCl. Gel filtration on a Superdex-75 HR10/30 column (Pharmacia) was performed in 50 mM-sodium phosphate pH 7.4, 150 mM-NaCl (PBS) at a flow rate of 0.8 ml/min. Desalting was carried out using a Bio-Gel P-6 (100–200 mesh) column (Bio-Rad, 0.5 × 10 cm, flow rate 0.2 ml/min), eluted with 20 mM-Tris–HCl pH 8.0. The MonoQ HR5/5 column (Pharmacia, flow rate 0.7 ml/min) was equilibrated with 20 mM-Tris–HCl pH 8.0, and eluted with a linear NaCl gradient (0–70% in 40 min) in the same buffer. Reversed-phase chromatography was performed on a TSK TMS 250 (0.21 × 4 cm, C1, 10 μm, 250 A, TosOHaas) column using a linear gradient of acetonitrile (3–100% in 60 min).
in 0.1% trifluoroacetic acid at a flow rate of 0.25 ml/min. The fusion protein was detected by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) followed by Coomassie blue staining or immunoblotting using anti-hsp150. The purified fusion protein was used to raise antisera in rabbit, which recognized authentic NGFR and hsp150Δ–NGFR_ε.

Chemical cross-linking

Human A875 melanoma cells were washed three times with Krebs–Ringer solution containing 1 mM-phenylmethylsulphonyl fluoride (Sigma), and incubated with [¹²⁵I]NGF (2000 Ci/mM, Amersham) for 30 min at 37°C in the same solution. Culture medium of H426 cells was dialysed overnight against PBS, and incubated similarly with [¹²⁵I]NGF. The amount of hsp150Δ–NGFR_ε in the preparation was estimated according to the yield of purified fusion protein, quantitated by N-terminal amino acid sequencing (see above). Chemical cross-linking of both preparations was performed with 30 mM-1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC; Pierce) for 5 min on ice. The reaction was quenched by addition of Tris–HCl pH 7–5, to a concentration of 52 mM. The A875 cells were washed three times with PBS supplemented with 52 mM-Tris–HCl, pH 7–5, prior to solubilization with Laemmli sample buffer. The fusion protein samples were subjected to immunoprecipitation with anti-hsp150.

Other methods

Northern analysis using HSP150 and NGFR_ε as probes (Russo et al., 1993), and N-terminal amino acid sequencing (Russo et al., 1992) were as described. SDS–PAGE was in 8% gels, unless otherwise stated. Protein precipitation was with 14% trichloroacetic acid for 1 h on ice. Quantitation of the cross-linked products was with Phosphor-Imager® (Molecular Dynamics). Cycloheximide, NaN₃, tunicamycin and dithiothreitol (DTT) were from Sigma, and used at concentrations of 100 μg/ml, 10 mM, 20 μg/ml and 20 mM, respectively. Bovine serum albumin was from Sigma, male mouse NGF from Harlan Bioproducts for Science, and restriction endonucleases from Promega, New England Biolabs and Boehringer Mannheim. Centricron-30 (Amicon) devices were used for ultrafiltration.

RESULTS

Construction of a yeast strain expressing an HSP150Δ–NGFR_ε fusion gene

The primary translation product of the HSP150 gene consists of a signal peptide (Figure 1A, black area), subunit I (dotted area) and subunit II. Subunit II consists of 11 repeats of homologous peptides (diagonal stripes) and a unique C-terminus (white area). NGFR is a plasma membrane protein with one transmembrane segment (Figure 1B, cross-hatched area). The C-terminal 150 residues form a cytoplasmic domain (horizontal stripes), and 222 N-terminal residues are located on the extracellular face of the membrane (vertical stripes). The first 160 N-terminal residues form the cysteine-rich ligand-binding domains, linked to the transmembrane segment by a 62-residue stalk peptide (Radeke et al., 1987; Baldwin et al., 1992). A DNA fragment encoding the 223 N-terminal residues of mature NGFR was ligated downstream from the repetitive region of HSP150, creating HSP150Δ–NGFR_ε (Figure 1C), which was placed between the HSP150 promoter and the ADCI terminator. The fusion gene was integrated into the genome of S. cerevisiae strain H23, carrying a disrupted hsp150 gene (Russo et al., 1992), creating strain H426. Integration was as a single copy into the LEU2 locus (not shown). Northern analysis showed that strain H426 synthesized a new mRNA species of expected size, 1.9 kb, which hybridized with HSP150 and NGFR probes, and was missing from the parental H23 strain (not shown).

Secretion and post-translational modification of HSP150Δ–NGFR_ε

Expression of the HSP150Δ–NGFR_ε fusion gene was studied by labelling H426 cells with [³⁵S]methionine/cysteine for 1 h, followed by a chase for 20 min in the presence of cycloheximide to stop further protein synthesis. The culture medium and lysed cells were subjected to immunoprecipitation with anti-hsp150 and anti-NGFR, followed by SDS–PAGE analysis (Figure 2A). Anti-hsp150 precipitated from the culture medium (m) a 180 kDa protein (arrowhead), and molecules with slower electrophoretic mobility (lane 1). Similar proteins were recognized by anti-NGFR, albeit much more weakly (lane 2). Smaller amounts of 180 kDa and 130 kDa proteins were precipitated from the cell lysate (c) with anti-hsp150 (lane 3) and anti-NGFR (lane 4). Neither antiserum
recognized proteins synthesized by the parental strain H23 (lanes 9–12). This shows that the fusion protein was efficiently secreted through the secretory organelles and the cell wall to the culture medium.

When H426 cells were labelled in the presence of tunicamycin to inhibit N-glycosylation, anti-hsp150 precipitated only the 180 kDa species from the culture medium (Figure 2A, lane 5). Small amounts of 180 kDa and 130 kDa proteins were precipitated from the cell lysate (lane 7). Both the secreted (lane 6) and the cell-associated (lane 8) proteins were recognized, although poorly, by anti-Ngfr. Thus, a portion of the fusion protein molecules carried an N-glycan at the single N-glycosylation site of Ngfr (Figure 1C), but lack of the N-glycan did not compromise secretion. The hsp150Δ-carrier does not contain N-glycosylation sites, but is heavily O-glycosylated, migrating in SDS–PAGE gels much slower than expected from its deduced amino acid sequence (Jämsä et al., 1995). The cell-associated
130 kDa form (Figure 2A, lane 3), which was detected also in the presence of tunicamycin (lane 7), probably represented an immaturity O-glycosylated precursor. Thus, the increase in the apparent molecular mass to 180 kDa during secretion was due to extension of O-glycans. N-terminal amino acid sequencing (see below) confirmed that the signal peptide and subunit I had been cleaved during secretion (see Figure 1C). When the fusion protein was synthesized in the presence of the reducing agent DTT, it was not secreted (not shown). Thus, the NGFR$_e$ portion was disulphide-bonded under normal conditions (Jämsä et al., 1994).

Fate of NGFR$_e$ in the absence of the hsp150Δ-carrier

To study secretion of NGFR$_e$ without the hsp150Δ-carrier, it was fused to the signal peptide of invertase, a secretory protein of yeast, and expressed under the control of the invertase (SUC2) promoter (Figure 1D). The SUC2-NGFR$_e$ construct was introduced into strain H23, yielding strain H487. Upon derepression of the SUC2 promoter, a new RNA species of 0.9 kb, hybridizing with the NGFR$_e$ probe, could be detected (not shown). H487 cells were labelled with [35S]methionine/cysteine for 1 h in the absence or presence of tunicamycin, and the label was chased.
for 30 min in the presence of cycloheximide. The culture medium and lysed cells were immunoprecipitated with anti-hsp150Δ–NGFR_e raised against purified hsp150Δ–NGFR_e (see Materials and Methods). SDS–PAGE analysis showed that no labelled proteins were detectable in the culture media (Figure 2B, lanes 1 and 3), whereas proteins of 48 and 45 kDa were detected in the cell lysates in the absence (lane 2) or presence (lane 4) of tunicamycin, respectively. Reduction of the size of NGFR_e by tunicamycin shows that it was N-glycosylated, and therefore translocated to the luminal side of the ER membrane. The apparently small size of the N-glycan suggests that NGFR_e remained in the pre-Golgi compartment. Thus, when expressed without the hsp150Δ-carrier, but with a functional signal peptide, NGFR_e entered the ER, but remained cell-associated and was not secreted to the culture medium.

Purification of hsp150Δ–NGFR_e

Strain H426 was grown in SC medium to different cell densities, and 1-ml samples of cell-free medium were subjected to SDS–PAGE, followed by Coomassie blue staining. The fusion protein was the most abundant protein in the culture supernatant (Figure 3, lanes 4–9). The culture medium of the parental H23 strain lacked this protein (lane 10). By comparing the staining of the fusion protein and serum albumin (lanes 1–3), one litre of culture medium, after 26 h of growth, was estimated to contain hsp150Δ–NGFR_e in the milligram scale.

To purify hsp150Δ–NGFR_e, culture medium of strain H426 was dialysed and subjected to ion-exchange chromatography on Q-Sepharose. The fusion protein, bound to the column, was eluted with 0.5 M NaCl, concentrated by ultrafiltration, and subjected to gel filtration on a Superdex-75 column. It eluted in the void volume fractions, which were pooled, and designated as semipurified hsp150Δ–NGFR_e. This preparation was desalted and subjected to anion-exchange chromatography on a MonoQ column. The fusion protein was detected in fractions 18–527 min (Figure 4A, bar), which were pooled, and subjected to reversed-phase chromatography. The fusion protein eluted in fractions 14–20 min, which were pooled (Figure 4B, bar). N-terminal amino acid sequence analysis of this material gave dual signals in each Edman degradation cycle, corresponding to about 75% (molar quantity) of the N-terminus of subunit II of hsp150, and to about 25% of subunit II missing three amino acids at its N-terminus.

Ligand-binding activity of hsp150Δ–NGFR_e

Next we studied the ability of the NGFR_e portion of the fusion protein to bind NGF. An hsp150Δ–NGFR_e preparation containing roughly 2.5 × 10¹¹ fusion protein molecules was subjected to cross-linking with 1 nm^{[125]I}NGF (3 × 10¹⁰ molecules) using EDC. The products were immunoprecipitated with anti-hsp150, and analysed in SDS–PAGE. The radiolabelled products appeared as heterogeneous high molecular weight proteins (Figure 5A, lane 1, black arrowhead).

Human A875 melanoma cells express the low-affinity NGFR as the sole NGF-binding protein on their surface. About 4.2 × 10³ intact A875 cells, containing roughly 2.5 × 10¹¹ receptors (Fabricant et al., 1977), were subjected to cross-linking with 1 nm^{[125]I}NGF, in parallel with the hsp150Δ–NGFR_e samples described above. SDS–PAGE analysis revealed an ^{[125]I}-labelled product of about 75 kDa (Figure 5A, lane 3, open arrowhead), as expected (Johnson et al., 1986). The amount of
Since a 1000-fold excess of unlabelled NGF was unable to completely inhibit binding of [\(^{125}\)I]NGF to the fusion protein, we studied this in more detail. Hsp150Δ–NGFR\(_e\) was produced in the culture medium in the presence of tunicamycin to obtain a more homogeneous protein. It was concentrated by ultrafiltration, and approximately 1.2 × 10^{12} molecules were incubated with 2 nm-[\(^{125}\)I]NGF (1.2 × 10^{11} molecules) as above, but in the presence of 0–200 nm of unlabelled NGF. The proteins were cross-linked with EDC, followed by immunoprecipitation with anti-hsp150 antiserum, SDS–PAGE and autoradiography (Figure 5B). The cross-linked products (black arrowheads) were quantitated using PhosphorImager\(^9\). A ten-fold excess of unlabelled NGF inhibited 48% of the binding of [\(^{125}\)I]NGF to the fusion protein, whereas up to a 1000-fold excess had little additional effect (52%; Figure 5B, lanes 4 and 5).

We then studied the ability of hsp150Δ–NGFR\(_e\) to compete with authentic NGFR on human melanoma cells for binding of [\(^{125}\)I]NGF. About 10^6 A875 cells, containing approximately 6 × 10^{11} receptor molecules, were subjected to cross-linking with 1.5 nm-[\(^{125}\)I]NGF, and analysed by SDS–PAGE. In addition to the 75 kDa receptor, a small amount of a dimeric NGFR–[\(^{125}\)I]NGF complex of 170 kDa (Grob et al., 1985) was detected (Figure 5C, lane 1, open arrowheads). Addition of a 100-fold excess of semipurified hsp150Δ–NGFR\(_e\) (see above) to the reaction mixture inhibited cross-linking significantly, but not completely (lane 3). Cross-linking of [\(^{125}\)I]NGF to authentic NGFR was inhibited almost completely by a 1000-fold excess of unlabelled NGF in the reaction mixture (lane 2). The data suggest that the NGFR\(_e\) portion adopted a ligand-binding conformation. However, the binding characteristics, at least of the whole population of the fusion protein molecules, were not identical to those of authentic NGFR.

DISCUSSION

To evaluate whether the hsp150Δ-carrier could provide secretion competence to elaborately folded and disulphide-bonded mammalian proteins, we chose the ectodomain of rat low-affinity nerve growth factor receptor, NGFR\(_e\), as a marker. To this end, NGFR\(_e\) was fused to the C-terminus of the hsp150Δ-carrier, to yield hsp150Δ–NGFR\(_e\) (see Figure 1). Pulse-chase experiments showed that hsp150Δ–NGFR\(_e\) was efficiently transported through the secretory pathway and secreted across...
the cell wall to the culture medium. The single N-glycosylation site of NGFR$_e$ was occupied by large and heterogeneous glycans in part of the molecules, but inhibition of N-glycosylation did not affect secretion.

When expressed without the carrier with the signal peptide of invertase, NGFR$_e$ was translocated to the ER and N-glycosylated, but not secreted. The small size of the N-glycan suggests that it was retained in the ER. Thus, the hsp150A-carrier had a crucial role in promoting secretion of NGFR$_e$, apparently its exit from the ER. The mechanism by which the prepro-region of α-factor and the hsp150A-carrier confer secretion competence to heterologous protein portions is not known. The carrier may assist proper folding of the heterologous protein, allowing it to pass the quality control machinery of the ER (Hammond and Helenius, 1995), or perhaps provide a positive secretion signal (Balch et al., 1994). We have shown by nuclear magnetic resonance and CD spectroscopy that the repetitive region of the hsp150A-carrier is unstructured, whereas subunit I and/or the C-terminal region following the repetitive region do adopt some secondary structure (see Figure 1A; Jämsä et al., 1995). In the absence of a tendency to fold itself, the repetitive carrier may allow independent and productive folding of the heterologous protein. When β-lactamase was fused to subunit I or almost the whole hsp150 protein, the chimeras were translocated to the ER, but they were apparently misfolded since they were enzymatically inactive or secretion incompetent (Simonen et al., 1994).

Many if not all of the 24 cysteines of NGFR are thought to be disulphide-bonded (Banner et al., 1993; Grob et al., 1985; Baldwin and Shooter, 1994). The NGFR$_e$ portion of hsp150A–NGFR$_e$ synthesized in yeast also acquired disulphide bonds, since the fusion protein was not secreted in the presence of DTT. We have shown that in vivo reduction of normally disulphide-bonded proteins

Figure 5. Cross-linking of hsp150A–NGFR$_e$ to $^{[125]}$I[NGF. (A) Dialysed culture supernatant of strain H426 (lanes 1 and 2), strain H1 (lane 5), or intact A875 melanoma cells (lanes 3 and 4), were cross-linked with 1 nm-$^{[125]}$I[NGF in the absence (lanes 1 and 3) or presence (NGF+, lanes 2 and 4) of 1 µm unlabelled NGF. (B) Ultrafiltered culture supernatant of strain H426, produced in the presence of tunicamycin, was cross-linked to 2 nm-$^{[125]}$I[NGF in the absence (lane 1) or presence of 2 nm (lane 2), 20 nm (lane 3), 200 nm (lane 4) or 2 µm (lane 5) unlabelled NGF. (C) A875 cells (6 × 1013 NGFR molecules) were cross-linked to 1·5 nm-$^{[125]}$I[NGF in the absence (lane 1) or presence of 1·5 µm unlabelled NGF (lane 2), or in the presence of 6 × 1013 hsp150A–NGFR$_e$ molecules (FUS+, lane 3). The A875 cells were washed, and the yeast culture medium samples were immunoprecipitated with anti-hsp150, prior to SDS-PAGE in 6–15% (A and C) or 7·5–15% (B) gels and autoradiography. The molecular weight markers are on the left.
leads to their retention in the ER, though the secretion apparatus remains fully functional (Jääsä et al., 1994). To examine whether the NGFRΔ portion was properly folded, we studied its ligand-binding ability. Hsp150Δ-NGFRΔ competed for binding of 125I NGF with the authentic receptor located on the surface of human A875 melanoma cells. 125I NGF could be chemically cross-linked to hsp150Δ-NGFRΔ with apparently similar efficiency as to the receptor on the melanoma cells, whereas no cross-linking to hsp150 could be detected. Many mutations altering the cysteine-repeats and disulphide-bonding of authentic NGFR result in loss of NGF-binding (Yan and Chao, 1991; Baldwin et al., 1992; Baldwin and Shooter, 1994). Finally, unlabelled NGF decreased cross-linking of 125I NGF to hsp150Δ-NGFRΔ. However, not more than half of the binding could be inhibited even with a 1000-fold excess of NGF, suggesting that the conformation of the NGFRΔ portion was non-native, albeit ligand-binding, e.g. due to linkage to the carrier.

ACKNOWLEDGEMENTS

Drs Mart Saarma and Leevi Kääriäinen of our institute are acknowledged for invaluable discussions. Dr Saarma, Dr Moses Chao (Cornell University Medical College, New York) and Dr Cornelius Hollenberg (Heinrich-Heine-Universität, Düsseldorf) kindly provided the NGFR cDNA, the anti-NGFR antisera and the plasmid pMB2A, respectively. The excellent assistance of Ms Anna Liisa Nyfors and Mr Keijo Virta is acknowledged. This work was supported by the Academy of Finland and the University of Helsinki.

REFERENCES

