Isak Frants

Approximating the condition and maximum load of an engine by comparing engine measurements

School of Electrical Engineering

Master’s Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Technology.

Espoo, 8.9.2016

Supervisor:
Docent, D.Sc. Kai Zenger

Advisor:
M.Sc. Sören Hedvik
This thesis discusses how an estimation of an engine’s condition and maximum load can be calculated from online engine parameter measurements. The calculated engine index is usable when loading engines, as it enables engines to be loaded more efficiently based on the actual load capacity. This increases the engines’ total power output, as load reductions may be avoided.

The purpose of the thesis is to identify the most critical engine parameters needed to produce a usable index and to develop and test this index. Additionally, the situations and usability areas where the index is beneficial shall be presented.

The thesis proposes that two indexes shall be calculated by using measurements from the exhaust gas temperatures, cylinder pressure and turbocharger speed. The indexes express the engine’s load capacity differently and are assumed to provide various benefits in situations such as engine diagnostics and control.
I detta arbete kartläggs möjligheterna att räkna ut ett estimat av en motors kondition och maximala last utgående från motorns mätvärden. Detta motorindex är användbart vid fördelning av last på motorer, eftersom motorer kan lastas mer effektivt utgående från motorernas verkliga lastkapaciteter. Detta leder till förbättrad total motoreffekt eftersom lastreduktioner kan undvikas.

Arbetets syfte är att identifiera de mest kritiska motorparametrarna som krävs för att räkna ut ett användbart index, samt att utveckla och testa indexet. Utöver detta ska även de situationer där indexet är användbart kartläggas och presenteras.

Arbetet resulterade i skapandet av två index, vilka använder sig av mätvärden från avgastemperaturer, cylindertryck och turbons varvtal. Indexen uttrycker motorns lastkapacitet på olika sätt och antas därmed ge fördelar i ett flertal situationer såsom motoragnostik och motorreglering.
Preface

This thesis was conducted at the Engine Performance & Control department during the spring of 2016 at Wärtsilä, Vaasa. I want to thank Sören Hedvik for offering this opportunity and for helping out in the process of finding a suitable subject. This work would not have existed without his efforts. Tommy Dahlberg aided me throughout the thesis process by pointing me in the right directions, giving helpful advice and proofreading the thesis. Kai Zenger provided the academic input to this work and guided me through the finalization process. Many thanks to all of you!

This work would not have been possible to accomplish without a few persons. Christer Hattar provided exceptional engine performance expertise and answered every question asked. Jens Vägar gave at numerous times important input to the thesis from a condition based maintenance point of view. Tom Kaas have developed the adaptive maps used in the index calculations and commented on my ideas and implementations several times. These three persons aided vastly in the thesis process and I can only salute you for taking time to answer my questions!

Various engine experts provided necessary engine technology information and these were Anders Åberg, Ari Saikkonen, Kimmo Nuormala, Kaj Portin, Niklas Wägar, Robert Lundström and Thomas Masus. All of these gentlemen provided without hesitation feedback and answers when needed. Furthermore, around 15 experts have commented on my ideas and provided support during the development process. Thank you all for your support, comments and ideas!

The co-operation and communication with everyone mentioned here by name worked flawlessly, and this is something to emphasize, as this benefit was unfortunately not always available. Writing a master’s thesis has been an interesting task and I have acquired greater understanding of engines and their technologies. I am especially proud of the straightforward workflow, as research and development were conducted one step at a time and the research questions remained practically unmodified throughout the project. The thesis is now complete, ending one of the best chapters in my life with studies in Otaniemi, while starting a new one with new opportunities and possibilities.

Espoo 8.9.2016

Isak Frants
# Table of contents

Abstract .................................................................................................................................................. ii
Abstract (in Swedish) ............................................................................................................................. iii
Preface .................................................................................................................................................... iv
Table of contents .................................................................................................................................. v
Symbols .................................................................................................................................................. vii
Abbreviations ....................................................................................................................................... viii

1 Introduction ......................................................................................................................................... 1
   1.1 Introduction and purpose ............................................................................................................. 1
   1.2 Research questions and limitations ............................................................................................ 2
   1.3 Previous research and outline ..................................................................................................... 2
   1.4 Wärtsilä ......................................................................................................................................... 3

2 Engine technology ............................................................................................................................. 4
   2.1 Wärtsilä engines and their automation ......................................................................................... 4
       2.1.1 Engine overview .................................................................................................................. 4
       2.1.2 The engine automation system ............................................................................................. 6
       2.1.3 Condition monitoring generally ........................................................................................... 9
       2.1.4 Condition monitoring with Wärtsilä Genius services ........................................................... 9
   2.2 Load sharing and load reduction .................................................................................................. 10
       2.2.1 The speed/load controller .................................................................................................... 10
       2.2.2 Load sharing challenges ..................................................................................................... 11
       2.2.3 The load reduction functionality .......................................................................................... 13
       2.2.4 Engine de-rating ............................................................................................................... 16

3 Index development ............................................................................................................................ 19
   3.1 Index requirements and assumptions .......................................................................................... 19
       3.1.1 Benefits and usage ............................................................................................................... 19
       3.1.2 Load reduction parameters .................................................................................................. 20
       3.1.3 Engine performance parameters .......................................................................................... 23
   3.2 Index presentation and calculation ............................................................................................... 25
       3.2.1 Index concepts ...................................................................................................................... 25
       3.2.2 The condition index ............................................................................................................. 26
       3.2.3 The load availability index .................................................................................................. 29
       3.2.4 Adaptive indexes ................................................................................................................. 30
3.3 Parameters included ................................................................. 32
4 Index evaluation ............................................................................ 35
  4.1 The simulation setup ................................................................. 35
  4.2 The Simulink model ................................................................. 37
    4.2.1 Model overview ................................................................. 37
    4.2.2 Inputs .............................................................................. 38
    4.2.3 Calculations .................................................................... 40
    4.2.4 Outputs .......................................................................... 42
    4.2.5 Model usage .................................................................... 43
  4.3 Test and model configuration .................................................... 46
  4.4 Results ................................................................................... 47
    4.4.1 Load and other aspects ....................................................... 47
    4.4.2 High turbocharger speeds .................................................. 48
    4.4.3 High exhaust gas temperatures ......................................... 51
    4.4.4 High cylinder pressures ..................................................... 52
    4.4.5 History and engine comparison ........................................... 53
  5 Discussion .................................................................................. 55
    5.1 Index development ................................................................. 55
    5.2 Adaptivity ............................................................................. 57
    5.3 Further research .................................................................... 59
  6 Conclusion .................................................................................. 60
References .................................................................................... 61
Appendix A – The data loading script .............................................. 64
Appendix B – The simulation and plotting script ............................... 66
Appendix C – The script help functions .......................................... 71
Appendix D – The C functions ....................................................... 73
## Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y_{LR}$</td>
<td>Load reduction setpoint</td>
</tr>
<tr>
<td>$y_M$</td>
<td>Measured instrument value</td>
</tr>
<tr>
<td>$y_{NOM}$</td>
<td>Nominal instrument value</td>
</tr>
<tr>
<td>$y_{OFF}$</td>
<td>Difference between measured and nominal instrument value</td>
</tr>
<tr>
<td>$y_{REAL}$</td>
<td>Nominal instrument value with offset added</td>
</tr>
<tr>
<td>$x_{LOAD}$</td>
<td>Engine load</td>
</tr>
</tbody>
</table>
### Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>Charge Air</td>
</tr>
<tr>
<td>CI</td>
<td>Condition Index</td>
</tr>
<tr>
<td>CM</td>
<td>Condition Monitoring</td>
</tr>
<tr>
<td>CR</td>
<td>Common Rail engine</td>
</tr>
<tr>
<td>CBM</td>
<td>Condition Based Maintenance</td>
</tr>
<tr>
<td>CCM</td>
<td>Cylinder Control Module</td>
</tr>
<tr>
<td>DF</td>
<td>Dual Fuel engine</td>
</tr>
<tr>
<td>DMP</td>
<td>Dynamic Maintenance Planning</td>
</tr>
<tr>
<td>EHM</td>
<td>Engine Health Management</td>
</tr>
<tr>
<td>ESM</td>
<td>Engine Safety Module</td>
</tr>
<tr>
<td>EFIC</td>
<td>Electronic Fuel Injection Control</td>
</tr>
<tr>
<td>FAT</td>
<td>Factory Acceptance Test</td>
</tr>
<tr>
<td>FAKS</td>
<td>Fault Avoidance Knowledge System</td>
</tr>
<tr>
<td>HT</td>
<td>High Temperature</td>
</tr>
<tr>
<td>HFO</td>
<td>Heavy Fuel Oil</td>
</tr>
<tr>
<td>IOM</td>
<td>Input Output Module</td>
</tr>
<tr>
<td>ISO (1)</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>ISO (2)</td>
<td>Wärtsilä standardized instrument code and description</td>
</tr>
<tr>
<td>LAI</td>
<td>Load Availability Index</td>
</tr>
<tr>
<td>LCP</td>
<td>Local Control Panel</td>
</tr>
<tr>
<td>LDU</td>
<td>Local Display Unit</td>
</tr>
<tr>
<td>LT</td>
<td>Low Temperature</td>
</tr>
<tr>
<td>LHV</td>
<td>Lower Heating Value</td>
</tr>
<tr>
<td>MCM</td>
<td>Main Control Module</td>
</tr>
<tr>
<td>PDM</td>
<td>Power Distribution Module</td>
</tr>
<tr>
<td>PMS</td>
<td>Power Management System</td>
</tr>
<tr>
<td>SG</td>
<td>Spark ignited Gas engine</td>
</tr>
<tr>
<td>STM</td>
<td>Self-Tuning Map</td>
</tr>
<tr>
<td>TC</td>
<td>Turbocharger</td>
</tr>
<tr>
<td>UNIC</td>
<td>Wärtsilä Unified Controls</td>
</tr>
<tr>
<td>WSDE</td>
<td>Wärtsilä Simulink Development Environment</td>
</tr>
</tbody>
</table>
1 Introduction

This chapter introduces the thesis background, methods and purpose. The research questions are listed along with the limitations applied to the index development work. Previous research is discussed at the end of the chapter, followed by a brief presentation of Wärtsilä.

1.1 Introduction and purpose

Multi-engine control is a wide subject and the thesis will focus on one particular point of interest of this subject. The topic focus is the optimal loading and sharing of load between engines, as it has become clear that these could be vastly improved to prevent potential load reductions. Load reductions are machinery protection functions which lowers the load on engines to protect them from damage. These are highly disturbing to the operation because decreased load means less produced electricity or thrust, which is not a desirable situation for the operator of a power plant or a ship. It should be possible to share the load in a more preventive way by measuring and analysing the engine’s ability to increase its load. The load should not necessarily be equally shared and continuously increased during transients, as this increases the risk for unexpected load reductions. Instead, engines are monitored and their load availability is calculated, and only engines which can increase their load can be more heavily loaded. The loading is performed by the power management system (PMS) in power plants or the auxiliary system in marine applications. In this way the load is shared between engines according to their load capacity, and this lowers the risk for load reductions.

The purpose of the thesis is to identify the parameters which can indicate the load capacity of an engine and to develop an algorithm that describes the engine’s instantaneous load availability as an index using the statuses of these parameters. The index defines the operation margin of each engine to the risk zone where potential load reductions can activate. Many different aspects, such as cylinder knock statuses, various temperatures and pressures, can be taken into account when defining the risk zone and these have to be identified and their importance evaluated and weighed. The result of the thesis is a solution to the problem of how the overall state of an engine can be calculated in a way that is assumed to be good enough for actual usage in load sharing and plant load shedding. The main benefit for power plants is economical, as the index provides the PMS with the engines’ load abilities. This allows ramping up of load on engines with sufficient load ability fast enough to sell electricity when the price is beneficial for the plant owner.

Parameters are identified and their importance evaluated in cooperation with engine performance experts through interviews and discussions. Existing engine machinery protection and safety specifications clearly specify the properties of the load reductions and the conditions that must be met before load reductions activate. Sufficient material for developing the index calculation is received by these two means. The final index is implemented and tested using real engine data in Simulink. This was decided to be the best option for testing and demonstration, as other options involved noticeable time and efforts from application developers. Additionally, it suits well the purpose of being a proof of concept that demonstrates the benefits of an index that can indicate the load capacity of an engine. The simulations do not involve load sharing, as it was seen enough to only demonstrate the index calculation.
1.2 Research questions and limitations

It is important to emphasize that not all engine parameters can nor should be included in the index as the calculations easily become too complex. In fact, only a few parameters will be taken into account to keep the scope realistic and to develop an index that actually works instead of being too slow and complex to achieve anything useful. The simplifications affect the accuracy of the index and its sufficiency will thus have to be evaluated. Moreover, it is unclear whether one index will be enough or if a group of indexes with varying complexity is a more preferable solution. It lies within the scope of this thesis to also explain in which situations it is beneficial and when it is not. The thesis will hence address the following questions:

- Which parameters should at the very least be used by the load capacity index?
- Is one index enough or is a group of indexes a better solution?
- When and how should the index be used?

The scope of the thesis does not cover any control or demonstrations of load sharing based on the calculated index. It is only seen as diagnostics of one engine in a static situation to support other control algorithms. This limitation follows as the work would otherwise expand uncontrollably and there is a risk of it failing to provide any usable result at all. The same limitation and reasoning applies to the amount of parameters taken into account; not all can be integrated and a realistic approach is prioritized to achieve a working but simplified solution. Such solution can later be expanded and improved when needed.

1.3 Previous research and outline

Considerable efforts were made to identify previous research about engine load capacity estimation, load operation margin, load calculation and other similar topics. No paper was found that discussed the previous topics in a way that would support this thesis noticeably. Different ways of calculating or estimating the load of an engine can be found in literature [1-4]. However, no research exist that would discuss estimation or calculation of an engine’s present load capacity or load margin. The reason for this could be that the load margin is set by the engine’s safety configuration. Determining the load margin of engines without a safety system is trivial, as it follows directly from comparison of the engine’s present load and rated maximum load. No information was found about engine safety systems similar to the one found on Wärtsilä engines. Hence, this thesis is the first of its kind in this field and the methods and results here cannot be compared to any previous research.

The outline of the thesis is as follows. Chapter 1 introduces the reader to the thesis subject and presents Wärtsilä briefly. Chapter 2 presents the theory needed for the index development. This includes presentation of the engine automation system and its functionalities, such as load sharing and load reduction. The index development takes place in Chapter 3, where the index is derived and the possibilities and requirements are explained. Index testing is carried out in Chapter 4, where the simulation model, tests and results are presented. The results are discussed and analysed in Chapter 5, while Chapter 6 ends the thesis by summarising the work and proposing future research.
1.4 Wärtsilä

Wärtsilä was established in 1834, when a sawmill was built in the East of Finland in the municipality of Tohmajärvi. The diesel engine era started in 1938 when Wärtsilä signed a licence agreement with Friedrich Krupp Germania Werft AG in Germany. Wärtsilä started its international era in 1978, when 51% of the shares in NOHAB diesel business in Sweden were acquired. The company has continuously evolved during its 182 years and is now a global corporation and a leading expert in energy solutions in both marine and power plant segments. Its expertise could clearly be seen during the summer of 2015 when Wärtsilä started manufacturing the new W31 engine. This engine was announced by the Guinness World Records to be the world’s most efficient 4-stroke diesel engine. Wärtsilä has in 2015 approximately 18800 employees globally and approximately 3600 of these work in Finland. These numbers vary from year to year as Wärtsilä, like many other companies, have employee co-operation negotiations occasionally. [5],[6],[7]

Wärtsilä is divided into three main sectors: Marine Solutions, Energy Solutions and Services. The first two were established in July 2015, when the sectors Ship Power and Power Plant were renamed to better represent the wide range of products and services which these sectors offer. In rough numbers, 30% of the personnel work in Marine Solutions, 10% in Energy solutions and 60% in Services. The Service sector grows as Marine Solutions and Energy Solutions deliver more engines and other products and solutions to the customers. The sector focuses on customer needs and offers support, maintenance and service whenever and wherever needed. [8]
2 Engine technology

This chapter introduces the theory needed for the index development. The components of an engine are presented along with the engine automation system that controls and monitors it. The index describes the engine’s ability to take load and this can be seen as an indicator of the condition of the engine; its ability to do work. Thus, the existing engine condition monitoring and its methods and usage are introduced. The load sharing, the load reduction and de-rating functionalities are explained, as these are central technologies which affect the engine load.

2.1 Wärtsilä engines and their automation

2.1.1 Engine overview

The main components of an engine are presented here to show what components an engine consists of and to improve the understanding of the engine automation system tasks. The presented components are for the in-line W34DF engine which has gas as well as diesel components. An overview of this dual-fuel (DF) engine can be seen in Figure 1, followed by brief descriptions of the main components [9].

![Figure 1. An in-line engine with some components highlighted. Figure modified from [9].](image)

Engine block
The engine block is the base module for the engine, made in one piece of iron and designed to absorb the forces from the running engine. The rest of the components are attached to the engine block.

Crankshaft and main bearings
The crankshaft is the long mechanism beneath the cylinders which converts the linear motion of the pistons to rotational motion. It is forged in one piece and connected to the engine block via the main bearings.
**Connection rod and big end bearings**
The connection rods connect the pistons to the crankshaft and the big end bearings are located between these components.

**Cylinder liner, piston and piston rings**
The cylinder liner is the cylinder in which the piston moves up and down. The piston is connected to the connection rod and the piston rings seal the combustion chamber located above the piston.

**Cylinder head**
The cylinder head is the top piece of the engine with valves and inlets and outlets for air, fuel, cooling water and exhaust gases.

**Camshaft, camshaft drive and valve mechanism**
The camshaft is similar to the crankshaft, but converts rotational motion into linear motion used by the valve mechanism. The camshaft drive is the gearbox between the crankshaft and the camshaft.

**Fuel system**
The main parts of the fuel system are the gas-, the main fuel- and the pilot fuel injection system which consist of various valves and vents. The fuel gas system and the pilot injection system are used when the engine is in gas mode. The main fuel oil injection system and the pilot injection system are in use when the engine is in diesel mode. The engine is in backup mode if only the main fuel oil injection system is used. The pilot system is replaced by spark plugs on gas (SG) engines.

**Exhaust pipes**
The exhaust pipes are made of heat resistant nodular cast iron alloy and connected to the cylinder head. They are insulated with mineral wool and lead the exhaust gases out from the engine.

**Lubricating oil system**
The lubricating oil system provides lubrication and cooling to components such as the piston and the crankshaft. It consists of two pumps, a valve, filters and a lubricating oil cooler.

**Cooling system**
The water cooling system consists of a high (HT) and a low temperature (LT) circuit. The first one cools cylinder heads and liners and the first stage of the charge air (CA) cooler. The second one cools the second stage of the CA cooler and the lubricating oil.

**Turbocharging and charge air cooling**
The turbocharger (TC) produces compressed air that is combined with fuel and injected into the cylinder. An engine with two cylinder banks, a V-engine, has two turbochargers and an in-line engine has one. The charge air cooler consists of two stages; a high and a low temperature stage.

**Automation system**
The engine automation system is the Wärtsilä Unified Controls (UNIC) and is presented in Subsection 2.1.2.
2.1.2 The engine automation system

The automation system used on Wärtsilä engines is called UNIC and it provides the reliability, performance and usability needed in robust industrial controls. Its main purpose is to monitor and control the engine to ensure safe operation and optimal performance. UNIC is modular and this provides good scalability and serviceability. The modules and their location on the engine can be seen in Figure 2. The modules and their functionality are [10]:

**MCM – Main control module**
The main module in the system handles the speed/load control and basic engine functionality, for instance the ability to start and stop the engine.

**CCM – Cylinder control module**
The cylinder control module handles different cylinder measurements and injection. Each module can control three cylinders.

**IOM – Input output module**
The I/O module has a vast amount of inputs and outputs for attaching sensors and actuators of various types.

**LDU – Local display unit**
The display unit shows many engine measurements, handles external communication and gives ability for engine tuning and software download.

**LCP – Local control panel**
The control panel gives local physical buttons for engine start and stop and displays some engine measurements.

**ESM – Engine safety module**
The engine safety module provides basic safety functionality, such as over speed shutdown, to protect devices and humans in the engine’s vicinity.

**PDM – Power distribution module**
The power distribution module provides instruments and modules with power and handles earth fault detection and protection.

![Figure 2. The UNIC modules and their location. [11]](image-url)
The modules are interconnected with a multi-bus cable which includes all the needed signals in one single cable. These are all doubled for redundancy reasons and include power supply, engine speed and phase, limp bus and CAN. The two existing CAN cables are used for communication by interconnected modules. Figure 2 shows the communication redundancy in UNIC as two CAN cables connect the MCM, CCMs and IOMs to each other. Both cables are utilized as long as they are available and all CAN messages are moved to the working cable if the other breaks. An additional CAN cable, the dedicated load sharing CAN cable, may be installed and used when multiple engines are connected and the load is shared between them in Isochronous Load Sharing mode. The external Ethernet communication is available via the LDU module. This communication link allows UNIC data to be read remotely, from outside the machine room. [9],[12]

The engines are equipped with instruments which provide UNIC with data and the possibility to control the engines. Flying lead sensors are used wherever possible to increase the reliability of the sensors and measurements. These sensors withstand vibrations on the engine, as the wires are connected directly to the sensor without any connector. This can be seen in Figure 3, which also explains the name “flying lead”; the wires are free and flying in the connecting end. Every instrument is configured based on its electrical type (including mA, mV, TC, PT100) and connected to the appropriate module and channel. The instrument is configured according to type and data range needed, and instrument data is saved to the appropriate ISO code in the module where the instrument is connected. The ISO codes are Wärtsilä standardized instrument codes and descriptions, where every code contains an instrument abbreviation and description. For instance, the code TE101 FO temp, engine inlet is used for the fuel oil temperature at the engine inlet. The codes are used to distinguish instruments and instrument data in UNIC and are maintained in a database where thousands of codes can be found. ISO codes are not only used for data from physical instruments; applications use the codes as well to read and write values and bits as needed. The codes are thus the inputs and outputs of instruments and applications which enables UNIC to handle different events and situations correctly. [9],[10]

![Figure 3. A flying lead sensor.](image)

UNIC comes in three automation levels: C1, C2 and C3, with C3 being the highest level. These levels provide the engine with different levels of engine control and monitoring capabilities, as seen in Figure 4. C1 and C2 are common among diesel engines while C3 provides the high automation level needed in a common rail or gas engine. C1 and C2 use mechanical injection and are otherwise equal, except that C2 has improved engine monitoring and safety functionality. This guarantees high system availability while providing proper machinery protection at the same time. C3 involves electronic fuel injection control (EFIC) with advanced control algorithms and optimal
performance and is utilized in common rail and gas engines. The optimal performance is achieved through functions such as split injection, algorithms adapting to fuel properties and direct cylinder pressure analysis. [11], [12]

Figure 4. The UNIC automation levels explained. [12]

The software structure in UNIC is also modular and consists of three main parts as seen in Figure 5: application modules, system software and engine configuration. Each application module provides the engine with specific functionality and runs on top of the system software. The system software is the base platform and handles hardware, drivers, communication and other vital tasks to make the applications work. The engine configuration contains the settings and parameters needed to create a working engine specific configuration. A configuration tool is provided by the system software that enables the system designer to choose application modules and tune parameters when creating system configurations. The same configuration tool can be used when creating the software package, modifying the configuration, testing it and using it. [12]

Figure 5. The software structure in UNIC. [12]
2.1.3 Condition monitoring generally

On a general level, condition monitoring (CM) means monitoring the condition of an asset using installed sensors and equipment. It is used in condition based maintenance (CBM), which can be defined as a long term maintenance strategy where the asset is monitored and the maintenance is done according to its actual condition. The time frame and purpose differ thus between the index developed in the thesis and CBM. The developed index is used in immediate engine diagnostics and control to optimise power availability. CBM identifies potential problems and provides maintenance when needed but before the asset fails or its performance drops too low. The advantages of CBM includes better planning of downtime, reduced cost of failures and improved equipment reliability. The disadvantages of CBM includes the need of condition monitoring equipment, trained staff and analysing databases. There are many types of CBM techniques which can be used depending on the type of asset; vibration analysis, infrared, ultrasonic, acoustic, oil analysis, electrical and operational performance. These are used for gathering measurement data which can be used to determine the condition of the asset and its need of maintenance. [13], [14]

CBM as such exists among other engine vendors and industries and is not invented by Wärtsilä. It may be called something else but the idea of being able monitor an engine and to do maintenance based on the actual condition is still the same. For instance, CBM is used in aero applications where preventive maintenance is of outmost importance as airplane failures can be catastrophic. Rolls Royce calls their service Engine Health Management (EHM) which utilizes the sensors connected to the engine together with satellite communication to monitor and analyse the condition of the engine. Engine data is acquired and analysed during flight and unusual engine data is detected. Automated algorithms using neural networks are used for combining sensor data and detecting abnormalities. [15]

2.1.4 Condition monitoring with Wärtsilä Genius services

Wärtsilä offers Wärtsilä Genius services as a part of the lifecycle solutions in their Services business sector. The Genius services consist of three parts which improve the performance, safety and effectiveness of the engines. These parts are: optimise, solve and predict. The optimise part strives for optimisation of the engine performance and operational expenses, resulting in higher uptime and minimised fuel consumption. This is made possible through engine efficiency monitoring and trending of data along with analysis by experts. The solve part strives for a more secure environment by providing updates and patches to applications and devices, resulting in higher uptime and reduced operational costs. The predict part strives for improved lifecycle maintenance, resulting in improved availability and reduced costs. This is made possible through CM, CBM and dynamic maintenance planning (DMP) and this part is, from the thesis point of view, hence the most interesting one. [16]

The benefits of DMP are extended maintenance intervals and reduced spare parts consumption. DMP consists of CM, CBM and site audits and inspections. CM utilizes the sensors on the engine and collects the data and sends it to a CM centre for analysis. Reports are created and maintenance is planned accordingly through CBM. This makes it possible to do maintenance and use spare parts when actually needed, resulting in savings in service costs. Additional benefits are improved reliability and availability as unexpected down time is minimized and operation and overhauls take place on
scheduled basis. DMP is available for both power plants and marine applications but is currently more popular in the latter one. [17],[18]

The CM centre data analysis starts when raw data is sent from the sensors installed on an engine. The engine’s condition is determined through combining equipment configuration, installation design, liquid inputs and measured parameters. The parameters are trended and analysed by engine specific algorithms which are built on the experience of how the engines work. Differences between present and nominal values are spotted and expertise is provided by human experts who determine the cause of the differing parameter values. No automatic diagnostic exists and therefore the algorithms are unable to explain the problem and provide a solution. It is extremely difficult to integrate human expertise and problem solving skills in an algorithm that would compare and combine parameters and identify the solution to the engine’s problem. There are simply too many possible scenarios, parameter combinations and problems. A Fault Avoidance Knowledge System (FAKS) has existed that could provide local diagnostic of an engine along with possible problem reasons. This is no longer used, as engines have evolved and contain too many sensors producing too much data to take into account. However, the situation is changing and ongoing research with big data may result in a tool with enough intelligence to provide possible solutions along with the problem. [19]

These are the difficulties encountered when trying to determine an engine’s condition or health in such a way that it can be used in the engine automation system. Many combinations of parameters can be taken into account and this has been seen as too difficult to do in practice. However, it is should be possible to indicate an engine’s load ability and that possibility is developed in this thesis. The load capacity is related to the engine condition and that is why it is realistic to think that the index also gives an indication of the engine health. The expertise among the CM centre experts and the collected engine data were vital parts in the index development process. [19]

## 2.2 Load sharing and load reduction

### 2.2.1 The speed/load controller

Wärtsilä engines are monitored and controlled by the UNIC automation system. This system provides the functionality needed to ensure safe and reliable engine operation. This is not an easy task as engines of various age, type and condition are used in challenging environments with varying load and speed profiles. UNIC needs to react sufficiently fast to changes, evaluate the situation and do the right decision within timeframes of milliseconds. Control challenges are continuously being solved with this unique system presented in Subsection 2.1.2. One of the most important tasks when controlling an engine is to control its speed and load level. The speed/load controller application is the component in UNIC which performs this task. This functionality is vital to ensure that the engine operates at the correct speed and load in all situations. Engine load and load sharing are key elements in this thesis and the functionality of the speed/load controller is hence presented.

The main task of the engine speed/load controller is to keep the engine speed and load close to the setpoints by controlling the fuel demand. The engine can operate in three different speed control modes when connected to a busbar: Droop, Isochronous Load Sharing and True kW. The modes have different properties and are used in various situations accordingly. Load sharing, the possibility to share load between engines, is available in the first two modes. Only one mode can be active at a time. [20],[21]
Droop mode is the most basic speed mode available and is often used as a backup mode when Isochronous Load Sharing and True kW are unavailable. No communication takes place between the engines, as this is handled by the engine-external automation system. This system controls the frequency of the engines and shares the load between them. The engine-external automation system is master and the engines are slaves in this control mode. [20]

Isochronous Load Sharing is utilized in marine applications or in power plants when running in Island mode i.e. the engines maintain the frequency of the grid on a small island. It is similar to Droop mode but engines communicate and share the load independently. The dedicated load sharing CAN bus is used for the communication. The engines share data including speed reference, load and breaker statuses and each engine can independently calculate its internal speed reference according to the system load. The system load is the average engine load of all engines. An engine-external automation system is still needed that increases or decreases the system load, but the load balancing between the engines is done by UNIC itself. [20],[22]

True kW is often utilized when an engine or several engines are operating in parallel with the grid. The grid frequency is maintained by other sources in the grid, hence the connected engines can decrease or increase their load automatically. Engine speed is only used for safety in this mode and the load is used as setpoint in the control loop. The internal load reference is compared to the measured engine load and the error is the input signal to a controller that controls the fuel demand. No communication takes place between the engines, as the grid frequency and load demand control the loads of the engines directly. [21], [22]

### 2.2.2 Load sharing challenges

Load sharing is needed when several engines are connected to a common load and the techniques for this were presented in Subsection 2.2.1. Load sharing is challenging as many types of plant configurations exist with different engine topologies. The engines may have different type, vendor or condition and the sharing of a varying load is hence demanding. An overview of load sharing and typical challenges can be seen in Figure 6. Here an arbitrary amount of engines are used for demonstration purposes. The engines run in parallel connected to a load with the load sharing technique omitted. The gensets produce electricity which is transferred to the load via a busbar. A genset is the combination of an engine and a generator. [20]

![Figure 6. Load sharing overview.](image)

---
Challenges in combining engines from different vendors were seen in 2010, when the immediate need of combining analogue and digital Isochronous Load Sharing communication was realized. Old non-Wärtsilä engines using analogue communication had to be combined with new UNIC-controlled engines using digital communication. The issue was solved by creating a module that translates the analogue signal into a digital signal and vice versa. Digital Isochronous Load Sharing is superior to analogue, as it has functionality that cannot be done with an analogue signal. This includes soft loading, load sharing profiling and busbar synchronisation. Soft loading of an engine involves utilizing the knowledge of bus and generator breakers statuses and taking correct decisions of whether to increase or decrease the load of an engine. Load sharing profiling means that engines are biased according to properties and load. The load is shared unequally between engines if the load sharing is biased. Busbar synchronization is marked in Figure 6 in blue and enables the possibility to synchronize frequencies between two busbars. None of these properties exists with analogue communication, as this is only an electrical scalar value. An analogue signal has an additional drawback as signal strength weakens over long distances because of cable resistivity. [20],[21]

The load sharing functionality has existed for a long time, but some challenges still exist. Figure 6 shows a Branch breaker and a Twin breaker which are challenging to implement, as they complicate the topology vastly. They could be usable for redundancy reasons, but are not yet implemented in the load sharing algorithm. Figure 6 shows another issue when an engine is connected simultaneously to two applications, one being the normal busbar and the other being an arbitrary load, a pump in this case. Biasing is needed in these cases, as the pump uses some of the engine’s load capacity and this has to be taken into account when the system load is shared among the engines. Additionally, attention must be paid to generator capacity not to overload the engine as the combined rated power of pump and generator can be larger than the rated power of the engine. [21]

A third issue is seen in marine applications where it is possible to measure propulsion power easily only when the engine is operating in diesel mode. This issue affects DF engines, which can operate in gas mode in addition to the diesel mode. SG engines are not yet used in marine applications. Propulsion power is estimated by measuring engine fuel consumption, but this is not easily done with gas as fuel. The issue can be solved by installing equipment for torque measurement. This enables the ability to calculate the propulsion power in all fuel modes. However, the equipment is expensive and does not come by default in installations. [21]

Biasing is achieved through four methods; analogue control signal, fixed bias, mapped bias, and dynamic bias. The first one is used in analogue load sharing or when manually overriding locally the load sharing balancing. The rest are used in digital load sharing. Fixed and mapped bias are configuration parameters and the engine-external automation system shares the load accordingly. Fixed bias is a static scalar value, while mapped bias is a matrix with two columns, system load and a percentage value, which allows the engine bias to change according to the system load. Dynamic bias is load transient shaping, meaning that the bias is shaped according to load transients. The functionality is achieved by derivation of the system load to find changes, transients, and by loading engines according to fuel mode. Engines operating in diesel mode are less sensitive to load changes than engines operating in gas mode. Hence, diesel mode engines are given positive load offset and gas mode engines are given negative load offsets to prevent gas engines from tripping into diesel mode. Tripping is not wanted as gas burns cleaner than diesel and is thus preferred if available. [21]
2.2.3 The load reduction functionality

The purpose of the normal and conditional safeties seen in Figure 5 is to protect the engine from taking damage and alert the operator of issues. This is called machinery protection and load reduction is one of the actions available when protecting the engine. Machinery protection works by comparing engine measurements to predefined setpoints in the software configuration. Actions activate in UNIC if measurements exceed the setpoints or if values cannot be read due to communication problems or instrument failures. Activated machinery protection actions are shown locally on the engine’s LDU and communicated to external systems by using Modbus. The types are [23]:

- **Start block**
  A start block prevents the engine from starting. This is vital functionality to not start an engine with insufficient critical parameters, such as low pre-lube oil pressure or wrong supply voltage to UNIC modules.

- **Alarm**
  An alarm is used to notify the operator that an instrument has exceeded its alarm level and needs attention. This could be only a minor problem, but the attention of the operator is needed.

- **Load reduction**
  A load reduction lowers the load on the engine to protect it from taking damage. This can be critical in some situations and the maximum load can hence be ramped down or reduced in one major step. The action is, depending on the speed/load mode, either automatic or interactive with the plant.

- **Shutdown**
  A shutdown shuts down the engine to protect it from taking damage. An engine shutdown is needed when a critical problem has been encountered and a load reduction is not a suitable solution.

- **Emergency stop**
  An emergency stop activates when an essential instrument reaches its setpoint. This cannot be overridden and stops the engine as fast as possible.

- **Stop**
  A stop activates when the engine is requested to stop by the operator. This is not necessarily related to any issues.

- **Gas trip**
  Applies to DF engines. A gas trip activates when the conditions for running in gas mode are no longer met and the engine trips to diesel. The pilot injection remains activated.

- **Pilot trip**
  Applies to DF engines. A pilot trip activates when the conditions for running in diesel mode are no longer met and the engine trips to backup diesel mode.

- **Limp**
  Used mainly on single common rail (CR) main engines. This activates the limp mode, a very basic engine mode used only in emergency situations. This mode is activated when the MCM has failed and this allows the CCMs to control basic engine functionality and to keep the engine running.
The load reduction is from a thesis point of view the most interesting action. Three different load reduction types are used: absolute, adaptive and kW window and their usage depends on the measurement and on the engine speed/load mode. An absolute load reduction sets the maximum load to a configurable percentage value and ramps the engine down towards that value. This type is usually used for various UNIC related failures. An adaptive load reduction sets the maximum load to a fixed minimum percentage value and ramps the engine down towards that value. This is usually used when specific measurements exceed their setpoints. The kW window load reduction is used in the True kW speed/load mode and corrects the frequency of the engine as needed. The engine load is ramped down when a load reduction activates and can be ramped up again when the condition for the load reduction is no longer met. [24]

Engines keep continuously track of their maximum load and this decreases when a load reduction activates. The maximum load is, depending on the speed/load mode, used in either UNIC or the engine-external automation system for decreasing the engine’s actual load. This system is called PMS in power plants and auxiliary system in marine applications. UNIC itself can decrease the engine’s load in True kW or Isochronous Load Sharing, while the engine-external automation system handles this in Droop. There are fundamental differences between the modes how load reductions are handled and these will be presented here. [21]

UNIC can decrease an engine’s load without compensation from other engines only in the True kW speed/load mode. The system load, the total load on all engines, is then lowered. It is possible to lower the load on an engine without compensation as frequency is maintained by the grid and the load can safely be decreased without causing power quality issues. The engine’s load reference is lowered when the load reduction activates and the speed/load controller decreases the fuel demand on the engine, resulting in a lower load. The engine-external automation system is notified of the load reduction but there is no need to interfere as UNIC handles the load reduction itself. The engine-external automation system can handle the load reduction if needed, but UNIC controls it under normal circumstances. [21],[22]

The situation is different in Isochronous Load Sharing. A load reduction request is made to the engine-external automation system as the engines cannot decrease the system load in this mode. This mode can be used on ferries or small islands where the engines are the main power source. Frequency must be maintained to ensure power stability in these modes as engines are not connected to a large grid. A load reduction request is thus made to notify the engine-external automation system that the system load may need to be decreased. It is important to notice that an engine load can be decreased by UNIC only if the other engines sharing the same load can compensate by increasing their load. Otherwise, the engine-external automation system must decrease the system load. The Isochronous Load Sharing algorithm increases or decreases in both cases automatically the loads on the engines that are connected to the same load sharing communication line. This also applies in a load sharing scenario where all engines have 100 % load and a load reduction activates on one engine. Engines will compensate the load reduction by risk of overloading some engines if the engine-external automation system does not lower the total system load. This follows as the load itself can’t be decreased by UNIC, only transferred to other engines. The only possibility in this scenario is for the engine-external automation system to disconnect some of the power consumers that create the load on the engines, hence reducing the system load. This is common on ferries with only a few engines installed, where the principle is used that the power consumer must be disconnected before the power producer can lower its load. The load balancing between the engines can after that be processed, as a margin has been established and some engines can have higher load than other. [21]
Load reductions in Droop mode are taken care of by the engine-external automation system. A load reduction request is sent from the engine with active load reductions and the system reacts. It uses the engine’s maximum loads and increases or decreases the loads on the engines as needed by sending speed increase/decrease pulses. The speed/load controller adjusts the engines’ speed references and the fuel demand is adjusted accordingly on the affected engines. This lowers the output power on the engine with a load reduction and increases it correspondingly on other engines. The total system load stays the same. Alternatively, the engine-external automation system may first have to lower the system load before balancing the loads between the engines. The system keeps track of the frequency and compensates this as needed. Loads can also be biased between engines, even if no load reduction is activated, in both Droop and Isochronous Load Sharing mode as described in Subsection 2.2.2. [21], [22]

An overview over the differences between how load reductions are handled can be seen in Table 1. UNIC sends continuously the engine’s maximum available load and, if needed, a load reduction requests/indication to the engine-external automation system.

<table>
<thead>
<tr>
<th>Speed/load mode</th>
<th>Control loop setpoint</th>
<th>UNIC</th>
<th>Engine-external automation system</th>
</tr>
</thead>
<tbody>
<tr>
<td>True kW (only used in power plants)</td>
<td>Load control</td>
<td>Reads the load reference. The controller sets the fuel demand accordingly to maintain given load.</td>
<td>Informs the grid of lowered system load or compensates by increasing the load references on engines without load reductions.</td>
</tr>
<tr>
<td>Isochronous Load Sharing</td>
<td>Speed/frequency control</td>
<td>Shares the system load according to a give load reference and maintains a fixed frequency of the plant. Loads are shared equally if possible. Adjusts speed reference input and controller sets fuel demand.</td>
<td>Adjusts system load if needed.</td>
</tr>
<tr>
<td>Droop</td>
<td>Speed/frequency control</td>
<td>Reads speed reference. The controller sets the fuel demand to achieve the given speed, while using a speed droop curve to ensure load sharing.</td>
<td>Sends speed INC/DEC pulses to handle the frequency. Shares the system load according to engine’s maximum load. Adjusts system load if needed.</td>
</tr>
</tbody>
</table>
2.2.4 Engine de-rating

Wärtsilä engines operating in harsh environments face challenges as ambient conditions can affect the power output, efficiency and fuel consumption. Engine de-rating is used to lower the maximum power output of an engine in advance, as the engine’s performance has been decreased due to external reasons. These plant related reasons are e.g. ambient temperature, charge air coolant (LT water) temperature and site altitude. The engine will not be able to produce the power it was designed for and its expected maximum performance should be lowered. Engine de-rating is done in the engine-external automation system and is not detected or calculated by UNIC. The ISO 3046-1:2002 (E) standard is used for combustion engines when measuring engine efficiency and capacity in reference conditions [25],[26]:

- total barometric pressure 100 kPa
- air temperature 25 °C
- relative humidity 30 %
- charge air coolant temperature 25 °C

In comparison, the ambient temperature can reach over 40 °C in e.g. the Middle East and northern Africa and air pressure is only 85 kPa at 1500 m above sea level. The engine’s performance may have to be de-rated when conditions outside the reference ISO standard apply. The de-rating formulas and correction factors will not be shared here, but can be found in the ISO 3046-1:2002 standard. Ambient temperature and pressure affect the air density which has a direct impact on the engine’s performance. High air and LT water temperature increase the charge air temperature and this increases the risk of e.g. knock on gas engines. High altitude result in lower air pressure which means that the turbocharger speed must increase to produce sufficient charge air pressure. This increases the risk of turbocharger problems especially at high loads. High humidity requires higher LT water temperature to avoid condensation in the charge air cooler and this leads to higher charge air temperature. These were examples of why engines are de-rated according to ambient conditions. The derating is done by the engine-external automation system, resulting in that an engine is not requested higher power than it can produce. That is the difference between load reductions and engine de-rating: load reductions protect the engine from breaking by taking engine specific parameters into account, while de-rating is done preventively by the engine-external automation system based on external parameters. In practice, the de-rating signal is also used for lowering the engine load if load reductions activate. The load reduction request is sent to the engine-external automation system, which lowers the load by de-rating the engine. The load is set according to whichever is lower, the de-rating level or the load reference set by UNIC. [9],[25],[26]

The engine-external automation system allows an engine to start only when no start blocks are active, as mentioned in Subsection 2.2.3. When started, one additional de-rating rule prevents the engine from ramping up the load too rapidly and that is the HT water outlet temperature. This limit de-rates the engine especially at cold start, as the engine cannot be loaded with too cold water. The de-rating exists due to mechanical reasons, as the HT water cools the cylinder liner and the lube oil cools the piston. Problems may arise if the HT water is too cold compared to the lube oil temperature, as this increases the risk that the piston is unable to move due to thermal expansion. This de-rating rule is being replaced by machinery protection and engines are to be shut
down if the difference between lube oil and HT water temperature is too large. Too high difference is not allowed on an engine, and the de-rating rule becomes obsolete. [26]

The above ambient conditions apply to all engines, but SG and DF engines have additional gas related criteria. These are valid for SG engines and apply to DF engines only when running in gas mode. The additional de-rating criteria are [9]:

- methane number and charge air temperature
- gas feed pressure and lower heating value (LHV)

Detailed information about the relations between minimum and maximum allowed charge air temperature and methane number or gas feed pressure and LHV can be seen in the W34DF product guide [9]. A low methane number combined with a low charge air temperature causes a decrease in the maximum engine output as seen in Figure 7. A low methane number can be compensated up to a certain level by increasing the charge air temperature. It is currently not supported to measure the methane number continuously, but ongoing research may change this situation. For now, the methane number is provided by the operator to the engine-external automation system and is static until changed manually. [27]

![Figure 7. How methane number and charge air temperature affect 34DF de-rating. [9]](image)

A low gas feed pressure combined with a low LHV cause a decrease in the maximum engine output as seen in Figure 8. This situation can be improved up to a certain level by increasing the gas feed pressure. The gas feed from the gas network or gas supply tank is not connected directly to an engine. A gas regulating valve, safety ventilation valves and filters are located between the gas feed and the engine. These enable the monitoring and control capabilities needed to ensure that the gas properties are correct for the engine combustion process. The engine-external automation system monitors and controls, together with UNIC to some extent, the gas feed by using the regulating valves. A certain gas pressure is required at the engine inlet to enable correct proper mixing of charge air and gas. This sets requirements on the gas feed pressure, and its minimum value can be calculated by adding the pressure drops over the valves and filters to the required gas inlet pressure. [27]
A low gas feed pressure does not necessarily mean that the gas cannot be used, as the low pressure can be compensated to some extent. This is achieved by increasing the duration of the gas injection in the cylinder. This follows quite naturally as a gas supply with low pressure needs more time to transfer the same amount of gas as a gas supply with high pressure. The same applies in the situation when gas quality is low due to pollution of nitrogen. Enough gas for achieving sufficient combustion can be injected by increasing the injection duration. Due to mechanical reasons, however, the injection duration cannot be extended indefinitely in these situations. The maximum duration depends on the gas feed pressure, gas quality and engine. The gas feed pressure is usually sufficient and drops rarely below the minimum required level. [27]

Figure 8. How gas feed pressure and LHV affect 34DF (480/500 kW/cylinder) de-rating. [9]

The de-rating used to be fixed, meaning that the maximum output of the engine was lowered permanently if difficult ambient conditions could be met at some point during the engine’s lifetime. This is not preferable, as the engine’s performance is lowered even though ambient conditions would be sufficient for the rated engine performance. Active de-rating was developed to improve the performance of engines by only de-rating the engines when actually needed. Active de-rating takes ambient conditions into account and sets the maximum allowed power output on the engine accordingly. This improves the performance of the engine as the maximum power output is decreased only when necessary. [9], [26]

The index developed in this thesis cannot directly use the de-rating rules implemented for an engine. This follows as the de-rating is done by the engine-external automation system and the de-rated maximum load is not sent to UNIC. The purpose of the index is not to re-implement the de-rating rules in UNIC, but to take use of engine measurements and parameters to indicate the engine’s load capacity. The de-rated maximum load can be sent to UNIC if it turns out necessary. This may not be the case, as the engine-external automation system handles engine loading, and a more probable scenario is that UNIC sends the calculated index to this system. The load capacities of the engines can then be taken into account when defining load references for individual engines.
3 Index development

This chapter presents all aspects, requirements and assumptions that have been discovered when developing the index. In short, nominal engine parameter values can be determined by using experts’ experience and formulas along with adaptive calculations. These nominal values define an engine that operates normally and has large load capacity. The index should relate the engine’s instantaneous measurements to the nominal values and to the load reduction setpoints. In this way the index indicates how normally the engine is operating and how large the load capacity is. The chapter starts by presenting the index benefits by looking at a few situations where the index is assumed to be beneficial. The most common load reductions are presented to establish a clear overview over the parameters that can affect the maximum load of an engine. Finally, the proposed method of calculating the index is derived.

3.1 Index requirements and assumptions

3.1.1 Benefits and usage

The main benefit of a load capacity index is assumed to be that it enables predictive actions to be made instead of corrective. It would provide the engine-external automation system with quantitative data about the states of the engines which should be used in control. Theoretically, the data could be used to increase performance, safety and power availability on a plant through optimised power management. These improvements will be discussed by looking at a few situations where the index is assumed to be beneficial and preferable.

Engine loading and load sharing could be improved if load availability were known. There is no functionality today that would in a preventive way inform UNIC or the engine-external automation system that the engine is about to activate a load reduction. This means that an increased load will be distributed among engines until the machinery protection activates load reductions. The situation is not desirable as the total power is unnecessarily decreased, when the engines with activated load reductions could have been close to their maximum power instead. The index would in this situation prevent the load reductions from activating by informing the engine-external automation system not to increase the load any further on engines with low operation margin. Instead, the load should be transferred to engines which can increase their load without activation of load reductions. [21], [28]

Especially power plants would benefit from the index when energy is sold on the energy market in very short time frames. Wärtsilä engines can go from 0 to 100 % load in < 2 min and this is crucial when selling energy for the next 5 minutes. The index would in these cases prevent situations where engines with insufficient load capacity are requested to quickly ramp up. The insufficient load capacity results in the activation of load reductions and the power plant is unable to produce the energy it sold. This results in a punishment and the power plant may be forced to pay fees because of its failure. Instead, engines with sufficient load capacity will be used in these situations. Sold energy is then produced and this results in profit and not punishment. [28]

The index would be beneficial also in engine diagnostics, as a measurement of how the engine is performing. Theoretically, the combination of engine parameter values together with engine load should give information of how close to nominal operation the engine is and its condition status. This follows as the parameter values can
be compared to known nominal values and differences may be noticed as wear and tear affects the engine. Such general engine condition measurement does not exist and it could be useful in local engine diagnostics as well as in remote CBM services. [19]

An engine in gas mode trips potentially to diesel mode during transients and that is why engines operating in diesel mode are preferred during such situations. The main reason for tripping is cylinder knock issues, and tripping would be less probable if knock could be prevented effectively. Knock occurs when pockets of the fuel mixture ignites outside the normal combustion timing window. It is a serious issue that must be prevented as the engine may otherwise be damaged. Knock is measured by using knock sensors and cylinder pressure sensors and it is mainly prevented by adjusting the ignition timing. The knock sensors are piezoelectric sensors which register the vibrations created by knock, while the pressure sensors detect knock by cylinder pressure variations. The index would be beneficial in the tripping issue, as it would prevent the engine from tripping to diesel mode by informing UNIC and the engine-external automation system of the increased risk of knock. This would, in a load sharing scenario, be taken into account and the affected engines would be prevented from tripping as the load would be biased appropriately. [21]

3.1.2 Load reduction parameters

The purpose of the index is to present the engine’s operation margin to the activation of load reductions. It is necessary to explain when load reductions activate before it is possible to calculate the index. The load reductions are hence presented to explain how the machinery protection works, when does an engine trip to diesel and when is the load reduced. The Engine safety and machinery protection specification specifies the machinery protection actions with setpoints, delays and other detailed information [23]. This detailed information is not disclosed in this thesis but includes engine modes (e.g. run, stop and shutdown) and speed/load modes (Droop, Isochronous Load Sharing and True kW). A machinery protection action activates when the engine is in the correct mode, the measurement value exceeds the setpoint value and the activation delay has passed.

The engines have varying requirements of machinery protection based on fuel type, installation or size. For instance, load reductions are usually preferred over shutdowns in marine engines, as it is highly undesirable or even hazardous that the engines shut down on a ship. Shutdowns are more common in power plant installations. As a result, it is not realistic to take all load reductions specified in the specification into account, and instead focus on the most common ones. In this way uncommon and engine- or installation specific load reductions are left out, and the ones used represent the general situation best. The load reductions used in this thesis were taken from the Engine safety and machinery protection specification by using a W20V34DF engine as base. Setpoints and delays are here presented as examples, as these may vary depending on engine design stage, turbocharger size or some other reason. Load reductions may also activate when a sensor fails and measurements become unavailable. These are not included as their statuses are Boolean and were not seen suitable for estimating the engine load margin.
The temperature related load reductions can be seen in Table 2. One of these is more complicated than the rest and that is the TY5##17# Exhaust gas temperature deviation load reduction. The double hashtags means the cylinders 01-10 and the single hashtag means both engine banks, A and B, in a V-engine. This load reduction activates when any of the exhaust gas temperatures deviates more from the average exhaust gas temperature than the setpoint ramp slope defines. Activation is possible only when the average exhaust gas temperature is above 250 °C and the temperature deviation needed for activation decreases as the average exhaust gas temperature increases.

Lube oil and charge air are the only temperatures measured at engine inlet. The bearings and liners temperatures are measured inside the engine and the exhaust gas temperature measurements are done at engine outlet. The HT water temperature is also measured at engine outlet.

<table>
<thead>
<tr>
<th>ISO code</th>
<th>Description</th>
<th>Setpoint</th>
<th>Delay</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE201</td>
<td>Lube oil temp, engine inlet</td>
<td>80 °C</td>
<td>5 s</td>
<td>High temperature load reduction.</td>
</tr>
<tr>
<td>TE402</td>
<td>HT water temp, jacket outlet A-bank</td>
<td>108 °C</td>
<td>5 s</td>
<td>High temperature load reduction.</td>
</tr>
<tr>
<td>TE403</td>
<td>HT water temp, jacket outlet B-bank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE511</td>
<td>Exhaust gas temp TC A inlet</td>
<td>610 °C</td>
<td>20 s</td>
<td>High temperature load reduction.</td>
</tr>
<tr>
<td>TE521</td>
<td>Exhaust gas temp TC B inlet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE517</td>
<td>Exhaust gas temp TC A outlet</td>
<td>540 °C</td>
<td>5 s</td>
<td>High temperature load reduction.</td>
</tr>
<tr>
<td>TE527</td>
<td>Exhaust gas temp TC B outlet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE5011A</td>
<td>Exhaust gas temp, cylinder 01A</td>
<td>550 °C</td>
<td>10 s</td>
<td>High temperature load reduction.</td>
</tr>
<tr>
<td>TE5101B</td>
<td>... Exhaust gas temp, cylinder 10B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TY5017A</td>
<td>Exhaust gas temp deviation, cylinder 01A</td>
<td>±110 °C, ±70 °C</td>
<td>10 s</td>
<td>High exhaust gas temperature deviation from average.</td>
</tr>
<tr>
<td>TY5107B</td>
<td>... Exhaust gas temp deviation, cylinder 10B</td>
<td>TY500 [°C] 250 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE601</td>
<td>Charge air temp, engine inlet</td>
<td>75 °C</td>
<td>5 s</td>
<td>High temperature load reduction.</td>
</tr>
<tr>
<td>TE700</td>
<td>Main bearing 00 temp</td>
<td>120 °C</td>
<td>1 s</td>
<td>High temperature load reduction.</td>
</tr>
<tr>
<td>TE711</td>
<td>... Main bearing 11 temp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE7011A</td>
<td>Liner temp 1, cylinder A01</td>
<td>180 °C</td>
<td>1 s</td>
<td>High temperature load reduction.</td>
</tr>
<tr>
<td>TE7102B</td>
<td>... Liner temp 2, cylinder B10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE7016A</td>
<td>Big end bearing temp, cylinder 01A</td>
<td>130 °C</td>
<td>2 s</td>
<td>High temperature load reduction. Reduced to 80%.</td>
</tr>
<tr>
<td>TE7106B</td>
<td>... Big end bearing temp, cylinder 10B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The pressure related load reductions can be seen in Table 3. Lube oil and HT water pressures are measured at engine inlet, while the cylinder pressures are measured inside the engine.

### Table 3. Pressure load reductions.

<table>
<thead>
<tr>
<th>ISO code</th>
<th>Description</th>
<th>Setpoint</th>
<th>Delay</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT201</td>
<td>Lube oil press, engine inlet</td>
<td>2,5 bar</td>
<td>5 s</td>
<td>Low pressure load reduction.</td>
</tr>
<tr>
<td>PT401</td>
<td>HT water press, jacket inlet</td>
<td>1,6* (RPM/Nominal RPM) bar</td>
<td>5 s</td>
<td>Low pressure load reduction.</td>
</tr>
<tr>
<td>PT5011A</td>
<td>Cylinder pressure, cylinder A01</td>
<td>211 bar</td>
<td>0 s</td>
<td>High pressure load reduction</td>
</tr>
<tr>
<td>PT5011B</td>
<td>Cylinder pressure, cylinder B10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The turbocharger related load reductions can be seen in Table 4. The load reductions activate if the turbocharger speed is above the lower setpoint for more than 5 min or above the higher setpoint for more than 100 ms. There are two turbochargers on the engine described as it is a V-engine with two cylinder banks.

### Table 4. Turbocharger load reductions.

<table>
<thead>
<tr>
<th>ISO code</th>
<th>Description</th>
<th>Setpoint</th>
<th>Delay</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE518</td>
<td>TC A speed</td>
<td>22810</td>
<td>5 min</td>
<td>High turbocharger speed alarm/load reduction setpoints and delay time depend on turbocharger model</td>
</tr>
<tr>
<td>SE528</td>
<td>TC B speed</td>
<td>23040</td>
<td>0,1 s</td>
<td>*) 5 min if speed above alarm limit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**) 0,1 sec if speed above LR limit</td>
</tr>
</tbody>
</table>

The knock related load reductions can be seen in Table 5. Knock is measured by using piezo and cylinder pressure sensors. The raw data from these sensors is processed by the Knock control application in UNIC and the data is quantified into knock statuses. The engine is tuned to be very close to knock to achieve high efficiency. It is up to the engine expert to tune and decide how the raw data is quantified by changing Knock control parameters. The knock status is 0 if the engine is free from knock and 1 if the engine has light knock. Light knock is compensated by the Knock control application by changing the ignition timing and the main fuel injection demand. However, light knock may turn into heavy knock if this compensation is unsuccessful. The status for heavy knock is 2 and the load reduction activates then immediately to protect the engine from damage. The load reduction is active only in the True kW mode and a gas trip is used in the other two engine modes. Gas trips change the fuel mode from gas to diesel for a DF engine.

### Table 5. Knock status load reductions.

<table>
<thead>
<tr>
<th>ISO code</th>
<th>Description</th>
<th>Setpoint</th>
<th>Delay</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEB6014A</td>
<td>Knock status cylinder A1</td>
<td>Status = 2</td>
<td>0 s</td>
<td>Heavy knock load reduction.</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEB6104B</td>
<td>Knock status cylinder B10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
These are the most common load reductions occurring on a DF engine. As was highlighted, the parameters are measured at different locations on the engine and this will later restrict their usage in the index calculations. The parameters measured at engine inlets barely change during load transients and are controlled by the engine-external automation system. This decreases the amount of information that can be used for estimating the engine load margin, as the parameters stay close to setpoints, which usually are static, throughout the entire load range. The internal parameters and the parameters at engine outlet show different behaviour and can vary greatly depending on load. This gives information about load availability as parameters correlate with load and the parameter values and trends may be compared. This load correlation should be usable by the index and it is to reflect any changes in parameter values that may have an impact on the load capacity of the engine. [29]

### 3.1.3 Engine performance parameters

The index describes an engine’s load availability and this would be easy to determine if the maximum available load of an engine were constant. In that case, a sufficient index would relate the instantaneous engine load to the engine’s rated load. The rated load means the designed maximum load and would be the same as the maximum available load. However, as seen in Subsections 2.2.4 and 3.1.2, de-rating and load reductions may decrease the engine’s maximum available load to a level lower than the rated load. The de-rating parameters affect heavily the performance of an engine and are the most critical engine performance parameters. These must be within allowed ranges for the engine to operate at maximum performance. Equally important is that load reduction set points are not reached. The most common load reductions are according to [27], [29]:

- high cylinder maximum pressure
- high exhaust gas temperature
- turbocharger over speed
- heavy knock.

These are connected processes as de-rating conditions may affect the load reduction parameter values and load reduction parameters may additionally be heavily influenced by the engine load level. For instance, exhaust gas temperatures may increase when the ambient- or charge air temperature increases, but exhaust gas temperatures increase also when the engine load increases. This follows as more fuel is combusted in the cylinders. The charge air temperature is being cooled by the LT water and the LT water temperature is thus one of the most important engine performance parameters as it defines directly the charge air temperature. Too high charge air temperature or too low charge air pressure can lead to knock issues. Too high charge air pressure can lead to misfiring. High air temperature or low air pressure increase the need of cooling to get sufficient charge air temperature. The parameters are interconnected and the most important factors or parameters which affect the load reduction parameters have to be selected before a realistic index can be calculated. De-rating conditions, load reductions and engine dynamics make it clear at this stage that a lot can be taken into account when calculating the index. [27], [30]
However, not everything can nor should be taken into account because of complexity, engine dynamics and mechanical or technical implementations. For instance, it is important that an engine has enough LT water cooling capacity to cool the charge air temperature sufficiently at any time instant. This cooling capacity depends on the LT water temperature and the opening of the LT water regulating valve. The LT water temperature in turn depends on the speeds of the cooling radiators. An increasing charge air temperature can be compensated by either increasing the speeds of the cooling radiators fans or increasing the LT water flow by regulating the LT water regulating valve. In these cases, either cooler or more water is led to the engine, which decreases the charge air temperature. UNIC does not control the regulating valve or the speeds of the radiators in power plants. These are not even measured, as they are completely controlled by the engine-external automation system in the power plant. Thus, this information is unavailable and it is not possible to determine the cooling capacity. This is one example of a situation where engine load capacities may differ because of external components. Engines with cooling margin can cool more charge air which is needed when the load increases. An engine without cooling margin cannot increase its load without increasing its charge air temperature and increasing the risk of knock and knock load reduction. This cooling margin is zero if the radiator speeds and LT water flow are close to maximum. Measurements from these components could together with thermodynamic analysis enable the calculation of the cooling margin on some marine installations, but this will not be discussed further in this thesis. [27]

The purpose of the index is to determine the load capacity by measuring engine parameters and estimating the maximum load. As presented in Subsection 2.1.4, the CBM experts monitor the condition of an engine by gathering measurements and comparing these to known nominal parameter values. Differences found are analysed and actions are taken as needed. It was discovered during discussions with the experts that the nominal parameter values are measured at different engine loads and ambient temperatures. It was thus possible to get valuable information of how parameters are expected to change when the engine load changes. Additionally, the nominal values can be used as reference to define the parameter value zone where the engine is performing normally. Similarly, the index should indicate when parameter values are located outside of this region and move towards the region with increased risk of load reductions. In conclusion, CBM experts brought valuable information to the index development. Utilizing the knowledge of how parameters change when the load changes together with the nominal values bring valuable and usable information. [19], [29]

Established at this point is an understanding of where the engine parameter values should be and where they should not. The engine is operating normally if the parameter values are close to the nominal values and vice versa; the closer they are to the load reduction setpoints the worse performance or load availability can be expected. The index should reflect these situations accordingly. De-rating is done by the engine-external automation system and is not taken into account by the index, as the purpose of the index is not to re-implement the de-rating rules. The de-rating parameters are mainly external and not related to engine components. Additionally, the de-rating information is presently not sent from the engine-external automation system to the engine. [26]
3.2 Index presentation and calculation

3.2.1 Index concepts

It can be concluded when looking at the benefits listed in Subsection 3.1.1 that the index calculation is far from trivial. The approach is quite broad and the potential situations where an index would be beneficial are different. Extensive discussions with engine experts were carried out to better understand what the resulting index actually can achieve and describe. For instance, should the index be a percentage value that describes engine condition or should the result go one step further and also offer a solution of why the engine condition is worse than it should be? How closely related are the engine condition and engine load availability and which one is more interesting? A percentage value was seen as a good starting point, as that can be used in diagnostics and control as such and is useful for humans and for control systems. Additionally, the index is not a re-implementation of FAKS, the tool that was used by CBM for diagnosing engines, as that task is too challenging and complicated to integrate into an engine specific index.

It was decided during the development process that two different approaches of calculating indexes are realistic enough to be implemented and tested. These approaches were developed in collaboration with engine experts and may turn out successful. The proposal is thus that not one but two indexes shall be calculated to enable the benefits listed in Subsection 3.1.1. The two indexes are named the Condition Index (CI) and the Load Availability Index (LAI). The two indexes are calculated by combining instantaneous engine parameter measurements, the load reduction setpoints and the nominal engine parameter values. Ideally, the nominal parameter values would be the result of interpolation of the actual measurements. The CBM formulas are used as reference now for simplicity when deriving the indexes, but these will be replaced later with interpolated scatter of adaptive measurements which reflect the nominal values of each engine better than general formulas. The delays used in the machinery protection are not taken into account when calculating the indexes. It was discussed that the delays are short, usually < 10 s, and do not add much value to the calculation if only the margin to the load reduction is interesting. [21],[27],[29]

The two indexes are similar but answer different questions and behave differently. CI is a measurement of the distance between the load reduction setpoint and the present parameter value, normalized according to the nominal value range. When derived it will be seen that CI answers the question “How normally is the engine operating?”. The LAI is a prediction made with engine measurements and enables the possibility to predict the load availability. When derived it will be seen that LAI answers the question “What is the maximum load of the engine?”. These two indexes will now be derived and explained. Both indexes describe the engine’s load operation margin, but present it differently. Each has its benefits and they compensate each other to some extent.
3.2.2 The condition index

A load reduction activates when the value of a measurement exceeds the load reduction setpoint. The task of determining the engine’s operation margin is thus to express the relation between the present measurement values to the load reduction setpoints. An indication of how normally the engine is operating is achieved when this relation is compared to nominal parameter values. The CI development started out by only using the measurements and the load reduction parameters, as it was not known that nominal values could be implemented. These were added to the calculations when seen possible and necessary, and this improved the CI scaling vastly. The proposed method of calculating the index by using load reduction setpoints, instrument measurements and nominal values is presented below.

Load reduction setpoints and engine instrument measurements are scalar values. The relation between two scalar values can be expressed by either subtracting or dividing the two values. Subtraction of the values gives the relation as the difference between the values in their original unit. Division of the values gives the relation as a unitless quotient which easily can be converted to a percentage value. The amount of units used in UNIC is huge and it is impossible to compare values with different units. The CI is hence calculated by division as this presents the operation margin for all ISO codes without using any unit. Additionally, the resulting quotient is less sensitive to instrument data range sizes. The ranges of the instruments vary considerably and it is hard to say if a measured value change is small or large without proper scaling. This scaling is done automatically by division and the result is a value which easily can be compared between ISO codes.

Four different cases have to be taken into account when calculating the CI. These depend on whether the load reduction setpoint is positive or negative and if the instrument value normally is above or below this setpoint. A load reduction is activated when a value that normally is below a setpoint grows larger than the setpoint and vice versa. The cases are thus:

1. Instrument value is normally below a positive setpoint
2. Instrument value is normally above a positive setpoint
3. Instrument value is normally below a negative setpoint
4. Instrument value is normally above a negative setpoint

The CI presents the operation margin of an engine to the nearest load reduction. The appropriate way of scaling the index was decided to be 0-100 %. It was concluded that the logical behaviour is that 0 % indicates a zero load margin and 100 % indicates a great distance to the load reduction. The load reduction setpoint has in the first case been reached and a load reduction activates once its delay has passed.

A first approach on calculating the index for a single ISO code in cases 1 and 4 can be expressed as

\[ CI = \left(1 - \frac{y_M}{y_{LR}}\right) \cdot 100 \%, \]

where \( y_M \) is the measured value of the ISO code and \( y_{LR} \) is the load reduction setpoint. This equation expresses the margin as a percentage value between the ISO code value
and its load reduction setpoint. Calculation of the CI in cases 2 and 3 would then be done by inversing the behaviour of (1) by multiplying with -1:

\[
CI = \left( \frac{y_M}{y_{LR}} - 1 \right) \cdot 100 \%.
\]  

(2)

These two equations were developed by improving the idea that the operation margin could be calculated by dividing the ISO code value and the setpoint. Equation (2) is needed in cases 2 and 3, as it was seen that (1) did not work in these cases. The equations enables CIs to be calculated and scaled equally for all ISO codes, making them directly comparable.

The nominal instrument values were then proposed to be integrated in the calculations. This would make the indexes from different ISO codes more comparable, as the scaling would be done equally. The index expresses then the distance from the nominal value to the load reduction setpoint as a percentage value. Again, 0 % means that this distance is zero while 100 % means that the distance is as long as it should be when the engine is operating normally. The latter happens when the parameter value is exactly the nominal value. A second approach of calculating the CI is hence

\[
CI = \left( \frac{y_{LR} - y_M}{y_{LR} - y_{NOM}} \right) \cdot 100 \%,
\]  

(3)

where \(y_{NOM}\) is the nominal value of the instrument. It turns out that this equation can be used for all the cases 1-4 listed above and also when the load reduction setpoint is zero. The CI will have the same dynamics in all of them, meaning that this is a convenient way to calculate a compatible and easily comparable index. Comparison shows that (3) is reduced to (1) when the nominal value is zero and to (2) by additionally multiplying with -1. The equations were tested with arbitrary values and it was concluded that (3) is an extended combination of (1) and (2) that scales correctly in all cases 1-4.

Figure 9 shows an example of CI calculation using exhaust gas temperatures. Exhaust gas temperatures are plotted on the y-axis in degrees Celsius and engine load is on the x-axis in percentages. The black horizontal line in the figure at 580 °C is the load reduction setpoint. The blue curve consists of the nominal values and is in this case made up for demonstration purposes and do not reflect actual nominal temperatures. The exhaust gas temperatures should be close to this line when the engine is operating normally. For instance, it can be seen that the temperature should be around 560 °C at 100 % load. The engine has several cylinders and the red dot is the present engine load and the highest measured exhaust gas temperature from all cylinders. This represents the worst case and the engine performance is differing from normal operation. The distance from the blue line is clearly noticeably and the CI is estimated visually by using (3) as

\[
CI = \left( \frac{580 - 470}{580 - 420} \right) \cdot 100 \% \approx 69 \%.
\]

That means that the engine is performing abnormally and the distance to the load reduction is roughly 2/3 of what it normally is. The CI was later expanded in the simulations to also incorporate the situation when the highest measured exhaust gas temperature is below the normal curve. This situation should also be reflected in the CI as it is an indication of decreased engine performance due to abnormal behaviour. In this case, the index has grown over 100 % and needs to be inverted. The calculations are
\[ CI = 200\% - \left( \frac{y_{LR} - y_M}{y_{LR} - y_{NOM}} \right) \cdot 100\%. \] (4)

An increased risk of load reductions can be seen only with equation (3), while both (3) and (4) is a measurement of how normally the engine is operating. Information about whether (3) or (4) is used must be informed to the control system if the CI is used for controlling the engines. As an example, the former example can be modified so that the highest exhaust gas temperature is 400 °C instead of 470 °C:

\[ CI = 200\% - \left( \frac{580 - 400}{580 - 420} \right) \cdot 100\% \approx 88\%. \]

The CI is a measurement in percentages of how far from the nominal values the present highest measurements are. It can then be concluded and also seen in Figure 9 that an absolute change in exhaust gas temperature will affect the CI differently depending on the load. A 20 °C exhaust gas temperature change at 20 % load will affect the CI only slightly, while a 20 °C change at 90 % load will reduce the CI vastly. This is the natural behaviour of an index that is measured in percentages and is not seen as a drawback but as a benefit. The result is an index that can be compared on any load, with any instrument using any unit. This is calculated for instruments on an engine and the CIs reflect the present measurements to nominal values for each instrument. The final CI for the engine is the lowest of these calculated CIs. That will be the weakest index that has been calculated for the parameter that differs the most from normal behaviour and this sets the global CI for the engine.

Figure 9. The concept of the CI.
3.2.3 The load availability index

The purpose of the LAI is to predict engine load availability. This is done by using load reduction setpoints, instrument measurements and nominal values. The idea is to find the worst (highest) measurement and then offset the trend of nominal values to the level of this measurement as shown in Figure 10. In this way, an approximation of the actual parameter trend is created. It is a valid assumption that the parameter dynamics remains the same despite any abnormal difference to nominal values, and that is why the entire trend can be offset. This approximation is then used for looking up the crossing point between the trend of nominal values and the load reduction setpoint. That crossing point will be the maximum engine load, as a load reduction activation is probable from this load and onwards. This procedure has been illustrated in Figure 10. The yellow curve is the nominal value curve moved upwards to the same level as the highest exhaust gas temperature. This yellow curve represents the actual temperature curve that the engine approximatively is following. The LAI is the crossing point between the real parameter curve and the load reduction line. In this case, the yellow curve hits the load reduction setpoint at about 95 % load. This is the engine’s LAI and the engine has 15 % load marginal left as it is presently running at 80 % load. [27],[28],[29]

![Figure 10. The concept of the LAI.](image)

The calculations start by adding the offset, the difference between the highest exhaust gas temperature and the corresponding nominal value at the present load, to the nominal values

\[ y_{\text{REAL}} = y_{\text{NOM}} + y_{\text{OFF}}. \]  

(5)

Here bold font is used for vectors and \( y_{\text{OFF}} \) is the vector of same size as \( y_{\text{NOM}} \) with the largest measured \( y_{\text{OFF}} \) in each element.
The LAI is the result from a lookup of the load reduction setpoint from a map containing the nominal exhaust gas temperatures with offsets added and matching loads

\[ \text{LAI} = \text{Lookup}(y_{LR}, y_{REAL}, x_{LOAD}). \]  

(6)

LAI is the x-coordinate of the crossing point between the real temperature curve and the load reduction line. The load operation margin is expressed as the difference between the LAI and the actual load

\[ \text{Load}_{LEFT} = \text{LAI} - \text{Load}. \]  

(7)

This formula works for both absolute load in kW and load measured in percentages. This follows as the LAI and load can be easily converted to kW by multiplying it with the engine’s rated load. Equation (7) applies when de-rating is not taken into account. The equation could be modified if the de-rating information were available to UNIC as

\[ \text{Load}_{LEFT} = \text{MIN} (\text{LAI}, \text{Load}_{DER}) - \text{Load}, \]  

(8)

where \( \text{Load}_{DER} \) is the present maximum load as determined by de-rating rules. The load margin is then the difference between the present load and either LAI or \( \text{Load}_{DER} \), depending on which one is smaller.

LAI is defined as an index 0-100 % and is an approximation of an engine’s maximum load. This equals to the crossing point between the real parameter curve and the load reduction line and the index is 100 % if this line cannot be found. Similarly to the CI, the result is an index that can be compared on any load, with any instrument using any unit. This is calculated for instruments on an engine and the engine’s final LAI is the lowest of the calculated indexes. The LAI is based on the idea that the parameter trend should approximately stay the same, even when a parameter differs from the nominal value curve. Tests will show how well this works in practice, but engine experts agreed on that this could be a good enough approximation in many situations. The LAI in both kW and % could be used by UNIC when controlling the engine. [22, 29]

### 3.2.4 Adaptive indexes

The CBM provided general formulas and guidelines are a good starting point when determining the nominal values for the engine parameters. Their greatest benefit is that they are not just engine- and fuel specific, but also take external aspects such as differently sized turbochargers and air temperature into account. However, this benefit becomes a drawback if the index calculations relied on these formulas only. It is too complicated to provide specific and up-to-date formulas to UNIC and the formulas are too general for determining real nominal values. Ambient temperature varies and the dynamics of engine components change for different reasons such as wear and tear, fuel quality or lube oil quality. Add to this different ways of operating the engine, ramping up the load in a fast or slow pace or using the engine as base load or regulating power. The calculations must be flexible and the nominal values should reflect the changes in dynamics accordingly. It is then a fact that the nominal values should be adaptively updated to enable adaptation to the changing environment. This is the only way that reliable nominal values can be kept up to date without the need for continuously configuring general formulas for different engine setups. [31]
The possibilities for implementing the adaptivity were explored together with engine automation experts. Wärtsilä uses Simulink and their own development environment, the Wärtsilä Simulink Development Environment (WSDE), when developing engine applications. It was a logical choice to use the commonly used tools when implementing the index calculation, as the ideas and concepts presented in this thesis could end up as an application developed with the exact same tools. In that case some implementation work has already been done and time is used more efficiently. Conveniently, a self-tuning map (STM) has been developed that provides the adaptive functionality needed for the index calculations. The STM can be found among other function blocks in the common functions library in WSDE. This library holds many blocks for common functions used when developing applications. The STM is a result from earlier research and can be already found in several applications normally used on an engine. The functionality of the STM and will now be explained along with general information about how maps work in UNIC applications. [22]

The STM is a one-dimensional vector with pairs of x and y values. The configurable parameters in the STM are the following [32]:

- **y_vec_init** - y-vector initial values
- **x_vec** - x-vector
- **x_vec_update** - x-vector update width
- **map_update_gain** - y-vector update gain
- **line_slope_gain** - y-vector line slope update gain
- **vector_size** - sizes of the x and y-vectors
- **enable_train** - enable/disable STM updating.

An overview of the functionality can be seen in Figure 11. The x values are used for the engine load in this thesis. The y values are the corresponding instrument values measured at different loads. Every x value has an update region and a matching y value which is updated when the engine load is within the update region. The y value is updated by increasing or decreasing it by the preconfigured y value gain scaled according to the line slope. A line slope is used for every y value that approximates the slope of the curve created by the y values. This is used for weighing y values measured at different x values and allows values closer to the x points to have greater influence on the corresponding y values. The line slope is increased or decreased by the line slope gain based on measurements. The STM is highly configurable as the vector sizes, vector values, update regions and gains may be configured arbitrarily. [32]
The output of the STM is a one-dimensional vector with x and matching y values. One-dimensional vectors are used in many applications for tuning parameters when the reference parameter changes. UNIC interpolates and looks up values as needed between the values in the map. The following formula is used for the interpolation

$$y = (x - x_1) \frac{(y_2 - y_1)}{(x_2 - x_1)} + y_1,$$

where y is the interpolated value, x is the input and (x₁,y₁) and (x₂,y₂) are the nearest points in the map with x₁ < x if x < x₂. The formula is general and the ordering of (x₁,y₁) and (x₂,y₂) can be changed. [32]

The x values do not change over time but the y values adapt to changes as more and more measurements are being done. Adaptation is fast if the y value gain is large and slow if the gain is small. The STM uses only integers and the y value gain cannot thus be smaller than 1. Some other method must be used if the adaptation should be slowed down further. One suggested method is to update the STM on every Xth measurement only instead of taking every measurement into account. X is an arbitrary integer > 0 and X = 1 corresponds to updating the STM on every measurement. This method was utilized in the simulations in this thesis, as the implementation was straightforward and fulfilled its purpose well. The configuration parameter to enable and disable STM updating is used to adjust the STM adaptivity speed, by enabling the STM updating only for every Xth measurement.

### 3.3 Parameters included

The load reductions, the engine performance parameters and the index concepts have been presented in Subsections 3.1.2, 3.1.3 and Section 3.2. The parameters included in the index calculations can now be selected based on the requirements and possibilities presented. The CI can be calculated for any parameter on an engine as long as a load reduction setpoint, present measurements and nominal parameter values are available. The index is possible to calculate even for a parameter following a single setpoint. However, it is essential that the parameters used for LAI calculation correlate with load.
This follows as the curve of nominal values does not increase with the increasing load and will thus not cross the load reduction setpoint line. A parameter that does not correlate with load will bring no usable information to the calculations. The load reductions listed in Subsection 3.1.2 can then be discussed from the point of view of load dependency and real usability. Most of the engine inputs are controlled by external means and do not correlate with load by definition. They have setpoints and should stay close to the setpoints despite any load changes. [29],[33]

- The LT water cooling system removes heat from the lube oil and charge air. These are controlled by the engine-external automation system and follow the temperature setpoints accordingly.
- The lube oil cooling system removes heat from bearings and follows LT water temperature. Lube oil pressure follows its setpoint. The bearings should not be affected by load changes as long as the lube oil is cooled enough.
- The HT water cooling system removes heat from the cylinder liner, cylinder head and turbocharger. The HT water outlet temperature and input pressure are controlled by the engine-external automation system and follow the setpoints accordingly.

It can be concluded that many of the load reduction parameters should by definition follow a certain setpoint. These can still be used for calculating the CI, but cannot be used for estimating load capacity with LAI. Additionally, it was concluded that knock will not be included in the index calculations as knock does not correlate with load. Knock can occur at any load because of earlier presented reasons. Knock behaviour is complex and dedicated applications are used for quantifying raw data into knock statuses. The knock statuses could be used for calculating CI, but it is discussable how much more information that index gives than simply reading the statuses directly. Knock is not included in the index calculations because of this fact and the lack of load correlation. Interesting parameters which correlate with load are:

- exhaust gas temperatures
- cylinder pressure
- TC speed
- cylinder liner temperature.

It was decided that these parameters, except the cylinder liner temperature, would be a good starting point for index calculations. The reason to this is that they are important performance parameters which correlate with load and the associated load reductions are commonly activated. That is the situation the index should prevent and these parameters are a good basic setup for indicating the load capacity of an engine. The cylinder liner temperature does not usually cause any problem and it was concluded that it can be neglected for now. The cylinder liner temperature is expected to increase with load, but much less than the other parameters. Tests showed that the cylinder liner load reductions never activated and the assumptions were correct. The exhaust gas temperatures are measured at several points after the engine and these are all heavily influenced by load and turbocharger speed. The measurement points are directly after the cylinders, before the TC inlet and after the TC outlet, but some engines do not have all of these instruments installed. [27],[29],[33]
The parameters may have different nominal behaviour depending on the fuel mode. One such parameter is the *TE517/TE527 Exhaust gas temperature TC outlet* and the correlation between load and temperature can be seen in Figure 12. It turns out that the temperature is expected to decrease in diesel mode when the load increases. The parameter value is increasing in gas mode up to about 50-60 % load where the trend shifts and decreasing values are expected. Because of this, LAI can be determined from this measurement only when the engine is in gas mode, as a positive correlation between the parameter value and engine load is needed. The different behaviour can be explained from the differences between how diesel and gas engines are controlled and operated. Higher engine load means that more air and fuel must be injected into the cylinders and higher exhaust gas temperatures can hence be expected. More air is achieved by increasing the speed of the turbocharger and this decreases the exhaust gas temperatures at the turbocharger outlet. This temperature decrease is larger than the temperature increase due to increased combustion. The exhaust waste gate is used on gas engines for controlling the air/fuel ratio which must be leaner than the knock level but richer than the misfiring level. Too low charge air pressure may lead to knock issues and too high pressure may cause misfiring. Exhaust gases are hence bypassing the turbo and the gas curve is the result. The exhaust waste gate is generally closed when operating in diesel mode, as more air can be injected safely in the cylinders. The turbos tend to have higher speeds on diesel engines because of this. [29],[30],[33]

![Figure 12. The difference between gas and diesel for TC outlet temperature. [33]](image)

The development process of the indexes has now been presented and these will be tested in the next chapter. Load reductions are implemented for many engine parameters, but only some parameters correlate with load. This is needed before any predictions can be made of when the load reduction activates. This correlation is found from three of the four most common issues presented in Subsection 3.1.3. Hence, the proposed LAI which utilizes these parameters should be able to successfully indicate the load capacity in most of the load reduction scenarios. Engine dynamics is complicated and the number of selected parameters is low, but the index calculations can be expanded with other parameters when seen necessary.
4 Index evaluation

This chapter describes the testing of the proposed indexes. The setup with simulations and real engine data is explained. A Simulink model has been developed and its parts are presented. The model is configured and executed using MATLAB scripts and functions and their functionality is explained. The chapter ends with the presentation of the results from the simulations.

4.1 The simulation setup

It was concluded at an early stage of the index development that the indexes could most easily be demonstrated in Simulink. This tool is used for application development in Wärtsilä and it is the logical choice of development tool together with the WSDE development environment. In this way no real application has to be developed that would be used on an actual engine. No resources have to be allocated from application developers or lab engines either, and the daily application development work can continue normally. Additionally, the benefits of the indexes in engine load sharing can be demonstrated in Simulink, as multiengine models exist and these may be used for demonstrating the indexes in a load sharing scenario. This was never implemented, as the model using real engine data to calculate the indexes was seen as a sufficient demonstration of the indexes. The load sharing model is suitable when demonstrating engine control, but this thesis focuses only on the index development.

The index calculations were implemented and tested in a Simulink model using real engine data from a Wärtsilä power plant [34]. This power plant is connected to the grid and produces power on a daily basis with its twelve W20V34SG gas engines, each with a rated output of 9730 kW. This environment has several benefits compared to tests on lab engines. The power plant has identical engines connected to the grid with a real power demand. It is challenging to create an equally realistic test setup with only lab engines in an artificial environment. Thanks to CBM, it was possible to remotely monitor the engines on the power plant. The power plant’s exact location and other information will not be disclosed, as this is not essential. However, the ambient temperature on the location may affect the rate at which load reductions occur and it is hence presented. The ambient temperature was on average 13 °C, with daily variations of ± 10 °C. Load reductions were seen that matched the expectations; the most common load reductions on SG engines are knock, high exhaust gas temperature and high cylinder pressure. Four engines had more often load reductions than the other six, thus these were chosen and data for the following parameters were saved for use in the simulations:

- PT5##1# Cylinder pressure, cylinder A01-B10 (20 codes)
- TY500 Engine exhaust gas average temperature
- TE##1# Exhaust gas temperature, cylinder A01-B10 (20 codes)
- TE517 Exhaust gas temperature TC A outlet
- TE527 Exhaust gas temperature TC B outlet
- SE518 TC A Speed
- SE518 TC B Speed
The engines did not have any instrument installed for measuring the exhaust gas temperature at the turbocharger inlets. However, the outlet temperatures were available and these were chosen along with the normal exhaust gas temperatures. The engines run on gas and the TC outlet temperatures should thus follow the gas behaviour shown in Figure 12. Furthermore, data was also saved for six additional codes which were known to be necessary or could bring usable information. These were

- UT793 Engine load
- STY196 Engine speed
- UP01 De-rating (from PMS)
- TE417 LT water temperature
- TE601 CA temperature
- IB500 Cold cylinder operation

UT703 Engine load is needed for updating the STMs and implementing the index functionalities. STY196 Engine speed enables the possibility to update the STMs only when the engine is running at full speed. Measurements should not affect the maps when the engines stop, are shut down or start, as all parameter values measured in these engine modes affect the 0 % load element in the STMs. This deforms the curve created by the STM values unnecessarily. UP01 De-rating is interesting as this contains the de-rating information from the engine-external automation system. TE417 LT water temperature and TE601 CA temperature are both important parameters when it comes to engine performance, hence these can provide useful information in some situations. IB500 Cold cylinder operation was selected, as this functionality was seen to be in use on the engines. The cold cylinder operation disables individual cylinders on an engine in situations such as misfiring or exhaust gas temperature sensor failures. The maximum power is reduced on the engine when some cylinders are disabled. This is why the code could be interesting as the maximum load has changed.

The CBM data consisted of measurement of the chosen codes and the lists of events and alarms which occurred during the timespan chosen. The data sample rate was 1/s and the timespan was chosen to be 30 days from the 1st of March to the 30th of March. This equals to 3600 * 24 * 30 = 2592000 measurements for one parameter on one engine. This results in a total of 2592000 * 4 * 51 = 528768000 data points with four gensets selected with 51 codes each. MATLAB can handle such a mount of data and the script used for importing the data from the CBM .csv-files can be seen in Appendix A – The data loading script. The script loads data for one genset at a time and had thus to be run four times. Data from the .csv-files were stored in workspace variables, which were saved as .mat files as MATLAB can import such almost instantly. The event and alarm lists contain useful information about different engine events, such as engine status (start, run, shutdown, load or unload), alarms or load reductions. These lists enable the possibility to more easily choose specific dates from the data with interesting events. The four gensets had also been chosen by first filtering load reductions in Excel in the alarm and event lists from all gensets and this would not have been possible without the lists.

The sample rate of 1/s is used by CBM as a compromise between up to date measurements and amount of data that has to be sent to the CM centre. UNIC measures several quantities on an engine with much faster sample rates, as that is needed when controlling the engine. Sampling at 1/s is enough for CBM that only follows up how the engine is performing over time. Cylinder pressure is one of the quantities that has a high
sample rate in UNIC. This is needed as the cylinder pressure can change rapidly and UNIC needs to react fast enough to ensure safe engine operation. Hence, it may turn out that sample rate is too slow to show the index benefits for the cylinder pressure. The CBM sample rate was thought to be enough for demonstrating the index benefits for the exhaust gas temperatures and turbocharger speed, as these have slower dynamics than the cylinder pressure.

4.2 The Simulink model

4.2.1 Model overview

The simulations were conducted by creating a model with four STMs and feeding these with the measurement data. Four STMs are needed as four parameters are included in the simulations; cylinder pressure, exhaust gas temperature, exhaust gas temperature TC outlet and TC speed. The indexes are calculated from the STM values, the measurement data and the preconfigured load reduction setpoints as described in Section 3.2. Plots are used for visualizing the process and demonstrating the usability of the indexes.

Each STM is fed with the average of the measurements, as this was seen as the logical way of achieving the general behaviour of parameters. *TY500 Engine exhaust gas average temperature* is already calculated by UNIC and is available in the CBM data. The averages for the other three parameters are calculated at the beginning of the simulation script used for running the simulation model and creating the plots. This script can be seen in *Appendix B – The simulation and plotting script* and its help functions are listed in *Appendix C – The script help functions*. UNIC takes automatically sensor failures into account when calculating TY500 by not adding any measurements from instruments with failures. Averages for the other parameters could be calculated directly from the data as no severe sensor failures were seen on the four gensets during the timespan chosen.

The entire simulation model can be seen in Figure 13. The green sub-systems contain the inputs, the orange sub-systems contain the index calculations with STMs and the blue sub-system contains the outputs where data is saved to variables. The orange calculation sub-systems are all identical and interchangeable, and only the inputs and outputs differ between the parameters. The yellow Real-Time Pacer block is a third-party Simulink function block used for slowing down the simulations [35]. It enabled better index evaluation possibilities by allowing the simulations to be slowed down to almost real time speed. MATLAB runs the simulations as fast as possible without such block and it is then impossible to analyse the plots on the fly. According to the developer, setting the Speedup parameter to 1 allows the model to be simulated at real time. In practice, this behaviour was achieved by setting the parameter to a slightly higher value ~2. The model can be run at full speed by setting the parameter to *Inf*, as this will be the same as not having the Real-Time Pacer block at all. In that case, the data points from one hour are processed in seconds, making it impossible to see anything interesting from the plots. The model is discrete with a sample rate of 100 ms. This was the default WSDE setting and no reason for changing it was seen during the index evaluation.
4.2.2 Inputs

Figure 14 shows the green sub-system for the exhaust gas temperature inputs expanded. Many of the input parameters are saved to MATLAB workspace variables in this sub-systems as they are used for plotting. The workspace consists of variables and data stored in memory during the MATLAB session and these may be manipulated and processed by scripts and commands. The de-rating and time data is saved to temporary workspace variables only in this sub-system. There is no need to copy the de-rating and time data to the other input sub-systems as they are only used for plotting and not connected to any specific parameter. The green sub-systems are otherwise equal, except for different input data used. The engine load is not connected to any specific parameter either, but is read in every input sub-system as it is needed in every calculation sub-system.
Two bus signals are created in the input sub-systems and these are named $x_y_{lr}$ and $stm\_config$. The $x_y_{lr}$ signal contains the load, the average of the measurements, the measurements and the load reduction setpoint. As described in Section 3.2, the measurement averages and the load are used for adapting the STM, while the measurements and the load reduction setpoint are used when calculating the indexes. The $stm\_config$ signal contains the configuration data for the STM. The different parts of the data was presented in Subsection 3.2.4 and their implementation can be seen in the figure. Data processed in the model is scaled for better accuracy by multiplying with the gain K1. The gains K1-K4 used for the four parameters implemented are 10-100, depending on the parameter unit and measurement accuracy.

Figure 14. The exhaust gas temperature input sub-system.
Figure 15 shows the *update_sample_rate* sub-system seen in Figure 14. This sub-system enables the possibility to update the STM at a chosen sample rate and to entirely disable the updating when the engine speed is too low. The sample rate updating is used to slow down the adaptivity in the STMs. It is implemented by using a Counter Free-Running block, which is a 16 bit counter, together with a modulus function and a switch block. This sets the STM *enable_train* to 1 when the division rest is 0 from dividing the counter and the configured update rate. For instance, setting the *update_rate* to 100 sets the *enable_train* to 1 every 100th time the simulation runs. In this way the STM is updated slowly and uses only every 100th measurement processed in the model.

The engine speed must be close to the rated engine speed when the STMs are updated. A large variety of measurements from different engine modes, such as shutdown, start or run mode, are otherwise taken into account by the STM and this affects the shape of the curve negatively. Especially the first element of the STM indicating measurements at 0 % load suffers from this issue and is updated in cases when it should not. The STMs model the behaviour of the parameters when the engine runs at full speed and is ready to be loaded or is loaded. Parameter measurements in the other engine modes should not affect the STMs. That is why the speed check functionality has been added, which disables STM updating when the engine speed is lower than 740 rpm. The rated speed of a W20V34SG engine is 750 rpm.

![Diagram of the update_sample_rate sub-system](image)

**Figure 15. The update_sample_rate sub-system.**

### 4.2.3 Calculations

Figure 16 shows an overview of the orange calculation sub-system. *SelfTuningMapInt* and *InitSelfTuningMap* are used for initializing and updating the STM. These sub-systems use external C-code which will not be presented in this thesis. The STM functionality is handled in these sub-systems and has been explained in Subsection 3.2.4. The STM is initialized by the initialization function when the simulation starts and the main STM function provides the adaptation by using the data and the configuration parameters. The other two sub-systems with index calculations will be presented in detail in the rest of this subsection.
The sub-system \textit{Calculate}_y\_offset\_and\_CI is used for CI calculation, while the \textit{Calculate}_LAI sub-system is used for LAI calculation. The STM values are sent in the \textit{SelfTuningMapIntRuntime} variable to \textit{Calculate}_y\_offset\_and\_CI. Here, the STM values are offset according to the worst measurement found and the CI is calculated. This process can be seen in Figure 17. The \textit{FuncLookupNomY}\_val function is using external C-code and can be seen in \textit{Appendix D – The C functions}. This function returns the nominal y value from the STM values based on a lookup of the present load. This nominal value is needed for offsetting the map as needed when calculating the LAI and also as such when calculating the CI as seen in equation (3). The \textit{Calculate}_CI sub-system is seen in Figure 18 and implements equations (3) and (4) and scales the CI in ppt from 0 to 1000. Calculation in ppt is used as this can easily be scaled down to percentages with one decimal accuracy when needed.
The Calculate_LAI sub-system seen in Figure 16 is used for LAI calculation. The STM values with added offsets are used in this sub-system along with the other inputs needed when calculating the LAI. The sub-system is shown in Figure 19 and its C-code can be found in Appendix D – The C functions.

4.2.4 Outputs

Outputs from the model are saved to workspace variables as shown in Figure 20 and Figure 21. The engines final CI and LAI are calculated by choosing the smallest calculated CI and LAI from all parameters. This is then scaled down to percentages from ppt. The blue output sub-systems are almost identical and the only difference between them are the names of the workspace variables. As an example, Figure 21 shows how data for the exhaust gas temperature is saved to workspace variables. The scaling applied at the input of the Simulink model is reverted to produce outputs which are directly comparable to the inputs. Some inputs needed for the data plots are also saved to workspace variables as seen in Figure 14.
4.2.5 Model usage

The model is run by using the script shown in Appendix B – The simulation and plotting script. The genset and timespan are configured at the beginning of the script by setting the variables `genset`, `start` and `stop`. Available gensets are \{G3, G4, G6, G9\}, where the numbers follow the CBM genset numbering. The inputs for timespan variables are formatted as ‘DD HH:MM:SS’ in 24h format, and the inputs are converted to matrix element indexes by the help function `strtime2index`. These indexes are used directly in the measurement data matrix to read the data corresponding to the timespan chosen. The initialization of the script is complete when the genset and timespan have been configured and the simulations can then be started by executing the script. Every point in the measurement data is processed by the model, as the Real-Time Pacer block only slows down the simulation speed. Simulation outputs are saved to workspace variables and these are used for plotting. The plots show the present measurements, map values and calculated indexes which are the result from processing the data up to that time instant. The simulation and plotting script does the following tasks:

- Reads in the engine data from the chosen genset and timespan
- Calculates parameter averages used for the STMs
- Sets engine data gains K1-K4 to improve accuracy in calculations
- Initializes the figure with subplots and text boxes
- Starts the main while-loop where the plots and text boxes are updated with data from workspace variables. The model is paused every 100 ms to allow the workspace variables to update from the model
- Stops the while-loop if the ‘s’ button is pressed or when all the data from the timespan has been processed
- Optionally plots the initial STM values, all the measurement averages or the measurement averages used for updating the STMs
The user interface can be demonstrated by using arbitrary data, such as genset 6 starting from the 6th of March at 00:00 AM and stopping 24 hours later. The actual stopping time shown in the plots may differ from 00:00 AM depending on Real-Time Pacer settings. More accurate stopping time is achieved by slowing down the simulation speed more, as this updates the plots more frequently with smaller time steps. Figure 22 shows the resulting plots for the four parameters.

The load reduction setpoint is the black horizontal line seen at the top of the plots. The blue dots show the present values from each STM. These adapt over time as measurements averages are processed by the model. Initial values used for STM initialization are shown as blue crosses. Adaptation is slow in this demonstration, as only every 100th measurement is used for updating the adaptive maps. The red line is the present highest measurement for each of the parameters. The highest measurement is the worst measurement as the load reduction setpoints for all the parameters are higher than nominal values. The entire STM trend line is offset and the red line is achieved. The ISO code used for creating the red line is written above the plot along with its value. The present engine load and value measurement are shown with the red circle seen on the red line.

There are two vertical lines on top of each other to the right in the plots. The black dotted line is the de-rating load calculated by PMS and the green dashed line is the LAI. As seen in the figure, no red line crosses any load reduction line and that is why the LAI is 100%. The proposed indexes are calculated for every parameter and shown above each plot to the right. At the bottom line, the genset and its speed are written along with the date and time. The global CI and LAI can be seen to the right, together with approximations for the engine load margin in % and kW. These indexes are the smallest of the calculated indexes for the four parameters and they set the global CI and LAI for the engine. The load margin is calculated as seen in Subsection 3.2.3.

Figure 22. Overview of the Simulink plots.
Figure 23 shows the same plot with all measurement plotted with cyan dots. All averages are plotted with black dots, but not all of these were used for adapting the STMs due to slowed down adaptation or slow engine speed. Values from non-relevant engine modes, such as shutdown or start, will without the speed rule be used for adapting the 0 % load element. That will cause severe and unwanted effects on the shaping of the trend and that is why these values are filtered out. Values actually used for updating the STMs are plotted with magenta dots. Several interesting parameter properties and aspects can be seen in the plots [29]:

- The parameters follow closely the expected behaviour. All parameters increase with increased loads, except for the exhaust gas temperature at TC outlet, which follows its expected trend as seen in Figure 12.
- The scatters from the exhaust gas temperatures measurements and averages are wider on lower loads than on higher loads. This was expected and may decrease the predictability of a load margin, as temperatures may differ vastly even though the engine is operating normally.
- Peak cylinder pressures and exhaust gas temperatures may differ vastly from the parameter averages. This is logical as each engine has twenty cylinders but only two banks.
- The engine has not been shut down as no black dots can be seen at 0 % load.
- The engines are quickly set to a 10 % base load at engine start up, as it is not recommended to operate on a lower load.

![Figure 23. Genset 6 with all measurements for 24 hours plotted.](image-url)
4.3 Test and model configuration

The alarm and event lists were used to find interesting events, such as load reductions and alarms, but also to see useful information of how the engines are operated. This information includes normal events, such as starting, stopping or de-rating, but it is also possible to see how commonly engines shut down when issues or load reductions occur. This search resulted in a few situations where the indexes could be useful. Other situations were discovered by plotting measurements. Shifts in parameter trends could be discovered and analysed more closely. The Real-Time Pacer was of great help as simulations could be slowed down vastly, allowing plots to be checked in detail.

The measurement data for the four parameters is multiplied by gains K1-K4 before it is processed in the model. This improves the calculation accuracy, as the data units are not accurate enough for use in STMs using only integers. The temperatures (exhaust gas, exhaust gas TC outlet, LT water and CA) are all measured in degrees Celsius with one decimal accuracy. The turbocharger speed is measured in rpm, while the cylinder pressure is measured in bars. The smallest gains which were seen to bring enough accuracy to the calculations were

- K1 = 100, used for the exhaust gas temperature
- K2 = 100, used for the exhaust gas temperature TC outlet
- K3 = 10, used for the TC speed
- K4 = 100, used for the cylinder pressure

Increasing the gains further did not improve the accuracy or adaptation in the STMs. Lower gains were seen to be insufficient, as even minimal STM map and line slope gains affected the adaptation too excessively. The parameter scaling with K1-K4 affect only the internal calculations in the model, and it is reverted before the adapted values from the STMs are saved to workspace variables. In this way the model outputs have the same units as the inputs.

The load reduction setpoints used in the simulations do not follow the Engine safety and machinery protection specification [23]. These were not suitable as load reductions activated on engines at setpoints which differed from the specification. The reason is that the engines have been configured using older versions of the machinery protection specification. Additionally, peaks in parameter values might be missing from the CBM data because of the slow update rate. Especially the cylinder pressure can be affected by this issue. The setpoints used in simulations corresponded best to the actual behaviour seen on the engine. Hence, they may differ from the setpoints used in the engine configurations but are sufficient to demonstrate the indexes.

Fast STM adaptation is problematic as the trend may misshape when the STM adapts rapidly to differing values on a narrow load range. Because of this, the map and line slope gains were configured as small as possible which means setting both to 1. Additionally, the update rate was set to 100, which updates the STMs for every 100th measurement processed by the model. The x vector update region was set to 8 %, meaning that the update regions overlap and measurements can affect multiple elements in the STMs. Sufficient adaptation was achieved with these settings and there were no reasons to change them throughout the testing process. The last STM configuration parameters, the initial y values and the x vector, are easily configured as the first contains the estimated y values used for initializing the STM and the second is the load vector in percentages.
4.4 Results

4.4.1 Load and other aspects

The engines in the Wärtsilä power plant have interesting loading profiles. An example can be seen in Figure 24, where the load from genset 9 is plotted for 24 hours. The load changes rapidly and it can be concluded that the power plant is not used for base loading. Hence, it is important to remember that any plots presented in this chapter are only snapshots of measurements and calculated indexes at that time instant. The measurements are not static and the engine load level and calculated indexes may change anytime.

![Figure 24. The genset 9 load level between 6.3 00:00 AM and 7.3 00:00 AM.](image)

The CA and LT water temperatures were not used in the index calculations, as they follow their setpoints and are controlled by the engine-external automation system. They correlate with load transients but have a static reference which is followed. The usefulness of the CA and LT water temperature data was analysed by searching for a correlation between these parameters and knock. It was concluded that no definite correlation could be seen between heavy knock and high CA and LT water temperatures. High CA temperature is known to cause knock but this phenomenon is irregular and occurs only sporadically. Hence, the CA and LT temperatures are not commented further in this thesis as the parameters did not improve the usability or benefits of the indexes. The same applies to IB500 Cold cylinder operation, as the de-rating level is lowered when the cold cylinder load reduction activates. Hence, the functionality of this code is incorporated in the de-rating data.
4.4.2 High turbocharger speeds

The four parameters follow normally the plots shown in Figure 23 when plotted for a 24 hour timespan. Genset 9 was seen to suddenly have different behaviour after the activation of a load reduction and an engine restart. An *IB500 Cold cylinder operation* load reduction activates on cylinder A10 on the 8\textsuperscript{th} of March at 18:40 and the engine is manually stopped a few minutes later. The plots seen in Figure 25 were created after a restart of the engine. The cylinder pressures are normal, but the exhaust gas temperatures are lower than expected. The exhaust gas temperatures at TC outlet are much lower than expected, while both TC speeds are much higher than expected.

The calculated indexes work as expected and indicate the differing engine measurements. The lowest CI is calculated from the exhaust gas temperature at TC outlet and this sets the engine’s CI to 0 \%, indicating that the engine measurements are extremely different from nominal values. The calculated indexes for the exhaust gas temperature and the TC speed also indicate the differing behaviour, but the outlet temperature sets the engine’s global CI as it is the lowest index. TC speed is the only parameter that is higher than the nominal values, hence it is the only parameter that can provide an interesting LAI and the result is approximately 80-85 %. The engine is restarted a few times over the following 48 hours, but the differing behaviour remains. The TC load reduction is, despite the critical situation, never activated on the engine as the TC speeds are kept below their setpoints. This was thought to be done by manually keeping the load level and TC speeds low enough.

![Figure 25. Genset 9 on the 8\textsuperscript{th} of March.](image-url)
The engine plots 24 hours later are shown in Figure 26. These are the results from the STMs after 19 hours, as the engine was shut down for 5 hours during this timespan. The STMs have adapted according to the new measurements as these are progressively treated as normal engine values. Hence, the calculated CIs indicate that the engine is operating almost normally even though this is not the case. This is to be expected as the CI only relates the present engine measurements to the adapted values in the STMs. It indicates abnormal behaviour when the measurements differ from the STM values, but this indication will weaken as the STMs adapt to the new measurements. The same thing applies to the LAI, which now indicates 100 % maximum load instead of the previous approximation of 80-85 %. The TC speed trends have adapted and no crossing between the load reduction line and the offset trend line can be found anymore. Initial values are shown with blue crosses and the adapted trends have shifted away from these as expected according to the measurements shown in magenta. Values on 10 – 60 % load have adapted sufficiently, while values at 60 – 100 % load are lagging due to slow adaptation and small amount of measurements. It can be seen that the shifted TC speed trend resulting in the previous 80-85 % LAI was a good approximation of the maximum load on the engine with abnormal behaviour.

Figure 26. Genset 9 on the 9th of March.

Figure 26 shows that the load has been kept below 85 % and the STMs have adapted towards the differing values in this region. The value region over 85 % is still using the values which were adapted when the engine operated normally. This has caused the trends to misshape and the values in this region are not to be expected with the present engine behaviour. They cannot adapt as the load has not been within this region.

The misshaped trends cause problems while the engine is operating abnormally, but also when the engine behaviour returns to normal. The misshaped trends result in both cases in wrongly calculated LAIs. Normal engine behaviour is shown in Figure 23 and the problematic plots are shown in Figure 27. The exhaust gas temperature trend results in an LAI of 86 % and the exhaust gas temperature at TC outlet is close to
achieving similar results. This is not correctly predicted, as the engine is operating normally and follows the behaviour seen in Figure 23. Hence, the engine will be capable of reaching full load at 100 %, but the STMs have adapted to wrong behaviour and this causes wrong results. However, the risk for misshaped trends decreases when adaptation speed decreases and when the spread of load is wide, as the values throughout the STM adapt correctly. The CI calculations work as expected in this case and indicate that the engine measurements are differing from the values found in the STMs. The maps have adapted to abnormal engine behaviour and the low CIs indicate a changed engine behaviour as the measurements have returned to normal values.

Both of these situations could be prevented by modifying the model to enable the STM adaptation only if the global CI is high enough. This means that the STMs can adapt as long as the measurements are near the already adapted values. This was implemented by using a feedback loop of the calculated CI. Adaptation is disabled if the global CI is below 60 %, as this was sufficient to achieve close to identical normal plots seen in Figure 22 and Figure 23, while preventing the problems seen in Figure 26 and Figure 27. The modified model results in the plots seen in Figure 28, which shows that the adaptation seen in Figure 26 has been prevented for vastly differing measurements. The misshaping of trends is prevented, allowing the CI and LAI to indicate the differing as well as the normal engine behaviour over a long time without treating the abnormal measurements as normal. The model modification has a drawback; the values used to initialize the STMs must be close enough to actual measurements if the feedback loop is active from the start to enable STM adaptation. In practice, the modification could be deactivated at STM initialization and activated when the STMs have adapted to normal measurements.
4.4.3 High exhaust gas temperatures

Load reductions activated occasionally due to high exhaust gas temperatures throughout the data collected during 30 days. The activations occurred especially when the engines were running at close to full load, when suddenly the exhaust gas temperature from one cylinder started to increase. UNIC detects these issues, which usually are caused by external reasons such as high ambient temperature, and enable safe engine operation despite the challenging situation. The load reduction setpoint was exceeded after 20-30 seconds and the load was reduced seconds later when the load reduction activated. One of these situations is presented in Figure 29, where a load reduction activated because of high exhaust gas temperature from cylinder A10 on genset 4 on the 5th of March.

LAI is unable to predict the load capacity in this situation as the engine is running at full load and due to how the exhaust gas temperature trends are formed at high loads. As seen in the figure, the exhaust gas temperature trend is almost horizontal in this region. An increased temperature does not create a crossing point between the red highest measurement line and the black load reduction line. Hence, LAI cannot indicate anything else in this situation than that the engine is operating normally and can reach full load. This is logical, as the purpose of the index is to predict load capacity which should be nothing more than 100 % when the engine load is close to or in this region.

CI works differently in this situation and brings useful information. The index decreases steadily when the exhaust gas temperature from one cylinder is increasing. The comparison to nominal values results in a decreasing CI which indicates that the engine is running continuously more abnormally. The process takes tens of seconds and it is likely that the slowly decreasing CI provides usable information for engine control and diagnostics.
Figure 29. Exhaust gas temperatures on genset 9 on the 5th of March.

The load reduction has activated in the last plot in Figure 29, where the vertical de-rating load level has been set by PMS. The engine is almost instantly unloaded to the de-rating level and the exhaust gas temperatures return to normal as a result from the decreased load. This de-activates the load reduction and PMS increases the de-rating load level and ramps up the engine load again over the following minutes.

4.4.4 High cylinder pressures

Figure 23 shows how similar the trends are for the cylinder pressure and the TC speed; both trends resemble lines and the scatters of average measurements are narrow. However, the cylinder pressure scatter from all measurements is wider than the average scatter. It was seen in Subsection 4.4.2 that the indexes worked well when calculated from the TC speed, as long as adaption was prevented when the engine operated abnormally. The same should apply to the cylinder pressure, as the trends follow the same pattern. However, the update rate in CBM data was too slow for achieving as interesting results for the cylinder pressure as for the other parameters.

Figure 30 shows the parameter plots on genset 3 on the 19th of March. Cylinder B10 has high exhaust gas temperature and two load reductions activate seconds later. These are caused by heavy knock and high peak cylinder pressure. The CIs indicate that the engine is operating abnormally before the load reductions activate, but the index is insufficient when compared to indexes calculated for the other gensets during the same time. The measurements from the other engines are similar with even worse behaviour and higher cylinder peak pressures. Despite that, only genset 3 suffers from load reductions due to heavy knock and high cylinder peak pressures. The cylinder peak pressures may vastly differ from the calculated average and the data is not accurate enough for providing adequate results.
The STMs adapt properly to the measurement averages as the scatter of averages is narrow. The indexes identify situations with abnormally high cylinder peak pressures when comparing measurements and the STMs, and this results in indications of engine load availability. However, the data used in the simulations has insufficient update rate and no plots could be made which appropriately would demonstrate these situations. The clear similarities to the TC speed trends indicate that the cylinder pressure index calculations should work similarly well as long as the data has sufficient update rate.

Figure 30. Genset 3 on the 19th of March.

### 4.4.5 History and engine comparison

Engine diagnostics may be accomplished by comparing adapted parameter values or calculated indexes between engines or to historical data. For instance, a malfunctioning engine may be discovered by comparing its adapted values to corresponding data from other engines. This is possible in the Wärtsilä power plant, where identical engines are used under the same circumstances and the adapted maps may, together with the indexes, show how the need of service increases differently on engines. Similarly, the adapted values may be compared to earlier, known working values which have been adapted to previously for the same engine. For instance, by comparing the present adapted values to two months old values or to the initial STM made right after the Factory Acceptance Test (FAT). This is a collection of tests run on engines before they are delivered to the customer. It was concluded during index development discussions that the adapted values and the calculated indexes bring useful diagnostics to CBM when determining engine service needs. The service need would be easier to determine by comparing STM values and analysing historical data of index calculations. [19]

As an example, Figure 31 shows a comparison of the STMs for the exhaust gas temperatures from all four engines, along with a histogram of the CI during the same timespan. The plots and the histogram were created with data from the same timespan as in Figure 26. G4 and G6 operated normally while G3 and G9 had different issues. The engines are plotted according to G3 = blue, G4 = black, G6 = cyan and G9 = magenta. The trends visualize how the engines are performing when compared to each other. The G3 measurements are, except for the exhaust gas temperature TC outlet,
comparable to the G4 and G6 measurements and are hidden below these if not seen in
the plots. One of the exhaust gas temperature TC outlet sensors has failed on G3 and as
presented earlier, G9 runs abnormally during this timespan and these are the reasons
why their trends differ vastly from the rest. Comparison between adapted values and
indexes results in useful information for CBM or engine experts who perform diagnosis
on an engine.

The histograms are calculated and plotted created by using MATLAB
commands *histcounts* and *bar*. The histograms present the occurrences of differently
sized CIs, where the scaling is 0-100 % from left to right. This means that green and
yellow expresses high CIs while blue and violet are low CIs. It can be seen when
inspecting the histograms that G3 and G9 have more frequent occurrences of low CIs
than G4 and G6. Additional interesting numbers may be calculated from the histogram
data, for instance the time in percentages that an engine has had a CI below 50 %. The
results are G3 = 62 %, G4 = 26 %, G6 = 23 % and G9 = 45 %, which together with the
plots of adapted values show how differently the engines operate.

![Data comparison for G3, G4, G6 and G9 after 24 hours adaptation.](image)
5 Discussion

This chapter highlights the main achievements in the index development process and discusses the outcome of the thesis. The results from the simulations are analysed and the answers to the research questions are provided. Finally, proposals for continued research are presented to highlight development areas not included in the thesis.

5.1 Index development

The purpose of the thesis was to identify the parameters needed to indicate an engine’s load capacity, and to develop an algorithm which uses the statuses of these parameters to calculate the engine’s instantaneous load availability as an index. The development was conducted through interviews with engine experts, resulting in an understanding of the requirements, possibilities, challenges and benefits of such index. Two indexes were proposed which would take advantage of the possibilities and be beneficial in several situations. The following questions were to be addressed in the thesis:

- Which parameters should at the very least be used by the load capacity index?
- Is one index enough or is a group of indexes a better solution?
- When and how should the index be used?

Many engine parameters can be taken into account when calculating an index that indicates the load capacity of an engine. Extensive discussions with engine experts together with analysis of power plant data showed that the most frequently occurring load reductions are caused by cylinder knock, exhaust gas temperatures, cylinder pressure and turbocharger speed. UNIC is able to detect these issues, possibly caused by high ambient temperature, insufficient fuel quality or other external reason, and safely operate and control the engines in these situations, effectively preventing damage to engines and equipment. External parameters, such as LT water and CA temperature, affect the performance and load capacity of the engine heavily, but these are usually controlled by the engine-external automation system and are unavailable in UNIC. It was concluded that these brought no usable information to the calculations at this stage of the index development. Instead, research focused on the parameters which usually cause problems, correlate with load and are controlled and monitored by UNIC. The parameters integrated in the index demonstration were exhaust gas temperature, exhaust gas temperature TC outlet, cylinder pressure and turbocharger speed. Knock was, despite its importance to engine performance, left out from the index calculations, as it was too complicated to predict and utilize in the same way as the other parameters. The demonstrated parameters should at the very least be used when calculating the indexes. Additionally, the exhaust gas temperature TC inlet should be used when available, as it is an important performance parameter which correlates positively with load. Instruments for this parameter were not installed on the power plant engines and had to be excluded from the index demonstration. In conclusion, three of the four most important parameters could be integrated and demonstrated; the proposed indexes should indicate engine load availability in most situations. The exhaust gas temperatures are then counted as one parameter and knock is the only important parameter which was excluded due to complexity and lack of load correlation.

Two indexes were proposed in this thesis which together provide indications of how normally the engine is operating and the approximated maximum load that the
engine can reach. One index was not seen to be enough as the two developed indexes are similar but they express the relation between nominal and instantaneous engine measurements differently. Each has its benefits and properties, resulting in varying usability in different situations. Both indexes are beneficial in engine control and diagnostics, but the LAI is usable especially in engine control, whereas the CI has superior properties when performing engine diagnostics. This conclusion was made after the index evaluations were completed and commented on by engine experts. It is a valid approximation to assume that the adapted trend is offset according to external parameters, such as suction air temperature, wear and tear or need of TC washing, and that the engine’s maximum load or condition can hence be estimated. Adaptive maps reflect the engine behaviour in the present operating environment and the resulting parameter trends respond to the actual situation. Parameters may have different nominal values depending on the fuel mode, and it is a valid assumption that fuel mode specific adaptive maps must be utilized on DF engines to enable proper index calculation. The indexes were calculated utilizing measurements and adaptive maps and the results were seen promising. The indexes worked as expected and engines performing abnormally could be discovered.

The starting point for this thesis was the US electricity market and the engine load ramping challenges. Engines should be able to ramp up quickly and indications of engines failing to do this should be discovered before the actual fail is seen. Only engines with high load capacity would be loaded to prevent situations where less power is produced from the power plant than planned. Load reductions should not activate on any engine and the power plant should be able to produce the right amount of power at the right time without any issues. The best method for demonstrating the usefulness of the indexes, especially LAI, would be to use data from a power plant suffering from this problem. This data was not available and the simulations were conducted with the data that was available. Engines were reasonably slowly loaded in this data and load reductions were seldom an issue during the loading. Hence, it was not possible to demonstrate the usefulness of LAI entirely in the presented loading scenario with the available setup. The indexes did, however, succeed in demonstrating their usability, but not up to the extent that could have been possible with data suffering from the issues which the indexes strive to solve. Manipulation of the data was not seen as an option, as this last resort solution should be avoided to not modify the data unrealistically. Furthermore, the data update rate was insufficient for demonstrating the index benefits for the cylinder pressure. This was a known risk when choosing the data, but the data benefits exceeded the drawbacks. The data was acquired from identical engines in a real power plant connected to the grid, and more suitable data for index demonstration is difficult to find.

The indexes provide quantitatively the condition and maximum load of the engine which can be used by PMS and/or the load sharing algorithm in UNIC when controlling the engine. Control can potentially be applied successfully based on the indexes, but that was out of scope for this thesis. Engine control is conducted on a millisecond basis and the update rate of the indexes should hence be in the same scale. Filtering of the signals will additionally be needed, as this can be concluded from how the indexes are calculated from measurements and trend estimations. Changes in the measurement values may affect the resulting index values unevenly depending on the shape of the trend or the load level. As earlier pointed out, the CI varies differently for the same absolute change in measurement value depending on whether the load level is low or high. Equally the LAI variations may vary vastly depending on the shape of the trend and whether the load reduction crossing point could be determined or not. For instance, a slightly sloping line offset in vertical direction has decreased risk of
producing a fluctuating LAI than a curve shaped like the exhaust gas temperature trend. The slope of the curve is increasingly horizontal at high load and the resulting LAI can hence vary rapidly when the engine runs at low load. This follows as the exact crossing point is estimated highly differently depending on the absolute measurement offset. Filtering of the indexes will hence be needed to ensure that the control signal is not fluctuating unnecessarily, as such will not result in optimal control or loading of engines. Proposed at one point during the index development was to demonstrate the load sharing possibilities by integrating the index functionality in a Simulink model with two DF engines. It would have been possible to modify the load sharing and biasing the engines according to load capacity by utilizing the calculated indexes. This was not realized, as it was seen sufficient to demonstrate the indexes with the Simulink model developed in the thesis together with real engine data. The load sharing model is focused on control and it was not seen necessary to provide such simulations.

It was noticed when processing the exhaust gas temperature measurements that the temperatures where usually lower than expected when ramping up the engine load and higher when the engine was unloaded. Another discovery was that the exhaust gas temperatures from individual cylinders differ unequally from the average temperature on the load range. The difference is largest at low loads and decreases when the load increases due to cylinder load balancing in UNIC. Both of these temperature behaviours were normal according to engine experts, but may decrease the usability of the indexes at load transients as the indexes are calculated from the worst measurements found. The LAI may indicate a low maximum load either when an engine is quickly unloading or when the engine is ramping up from a low load because of how the highest exhaust gas temperature is utilized. The other parameters do not have the same problem, and the measurement scatters are equally sized on the whole load spectra. [29]

Engines diagnostics may be conducted by comparison of the calculated indexes or the adapted values in the STMs. This comparison can be performed by comparing present or historical data for indexes and adapted values for either the same engine or other engines. Through these means even greater diagnostics possibilities open which allow improved tools for following up the service need on engines. Also discussed was the ability to adapt the STMs not just to measurement averages on the same engine, but also to the averages from the other engines running in the same environment. An even greater smoothing effect and general parameter behaviour would then be achieved, as the averages from equal engines following the same system load would be combined. This demands increased communication between engines and may in practice not be a suitable option. Especially the CI is suitable in diagnostics, as it is an additional parameter that provides useful information when distinguishing an engine running abnormally from an engine operating normally. This follows as CI is a direct measurement of how normally the engine is operating. It can be calculated for any parameter, as long as nominal and instantaneous measurements are available along with the load reduction setpoint. The CBM staff showed great interest in CI, where it may turn out to be a useful parameter to show how normally the engines operate or have been operating.

### 5.2 Adaptivity

It was concluded at an early stage of the index development that the indexes should be adaptive to provide up-to-date and usable calculation without the need of continuous configuring. This functionality was possible to add by using the tools available. Adaptivity results in improved estimation of the nominal values, but the process
introduces some challenges. The greatest challenge with adaptivity is to tune the update rate properly. The adaptivity must be fast enough to show the actual engine behaviour in the present operating environment, but slow enough to not adapt to wrong measurements and to prevent misshaping of the parameter trends. Misshaping of the trends is the greatest challenge to the LAI, while too fast adaptivity as such causes problems for the CI. The LAI is not able to predict the engine’s maximum load correctly after a certain amount of time if the adaptivity is fast, as the trend may misshape when the engine load is kept within a restricted range. Equally, the CI does indicate the differing engine condition, but this indication weakens as the adaptation progresses. One possible solution to this problem was proposed and tested in the simulations: adaptation was prevented when the measurements differed vastly from the adapted values. This was implemented by using a feedback loop with the calculated CI, which prevented the engine from adapting to values when the engine behaviour was abnormal. Only engines with high CIs were allowed to adapt to present measurements. This improvement was a success and both indexes succeeded in their tasks when the engine performed abnormally and when it returned to normal operation. It was thought to be a good starting point to prevent adaptation for all parameters by using the global CI as input as parameters are highly interconnected on an engine. Alternatively, parameters may adapt as long as the CI for each parameter is high enough but this was not tested. The improvement has a major drawback, as the initial values used in the adaptive maps must be close enough to the measured values. Otherwise adaptation will never occur as the engine performance is seen as too poor. This could be solved by disabling the CI effects on adaptation when the engine is operating normally. Furthermore, not only this setting could be changed when the engine is adapting but also the adaptation rate. It would be logical to increase the adaptation rate when actually trying to adapt the maps during FATs or after service has been conducted on the engine. The adaptation rate could then be decreased to prevent the maps from misshaping when the values have adapted, checked and the engine has been taken into use. Such on-the-fly adaptivity would provide proper adaptivity throughout the engine’s lifetime.

The adaptivity rate was reduced in the simulations by configuring the gains for the STMs as small as possible. Furthermore, an adaptivity rate parameter was developed and set to 100, which updated the maps on every 100th measurement only. The global CI was also taken into use to prevent adaptation to abnormal values. Successful adaptation was achieved in the index demonstration with these settings, but the adaptivity rate may be more challenging to determine on other installations. The timespan for adaptation must be determined and the weather conditions analysed when configuring the adaptivity, as the greatest factor when offsetting the trends in vertical directions is the ambient temperature. This can differ vastly between day and night, from month to month or when comparing summer to winter. The adaptation must be configured accordingly for each installation to ensure that the adaptation and index calculations are conducted as planned. Proposed was also to measure the ambient temperature and to offset the adapted maps according to the temperature directly. The calculated indexes would then better reflect the operating environment instantly. This is achieved without the need of first adapting the maps and risking trend misshaping due to large temperature deviations or not utilizing the entire load range. The risk of trend misshaping decreases also as adaptation rate decreases and that is one reason why slow adaptation is recommended. Adaptation was prevented when the engine speed was below the rated engine speed to prevent misshaping of trends at the 0 % load element. This is an important rule that must be implemented in a future index UNIC application to allow proper adaptation despite various engine modes such as start, stop or shutdown.
5.3 Further research

This thesis focused on the development of the load capacity index and did not test nor discuss thoroughly its implementation in engine control. The acquired possibilities, challenges and index calculations were presented, enabling the possibility to test the indexes in optimal engine control and load sharing. This is proposed as the subject of another research project. Concluded was that the indexes are usable in engine control as they are scalar values, easily compared and describe an engine’s possibility to be loaded. Requirements to ensure proper index calculations for engine control are at the very least sufficient measurement and index update rate along with filtering of the calculated indexes. Furthermore, continued testing of the indexes is proposed. Especially recommended is conducting tests with data containing fast ramping of engines, to better understand how well the LAI works in the US power plant scenario. Diesel engines should also be tested, as knock is not observed on these engines and the usefulness of the indexes should improve further. This follows as knock commonly causes load reductions on SG engines, but was the only parameter which was not integrated in the index calculations. Similarly, the understanding can be improved of how usable the CI is in engine diagnostics and service for CBM. Data from other installations and engine types should be used to thoroughly understand and benefit from the advantages that the index brings.

Additionally, the idea of a condition or load capacity index may be expanded to also include the efficiency of an engine. This enables the engine-external automation system to optimize the usage of different engines according to their thermal efficiencies. This is beneficial in situations where differently sized engines share a load, as the load can be shared more efficiently when engines automatically run at speeds with high thermal efficiency. An efficiency index is challenging to implement as the parameters needed for it are missing. Engine efficiency is highly dependent on ambient conditions, temperature of cooling water and lube oil, type of fuel and its heat value, generator efficiency and other auxiliary systems. Some of these parameters are not available to UNIC and the engine efficiency is hence not trivial to calculate or estimate. It is thus proposed that research may be conducted on this topic to determine how and if an engine efficiency index can be calculated. The index would take known engine efficiency maps into account and also include important efficiency parameters in its calculations to provide a usable index which allows engines to run more efficiently if possible. [19]
6 Conclusion

The thesis strived to develop an index that indicates the load capacity of an engine by using engine measurements. Two indexes were proposed which describe the load margin of an engine differently. The CI is assumed to be usable especially in engine diagnostics, while the LAI is superior in engine control. Three of the four most common load reduction parameters were integrated in the index calculations, which was seen as a sufficient amount of parameters at this stage of index development. Knock was left out due to complexity and lack of load correlation. The indexes are still assumed to be able to indicate the maximum load and the condition of an engine successfully in most situations. This was not possible by earlier means and the thesis results are hence promising, although not completely trouble-free.

The greatest challenges for the two indexes are adaptivity speeds and how to tune the adaptivity to reflect every situation properly. Additionally, the LAI may fluctuate vastly depending on the shape of the parameter trend. At the very least, filters will be needed to produce working and stable indexes. Using the CI as a feedback in the calculations loop solved most of the issues with adaptiation to abnormal engine measurements. Further testing with data from other power plants could improve the understanding of how the adaptivity should be done correctly and how the fluctuations in index values can be addressed.

The developed indexes corresponds to the requirements and assumptions set at the beginning of the development process; not all parameters can nor should be integrated. This thesis started the work of what must, can or should be taken into account when describing the load operation margin of an engine. Demonstrations show the importance of adaptive maps of nominal engine parameter measurements and how vastly these improve index calculations. Engine measurements are additionally relatively stable, and the interpolated trend represents thus the general situation well. In conclusion, there is a potential in calculating engine load capacity indexes and the advantages outnumber the drawbacks.
References

This thesis was possible to accomplish thanks to noticeably efforts from the following Wärtsilä employees:

Dahlberg Tommy, Hattar Christer, Nuormala Kimmo, Kaas Tom, Saikkonen Ari, Vägar Jens and Åberg Anders


[27]. E-mail conversations with Nuormala, K. and Portin, K. 24.2.2016-8.3.2016

[28]. Interview with Dahlberg, T. 2.3.2016, 10.5.2016.


[33]. CBM / Vägar, J., Formulas for determining nominal parameter values at different engine loads.

[34]. CBM / Masus, T., Engine measurement data from a real power plant.

Appendix A – The data loading script

G_data = zeros(86400*30,53);

fid = fopen('data/SCA031UT793PV.csv');

tline = fgets(fid);
row = 2;
while day < 31
    day = str2double(tline(9:10));
    second = str2double(tline(12:13)) * 3600 + str2double(tline(15:16)) * 60 + str2double(tline(18:19));
    value = str2double(tline(21:end));
    G_data(row,1:3) = [day second value];
    tline = fgets(fid);
    day = str2double(tline(9:10));
    second = str2double(tline(12:13)) * 3600 + str2double(tline(15:16)) * 60 + str2double(tline(18:19));
    value = str2double(tline(21:end));
    row = row + 1;
end
fclose(fid);
id = 1;
len = length(filePaths);

while id <= len
    fid = fopen(char(filePaths(id)));
    
tline = fgets(fid);
    row = 2;
    day = str2double(tline(9:10));
    
    while day < 31
        G_data(row, id + 3) = str2double(tline(21:end));
        
tline = fgets(fid);
        day = str2double(tline(9:10));
        row = row + 1;
    end
    
    fclose(fid);
    id = id + 1;
end

G_data(1,:) = G_data(2,:);
G_data(1,2) = 0;
Appendix B – The simulation and plotting script

%% Reset variables, load data, simulate and plot as long as data
% is found and the key 's' is not pressed
clear;
addpath('RealTime_Pacer','thesis_func')

% Insert genset and start/stop time for fetching data
genset = 'G9';
start = strtime2index('08 19:00:00');
stop = strtime2index('09 18:45:00');

G_data = importdata(strcat('mat_files/\',genset,'_all_1-30.mat'));
model_name = 'thesis_demo';
K1 = 100;
K2 = 100;
K3 = 10;
K4 = 100;

% Load data and start the simulation
if strcmp(get_param(model_name,'SimulationStatus'),'stopped')
  len = stop - start;
simtime = (0:0.1:len/10)';

  ut793_matrix = [simtime G_data(start:stop,3)/9.730];
derate_matrix = [simtime G_data(start:stop,4)/9.730];
sty196_matrix = [simtime G_data(start:stop,5)];
ty500_matrix = [simtime G_data(start:stop,13)];
te5xxx_matrix = [simtime G_data(start:stop,14:33)];
te5x7_avg_matrix = [simtime (G_data(start:stop,9)+G_data(start:stop,10))/2];
te5x7_matrix = [simtime G_data(start:stop,9:10)];
sc5x8_avg_matrix = [simtime (G_data(start:stop,7)+G_data(start:stop,8))/2];
sc5x8_matrix = [simtime G_data(start:stop,7:8)];
pt5xxx_avg_matrix = [simtime sum(G_data(start:stop,34:53),2)/20];
pt5xxx_matrix = [simtime G_data(start:stop,34:53)];
te601_matrix = [simtime G_data(start:stop,12)];
ib500_matrix = [simtime G_data(start:stop,6)];
te471_matrix = [simtime G_data(start:stop,11)];

clear G_data;

set_param(model_name, 'SimulationCommand', 'start')
set_param(model_name, 'SimulationCommand', 'pause')
pause(1);

end
% Create the plot figure and add option to stop simulation by 's' button
mFigure = figure('KeyReleaseFcn', @KeyPress);
set(mFigure,'Position',[200 178 1100 772]);
set(mFigure,'Color', [1 1 1])
fig1 = subplot(2,2,1);
fig2 = subplot(2,2,2);
fig3 = subplot(2,2,3);
fig4 = subplot(2,2,4);

% Create uicontrol for first row of information
mExhTempBox = uicontrol('style','text');
set(mExhTempBox,'FontName','Courier');
set(mExhTempBox,'FontSize',15);
set(mExhTempBox,'Position',[140 730 1100 20])
set(mExhTempBox,'HorizontalAlignment','left')
set(mExhTempBox,'BackgroundColor', [1 1 1])

% Create uicontrol for second row of information
mTurboBox = uicontrol('style','text');
set(mTurboBox,'FontName','Courier');
set(mTurboBox,'FontSize',15);
set(mTurboBox,'Position',[140 370 1100 20])
set(mTurboBox,'HorizontalAlignment','left')
set(mTurboBox,'BackgroundColor', [1 1 1])

% Create uicontrol for third row of information
mTimeBox = uicontrol('style','text');
set(mTimeBox,'FontName','Courier');
set(mTimeBox,'FontSize',15);
set(mTimeBox,'Position',[20 20 1100 20])
set(mTimeBox,'HorizontalAlignment','left')
set(mTimeBox,'BackgroundColor', [1 1 1])

% While simulation is running, update plots
% Pause is needed to update workspace variables
while strcmp(get_param(model_name,'SimulationStatus'), 'stopped') ~= 1
    set_param(model_name, 'SimulationCommand', 'pause')
    % Update plot 1
    [exh_max_now,exh_index] = max(exh_vec_now);
    plot(fig1,exh_x,exh_vec,'b','MarkerSize',20)
    hold(fig1,'on')
    plot(fig1,exh_x,exh_vec_with_offset,'r')
    plot(fig1,load_now,exh_max_now,'ro','MarkerSize',10)
    plot(fig1,[exh_lai exclai],[0 650],'g--','MarkerSize',20)
    plot(fig1,[derate_now derate_now],[0 650],'k--','MarkerSize',20)
    plot(fig1,[exh_lr exclr],[0 110],k')
    grid(fig1, 'minor')
    axis(fig1,[0 110 0 650])
    xlabel(fig1,'Load (%)')
    ylabel(fig1,'Exh gas temp (°C)')
    hold(fig1,'off')

    % Update plot 2
[exh_tc_max_now,exh_tc_index] = max(exh_tc_vec_now);
plot(fig2,exh_tc_x,exh_tc_vec,'b','MarkerSize',20)
hold(fig2,'on')
plot(fig2,exh_tc_x,exh_tc_vec_with_offset,'r')
plot(fig2,load_now,exh_tc_max_now,'ro','MarkerSize',10)
plot(fig2,[exh_tc_lai exh_tc_lai],[0 650],'g--','MarkerSize',20)
plot(fig2,[derate_now derate_now],[0 650],':','MarkerSize',20)
plot(fig2,[0 110],[exh_tc_lr exh_tc_lr],'k')
grid(fig2,'minor')
axis(fig2,[0 110 0 650])
xlabel(fig2,'Load (%)')
ylabel(fig2,'Exh gas temp TC outlet (°C)')
hold(fig2,'off')

% Update first row of information
set(mExhTempBox,'String',...)
strcat(findCylCode(exh_index,'TE5'),{''},addSpace(num2str(exh_max_now),3),...)
{°C CI:},addSpace(num2str(exh_ci,%.1f),5),'{
LAI:},addSpace(num2str(exh_lai,%.1f),5),...)
{°C CI:},addSpace(num2str(exh_tc_max_now,%.1f),5),'{
LAI:},addSpace(num2str(exh_tc_lai,%.1f),5))

% Update plot 3
[tc_max_now,tc_index] = max(tc_vec_now);
plot(fig3,tc_x,tc_vec,'b','MarkerSize',20)
hold(fig3,'on')
plot(fig3,tc_x,tc_vec_with_offset,'r')
plot(fig3,load_now,tc_max_now,'ro','MarkerSize',10)
plot(fig3,[tc_lai tc_lai],[0 30000],'-','MarkerSize',20)
plot(fig3,[derate_now derate_now],[0 30000],':','MarkerSize',20)
plot(fig3,[0 110],[tc_lr tc_lr],'k')
grid(fig3,'minor')
axis(fig3,[0 110 0 30000])
xlabel(fig3,'Load (%)')
ylabel(fig3,'TC speeds (rpm)')
hold(fig3,'off')

% Update plot 4
[cyl_max_now,cyl_index] = max(cyl_vec_now);
plot(fig4,cyl_x,cyl_vec,'b','MarkerSize',20)
hold(fig4,'on')
plot(fig4,cyl_x,cyl_vec_with_offset,'r')
plot(fig4,load_now,cyl_max_now,'ro','MarkerSize',10)
plot(fig4,[cyl_lai cyl_lai],[0 180],'-','MarkerSize',20)
plot(fig4,[derate_now derate_now],[0 180],':','MarkerSize',20)
plot(fig4,[0 110],[cyl_lr cyl_lr],'k')
grid(fig4,'minor')
axis(fig4,[0 110 0 180])
xlabel(fig4,'Load (%)')
ylabel(fig4,'Cylinder press (bar)')
hold(fig4,'off')

% Update second row of information
set(mTurboBox,'String',strcat({'SE5'},num2str(tc_index),{'8'}),addSpace(num2str(tc_max_now),5),...
    {'rpm  CI:'}, addSpace(num2str(tc_ciai,%.1f),5),
LAI:{},addSpace(num2str(tc_lai,%.1f),5),...
    {'bar  CI:'}, addSpace(num2str(tc_cali,%.1f),5),
LAI:{},addSpace(num2str(tc_lali,%.1f),5)))

% Stop simulation if we are the end
  time_temp = floor(time*10 + start);
  if time_temp >= stop
    set_param(model_name,'SimulationCommand','stop')
  end

% Update third row of information
  load_left = global_lai(end) - load_now;
  kw_left = load_left * 9730 / 100;
  set(mTimeBox,'String',strcat({'  '},genset,{',rpm ','},addSpace(num2str(speed_now),3),
    sec2strtime(time_temp),...
    {'  CI:'},addSpace(num2str(global_ci(end),%.1f),5),',
LAI:{},addSpace(num2str(global_lai(end),%.1f),5),...
    {'  Margin:'},addSpace(num2str(load_left),3),...
    {'%'},addSpace(num2str(kw_left),3),{'kW'})

    set_param(model_name,'SimulationCommand','continue')
  pause(0.1)
  end

hold(fig1,'on')
hold(fig2,'on')
hold(fig3,'on')
hold(fig4,'on')

%% Plot the initial data
  plot(fig1,exh_x,exh_init,'bx')
  plot(fig2,exh_tc_x,exh_tc_init,'bx')
  plot(fig3,tc_x,tc_init,'bx')
  plot(fig4,cyl_x,cyl_init,'bx')

%% Plot the data that we have used for adaptation
  [exh_load_used,exh_used] = findUsedInSTM(len, exh_enable_train, ut793_matrix, ty500_matrix);
  [exh_tc_load_used,exh_tc_used] = findUsedInSTM(len, exh_tc_enable_train, ut793_matrix, tc5x7_avg_matrix);
  [tc_load_used,tc_used] = findUsedInSTM(len, tc_enable_train, ut793_matrix, se5x8_avg_matrix);
  [cyl_load_used,cyl_used] = findUsedInSTM(len, cyl_enable_train, ut793_matrix, pt5xxx_avg_matrix);

  plot(fig1,exh_load_used,exh_used,'m.' )
  plot(fig2,exh_tc_load_used,exh_tc_used,'m.' )
  plot(fig3,tc_load_used,tc_used,'m.' )
  plot(fig4,cyl_load_used,cyl_used,'m.' )
Plot all the averages
plot(fig1,ut793_matrix(:,2)/10,ty500_matrix(:,2),’k.’)
plot(fig2,ut793_matrix(:,2)/10,te5x7_avg_matrix(:,2),’k.’)
plot(fig3,ut793_matrix(:,2)/10,se5x8_avg_matrix(:,2),’k.’)
plot(fig4,ut793_matrix(:,2)/10,pt5xxx_avg_matrix(:,2),’k.’)

Plot all the measurements
plot(fig1,ut793_matrix(:,2)/10,te5xxx_matrix(:,2:end),’c.’)
plot(fig2,ut793_matrix(:,2)/10,te5x7_matrix(:,2:end),’c.’)
plot(fig3,ut793_matrix(:,2)/10,se5x8_matrix(:,2:end),’c.’)
plot(fig4,ut793_matrix(:,2)/10,pt5xxx_matrix(:,2:end),’c.’)
function [result] = addSpace(str, count)
    % addSpace Adds white spaces as needed at start of str.
    % Adds until length of str is equal to count
    while length(str) < count
        str = [' ' str];
    end
    result = str;
end

function [result] = findCylCode(y_val_index, code)
    % findCylCode Creates ISO-codes from index = cylinder
    % Returns cylinder code and bank
    if (y_val_index < 19)
        code = strcat(code,'0');
    end
    if (mod(y_val_index,2) == 1)
        result = strcat(code,num2str(floor((y_val_index + 1)/2)),{'1A'});
    else
        result = strcat(code,num2str(floor((y_val_index + 1)/2)),{'1B'});
    end
end

function [y_load_used,y_used] = findUsedInSTM(len, vec_enable_train, ut793_matrix, y_matrix)
    % findUsedInSTM Finds the STM values used based on enable_train status
    % Overlow due to simulation speed and stops when time > stopping time
    if len < length(vec_enable_train)
        vec_enable_train = vec_enable_train(1:(len + 1));
    end
    y_load_used = [];
    y_used = [];
    for i=1:length(vec_enable_train)
        if vec_enable_train(i) == 1
            y_load_used = [y_load_used ut793_matrix(i,2)/10];
            y_used = [y_used y_matrix(i,2)];
        end
    end
end

function KeyPress(ObjH, EventData)
    % KeyPress Stops simulations when 's' is pressed
    % 'p' cannot be used for pausing, as the script is paused anyway
    model_name = 'thesis_demo';
    Key = get(ObjH,'CurrentCharacter');
    switch Key
    case 's'

set_param(model_name, 'SimulationCommand', 'stop')

% case 'p'
% if strcmp(get_param(model_name,'SimulationStatus'),'running')
%    set_param(model_name, 'SimulationCommand', 'pause')
% else
%    set_param(model_name, 'SimulationCommand', 'continue')
% end

end

function [ result ] = sec2strtime( time_temp )

% sec2strtime Converts 63 to '01 00:01:03'
% return format is 'Date: D.3 Time: HH:MM:SS'

day = floor(time_temp/86399) + 1;

time_temp = time_temp - (day - 1)*86399;

hour = floor(time_temp/3600);
min = floor(time_temp/60) - hour*60;
sec = time_temp - min*60 - hour*3600;

hour = num2str(hour);
min = num2str(min);
sec = num2str(sec);

if length(hour) == 1
    hour = strcat('0',hour);
end
if length(min) == 1
    min = strcat('0',min);
end
if length(sec) == 1
    sec = strcat('0',sec);
end

result = strcat({'Date: '},num2str(day),{'.3 Time: '},hour,:,min,:,sec);

end

function [ result ] = strtime2index( str )

% strtime2index Converts '01 00:01:03' to 63
% 'DD HH:MM:SS'

sec = str2double(str(10:11));
min = str2double(str(7:8))*60;
hour = str2double(str(4:5))*3600;
days = (str2double(str(1:2)) - 1)*86399;
result = days + hour + min + sec;

end
Appendix D – The C functions

```c
#define calcYpol(X_var, xX1, xX2, yY1, yY2) (((X_var - xX1) * (yY2 - yY1)) / (xX2 - xX1) + yY1 )
#define u16  unsigned short
#define s16  signed short
#define s32  signed long

/************************************************************
/*! brief Lookup load reduction max load

Looks up the load that corresponds to the load reduction level.
Only maximal load is interesting and that's why we require that x_vec[index] > load

\param load The present load value
\param load_red The present load reduction value
\param y_vec Pointer to the present y value vector
\param pSelfTuningMapConfig Pointer to the self tuning map configuration
************************************************************/

s32 FuncLookupLAI(s16 load, s32 y_val, s32 load_red, s32 *y_vec,
CSelfTuningMapIntConfigEdit *pSelfTuningMapConfig)
{
    u16 index = 0;
    s32 temp = 1000;
    if (y_val < load_red)
    {
        for( index = 1; index < pSelfTuningMapConfig->vector_size; ++index )
        {
            if (pSelfTuningMapConfig->x_vec[index] > load && y_vec[index] > load_red &&
                 y_vec[index - 1] < load_red)
            {
                temp = calcYpol(load_red, y_vec[index], y_vec[index - 1], pSelfTuningMapConfig->x_vec[index], pSelfTuningMapConfig->x_vec[index - 1]);
                break;
            }
        }  
    }
    else
    {
        for( index = pSelfTuningMapConfig->vector_size - 2; index > 0; --index )
        {
            if (y_vec[index + 1] > load_red && y_vec[index] < load_red)
            {
                temp = calcYpol(load_red, y_vec[index + 1], y_vec[index], pSelfTuningMapConfig->x_vec[index + 1], pSelfTuningMapConfig->x_vec[index]);
                break;
            }
        }  
    }
    if (temp <= 0)
    {
        return 0;
    }
```

else if (temp <= 1000)
{
    return temp;
}
else
{
    return 1000;
}
}

/**************************************************************************/
/*! \brief Lookup nominal y value

Looks up the nominal y value for present load

\param load The present load value
\param y_vec Pointer to the present y value vector
\param pSelfTuningMapConfig Pointer to the self tuning map configuration
**************************************************************************/

s32 FuncLookupNom(s16 load, s32 *y_vec, CSelfTuningMapIntConfigEdit
                 *pSelfTuningMapConfig)
{
    u16 index = 0;
    for( index = 0; index < pSelfTuningMapConfig->vector_size; ++index )
    {
        if (index > 0 && pSelfTuningMapConfig->x_vec[index] > load)
        {
            return calcYpol(load, pSelfTuningMapConfig->x_vec[index],pSelfTuningMapConfig->
            >x_vec[index - 1], y_vec[index],y_vec[index - 1]);
        }
    }

    return 1000;
}