Errata

Publication I

The fitting of the distance models

\[d_C = a \cdot \left(\frac{1}{CT} \right)^k , \]

\[d_E = b \cdot \left(\frac{1}{E} \right)^l , \]

and

\[d = c \cdot \left(\frac{1}{CT} \right)^k \cdot \left(\frac{1}{E} \right)^l \]

to the distance estimates erroneously allowed negative values of the exponents \(k \) and \(l \). Negative exponents invert \(\frac{1}{CT} \) and \(\frac{1}{E} \), which means that increasing the early-to-late energy ratio or increasing the energy would lead to an increase in the perceived distance. The fitting of the models to the data produced positive exponents in most cases, but for the fitting of \(d_C \) for modification set B it produced negative exponents for small values of \(T \), which provided a better fit than the perceptually motivated positive exponents. The corrected errors when fitting the models without allowing negative exponents are shown in Fig. E.1.
Figure E.1. Root-mean-square error (RMSE) when fitting d_C (dashed line), d_E (dash-dot line), and d (solid line) to the distance estimates of modification set B, shown for different values of T.