Errata

Hanne Antila
Simulations of Polyelectrolyte Interactions in Salt
School of Chemical Technology
Aalto University publication series DOCTORAL DISSERTATIONS 21/2016
Date of Errata: 23.03.2016

Chapter 3.3, page 45, equation 3.22

A factor of $\frac{1}{2}$ is missing from the last row of the algorithm. It correctly reads:

$$v_n(t + \frac{1}{2} \Delta t) = v_n(t - \frac{1}{2} \Delta t) + \frac{\Delta t}{m} F_n(t)$$

$$r_n(t + \Delta t) = r_n(t) + \Delta t v_n(t + \frac{1}{2} \Delta t)$$

$$v_n(t) = \frac{1}{2} \left(v_n(t + \frac{1}{2} \Delta t) + v_n(t - \frac{1}{2} \Delta t) \right)$$

Chapter 3.4., page 50

The Monte Carlo algorithm should read:
This is realized by setting the transition probability from state \(m \) to state \(n \) equal to 1 if the move is downhill in energy \((U_n - U_m = \Delta U_{nm} < 0) \). If the move is uphill in energy \((\Delta U_{nm} > 0) \), the move is accepted with a probability \(W_{m\to n} \) defined by the ratio of probabilities of the initial and final states

\[
W_{m\to n} = \frac{P(r^N_m)}{P(r^N_n)} = e^{-\beta(U_n - U_m)}. \tag{3.27}
\]

A simple implementation of Metropolis Monte Carlo algorithm reads

1. Select a particle at random, and calculate energy of the initial configuration \(U_m \).

2. Give the particle a random displacement, \(r' = r + \Delta \), and calculate the energy of the trial configuration \(U_n \).

3. Accept or reject the move:

 (a) if \(\Delta U_{nm} < 0 \), accept configuration \(n \).

 (b) if \(\Delta U_{nm} > 0 \), calculate \(W_{n\to m} = e^{-\beta(U_n - U_m)} \) by drawing a random number \(RAND \) from uniform distribution between 0 and 1 and accepting \(n \) if \(W_{m\to n} > RAND \). Otherwise, reject the trial configuration and stay at \(m \).

4. Repeat.