Radiation-pressure coupling schemes rely on amplifying the intrinsically weak [26], we find that the radiation-pressure coupling can be considered as an optomechanical platform. Work is, to our knowledge, the first where the system is taken to its quantum mechanical ground state [1,2].

Recent experiments on cavity optomechanical systems have shown how the parametric coupling between an electromagnetic (either optical or microwave) cavity and a mechanically vibrating resonator can be exploited to take the latter to its quantum mechanical ground state [1,2]. Such schemes rely on amplifying the intrinsically weak radiation-pressure coupling g_0 between mechanical and microwave resonators. In a certain limit of parameters, such a coupling can also be seen as a qubit-mediated coupling of two resonators. We show that this scheme allows reaching extremely high g_0. Contrary to the recent proposals for exploiting the nonlinearity of a large radiation-pressure coupling, the main nonlinearity in this setup originates from a cross-Kerr type of coupling between the resonators, where the cavity refractive index depends on the phonon number. The presence of this coupling will allow accessing the individual phonon numbers via the measurement of the cavity.

Cavity optomechanics is showing promise for studying quantum mechanics in large systems. However, the smallness of the radiation-pressure coupling is a serious hindrance. Here we show how the charge tuning of the Josephson inductance in a single-Cooper-pair transistor can be exploited to arrange a strong radiation-pressure-type coupling g_0 between mechanical and microwave resonators. Although previous works exist on coupling a junction qubit, a microwave cavity, and a micromechanical resonator. In a certain limit of parameters, such a coupling can also be seen as a qubit-mediated coupling of two resonators. We show that this scheme allows reaching extremely high g_0. Contrary to the recent proposals for exploiting the nonlinearity of a large radiation-pressure coupling, the main nonlinearity in this setup originates from a cross-Kerr type of coupling between the resonators, where the cavity refractive index depends on the phonon number. The presence of this coupling will allow accessing the individual phonon numbers via the measurement of the cavity.

In this Letter we propose to use the nonlinearity of the Josephson inductance to enhance the coupling between the vibrations and the electromagnetic field. The scheme involves a tripartite system consisting of a Josephson junction qubit, a microwave cavity, and a micromechanical resonator. Although previous works exist on coupling a qubit to both a cavity and a mechanical system [22–25], our work is, to our knowledge, the first where the system is considered as an optomechanical platform.

For representative superconducting circuit parameters [26], we find that the radiation-pressure coupling can be amplified by a large factor. We first show this by a simple Josephson inductance picture and then detail a Schrieffer-Wolff-type approach where the effect is obtained as a systematic perturbation theory on the tripartite quantum system. Using this approach we also discuss the possible added mechanical and cavity damping due to the hybridization of the different parts of the system. Finally, we continue the perturbation theory to show that the nonlinear frequency shifts in this system are not primarily caused by the radiation-pressure coupling, but rather a cross-Kerr-type coupling.

Radiation pressure from Josephson inductance.—Here we take advantage of a charge qubit [27,28], that is, a system of two small-capacitance Josephson junctions. This system is also known as a single-Cooper-pair transistor (SCPT), which is the picture that we first adopt. It behaves as a tunable inductance dependent on the mechanical displacement.

As marked by the dashed box in Fig. 1, the SCPT has junction capacitances C_1, C_2 and gate capacitance C_{\varnothing}, which give the charging energy of a single electron $E_C = e^2/2(C_\varnothing + C_1 + C_2)$. The junctions have Josephson energies $E_{Ji} \approx E_C$. Because of Coulomb blockade, the energy difference of having zero or one Cooper pair on the island can be tuned by the gate charge $n_\varnothing = V_gC_{\varnothing}/2e$. Moreover, Josephson tunneling mixes charge states into coherent superpositions of Cooper pair states [29].

In the most relevant limit $E_C \gg E_{Ji}$, so that we concentrate on the two charge states closest to n_\varnothing, defining $\delta n_\varnothing = n_\varnothing - \text{int}(n_\varnothing) \in [0, 1]$ as the deviation of n_\varnothing from the lower integer value. The Hamiltonian is [30]...
Choosing $L \approx L_J$ and noting that the factor $L_J \partial_n L_J^{-1}$ can be of the order of unity (see below), the optomechanical coupling can be amplified in this setting by the factor $CV_g/(2e)$, about 4–6 orders of magnitude for typical experimental parameters [26,32]. It is now straightforward to obtain the radiation-pressure coupling from Eq. (3). For symmetric junctions, $E_J = E_{J1} = E_{J2}$, we get

$$g_0 = \frac{CV_g}{2e} \frac{8E_C^2 E_J^2 (1 - 2\delta n_{\phi})}{(4E_C^2 + E_J^2)(4E_C^2 + 4E_J^2 + E_J^2)}, \quad (4)$$

where $E_C = E_C(1 - 2\delta n_{\phi})$ and $l = L(2e)^2/h^2$. We plot g_0 versus δn_{ϕ} in Fig. 2. The two-state approximation is generally valid for $E_C \gtrsim E_J$ as long as n_{ϕ} is not too close to an integer. For low E_J/E_C, g_0 contains a peak of width $\sim E_J/E_C$ with a maximum somewhat below the charge degeneracy point $\delta n_{\phi} = 1/2$. For $l = 1/E_J$, the maximum resides at $\delta n_{\phi} = 1/2 - 0.18E_J/E_C$ and is maximized $g_0 \approx 0.32E_J CV_g/(2e)E_J/E_C$. The largest g_0 is thus obtained in the extreme charge qubit limit $E_C \gg E_J$, but because the range of gate charge values where this maximum is obtained is proportional to E_J/E_C, in practice it is preferable to choose E_J not too far from E_C to prevent gate charge fluctuations from masking the effect.

To make a numerical estimate of the resulting radiation-pressure coupling, let us choose $(2e)^2 L/h^2 = E_J = E_C/2$. For some representative values $C = 50$ fF, $V_g = 10$ V, we would get $g_0/\tilde{g}_0 \approx 10^6$. With the typical direct radiation-pressure coupling $g_0/(2\pi) \sim 10$ Hz [33], we would hence get $g_0/(2\pi) \sim 10$ MHz, which is already of the order of typical ω_m and 2 orders of magnitude larger than a typical

![FIG. 1](image1.png)

FIG. 1. Microwave optomechanical circuit considered here. The SCPT part is marked with a dashed box. The mechanical resonator couples via a time-dependent capacitance $C_g(x(t))$. The above picture allows us to estimate the size of the radiation-pressure coupling. The cavity eigenfrequency $\omega_c = [(L||L_J)C]^{-1/2}$ consists of the geometric and the Josephson inductances L and L_J, respectively. The radiation-pressure coupling is thus,

$$g_0 = \frac{CV_g}{2e} \frac{8E_C^2 E_J^2 (1 - 2\delta n_{\phi})}{(4E_C^2 + E_J^2)(4E_C^2 + 4E_J^2 + E_J^2)}.$$

Here $x_{2P} = \sqrt{h/(2m_\omega)}$ is the zero-point motion amplitude for a mechanical resonator with effective mass m and angular frequency ω_ω. Let us compare this with the coupling in the setup where the capacitance of the cavity is directly modulated [1,4,31]. In that case, $g_0^2 = x_{2P} \partial_x C_g/(2C)\omega_\omega$. The ratio between these two couplings is

$$g_0^2 = \frac{CV_g}{2e} \frac{8E_C^2 E_J^2 (1 - 2\delta n_{\phi})}{(4E_C^2 + E_J^2)(4E_C^2 + 4E_J^2 + E_J^2)}.$$

Choosing $L \approx L_J$ and noting that the factor $L_J \partial_n L_J^{-1}$ can be of the order of unity (see below), the optomechanical coupling can be amplified in this setting by the factor $CV_g/(2e)$, about 4–6 orders of magnitude for typical experimental parameters [26,32].

It is now straightforward to obtain the radiation-pressure coupling from Eq. (3). For symmetric junctions, $E_J = E_{J1} = E_{J2}$, we get

$$g_0 = \frac{CV_g}{2e} \frac{8E_C^2 E_J^2 (1 - 2\delta n_{\phi})}{(4E_C^2 + E_J^2)(4E_C^2 + 4E_J^2 + E_J^2)}.$$

where $E_C = E_C(1 - 2\delta n_{\phi})$ and $l = L(2e)^2/h^2$. We plot g_0 versus δn_{ϕ} in Fig. 2. The two-state approximation is generally valid for $E_C \gtrsim E_J$ as long as n_{ϕ} is not too close to an integer. For low E_J/E_C, g_0 contains a peak of width $\sim E_J/E_C$ with a maximum somewhat below the charge degeneracy point $\delta n_{\phi} = 1/2$. For $l = 1/E_J$, the maximum resides at $\delta n_{\phi} = 1/2 - 0.18E_J/E_C$ and is maximized $g_0 \approx 0.32E_J CV_g/(2e)E_J/E_C$. The largest g_0 is thus obtained in the extreme charge qubit limit $E_C \gg E_J$, but because the range of gate charge values where this maximum is obtained is proportional to E_J/E_C, in practice it is preferable to choose E_J not too far from E_C to prevent gate charge fluctuations from masking the effect.

To make a numerical estimate of the resulting radiation-pressure coupling, let us choose $(2e)^2 L/h^2 = E_J = E_C/2$. For some representative values $C = 50$ fF, $V_g = 10$ V, we would get $g_0/\tilde{g}_0 \approx 10^6$. With the typical direct radiation-pressure coupling $g_0/(2\pi) \sim 10$ Hz [33], we would hence get $g_0/(2\pi) \sim 10$ MHz, which is already of the order of typical ω_m and 2 orders of magnitude larger than a typical
Al cavity linewidth κ [1] below 100 mK. However, in practice the linewidths are affected by the charge noise of the qubit (see below).

In the presence of a flux Φ through the cavity loop, the average phase $\phi_a = \langle \phi \rangle$ is the phase that minimizes the total energy [34],

$$\frac{\hbar^2}{8e^2 L} \left(\frac{2 e \Phi}{\hbar} - \phi \right)^2 + E_{SCPT}(\phi, n_{\phi}).$$

For a vanishing flux, $\phi_a = 0$. It is then possible to tune the radiation-pressure coupling with the flux; see Fig. 3. Interestingly, such a flux tuning is stronger for smaller E_j, but the region of gate charges where g_0 is appreciable is again limited to a range proportional to E_j/E_C.

Another way to see why the coupling is boosted is because of the qubit nonlinearity. A mechanical resonator can be coupled to a linear cavity (not to a qubit as in the present work) by means of a voltage bias [35]. This coupling has a magnitude comparable to g_0. This coupling, however, is linear, and has few consequences between two linear resonators. Replacing the cavity by a qubit, however, turns the linear coupling into a longitudinal coupling, which has a strong influence on the energies.

Schrieffer-Wolff approach.—The Josephson inductance approach provides an intuitive picture of the physics. However, for a more rigorous treatment, we start from the general tripartite Hamiltonian and derive the optomechanical coupling by using the Schrieffer-Wolff transformation [36]. It consists of a unitary transformation which uncouples the high- and the low-energy states, leading to the definition of an effective low-energy Hamiltonian. Here, the high-energy states are represented by the qubit states while the low-energy ones are represented by cavity and mechanical oscillator modes. The ensuing effective low-energy Hamiltonian is thus described in terms of effective cavity and mechanical oscillator modes. Note that both this and the above Josephson inductance approach are valid only in the dispersive limit, where $\hbar \omega_{C,m} \ll |B|$. We express the electromagnetic energies of the circuit in Fig. 1 in terms of the phases ϕ and ϕ_j with conjugate charges $2en$ and $2en_j$ (n and n_j denote the number of Cooper pairs and I points to the SCPT island). Then we use the fact that $e^{i\phi_j}$ is a ladder operator for charge n_j [29], assume that changes of ϕ with respect to ϕ_a are small compared to 2π (in the opposite limit the dynamics of the system is quite complicated, see for example Ref. [37]), and define $\phi - \phi_a = \phi_0(e^j + c)$ with the conjugate variable $n = i \sqrt{h/(8e^2 Z_0)}(e^j - c)$. Here, $Z_0 = \sqrt{L/C}$ and the phase zero-point fluctuation is $\phi_0 = \sqrt{2\epsilon Z_0}/h$. We then write the resulting Hamiltonian for the system in the charge basis as above. With a similar quantization of the mechanical part of the Hamiltonian, we get (see detailed derivation in Ref. [38])

$$H = H_{SCPT} + \hbar \omega_0^0 c^j + \hbar \omega_0^m a^j a + g_m \sigma_3(a^j + a) + (g_{q1}\sigma_1 + g_{q2}\sigma_2)(e^j + c)^2 + (g_{c1}\sigma_1 + g_{c2}\sigma_2)(e^j + c).$$ (6)

Here $\omega_0^0 = (LC)^{-1/2}$ and ω_0^m are the eigenfrequency of the bare LC oscillator and of the bare mechanics, respectively, B_j are as above, and

$$g_m = -\frac{4E_C x_{cp} \partial_i C y_q}{2e},$$ (7a)

$$g_{q1} = \frac{e^2 Z_0}{8h} (E_{J1} + E_{J2}) \cos(\phi_a/2),$$ (7b)

$$g_{q2} = \frac{e^2 Z_0}{8h} (E_{J2} - E_{J1}) \sin(\phi_a/2),$$ (7c)

$$g_{c1} = \sqrt{\frac{e^2 Z_0}{8h}} (E_{J1} + E_{J2}) \sin(\phi_a/2),$$ (7d)

$$g_{c2} = \sqrt{\frac{e^2 Z_0}{8h}} (E_{J1} - E_{J2}) \cos(\phi_a/2).$$ (7e)

The system is thus composed of two resonators with frequencies ω_0^0 and ω_0^m coupled to a common qubit. We note that the order of magnitude of the cavity couplings satisfies $g_{q1} \sim \frac{g_{q2}/E_j}{B} \ll g_m$. Below we limit ourselves to the case of a symmetric system $E_{J1} = E_{J2}$, in which case $B_2 = g_{q2} = g_{c2} = 0$. The full results are given in Ref. [38].

The full Schrieffer-Wolff transformation diagonalizing the qubit part of the Hamiltonian is quite complicated. However, in the dispersive limit $\hbar \omega_{C,m} \ll |B|$, and where all couplings are smaller than the difference $|B| - \hbar \omega_{C,m}$, it is enough to diagonalize the qubit treating the oscillator coordinates as scalars. Assuming that this effective qubit
stays in its ground state, we may replace $\sigma_3 \to -1$. Expanding in the coupling constants, we get a preliminary form of the Hamiltonian:

$$H_{\text{eff}} = \hbar \omega_c c^\dagger c + \hbar \omega_0 a^\dagger a + \alpha_c \hat{x}_c + \alpha_m \hat{x}_m + \hbar g_{cm} \hat{x}_c \hat{x}_m + \hbar g_{Sc} \hat{s}_c^2 + \hbar g_{Sm} \hat{s}_m^2 + \hbar g_{rp} \hat{x}_c \hat{x}_m. \quad (8)$$

Here $\hat{x}_c \equiv (c^\dagger + c)$, $\hat{x}_m \equiv (a^\dagger + a)$, and the coefficients are $\alpha_c = -B_1 g_{c1}/B$, $\alpha_m = -B_3 g_{m}/B$, $\hbar g_{cm} = 2B_1 B_3 g_{c1} g_{m}/B^3$, and

$$\begin{align*}
\hbar g_{Sc} &= -B_3^2 g_{m}^2 / B^3, \\
\hbar g_{Sm} &= -B_3^2 g_{c1} + B^2 B_1 g_{q1} / B^3, \\
\hbar g_{rp} &= 2B_3 g_{m} [B^2 B_1 g_{q1} + (B_3^2 - 2B_1^2) g_{c1}^2] / B^3.
\end{align*}$$

The first two terms in Eq. (8) are the Hamiltonians for the bare oscillators, the next two are qubit-induced static forces on them (neglected below), the term proportional to g_{cm} is a linear coupling between the oscillators, and the terms with coefficients g_{Sc} and g_{Sm} are the cavity and mechanical Stark shifts [25,32,40]. Finally, g_{rp} denotes an intermediate expression of a radiation-pressure-type coupling. We diagonalize the individual oscillator Hamiltonians by the Bogoliubov transformation, introducing $c = \cosh(\theta_c) d + \sinh(\theta_c) d^\dagger$ and $a = \cosh(\theta_m) b + \sinh(\theta_m) b^\dagger$, with $\theta_c/m = -\arctanh[(2g_{Sc}/m)/(\hbar \omega_{c/m} + 2g_{Sc}/m)]/2$. This yields the effective frequencies $\omega_c = \sqrt{\omega_0^2 + 4g_{Sc}^2}$ and $\omega_m = \sqrt{\omega_0^2 + 4g_{Sm}^2}$ for the cavity and the vibrations, respectively. The linear coupling g_{cm} has little effect, and is neglected. Including the Bogoliubov transformations in the radiation-pressure coupling and assuming $g_{rp} \hat{x}_m \ll \omega_c$ yields a coupling between the effective mechanics and cavity of the form $\hbar g_{d} d(b^\dagger + b)$. Here $g_{d} = 2g_{rp} (\omega_0^2 \omega_c / \omega_m)^{1/2}$ [41] is the radiation-pressure coupling. These results then coincide with those of the above Josephson inductance approach, except for the renormalization due to mechanical Stark shift $(\omega_0^2 / \omega_m)^{1/2}$ that is not captured by the latter.

Quantum nonlinearities.—The possibility of obtaining a large Josephson-enhanced radiation-pressure coupling g_{d} implies a good prospect of reaching the “quantum regime” of optomechanics, where g_{d} becomes at least of the order of the cavity linewidth κ. In this regime it should be possible to observe nonlinearities directly in the spectrum. The frequency shift is proportional to g_{d}^2 / ω_m [9], and is of the order $\sim g_{d}^2 g_{m}^2 \sim g_{d}^2 g_{m}^2$. However, the qubit-mediated coupling has another nonlinearity that gives rise to a frequency shift in the mechanics and shows up at a lower order. It can be understood as the change in the photon Stark shift (which depends on the qubit level splitting) due to the phonon-driven qubit Stark shift, and it implies a term of the form $c^\dagger c a^\dagger a$. It is thus of the form of the cross-Kerr effect between the two resonators. In the perturbation series with the couplings g_{j}^2, g_{q}, and g_{m}, such a term would be of the order of $g_{c1}^2 g_{m}^2 \sim g_{d}^2 g_{m}^2$. In the rotating wave approximation we get the term $H_{\text{ck}} = \hbar g_{ck} d^\dagger d b^\dagger b$, with

$$g_{ck} \equiv \frac{g_{d} R_{0} \hbar g_{0}}{Z_{0} E_{j}} \left[4E_{c}^{2} (8E_{c} + E_{j}^2) - E_{j}^{2} (4E_{c} + E_{j}^2) \right] / 2\pi E_{c}^{2} E_{j} \sqrt{4 + E_{j}^{2} / E_{c}^{2}}, \quad (9)$$

where $R_{0} = h/(2e^2)$ and $E_{c} = \sqrt{4E_{c}^{2} + E_{j}^{2}}$. The total effective optomechanical Hamiltonian is thus

$$H_{\text{eff}} = \hbar \omega_c d^\dagger d + \hbar \omega_m b^\dagger b + \hbar g_{d} d(b^\dagger + b) + H_{\text{ck}}. \quad (10)$$

Whereas the response with sideband driving is dominated by the large g_{d}, the nonlinear frequency shifts are mainly due to the term g_{ck} [see the spectrum of Eq. (10) in Ref. [38]]. For example, for $1/l \approx E_{j} \approx E_{c}$, where the radiation-pressure coupling g_{d} is appreciable, we get $g_{ck} / g_{d} \approx 5 \hbar g_{0} R_{0} / (E_{j} Z_{0})$. With $g_{d} \approx 5$ MHz, $E_{j} / h \approx 10$ GHz, and $Z_{0} \approx R_{0}/100$, we would hence get an appreciable nonlinearity, $g_{ck} / g_{d} \approx 0.25$. Moreover, close to $h_{q} \approx 1/2$, the radiation-pressure term vanishes whereas the cross-Kerr term is finite. The Hamiltonian becomes particularly simple, as the coupling commutes with the rest of the Hamiltonian. As a result, the cavity frequency is shifted by the number of quanta in the mechanical resonator. Such a shift could be used for a direct detection or creation of the Fock states in the mechanical resonator.

Effect of qubit-mediated dissipation.—Since the qubit and the oscillators are generally hybridized up to a significant amount, it is important to consider the effect of qubit energy relaxation on that of the oscillators. This can be analyzed with the Schrieffer-Wolff approach, but now applying the transformation only to the qubit-oscillator part of the setup [38]. We find that the rates for relaxation or excitation of the mechanical resonator due to the qubit dissipation satisfy

$$\frac{\gamma_{\text{rel/exc}}}{\gamma_{\text{qrel/exc}}} = 2g_{d}^2 B^2 \sum_{j} \lambda_{j}^2 S_{j}^{(\pm \alpha_{m})} / \sum_{j} \lambda_{j}^2 S_{j}^{(\pm B)}. \quad (11)$$

Here $\gamma_{\text{qrel/exc}}$ are the bare qubit relaxation/excitation rates, λ_{j} is the coupling between the qubit and the bath oscillator j, and $S_{j}(\alpha_{m}) \equiv \int dt e^{i \omega t} \langle [b_{j}^\dagger(t) + b_{j}(t)]b_{j}^\dagger(0) + b_{j}(0) \rangle$ is the correlator of the qubit bath, chosen diagonal for convenience. For an equilibrium bath at temperature T_{b}, these satisfy a detailed balance relation $\gamma_{\text{rel/exc}} / \gamma_{\text{qrel/exc}} = S_{j}(\alpha_{m}) / S_{j}(-\alpha_{m}) = \exp[\hbar \omega_{m}/(k_{B}T_{b})]$. Using the fluctuation-dissipation relation with a frequency independent susceptibility for the bath correlator (i.e., quantum noise increasing linearly with an increasing frequency), we would then get at $k_{B}T_{b} \lesssim \hbar \omega_{m}$ the induced mechanical dissipation rate
The relation changes roughly to linearly with a decreasing frequency. In this case this leads to the low linear regime, because of the large relaxation and excitation rates by replacing g_m with $g_{k,1}$ or $g_{k,2}$, B_1 by B_3, and ω_m by ω_c. However, a more relevant effect is likely due to pure cavity dephasing seen by a flickering of the cavity frequency due to low-frequency background charge fluctuations in the qubit. As analyzed in Ref. [38], the rate for this process in the case $E_{j1} = E_{j2}$ and $\phi_a = 0$ is $\gamma_\phi \approx g_0^2 \gamma_0^2 / (16 \hbar^2)$, where γ_ϕ is the pure dephasing rate of the qubit. At the optimal operation point, this is of the order of $e^4 Z_{0 \phi}^2 / \hbar^2$, where $Z_{0 \phi}$ is the cavity dephasing rate would be of the order of 0.5 MHz, which is already larger than the intrinsic γ_c. Nevertheless, as $g_0 / \gamma_\phi \propto V_\phi$, this does not hinder reaching the limit of strong optomechanical coupling.

Note that the above approach is valid as long as the cavity photon number n_c is not too large, such that phase fluctuations $\phi_0 / \sqrt{n_c}$ are small compared to 2π. Typical values are $\phi_0 \sim 0.1, \ldots, 0.5$, depending on the cavity impedance. At the upper end of the scale there are nonlinear corrections to energy of 10% already at $n_c \sim 1$. In spite of the low linear regime, because of the large g_0, optomechanical phenomena are overwhelming already at photon numbers $n_c \approx 1$.

In summary, we have presented a realizable scheme for boosting the optomechanical radiation-pressure coupling by several orders of magnitude. This gives the possibility of approaching the previously elusive single-photon strong coupling limit of optomechanics. Our predictions can be readily tested in state-of-the-art circuit optomechanical devices.

We acknowledge fruitful discussions with Pertti Hakonen, Florian Marquardt, and Sorin Paraoanu. This work was supported by the Academy of Finland, the European Research Council (Grants No. 240362-Heatronics, No. 240387-NEMSQED, and MPOES) and the EU-FP 7 INFERNOS (Grant No. 308850) and MICROKELVIN (Grant No. 228464) programs.

[30] We use the convention that the quantities related to qubits ($B\phi$ fields and couplings) are in units of energy, whereas those related only to oscillators are in units of frequency.

Typically there is a unique minimum, but for a complicated form of $E_{\text{SCPT}}(\phi)$, there may be more than one of them. In that case we choose the global minimum. The presence of multiple minima would show up as hysteresis.

See the Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.112.203603 for further details of the radiation pressure coupling, additional damping due to hybridization, the cross-Kerr coefficient, and a description of the spectrum of Eq. (10). It also includes Ref. [39].

Note that the corrections (ω_0^c/ω_c) and (ω_0^m/ω_m) coming from the Bogoliubov transformation are formally of a higher order than assumed in the coupling expansion. The first term is necessary to properly account for the effect of the Josephson inductance in the limit $L_J \lesssim L$.

See the Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.112.203603 for further details of the radiation pressure coupling, additional damping due to hybridization, the cross-Kerr coefficient, and a description of the spectrum of Eq. (10). It also includes Ref. [39].