Comment on “Nucleation of 3He-B from the A Phase: A Cosmic-Ray Effect?”

In an interesting Letter, Leggett\cite{Leggett} suggests that the nucleation of 3He-B from the metastable A phase is a consequence of the passage of a cosmic ray through the sample cell. Here we present new experimental data obtained with a rotating cryostat in NMR experiments\cite{Hakonen} on 3He. Figure 1(a) shows our data, taken on the $\text{A} \rightarrow \text{B}$ transition in magnetic fields of 28.4 and 56.9 mT; no field dependence was found between these values. We find that supercooling of the A phase into the B phase is substantial, and there appears to be a threshold temperature ("catastrophe line") $T_{\text{AB}}(p) << T_{\text{AB}}(p)$, where the metastable A phase first changes into 3He-B.

![Diagram](image)

FIG. 1. (a) Supercooling of the A phase into the B phase as a function of pressure. (b) Observed nucleation events (histogram) at 29.3 bars are inconsistent with the probability distribution of Ref. 1 with $P(T) \propto (1 - T/T_{\text{AB}})^3$. Clearly, only a much more sharply peaked probability at a lower temperature than suggested in Ref. 1 can describe the data; an exponential law for the activation process might be appropriate.

We want to emphasize that in our 3He cell the $\text{A} \rightarrow \text{B}$ transition could only be observed during cooling, never on warmup. The cooling rate varied between 5 and 29 μK/min, but no clear dependence of B-phase nucleation on the cooling rate could be established. When the temperature was stable, the A phase was found to persist, and no $\text{A} \rightarrow \text{B}$ transition was ever observed in this case. For example, at $p = 29.3$ bars (with $T_{\text{AB}} = 0.85 T_c$) and 28.4 mT, the A liquid was cooled as low as $T_{\text{min}} = 0.67 T_c$, and was maintained below $0.7 T_c$ for 2 h; in this run the metastable A phase persisted a total of 8 h, never nucleating the B phase. The temperatures in Fig. 1 are upper-bound estimates for T_{AB}. They are determined from NMR susceptibility measurements on platinum powder immersed in the 3He. A comparison with the A-phase NMR frequency-shift measurement shows that on cooling, the platinum temperature lags behind, at a cooling rate of 20–30 μK/min by $\leq 0.02 T_c$. Even lower liquid temperatures exist in the heat exchanger between the 3He sample and the refrigerator.

Figure 1(b) represents the data points at 29.3 bars as a histogram and compares them with a fitted distribution of nucleation probability. We conclude that experimentally the nucleation mechanism appears to be active only in a narrow temperature interval near the "catastrophe line" well below the thermodynamic $\text{A} \rightarrow \text{B}$ transition. An interesting point to note is that on cooling through the $\text{A} \rightarrow \text{B}$ transition during rotation, the A phase stayed supercooled as long as in the stationary liquid. This is further (indirect) evidence in support of the conclusion\cite{Volovik} that continuous vortices are induced by rotation in a bulk liquid sample of 3He-A.

P. J. Hakonen
M. Krusius
M. M. Salomaa
J. T. Simola
Low Temperature Laboratory
Helsinki University of Technology
SF-02150 Espoo 15, Finland

Received 1 October 1984
PACS numbers: 67.50.Fi, 05.70.Fh, 94.40.Vf

© 1985 The American Physical Society