Josephson tunnel junction controlled by quasiparticle injection
Francesco Giazotto and Jukka P. Pekola

Citation: Journal of Applied Physics 97, 023908 (2005); doi: 10.1063/1.1833576
View online: http://dx.doi.org/10.1063/1.1833576
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/97/2?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Fluctuation of heat current in Josephson junctions
AIP Advances 5, 027140 (2015); 10.1063/1.4914077

Single-charge devices with ultrasmall Nb/Al O x/Nb trilayer Josephson junctions
J. Appl. Phys. 97, 054501 (2005); 10.1063/1.1855399

Normal-distribution-function-shaped Josephson tunnel junctions

On-chip spectroscopic detection of terahertz radiation emitted from a quasiparticle-injected nonequilibrium superconductor using a high- T c Josephson junction
Appl. Phys. Lett. 75, 2809 (1999); 10.1063/1.125157

Fabrication of YBa 2 Cu 3 O 7−δ /SrTiO 3 /La 0.7 Sr 0.3 MnO 3−δ junctions for the control of supercurrent by spin-polarized quasiparticle current injection
Josephson tunnel junction controlled by quasiparticle injection

Francesco Giazotto
National Enterprise for Nanoscience and Nanotechnology-Instituto Nazionale per la Fisica della Materia (NEST-INFM) and Scuola Normale Superiore, I-56126 Pisa, Italy

Jukka P. Pekola
Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 3500, FIN-02015 HUT, Finland

(Received 24 May 2004; accepted 18 October 2004; published online 23 December 2004)

A Josephson tunnel junction transistor based on quasiparticle injection is proposed. Its operation relies on the manipulation of the electron distribution in one of the junction electrodes. This is accomplished by injecting quasiparticle current through the junction electrode by two additional tunnel-coupled superconductors. Both large supercurrent enhancement and fast quenching can be achieved with respect to equilibrium by varying quasiparticle injection for proper temperature regimes and suitable superconductor combinations. Combined with large power gain, this makes the device attractive for applications where reduced noise and low-power dissipation are required.

INTRODUCTION

The control of Josephson currents as for the realization of efficient transistors has gained recently a rekindled interest.1 A development in mesoscopic superconductivity is indeed represented by controllable superconductor (S)-normal metal (N)-superconductor (S) metallic weak links,2 where supercurrent suppression is achieved by altering the quasiparticle distribution in the N region through current injection. So far there have been a few demonstrations of this operation principle.3 On the other hand, as recently proposed4 and experimentally demonstrated,5 a superconductor-insulator-normal metal-insulator-superconductor (SINS) control line (where I is a tunnel barrier) is particularly suitable for tuning Josephson current, allowing both enhancement and suppression with respect to equilibrium. Operation of these devices is based on the modification of the quasiparticle distribution in the N region of the junction. In this work, we propose an all-superconducting tunnel junction device in which transistor effect is obtained by driving the electron distribution out of equilibrium in the superconductor. This is performed by voltage biasing a superconductor-insulator-superconductor (SISIS) line (see Fig. 1) where the interelectrode is one of the two terminals belonging to the Josephson junction.

THEORY

As compared to the hybrid devices above the present one benefits from the sharp characteristics due to the presence of superconductors with unequal energy gaps. We consider different superconductors \(S_1 \) and \(S_2 \) with energy gaps \(\Delta_1 \) and \(\Delta_2 \) (and critical temperatures \(T_{c1,2} \), respectively), and we assume \(\Delta_2 < \Delta_1 \). Under voltage bias \(V_C \) across the \(S_1S_2S_1 \) line (see the inset of Fig. 1) the heat current from \(S_2 \) to \(S_1 \) is given by

\[
\mathcal{P} = \frac{2}{e^2 R_T} \int_{-\infty}^{\infty} d\epsilon \epsilon N_1(\epsilon) N_2(\epsilon) [f_0(\epsilon, T_{c2}) - f_0(\epsilon, T_{c1})],
\]

where \(\epsilon = \epsilon - eV_C/2 \), \(f_0(\epsilon, T) \) is the Fermi-Dirac distribution function, \(T_{ek} \) is the electron temperature in \(S_k \), \(R_T \) is the normal-state resistance of each \(S_1S_2 \) junction, and \(N_k(\epsilon) = |\text{Re} (\epsilon + i\Gamma_k)/\sqrt{(\epsilon + i\Gamma_k)^2 - \Delta_k^2}| \) is the smeared BCS density of states of \(S_k \). Figure 1 shows the calculated heat current versus bias voltage \(V_C \) at constant bath temperature \(T_{\text{bath}} = T_{c1} = T_{c2} = 0.4T_{c1} \) and for different values of \(\Delta_2 / \Delta_1 \). \(\mathcal{P} \) is symmetric in \(V_C \) and it is positive for \(V_C < 2[\Delta_1(T) + \Delta_2(T)]/e \) thus allowing heat removal from \(S_2 \), i.e., hot quasiparticle excitations are transferred to \(S_1 \); furthermore, the heat current is maximized at \(V_C = \pm 2[\Delta_1(T) - \Delta_2(T)]/e \), where the finite-temperature logarithmic singularity occurs6 (in a real situation it will be somewhat broadened by smearing in the den-
t of scattering mechanisms that transfer energy in S_2 is characterized by its own energy gap Δ_j (different in general from $\Delta_{t,2}$) with critical temperature T_{c_j}, and R_j is the normal-state resistance of the junction. As we shall prove this transistor operation relies on the quasiparticle distribution established in S_2 upon voltage biasing the control line.

We consider a transport regime where strong inelastic electron–electron interaction forces the system to retain a local thermal (quasi) equilibrium, so that the quasiparticle distribution in S_2 is described by a Fermi function at temperature T_{c2} differing in general from T_{bath}. In order to determine the actual T_{c2} upon biasing with V_C we need to include those scattering mechanisms that transfer energy in S_2. At the typical operation temperatures the predominant contribution comes from electron-phonon scattering that transfers energy between electrons and phonons. This heat flux is given by $P_{c2-bath}=\Sigma \nu (T_{c2}^5-T_{bath}^5)$, where Σ is a material-dependent parameter and ν is the volume of S_2. The temperature T_{c2} is then determined by solving the energy-balance equation $P(V_C,T_{bath},T_{c2})+P_{c2-bath}=0$.

The supercurrent (I_j) flowing through the $S_j J S_2$ junction can be calculated from

$$I_j = -\frac{\sin \phi}{2eR_f} \int_{-\infty}^{\infty} dl d\varepsilon_2(e) \text{Re} \mathcal{F}_2(e) \text{Im} \mathcal{F}_j(e) + \mathcal{F}_2(e) \text{Re} \mathcal{F}_j(e) \text{Im} \mathcal{F}_2(e)$$

(2)

where ϕ is the phase difference between the superconductors, $\mathcal{F}_2(e) = \tanh \left[e \varepsilon_2/e(2k_BT_{c2}) \right]$, and $\mathcal{F}_j(e) = \Delta_j \sqrt{\varepsilon_2 + i \Delta_j^2}$. In the aforementioned expressions we set $\Delta_2 = \Delta_1(T_{c2})$ and $\Delta_j = \Delta_j(T_{bath})$. Equation (2) shows that, for fixed T_{bath} and phase difference, the Josephson current is controlled by T_{c2}. We note that a fixed phase difference across the junction can be experimentally achieved by embedding the junction itself in a superconducting quantum interference device (SQUID) loop. Another way to operate the device is to make the junction overdamped and current biasing it slightly above the critical current (see the inset of Fig. 1). In order to simulate a realistic structure we choose $\phi = \pi/2$, $T_{c1} = 1.19 \text{ K}$ (corresponding to bulk Al), $R_f = 10^4 \Omega$, $R_j = 500 \Omega$, $\nu = 0.1 \text{ mm}^2$, and $\Sigma = 10^{-9} \text{ W K}^{-5} \text{ mm}^{-3}$ (Ti).

The solution of the balance equation for T_{c2} combined with Eq. (2) yields the dimensionless transistor output characteristic shown in Fig. 2(a), where I_j is plotted versus V_C at different bath temperatures, for $T_{c2} = 0.3T_{c1}$ and $T_{bath} = T_{c1}$. For $T_{bath} < T_{c2}$, I_j first increases monotonically up to $eV_C = 2[\Delta_1(T_{bath}) - \Delta_2(T_{c2})]$, where the cooling power is maximized; then it starts to slightly decrease after which it is rapidly quenched at $eV_C = 2[\Delta_1(T_{bath}) + \Delta_2(T_{c2})]$. Notably, even at bath temperatures exceeding T_{c2} (i.e., for $T_{bath} \geq T_{c2}$ where I_j is zero at equilibrium), a finite supercurrent is obtained at a voltage for which S_2 is brought into the superconducting state, after which I_j is recovered up to a large extent. The influence of different S_1 on the supercurrent is displayed in Fig. 2(b) that shows I_j vs V_C at $T_{bath} = 0.8T_{c2}$ for different T_{c1}/T_{c2} ratios. As a consequence I_j is enhanced upon increasing Δ_j being nearly doubled for $T_{c1}/T_{c2} = 10$.

RESULTS AND DISCUSSION

Figure 3(a) displays the transistor power dissipation $P = V_C I_j$. where I_C is the control current in the $S_1 J S_2 J S_3$ line, calculated for $T_{c2} = 0.3T_{c1}$ and $T_{bath} = T_{c1}$ at different bath temperatures. The plot shows that at the lowest temperatures P obtains values of the order of some femtowatts in the regime of supercurrent enhancement while of some hundreds of femtowatt around the I_j quenching. This is because of the low control currents through the structure. As far as noise is concerned, the total input noise per unit bandwidth $\langle \delta I^2_{\text{tot}} \rangle$ (Ref. 12) in the control line can be expressed as

$$\langle \delta I^2_{\text{tot}} \rangle = \langle \delta I^2_C \rangle - 2S_C \langle \delta P \delta I \rangle + S_I^2 \langle \delta P^2 \rangle$$

(3)

where

FIGURE 2. (a) Supercurrent I_j vs control voltage V_C calculated at different bath temperatures T_{bath} for $T_{c2} = 0.3T_{c1}$ (corresponding roughly to the Ti/Al combination) and $T_{bath} = T_{c1}$. Note the sharp I_j suppression at $eV_C = 2[\Delta_1(T_{bath}) + \Delta_2(T_{c2})]$. (b) Supercurrent vs V_C calculated for several T_{c2}/T_{c1} ratios at $T_{bath} = 0.8T_{c2}$ and for $T_{c2} = 0.3T_{c1}$.
FIG. 3. (a) Dissipated power P and (b) total input noise $\langle \delta I_d^2 \rangle$ in the $S_I/S_J/S_L$ line against V_C. The transistor current gain $G_I(V_C)$ is shown in (c) and (d) in two different ranges of V_C. All these calculations are performed for $T_{bath}=0.5T_C$, $T_{c_j}=T_{c_1}$ and at three different bath temperatures.

\[
\langle \delta I_d^2 \rangle = \frac{1}{R_T} \int_{-\infty}^{\infty} \ln N_1(\varepsilon) N_2(\varepsilon) d\varepsilon, \tag{4}
\]

\[
\langle \delta P^2 \rangle = \frac{1}{e^2 R_T} \int_{-\infty}^{\infty} \ln^2 N_1(\varepsilon) N_2(\varepsilon) d\varepsilon, \tag{5}
\]

\[
\langle \delta P \delta I_d \rangle = -\frac{1}{e R_T} \int_{-\infty}^{\infty} \ln N_1(\varepsilon) N_2(\varepsilon) d\varepsilon, \tag{6}
\]

and $W(\varepsilon, \varepsilon')=f_0(\varepsilon, T_C)[1-f_0(\varepsilon, T_{bath})]+f_0(\varepsilon, T_{bath})[1-f_0(\varepsilon, T_{bath})]$. Equations (4)–(6) represent fluctuations due to charge and heat flow, and their mutual correlation, respectively, and S_I is the zero-frequency current responsivity, $S_{I_c}(V_C)=(\partial I_{c}(\varepsilon)/\partial \varepsilon_{J}(\varepsilon))(\partial^2 V/\partial \varepsilon^2)$. \(\langle \delta I_d^2 \rangle_{\text{tot}}\) is displayed in Fig. 3(b) for the same parameters as in Fig. 3(a), and shows that input noise as low as some 10^{-30} A2 Hz$^{-1}$ can be achieved in the enhancement regime while of some 10^{-29} A2 Hz$^{-1}$ at the quenching voltage. The thin lines are the uncorrelated noise power, i.e., the noise obtained by adding the contributions of Eqs. (4) and (5) only. Notably, the impact of mutual correlations [Eq. (6)] is easily recognized leading to significant noise reduction ($\sim 50\%$) in the range of supercurrent enhancement.

We shall further comment on the available gain. Input ($V_m=V_C-\Delta_1$) and output ($V_{JJ}-I_J R_J-\Delta_2$) [see also Fig. 2(b)] voltages allow a voltage gain $G_{V}=V_{JJ}/V_m=\Delta_2/\Delta_1$ so that with realistic parameters G_{V} is not much smaller than 1. The differential current gain, defined as $G_I=dI_J/dV_C=(dI_J/dV_C)dV_C/dV_C^{-1}$, is plotted in Figs. 3(c) and 3(d) in two different bias ranges for some values of T_{bath}. The figure shows that G_I obtains large values with some 10^2 in the regime of supercurrent enhancement and several 10^3 below the quenching.

The corresponding input impedance ranges from hundreds of kilohm to tens of megohm, respectively. In order to exploit the power gain (G_P) the Josephson junction needs to be operated in the dissipative regime; in such a situation an estimate for the achievable power gain 5 yields $G_P \sim 10^{-2} \cdots 10^3$ depending on the operating V_C and bias current I_{JJ} across the junction (see Fig. 1). One should note that such a large power gain, not achievable, e.g., using a SNS-controlled superconductor-normal metal-superconductor (SNS) transistor6 in the same transport regime (i.e., the hot-electron regime that is addressed in the present analysis), is an additional advantage of the present scheme.

CONCLUDING REMARKS

An additional remark deserves attention. We note that throughout our analysis we neglected any charging effect on the central superconducting electrode. This is, however, a reasonable assumption given the above structure parameters. As a matter of fact, the latter allow large area and, consequently, large capacitance junctions thus yielding charging energies much smaller than temperatures that are relevant for an optimized device operation.

We conclude with some further benefits of our proposal. Due to the presence of the superconducting interelectrode, highly transmissive tunnel junctions are not necessary unlike in $SINIS$ devices. The device is also less sensitive to thermal fluctuations as compared to SNS junctions. Furthermore, it is easier to fabricate taking advantage of the well-established metal-based tunnel junction technology. A promising choice for transistor and switch implementations could be a combination of Al and Ti.

ACKNOWLEDGMENTS

The authors acknowledge the Large Scale Installation Program ULTI-3 of the European Union and the Academy of Finland (TULE program) for financial support, and D. Golubev, T. T. Heikkilä, A. M. Savin, and H. Seppä for fruitful discussions.

1See, for example, A. A. Golubov, M. Yu. Kupriyanov, and E. Il’ichev, Rev. Mod. Phys. 76, 411 (2004).

We assume throughout the paper a realistic smearing parameter $\Gamma_i = 10^{-4}\Delta_i$ [see Ref. 8].

We suppose each junction to contribute in an uncorrelated way to the total noise.

We assume throughout the paper a realistic smearing parameter $\Gamma_i = 10^{-4}\Delta_i$ [see Ref. 8].

We suppose each junction to contribute in an uncorrelated way to the total noise.

We assume throughout the paper a realistic smearing parameter $\Gamma_i = 10^{-4}\Delta_i$ [see Ref. 8].

We suppose each junction to contribute in an uncorrelated way to the total noise.

We assume throughout the paper a realistic smearing parameter $\Gamma_i = 10^{-4}\Delta_i$ [see Ref. 8].

We suppose each junction to contribute in an uncorrelated way to the total noise.