Cold electron Josephson transistor
A. M. Savin, J. P. Pekola, J. T. Flyktman, A. Anthore, and F. Giazotto

Citation: Applied Physics Letters 84, 4179 (2004); doi: 10.1063/1.1756192
View online: http://dx.doi.org/10.1063/1.1756192
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/84/21?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Parallel array of YBa2Cu3O7−δ superconducting Josephson vortex-flow transistors with high current gains

Charge sensitivity of the inductive single-electron transistor
Appl. Phys. Lett. 87, 092502 (2005); 10.1063/1.2034096

Charge and spin effects in mesoscopic Josephson junctions (Review)
Low Temp. Phys. 30, 554 (2004); 10.1063/1.1789291

Control of Coulomb blockade in a mesoscopic Josephson junction using single electron tunneling
J. Appl. Phys. 95, 8059 (2004); 10.1063/1.1751231

Radio-frequency-induced transport of Cooper pairs in superconducting single electron transistors in a dissipative environment
J. Appl. Phys. 95, 6325 (2004); 10.1063/1.1713024
Cold electron Josephson transistor

A. M. Savin, a) J. P. Pekola, J. T. Flyktman, and A. Anthore
Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 2200, FIN-02015 HUT, Finland
F. Giazotto
NEST-INFM and Scuola Normale Superiore, I-56126 Pisa, Italy

(Received 20 February 2004; accepted 7 April 2004; published online 6 May 2004)

A superconductor-normal metal-superconductor mesoscopic Josephson junction has been realized in which the critical current is tuned through normal current injection using a symmetric electron cooler directly connected to the weak link. Both enhancement of the critical current by more than a factor of two, and supercurrent suppression have been achieved by varying the cooler bias. Furthermore, this transistor-like device demonstrates large current gain (~20) and low power dissipation. © 2004 American Institute of Physics. [DOI: 10.1063/1.1756192]

Transport dynamics in mesoscopic structures where normal metals (N) are coupled with superconductors (S) are currently the focus of extensive research. This stems mainly from the relevance these systems have both from the fundamental physics point of view and in light of their possible exploitation in nanoelectronics. In diffusive SNS junctions, where the length of the N region exceeds the elastic mean free path, coherent sequential Andreev scattering between the superconductors may lead to a continuum spectrum of resonant levels responsible for carrying the supercurrent flow through the structure. The Josephson current is given by supercurrent spectrum weighted by the occupation number of correlated electron-hole pairs that is determined by the quasiparticle energy distribution in the N region of the junction. By changing the latter through current injection from additional nonsuperconducting terminals connected to the N region both supercurrent suppression as well as its sign reversal (π-transition) were demonstrated. As predicted in Refs. 7 and 8, the distinctive quasiparticle distribution existing in the N region of a biased SINIS structure (where I stands for an insulating barrier) is also well suited to control the Josephson coupling in a long SNS weak link, allowing either large supercurrent enhancement or efficient suppression with respect to equilibrium.

In this letter, we present the implementation and characterization of a four-terminal superconducting structure (see Fig. 1) consisting of a SNS mesoscopic junction integrated with a SINIS electron cooler. A similar device was considered but not successfully operated in Ref. 7. In this transistor, the maximum supercurrent flowing in the SNS junction is controlled by voltage biasing the SINIS line whose N region is shared with the Josephson junction. Low temperature transport measurements show enhancement of the critical current under hot quasiparticle extraction by more than a factor of two with respect to equilibrium. In addition this device demonstrates low power dissipation and large current gain.

The sample (shown in Fig. 1) consists of a Cu island, 0.37 μm wide and 30 nm thick, symmetrically connected at its ends via insulating barriers (with normal-state resistance $R_T=240 \Omega$) to two 60-nm-thick Al reservoirs, thus realizing a SINIS cooler. The Josephson junction instead consists of an Al/Cu/Al SNS weak link (with normal-state resistance $R_N=11.5 \Omega$), whose N region is shared with the SINIS line. The minimum interelectrode separation in the SNS junction of the present device is $L_J=0.4 \mu m$. The structure was fabricated on a thermally oxidized Si substrate by electron beam lithography and three-angle shadow-mask evaporation. The electrical characterization was performed at different bath temperatures down to 70 mK in a dilution refrigerator. From low-temperature resistance measurements we deduced the Cu diffusion coefficient $D=10$ cm2/s. This low value of D is probably caused by significant intermixing of the materials at the NS interface leading to the strong reduction of the electron mean free path in the weak link. The Al energy gap, $\Delta=169$ μeV, was inferred from the low-temperature current–voltage characteristic of the SINIS line (see Fig. 4). The coherence length $\xi_N=\sqrt{\hbar D/\Delta}\approx 62$ nm is then much smaller than L_J, providing the frame of the long junction regime.

The experiment consists of sweeping the I_{SNS} current across the SNS junction while measuring its differential re-

FIG. 1. Scanning electron micrograph of a typical structure including a sketch of the measurement circuit. Two superconducting Al electrodes are connected through insulating barriers to a Cu island to realize a symmetric SINIS electron cooler. The supercurrent I_J in the Al/Cu/Al junction is tuned upon voltage biasing the SINIS control line.

a)Electronic mail: savin@boojum.hut.fi
sistance dV/dI at different values of voltage bias (V_{SINS}) across the SINIS control line. Figure 2(a) shows a subset of dV/dI vs I_{SINS} characteristics measured at the bath temperature $T_{\text{bath}}=72$ mK for several V_{SINS}. The curves display a nonhysteretic behavior characteristic for overdamped junctions.9 In the case of a SNS weak link the effect of thermal fluctuations on the smearing of the voltage–current characteristic is stronger10 than predicted by the model for resistively shunted junction.11 We have chosen to define the experimental critical current as the current where the differential resistance reaches $R_{\text{SINS}}/2$.12 Notably, upon increasing V_{SINS}, the current range where the differential resistance vanishes widens initially, thus reflecting an enhancement of I_c, being maximized at a voltage corresponding to $V_{\text{SINS}}=300 \mu\text{V}=1.8\Delta/e$ [curve labeled as 3 in Fig. 2(a)]; then, further increase of bias leads to a monotonic decay and to a complete suppression of I_c at larger voltages [curve labeled as 6 in Fig. 2(a)]. This nonmonotonic behavior is seen in the corresponding I–V curves in Fig. 2(b).

The observed behavior is due to the relation existing between the observable supercurrent I_c and the quasiparticle energy distribution in the weak link. In the present experimental situation of large J_{SINS}, inelastic electron–electron relaxation forces the electron system to retain a local thermal (quasi)equilibrium. As a consequence, the quasiparticle energy distribution can be described with a Fermi–Dirac function at an effective electron temperature T_e. The temperature T_e is determined by the balance between two heat flows:

$$P(V_{\text{SINS}}, T_e, T_{\text{bath}}) + P_{\text{e–bath}}(T_e, T_{\text{bath}}) = 0. \quad (1)$$

The first term accounts for the net heat current P transferred from the N island to the superconductors upon biasing the SINIS line:

$$P = \frac{2}{e^2 R_T} \int_{-\infty}^{\infty} n(E)[f_0(\bar{E}, T_e) - f_0(E, T_{\text{bath}})] \bar{E} dE, \quad (2)$$

where $\bar{E} = E - eV_{\text{SINS}}/2$, $f_0(E, T)$ is the Fermi–Dirac distribution function and $n(E) = |\text{Re}((E+i\Gamma)/\sqrt{(E+i\Gamma)^2 - \Delta^2})|$ is the (smeared by nonzero Γ) BCS density of states of the superconductor.13 Equation (2) is symmetric in V_{SINS}, being maximized slightly below $|2\Delta/e|$. The second term accounts for energy transfer from electrons to the phonons of the normal island at the temperature T_{bath} and is equal to $P_{\text{e–bath}} = \Gamma V(T_e - T_{\text{bath}}^2)$.16 where V is the volume of the N island and $\Gamma \approx 2 \text{nWK}^{-1} \mu\text{m}^{-3}$ for copper.13 The temperature T_e in the weak link thus strongly depends on V_{SINS} and can be smaller than T_{bath}.17 At low temperature (i.e., $k_BT_{\text{bath}} < \Delta$), in a long SNS junction, I_c is predicted to decrease exponentially as T_e increases18 in the regime where $k_BT_e \gg E_{\text{Th}} = hD/L_J$. Thus, upon biasing the SINIS line, I_c will be changed with respect to equilibrium (i.e., at $V_{\text{SINS}}=0$), due to the modification of T_e that now differs from T_{bath}.

In Fig. 3(a) we plot the extracted I_c values as a function of V_{SINS} at three different bath temperatures. For all displayed temperatures, the critical current increases monotonically up to about $V_{\text{SINS}} \approx 1.8\Delta/e$ as expected from the reduction of T_e by cooling. Then, further increase of bias voltage leads to an efficient supercurrent suppression due to electron heating. The equilibrium critical current (i.e., at $V_{\text{SINS}}=0$) vs T_{bath} is displayed in Fig. 3(b). The I_c behavior follows a characteristic trend, decreasing upon rising the temperature, but it differs from the temperature dependence predicted by quasiclassical Green-function theory.1 The discrepancy can be ascribed to the uncertainty in the determination of the actual values of critical current, relatively narrow temperature range where it was observed and thermal decoupling between electrons and bath at temperatures below 200 mK. In Fig. 3, we show the expected critical current dependence on V_{SINS} at $T_{\text{bath}}=283$ mK obtained from the solution of Eqs. (1) and (2) to determine the effective electron temperature T_e upon biasing the SINIS line, and assuming a linear behavior of the critical current I_c vs T_e below about 350 mK, the slope of the linear dependence being inferred from the measured $I_c(T_{\text{bath}})$. For this calculation, we assumed the already given parameters for the SINIS line and $\Gamma = 1.8 \times 10^{-3}\Delta$ estimated from the ratio ($= \Gamma/\Delta$) of the low-temperature SINIS conductance at low and high bias.14 The

![FIG. 2. Selected dV/dI vs I_{SINS} (a) and current–voltage characteristics (b) of the SNS junction at $T_{\text{bath}}=72$ mK for different V_{SINS} values (all curves are offset for clarity): 1–0, 2–194 μV, 3–300 μV, 4–342 μV, 5–355 μV, 6–938 μV. Curves in (b) were obtained by numerical integration of the corresponding ones in (a).](Image 327x61 to 549x189)

![FIG. 3. (a) Critical current I_c vs control voltage V_{SINS} at three different bath temperatures; (b) equilibrium supercurrent ($V_{\text{SINS}}=0$) vs bath temperature. Dashed line in (a) represents curve obtained from energy balance Eq. (1) and the linear approximation of $I_c(T_{\text{bath}})$ shown in (b).](Image 52x606 to 350x738)
resonance between calculation and experiment is evident although details of the former one are dictated by the \(I_J \) dependence on temperature, which we cannot extrapolate reliably. To better characterize our device, we show in Fig. 4 (right axis) the dissipated power \(P \) against \(V_{\text{SINIS}} \) in the SINIS line at \(T_{\text{bath}}=72 \) mK. The plot reveals that in the bias voltage region of significant critical current enhancement (i.e., in the \(200–300 \) \(\mu \)V bias range) \(P \) obtains values of the order of \(10^{-13} \) W, while in the regime of supercurrent suppression (i.e., for \(V_{\text{SINIS}}>300 \) \(\mu \)V) some tens of pW. This demonstrates the low power dissipation intrinsic to the structure.\(^8\) The \(P \) behavior is directly related to the normal current flow in the control line. The latter is displayed on the left-hand side axis of Fig. 4 and shows that control currents as low as a few nA are necessary to enhance the critical current, while of about 100 nA to suppress it. The differential current gain \(G_J=\frac{dI_J}{dI_{\text{SINIS}}} \) against \(I_{\text{SINIS}} \) is shown in the inset of Fig. 4. Notably, \(G_J \) obtains values exceeding 20 in the hot quasiparticle extraction regime, while of about -11 in the voltage region of supercurrent suppression. We note that higher \(G_J \) values, as well as lower power dissipation and control currents, could be attained by optimizing the structure design.\(^8,14\)

In summary, we have demonstrated experimentally control of Josephson coupling under hot quasiparticle extraction in a four-terminal superconducting structure. Our experimental result shows the potential of a SINIS line as a basis of a promising class of mesoscopic transistors with high current gain.

The authors acknowledge T. T. Heikkilä, F. Carillo, R. Fazio, P. J. Hakonen, F. W. J. Hekking, and F. Taddei for discussions, and Academy of Finland for financial support (TULE Program). One of the authors (F.G.) would like to acknowledge the Large Scale Installation Program ULTI-3 of the European Union for the kind hospitality and for financial support.

\(^15\) The parameter \(\Gamma \) allows quasiparticle states within the energy gap \(\Delta \) (Ref. 14).