
Title: Nanolaminate structures fabricated by ALD for reducing propagation losses and enhancing the third-order optical nonlinearity

Year: 2014

Version: Final published version

Please cite the original version:


Nanolaminate structures fabricated by ALD for reducing propagation losses and enhancing the third-order optical nonlinearities

Lasse Karvonena,*, Tapani Alasaarelaa, Henri Jussilaa, Soroush Mehravarb, Ya Chena, Antti Säynätjokiä, Robert A. Norwoodb, Nasser Peyghambarianb, Khanh Kieub, Seppo Honkanenc, and Harri Lipsanena

aAalto University, School of Electrical Engineering, Department of Micro and Nanosciences, P.O. Box 13500, FI-00076 Aalto, Finland
bUniversity of Arizona, College of Optical Sciences, 1630 E University Blvd., Tucson, AZ 85721, USA
cUniversity of Eastern Finland, Department of Physics and Mathematics, P.O. Box 111, FI-80101 Joensuu, Finland

*lasse.karvonen@aalto.fi

ABSTRACT

We demonstrate a novel atomic layer deposition (ALD) process to make high quality nanocrystalline titanium dioxide (TiO2) and zinc oxide (ZnO) with intermediate Al2O3 layers to limit the crystal size. The waveguide losses of TiO2/Al2O3 nanolaminates measured using the prism coupling method for both 633 nm and 1551 nm wavelengths are as low as 0.2 ± 0.1 dB/mm with the smallest crystal size. We also show that the third-order optical nonlinearity in ZnO/Al2O3 nanolaminates can be enhanced by nanoscale engineering of the thin film structure.

Keywords: atomic layer deposition, loss, third-order optical nonlinearity

1. INTRODUCTION

Nanoscale materials often exhibit remarkable differences in mechanical, optical and electrical properties compared to their bulk form1-2. Fabrication of these structures in a controlled fashion can be challenging. Therefore, a simple method to controllably fabricate these nanoscale structures is important. Atomic layer deposition (ALD) has been used to fabricate nanolaminate structures, for instance from aluminum and zinc oxide (Al2O3 and ZnO) layers3,4.

Aluminum doped zinc oxide (AZO) is a material that has been intensively studied mainly because of its application as a transparent conducting electrode5-7. Furthermore, zinc oxide is also an interesting material because of its outstanding nonlinear optical properties8-13. The third-order optical nonlinearity, \( \chi^{(3)} \), is important for many applications in optical signal processing and telecommunications. For example, the large \( \chi^{(3)} \) in silicon has already enabled impressive device demonstrations, e.g., wavelength conversion, all-optical switching and optical signal processing at low optical power levels14-16. Silicon has a high \( \chi^{(3)} \), but two-photon absorption related to the imaginary part of \( \chi^{(3)} \) limits its usefulness. We have earlier shown that ALD grown Al2O3 and titanium dioxide TiO2 work well with silicon slot and strip waveguides17,20. TiO2 is a promising material for linear and nonlinear microphotonic devices at both visible and infrared wavelengths. Previously, atomic layer deposition (ALD), reactive radio frequency magnetron sputtering, sol-gel and ion implantation methods have been studied as potential methods to make low loss TiO2 waveguides21-26.

Titanium dioxide thin films can appear in many different crystalline phases and the phase is mainly dependent on the growth temperature and/or annealing temperature, but also on the surface on which it grows27. The lowest losses are measured for amorphous TiO2 waveguides, but they are thermally unstable as the films crystallize when heated to > 200°C28. This can limit their applicability in applications requiring higher temperature steps during the fabrication process. Furthermore, amorphous TiO2 is less nonlinear than its crystalline anatase or rutile counterparts. Thus, TiO2 films deposited at higher temperature but still having low losses would be highly desirable in various optical
applications. ALD provides a straightforward way to fabricate nanolaminates while controlling the crystal size at the nanometer scale. Crystal size control has been used previously to improve the optical properties and uniformity when TiO₂ is deposited at higher temperature²⁹,³⁰.

The diethyl zinc (DEZn) + water process for ZnO, the titanium chloride (TiCl₄) + water process for TiO₂ and the trimethylaluminum (TMA) + water process for Al₂O₃ are very widely used ALD processes as the precursors are liquid and have suitable vapor pressures for evaporation at ambient temperature. In addition, the processes have large ALD temperature windows in which they can be utilized. However, when the TiCl₄ + water and TMA + water processes are combined, the layer interfaces tend to have high optical absorption²¹, an effect which has been utilized to create absorbing decorative coatings using the H₂O + TiCl₄ + TMA – process³¹. TiO₂ crystal growth termination via Al₂O₃ has been done using different chemistries, e.g. the AlCl₃ + H₂O process, but these precursors are not as ideal ALD precursors as TMA³². Therefore, we used the TMA + ozone process and observed that it is working well with the TiCl₄ + water process³².

2. NANOLAMINATE STRUCTURES

ZnO/Al₂O₃ nanolaminates

Four ZnO/Al₂O₃ nanolaminate samples and one plain ZnO film were prepared by a Beneq TFS 500 ALD system on Corning 0211 glass substrates. The schematic diagram of the nanolaminate structure is shown in Fig. 1. The ZnO/Al₂O₃ nanolaminates consist of alternating layers of ZnO and Al₂O₃. The thickness of each layer is defined by the number of ALD cycles. We kept the total number of ZnO growth cycles constant in all samples to ensure equal amounts of ZnO. Since the number of Al₂O₃ and ZnO layers varies, the number of cycles in each ZnO layer was changed from 25 to 100 depending on the sample (see Table 1). All Al₂O₃ layers in the nanolaminates were formed with 10 ALD cycles (thickness of about 1.1 nm). Diethyl zinc (DEZn) and H₂O acted as precursors for ZnO and trimethyl aluminum (TMA) and H₂O for Al₂O₃³³, and the growth temperature was 200 °C. Sample labeling is presented in Table 1.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Number of AZO cycles</th>
<th>An AZO cycle consists of</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZO1</td>
<td>100</td>
<td>Number of Al₂O₃ cycles: 10</td>
</tr>
<tr>
<td>AZO2</td>
<td>50</td>
<td>Number of Al₂O₃ cycles: 10</td>
</tr>
<tr>
<td>AZO3</td>
<td>33</td>
<td>Number of Al₂O₃ cycles: 10</td>
</tr>
<tr>
<td>AZO4</td>
<td>25</td>
<td>Number of Al₂O₃ cycles: 10</td>
</tr>
<tr>
<td>ZNO</td>
<td>1</td>
<td>Number of Al₂O₃ cycles: 10</td>
</tr>
</tbody>
</table>

TiO₂/Al₂O₃ nanolaminates

TiO₂/Al₂O₃ nanolaminates (samples S0-S4) were fabricated using TiCl₄ + H₂O and TMA + O₃ ALD processes at a growth temperature of 250 °C. The growth rate of the TMA + O₃ process is reported to be between 0.09 to 0.11 nm/cycle³⁴,³⁵. Therefore, the Al₂O₃ layer thickness is estimated to be about 1 nm. Fabricated samples are presented in...
Table 2. Naming of the TiO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3} nanolaminate samples.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Number of TiO\textsubscript{2}+Al\textsubscript{2}O\textsubscript{3} cycles</th>
<th>An TiO\textsubscript{2}+Al\textsubscript{2}O\textsubscript{3} cycle consists of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample name</td>
<td>Number of TiO\textsubscript{2} cycles</td>
<td>Number of Al\textsubscript{2}O\textsubscript{3} cycles</td>
</tr>
<tr>
<td>S0</td>
<td>1</td>
<td>4000</td>
</tr>
<tr>
<td>S1</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>S2</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>S3</td>
<td>15</td>
<td>267</td>
</tr>
<tr>
<td>S4</td>
<td>10</td>
<td>400</td>
</tr>
<tr>
<td>S5</td>
<td>1</td>
<td>~3300</td>
</tr>
<tr>
<td>S6 (annealed S5 at 400 °C)</td>
<td>1</td>
<td>~3300</td>
</tr>
</tbody>
</table>

3. RESULTS AND DISCUSSION

3.1. Optical properties

ZnO/Al\textsubscript{2}O\textsubscript{3} nanolaminates

The effective refractive index and the total thickness of each sample were measured using a prism coupler at the wavelengths of 532 nm, 633 nm and 1551 nm. The measured effective refractive indices are shown in Fig. 2.

![Fig. 2. Measured refractive indices of the ZnO/Al\textsubscript{2}O\textsubscript{3} nanolaminate and ZnO samples.](image)

Table 3. Properties of the ZnO/Al\textsubscript{2}O\textsubscript{3} nanolaminate samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Effective refractive index $N$</th>
<th>Total thickness $t_{tot}$ (nm)</th>
<th>Estimated total ZnO thickness in nanolaminate (nm)</th>
<th>Estimated total Al\textsubscript{2}O\textsubscript{3} thickness in nanolaminate (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZO1</td>
<td>1.87</td>
<td>516.7</td>
<td>339.9</td>
<td>176.8</td>
</tr>
<tr>
<td>AZO2</td>
<td>1.92</td>
<td>494.9</td>
<td>388.6</td>
<td>106.2</td>
</tr>
<tr>
<td>AZO3</td>
<td>1.93</td>
<td>478.9</td>
<td>398.0</td>
<td>80.9</td>
</tr>
<tr>
<td>AZO4</td>
<td>1.95</td>
<td>486.1</td>
<td>424.0</td>
<td>62.1</td>
</tr>
<tr>
<td>ZNO</td>
<td>1.99</td>
<td>501.4</td>
<td>501.4</td>
<td>0</td>
</tr>
</tbody>
</table>

The results of the measurement at 633 nm are shown in Table 3. The estimated total and layer thicknesses of ZnO and Al\textsubscript{2}O\textsubscript{3} in nanolaminates are also shown in Table 3. They are calculated from the measured effective refractive indices using the equation $t_h = \frac{(n^2 - n_l^2)}{(n_h^2 - n_l^2)} t_{tot}$, where $n_h$, $n_l$, $n_h$ and $n_l$ are the high-index (ZnO, $n_h = 1.99$) and low-index (Al\textsubscript{2}O\textsubscript{3}, $n_l = 1.63$) materials’ thicknesses and refractive indices, and $t_{tot}$ and $N$ are the nanolaminate thickness and effective refractive index, respectively\textsuperscript{36}. Here we assume that the refractive index of ZnO is constant regardless of the layer thickness. We
measured the linear absorbance of our samples using an untreated Corning 0211 glass plate as a reference. The obtained spectra are presented in Fig. 3a. For the ZnO sample, a sharp absorption edge is observed at the wavelength 375 nm, corresponding to the bandgap of ZnO. For the nanolaminate samples, the absorbance below the absorption edge decreases with decreasing amount of ZnO. The absorbance data at 350 nm (shown in Fig. 3b) agrees well with our estimations (Table 3) of the total amount of ZnO in the samples.

![Absorbance spectra](image)

**Fig. 3.** a) Measured absorption spectra of the samples, and b) absorption at 350 nm as a function of the estimated amount of ZnO.

**TiO₂/Al₂O₃ nanolaminates**

Table 4. Estimated loss values of TiO₂/Al₂O₃ nanolaminates and TiO₂ films.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Loss at 633 nm [dB/mm]</th>
<th>Loss at 1551 nm [dB/mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>very high</td>
<td>very high</td>
</tr>
<tr>
<td>S1</td>
<td>0.2 ± 0.1</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td>S2</td>
<td>0.6 ± 0.1</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td>S3</td>
<td>very high</td>
<td>0.8 ± 0.1</td>
</tr>
<tr>
<td>S4</td>
<td>very high</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>Amorphous TiO₂ (similar as S5)</td>
<td>0.2-0.35²¹</td>
<td>0.08-0.09²¹</td>
</tr>
</tbody>
</table>

Propagation losses of the TiO₂/Al₂O₃ nanolaminates and the TiO₂ reference sample were estimated using the loss measurement feature of the prism coupler at the wavelengths of 633 and 1551 nm. The measured losses are presented in Table 4. The loss values are decreasing when the TiO₂ sublayer thickness decreases. The lowest value, 0.2 dB/mm at both wavelengths, was measured from the sample S1. Higher loss values at the wavelength of 633 nm can be explained by higher scattering from the small crystals. In Rayleigh scattering, the scattering intensity is inversely proportional to the fourth power of the wavelength. Therefore, the scattering from the small particles (crystals in this case) is increasing when the wavelength is decreasing; deviation from the Rayleigh law can be due to the presence of larger particles that would exhibit Mie scattering. The loss value of 2 dB/cm is very promising for waveguiding applications. The loss of amorphous ALD TiO₂ grown at 120 °C has been reported to be less than 1 dB/cm²¹. However, the nanolaminate structure is much more stable thermally than low temperature TiO₂.

**3.2. Crystal structure**

**ZnO/Al₂O₃ nanolaminates**

In order to characterize the crystal structure and the size of the crystallites in the ZnO layers, powder X-ray diffraction (XRD) experiments using Cu K-α radiation were carried out. The measured XRD curves are shown in Fig. 4a. Diffraction peaks are located at positions 31.8°, 34.4°, 56.6° and 66.4° corresponding to (100), (002), (110) and (200) crystal planes of hexagonal wurtzite ZnO. The peak at 31.8° comes from c-direction oriented crystals and the peak at 34.4° from c-direction oriented crystals³⁷,³⁸. These results indicate c-direction oriented ZnO crystals in the beginning of the growth, but for the thicker films a-direction oriented growth begins to dominate. ZnO, grown using ALD at 200 °C
with the same precursors, has been earlier reported to be $a$-direction oriented\(^\text{37}\). Crystallite sizes estimated using Scherrer’s formula are presented in Fig. 4b. These results show that an approximately 2 nm thick amorphous Al$_2$O$_3$ layer between ZnO layers terminates the ZnO crystal growth and affects the size of the crystallites in the nanolaminates.

![Fig. 4. a) Measured powder XRD curves and b) calculated crystallite sizes of the samples.](image)

Top view scanning electron micrographs are presented in Fig. 5. In the ZNO sample, the crystals are very large compared to the AZO samples and their shape is more like elongated than spherical as is the case with the AZO films. The crystal size clearly increases from AZO1 to AZO4 as the XRD results suggest. However, the smallest crystals seem larger than the lower bound estimated from the XRD peak width.

![Fig. 5. Top view SEM images of the samples: a) AZO1, b) AZO2, c) AZO3, d) AZO4, and e) ZNO.](image)

**TiO$_2$/Al$_2$O$_3$ nanolaminates**

In order to characterize the crystal structure and the size of the crystallites in the TiO$_2$/Al$_2$O$_3$ nanolaminates, similar powder XRD experiments were carried out. Measured XRD curves of the TiO$_2$/Al$_2$O$_3$ nanolaminates are shown Fig. 6a. Diffraction peaks are located at the positions 25.3°, 48.0°, and 55.1°, which correspond to (101), (200), and (211) planes of anatase TiO$_2$, respectively. These results indicate that the grown TiO$_2$ is in the anatase phase in samples S0, S3, and S4. The samples S1, and S2 do not show visible peaks in the XRD suggesting the amorphous phase. Fig. 6b shows the top view SEM images of the samples S0-S4. S1 and S2 look like amorphous film without any clear crystals. Large crystals are seen in the samples S0 and S4. Smaller crystals can be found from S3.
3.3. Third-order optical nonlinearity

**ZnO/Al₂O₃ nanolaminates**

The third-order optical nonlinearity of the nanolaminates was characterized using a multiphoton microscope. The third harmonic generation (THG) signal as a function of crystallite size is plotted in Fig. 7a. The figure shows that the THG signal increases almost linearly as the crystallite size decreases. We assume that the THG is mainly from ZnO because the third-order optical nonlinearity coefficient $\chi^{(3)}$ of Al₂O₃ has been reported to be about 20 times less than in ZnO. AZO1 sample generates 13 times higher THG signal than a homogeneous ZnO sample. THG is proportional to $(V\cdot\chi^{(3)})^2$ where $\chi^{(3)}$ is the third-order optical nonlinearity coefficient and $V$ is the material volume. The estimated $\chi^{(3)}$ of the nanolaminate samples normalized to ZnO film are presented in Fig. 7b. We also measured the THG signal from Corning 0211 glass as a reference and the value was 2.26. Therefore, the THG signal from the nanolaminate with the smallest crystals is about 200 times stronger than from glass. Aluminum doped zinc oxide is a well-known transparent conducting oxide. We also observed that zinc oxide was doped by aluminum in our nanolaminates even though our Al₂O₃ sublayers are relatively thick. Therefore, one explanation for the higher third-order nonlinearities from AZO1 and AZO2 samples could be that they contain more free electrons than ZNO, AZO4 and AZO3.

**Fig. 7. a) THG signal as a function of crystallite size and b) $\chi^{(3)}$ of the samples normalized to ZNO sample. Inset in a) shows the 50x50 µm² THG signal image from the sample AZO1.**

**TiO₂/Al₂O₃ nanolaminates**

Thicknesses of the samples and the measured THG signals are presented in Table 5. Thicknesses are estimated using a spectral transmission measurement. The highest THG signal was observed from the crystalline TiO₂ reference sample. The highest THG signal measured from the TiO₂/Al₂O₃ nanolaminates was from the sample S4 which has the largest crystals and the smallest number of interfaces. We believe that this is due to the larger amount of anatase TiO₂.
sample S2 seems to be the best trade-off having almost two thirds of the THG signal compared to S0, but still having low losses at the wavelength of 1551 nm (2 dB/cm). If we take thickness into account then it looks like that the sample S4 has the highest $\chi^{(3)}$. Also the sample S1 has still relatively high $\chi^{(3)}$ compared to the amorphous TiO$_2$ (sample S5).

Table 5. Thicknesses and THG signals of S0-S6 samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Thickness (nm)</th>
<th>THG signal (normalized to S0)</th>
<th>$\chi^{(3)}$ (normalized to S0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>203 ± 10</td>
<td>1 ± 0.08</td>
<td>1</td>
</tr>
<tr>
<td>S1</td>
<td>195 ± 2</td>
<td>0.46 ± 0.08</td>
<td>0.70</td>
</tr>
<tr>
<td>S2</td>
<td>183 ± 2</td>
<td>0.66 ± 0.08</td>
<td>0.90</td>
</tr>
<tr>
<td>S3</td>
<td>173 ± 2</td>
<td>0.76 ± 0.08</td>
<td>1.02</td>
</tr>
<tr>
<td>S4</td>
<td>168 ± 2</td>
<td>0.80 ± 0.08</td>
<td>1.08</td>
</tr>
<tr>
<td>S5</td>
<td>200 ± 2</td>
<td>0.57 ± 0.08</td>
<td>0.44</td>
</tr>
<tr>
<td>S6</td>
<td>200 ± 2</td>
<td>0.72 ± 0.08</td>
<td>0.76</td>
</tr>
</tbody>
</table>

4. CONCLUSIONS

We demonstrated the novel atomic layer deposition (ALD) process to control the crystallinity of titanium dioxide (TiO$_2$) and zinc oxide (ZnO) using amorphous intermediate Al$_2$O$_3$ layers$^{4,32}$. The waveguide losses of TiO$_2$/Al$_2$O$_3$ nanolaminates measured using prism coupling method for both 633 nm and 1551 nm wavelengths were as low as 0.2 ± 0.1 dB/mm with the thinnest TiO$_2$ layer. In comparison, plain TiO$_2$ deposited at 250°C without the intermediate Al$_2$O$_3$ layers shows high scattering losses and is not viable as a waveguide material. The third-order optical nonlinearity in TiO$_2$/Al$_2$O$_3$ nanolaminate was also studied, and it was shown that the crystallinity controlled ALD-TiO$_2$ is an excellent candidate for various optical applications, where good thermal stability and high third-order optical nonlinearity are needed. We also investigated the third-order optical nonlinearity in ZnO/Al$_2$O$_3$ nanolaminates fabricated by atomic layer deposition and showed that the third-order optical nonlinearity can be enhanced by nanoscale engineering of the thin film structure. The grain size of the polycrystalline ZnO film is controlled by varying the thickness of the ZnO layers in the nanolaminate. Nanoscale engineering enables us to achieve a third harmonic generated signal enhancement of ~13 times from the optimized nanolaminate structure compared to a ZnO reference film of comparable thickness.

5. ACKNOWLEDGEMENTS

The work is partially financed by NP-Nano FiDiPro-project by TEKES, the Finnish Academy grants 134087 (A.S.) and 251210 (L.K.), the Graduate School of Modern Optics and Photonics (L.K. and H.J.), Walter Ahlström foundation (L.K.) and the Finnish Foundation for Technology Promotion (L.K. and A.S.). We also acknowledge the provision of technical facilities of the Micronova, Nanofabrication Centre of Aalto University. University of Arizona contributors would like to acknowledge the support of the AFOSR COMAS MURI (FA9550-10-1-0558), the CIAN NSF ERC under grant #EEC-0812072, and TRIF Photonics funding from the state of Arizona.

6. REFERENCES


