Multilabel classification is an important field in machine learning that arises naturally from many real-world applications. For example, in document classification, a research article can be categorized as "science", "drug discovery" and "genomics" at the same time. The goal of multilabel classification is to reliably predict multiple outputs for a given input. As multiple output variables are often interdependent, the central problem in multilabel classification is how to best exploit the correlation between labels to make accurate predictions. The main question studied in this thesis is how to tackle multilabel classification through structured output learning. The main contributions are several new learning algorithms that widen the applicability of structured output learning.
Multilabel Classification through Structured Output Learning - Methods and Applications

Hongyu Su

A doctoral dissertation completed for the degree of Doctor of Science (Technology) to be defended, with the permission of the Aalto University School of Science, at a public examination held at the lecture hall T2 of the school on 27th March 2015 at 12 noon.

Aalto University
School of Science
Department of Computer Science
Multilabel classification is an important topic in machine learning that arises naturally from many real world applications. For example, in document classification, a research article can be categorized as “science”, “drug discovery” and “genomics” at the same time. The goal of multilabel classification is to reliably predict multiple outputs for a given input. As multiple interdependent labels can be “on” and “off” simultaneously, the central problem in multilabel classification is how to best exploit the correlation between labels to make accurate predictions. Compared to the previous flat multilabel classification approaches which treat multiple labels as a flat vector, structured output learning relies on an output graph connecting multiple labels to model the correlation between labels in a comprehensive manner. The main question studied in this thesis is how to tackle multilabel classification through structured output learning.

This thesis starts with an extensive review on the topic of classification learning including both single-label and multilabel classification. The first problem we address is how to solve the multilabel classification problem when the output graph is observed apriori. We discuss several well-established structured output learning algorithms and study the network response prediction problem within the context of social network analysis. As the current structured output learning algorithms rely on the output graph to exploit the dependency between labels, the second problem we address is how to use structured output learning when the output graph is not known. Specifically, we examine the potential of learning on a set of random output graphs when the “real” one is hidden. This problem is relevant as in most multilabel classification problems there does not exist any output graph that reveals the dependency between labels. The third problem we address is how to analyze the proposed learning algorithms in a theoretical manner. Specifically, we want to explain the intuition behind the proposed models and to study the generalization error.

The main contributions of this thesis are several new learning algorithms that widen the applicability of structured output learning. For the problem with an observed output graph, the proposed algorithm “SPIN” is able to predict an optimal directed acyclic graph from an observed underlying network that best responds to an input. For general multilabel classification problems without any known output graph, we proposed several learning algorithms that combine a set of structured output learners built on random output graphs. In addition, we develop a joint learning and inference framework which is based on max-margin learning over a random sample of spanning trees. The theoretic analysis also guarantees the generalization error of the proposed methods.

Keywords Machine Learning, Classification, Structured Prediction, Large Margin Methods, Graphical Models, Social Network

Abstract

Multilabel classification is an important topic in machine learning that arises naturally from many real world applications. For example, in document classification, a research article can be categorized as “science”, “drug discovery” and “genomics” at the same time. The goal of multilabel classification is to reliably predict multiple outputs for a given input. As multiple interdependent labels can be “on” and “off” simultaneously, the central problem in multilabel classification is how to best exploit the correlation between labels to make accurate predictions. Compared to the previous flat multilabel classification approaches which treat multiple labels as a flat vector, structured output learning relies on an output graph connecting multiple labels to model the correlation between labels in a comprehensive manner. The main question studied in this thesis is how to tackle multilabel classification through structured output learning.

This thesis starts with an extensive review on the topic of classification learning including both single-label and multilabel classification. The first problem we address is how to solve the multilabel classification problem when the output graph is observed apriori. We discuss several well-established structured output learning algorithms and study the network response prediction problem within the context of social network analysis. As the current structured output learning algorithms rely on the output graph to exploit the dependency between labels, the second problem we address is how to use structured output learning when the output graph is not known. Specifically, we examine the potential of learning on a set of random output graphs when the “real” one is hidden. This problem is relevant as in most multilabel classification problems there does not exist any output graph that reveals the dependency between labels. The third problem we address is how to analyze the proposed learning algorithms in a theoretical manner. Specifically, we want to explain the intuition behind the proposed models and to study the generalization error.

The main contributions of this thesis are several new learning algorithms that widen the applicability of structured output learning. For the problem with an observed output graph, the proposed algorithm “SPIN” is able to predict an optimal directed acyclic graph from an observed underlying network that best responds to an input. For general multilabel classification problems without any known output graph, we proposed several learning algorithms that combine a set of structured output learners built on random output graphs. In addition, we develop a joint learning and inference framework which is based on max-margin learning over a random sample of spanning trees. The theoretic analysis also guarantees the generalization error of the proposed methods.

Abstract
Preface

First and foremost, I wish to express my deep gratitude to Prof. Juho Rousu for supervising my research during my doctoral years. The thesis would not have been possible without his continuous guidance and enormous support. I am grateful to Prof. John Shawe-Taylor and Prof. Mario Marchand for the inspirations and brilliant ideas during my visits to University College London and Université Laval. I thank Prof. Aristides Gionis for all the fruitful discussions and his expertise in data mining. My gratitude also goes to other coauthors, Emile Morvant and Markus Heinonen. I thank Alan Medlar and Swee Chong Wong for the feedback on the writing of the thesis. I am grateful to pre-examiners, Prof. Pierre Geurts and Doc. Tapio Pahikkala for their valuable comments. I also thank Prof. Tapio Elomaa for the honour of having him as my opponent. I gratefully acknowledge Helsinki Doctoral Programme in Computer Science (Hecse), Academy of Finland (grant 118653), and EU PASCAL Network. I thank all my colleagues in Helsinki Institute for Information Technology HIIT, ICS Department in Aalto University, and CS Department in University of Helsinki for the enjoyable working environment and the excellent IT support. In particular, I thank Minna Kauppila and Pirjo Moen. I am thankful to Esa, Jefrey, Céline, Huibin, Jana, Elena, Nicole, Anna, Viivi, and Sahely from our research group. I am deeply indebted to Chunxiang for her perseverance and endless encouragements. Last but certainly not least, I am grateful to my parents – for everything!

Espoo, February 13, 2015,

Hongyu Su
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>Contents</td>
<td>3</td>
</tr>
<tr>
<td>List of Publications</td>
<td>5</td>
</tr>
<tr>
<td>Author's Contribution</td>
<td>7</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>9</td>
</tr>
<tr>
<td>1.1 Scope of the Thesis</td>
<td>9</td>
</tr>
<tr>
<td>1.2 Contributions and Organization</td>
<td>12</td>
</tr>
<tr>
<td>2. Regularized Learning for Classification</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Regularized Risk Minimization</td>
<td>15</td>
</tr>
<tr>
<td>2.1.1 Empirical Risk Minimization</td>
<td>15</td>
</tr>
<tr>
<td>2.1.2 Regularized Learning</td>
<td>16</td>
</tr>
<tr>
<td>2.2 Single-Label Classification</td>
<td>17</td>
</tr>
<tr>
<td>2.2.1 Preliminaries</td>
<td>18</td>
</tr>
<tr>
<td>2.2.2 Logistic Regression (LR)</td>
<td>18</td>
</tr>
<tr>
<td>2.2.3 Support Vector Machines (SVM)</td>
<td>20</td>
</tr>
<tr>
<td>2.3 Ensemble Methods</td>
<td>25</td>
</tr>
<tr>
<td>2.3.1 Preliminaries</td>
<td>26</td>
</tr>
<tr>
<td>2.3.2 Boosting</td>
<td>26</td>
</tr>
<tr>
<td>2.3.3 Bootstrap Aggregating</td>
<td>28</td>
</tr>
<tr>
<td>3. Multilabel Classification</td>
<td>31</td>
</tr>
<tr>
<td>3.1 Preliminaries</td>
<td>32</td>
</tr>
<tr>
<td>3.2 Problem Transformation</td>
<td>32</td>
</tr>
<tr>
<td>3.2.1 Multilabel K-Nearest Neighbors (ML-KNN)</td>
<td>33</td>
</tr>
<tr>
<td>3.2.2 Classifier Chains (CC)</td>
<td>33</td>
</tr>
</tbody>
</table>
This thesis consists of an overview and of the following publications which are referred to in the text by their Roman numerals.

List of Publications
Author’s Contribution

Publication I: “Structured Prediction of Network Response”

Publication I presents a novel definition of the network response prediction problem, and proposes a new structured output learning algorithm to solve the problem. The proposed algorithm, SPIN, captures the contextual information and improves the state-of-the-art models in terms of the prediction performance.

The definition of the problem was jointly proposed. The author made a major contribution to the design of the learning system and the optimization algorithm. The author implemented the learning system and the optimization algorithm. The author designed and performed the experiments and analyzed the results. The author worked jointly on writing the research article.

Publication II: “Multilabel Classification of Drug-like Molecules via Max-margin Conditional Random Fields”

Publication II presents a structured output learning algorithm for the multilabel molecular classification problem. The new algorithm incorporates into the learning process the correlations between multiple output variables. It outperforms previous single-label classification approaches in terms of the prediction performance.

The original modeling idea was jointly developed. The author implemented the learning system. The author designed and performed the experiments and analyzed the results. The author worked jointly on writing the research article.
Publication III: “Multi-task Drug Bioactivity Classification with Graph Labeling Ensembles”

Publication III extends Publication II by applying majority vote to combine the predictions from a set of structured output learners built on a collection of random output graphs.

The learning strategy was jointly developed. The author made a major contribution to the design of the learning system and the optimization algorithm. The author implemented the algorithms, designed and performed the experiments, and analyzed the results. The author worked jointly on writing the research article.

Publication IV: “Multilabel Classification through Random Graph Ensembles”

Publication IV extends Publication III by introducing two aggregation techniques which perform inference before or after combining multiple structure output learners. Publication IV also presents a theoretical study that explains the performance of the proposed algorithms. The developed algorithms are evaluated on a collection of heterogeneous multilabel classification problems.

The modeling idea was jointly developed by the authors. The author designed and implemented the learning frameworks and the optimization algorithms. The author conducted the theoretical study which explains the performance of the proposed learning algorithms. The author designed and performed the experiments and analyzed the results. The author worked jointly on writing the research article.

Publication V: “Multilabel Structured Output Learning with Random Spanning Trees of Max-Margin Markov Networks”

Publication V is a major step forward of Publication IV by introducing a joint learning and inference framework, and developing rigorous theories to backup the algorithm.

The idea was jointly initialized by the authors. The author worked jointly on developing the theories and the proofs. The author made a major contribution to the design of the learning framework and the optimization algorithm. The author implemented the learning system and the
optimization algorithm. The author designed and performed the experiments, and analyzed the results. The author worked jointly on writing the research article.
1. Introduction

1.1 Scope of the Thesis

Machine learning, defined by Arthur Samuel in 1959 as “a field of study that gives computers the ability to learn without being explicitly programmed”, has gained in popularity and become an active research field in computer science during the last few decades. Machine learning not only produces intelligent systems that generalize well from previously observed examples, but is also firmly rooted in statistical learning theory that establishes the conditions guaranteeing good generalization (Vapnik, 1998, 1999). Machine learning appears in many real world applications, to name but a few, ranking web pages in internet search (Richardson et al., 2006), spam filtering in email (Goodman and tau Yih, 2006), recommender systems for online shopping (Bell and Koren, 2007), and image and speech recognitions (Bengio, 2009). With the increasing availability of large scale datasets, machine learning is expected to play an indispensable role in many research fields (Fan and Bifet, 2013).

Supervised learning, an important paradigm in machine learning, is usually defined as learning a function that is capable of predicting the best value for an output variable given an input variable. The function is learned by exploring a set of observed input/output pairs known as training examples. In the classical supervised learning setting, there is only one variable to be predicted. This is called *single-label classification* if the output variable is discrete, or *regression* if the output variable is continuous. Many single-label classification models have been designed and applied in practice, for example, the perceptron (Rosenblatt, 1958), logistic regression (Chen and Rosenfeld, 1999), and support vector machines (Cortes and Vapnik, 1995).
Multilabel classification is a natural extension to single-label classification by defining multiple interdependent output variables associated with each input. This type of problems are prevalent in everyday life. For example, a movie can be classified as “sci-fi”, “thriller” and “crime”; a news article can be categorized as “science”, “drug discovery” and “genomics”; a gene can be associated with multiple functions in genomics research; a surveillance photo can be tagged with “car”, “building” and “road”. When multiple output variables are treated as a “flat” vector, the problem is often called flat multilabel classification. Flat multilabel classification is one branch of multilabel classification that has seen interest from the machine learning community (Tsoumakas and Katakis, 2007; Tsoumakas et al., 2010). As multiple output variables can be “on” and “off” simultaneously, various flat multilabel classification algorithms have been developed that aim to explore the correlation between multiple output variables in order to make accurate predictions. In particular, Tsoumakas and Katakis (2007) summarized the established flat multilabel classification algorithms into two categories, namely problem transformation (Zhang and Zhou, 2005; Read et al., 2009; Cheng and Hüllermeier, 2009) and algorithm adaptation (Schapire and Singer, 1999; Bian et al., 2012).

There exists another line of research in multilabel classification known as structured output prediction where a complex structure (output graph) is defined on multiple output variables to model dependencies in a more comprehensive way. Hierarchical classification is one type of structured output prediction in which the prediction needs to be reconciled along a pre-established hierarchical structure (Silla and Freitas, 2011). Hierarchical classification is usually applied to the problem in which different levels of granularity need to be addressed by a hierarchical structure. The hierarchy can be either a rooted tree such as in the document classification problem (Hao et al., 2007; Li et al., 2007; Rousu et al., 2006), or a directed acyclic graph (DAG) with parent-children relationships such as in the gene function prediction problem (Barutcuoglu et al., 2006). There exists a large body of work on hierarchical classification from the early approaches which use the hierarchical structure heuristically for pre-processing or post-processing (Koller and Sahami, 1997; Dumais and Chen, 2000; Liu et al., 2005; DeCoro et al., 2007) to the recent approaches which encode the structure into the learning process (Cai and Hofmann, 2004; Cesa-bianchi et al., 2005; Rousu et al., 2006; Gopal et al., 2012).

Graph labeling is another type of structured output prediction in which
the output graph often takes a more general form and does not require the concept of “level” compared to hierarchical classification. The approach can be applied to a wider range of problems, for example, speech tagging with sequence structure (Collins, 2002), and action recognition with Markov network structure (Wang and Mori, 2011). The graph labeling approach often directly incorporates the output graph into learning and exploits the dependency between labels to improve classification performance (Collins, 2002; Lafferty et al., 2001; Taskar et al., 2002, 2004; Tsochantaridis et al., 2004; Rousu et al., 2007). For graph labeling or structured output learning in general, one central problem is the output graph is assumed to be known apriori. However, this cannot be taken for granted as the proper dependency structure for the output variables is either hidden or difficult to retrieve in many applications (Chickering et al., 1994).

Figure 1.1 illustrates the taxonomy of multilabel classification. However, there is no clear line drawn between different categories. In particular, some hierarchical classification models (Tsochantaridis et al., 2004; Rousu et al., 2006) can also belong to the graph labeling category. As we focus on graph labeling in structured output prediction, we will explicitly use “structured output prediction” to refer to “graph labeling” throughout this thesis.

In this thesis, we extend the applicability of structured output learning by developing several new learning models and applying them to real world multilabel classification problems. In addition, we work on the problem of structured output learning when the output dependency structure is not observed. The models thus created are not constrained by the availability of the output graph and can therefore be applied to a wider
range of multilabel classification problems. We also investigate the efficiency and the scalability of the inference algorithms in the proposed structured output learning models. Finally, we study the theoretic aspect of the proposed models. The research questions can be summarized as follows.

- Should we tackle multilabel classification with structured output learning rather than flat multilabel classification?
- How to apply structured output learning to multilabel classification problems when the output graph is not known \textit{apriori}?
- Can we provide any theoretical studies to explain the behavior of the proposed learning models and to guarantee the performance?
- Can we efficiently solve the inference problems of the proposed structured output learning models?

\subsection{Contributions and Organization}

The contributions of the thesis are several novel statistical learning models that widen the applicability of structured output learning. The thesis starts by reviewing several lines of research in classification learning. The first contribution is to develop a new structured output learning model for the multilabel classification problem with an observed output graph. The proposed model can predict an optimal directed acyclic graph (DAG) from an observed underlying network which best responds to an input. The model has been applied to network response prediction within the context of social network analysis. For the general multilabel classification problems in which the output graph is not known \textit{apriori}, we develop several new models that combine a set of structured output learners built on a collection of random output graphs. In addition, we develop a joint learning and inference framework that is based on max-margin learning on a random sample of spanning trees. Thus, the proposed methods are not constrained by the availability of the output graphs. Moreover, we provide the theoretical studies which not only explain the intuition behind the formalisms but also guarantee the generalization error of the proposed models.

The remaining part of this thesis is structured as follows. Chapter 2 gives the background information to the learning problem in terms of
introduction, covering the basic concepts in classification learning including regularized risk minimization in Section 2.1, single-label classification in Section 2.2, and ensemble learning in Section 2.3. Chapter 3 introduces the multilabel classification problem which is the core problem under study in this thesis. The chapter also describes the flat multilabel classification approach which is a standard treatment for the multilabel classification problem. Chapter 4 and Chapter 5 present the main contributions of the thesis. In particular, Chapter 4 presents the structured output learning models developed for the multilabel classification problem with an observed output graph. The methods presented extend the flat multilabel classification approaches described in the previous chapter. Chapter 5 presents several models developed for structured output learning when the output graph is not observed. Chapter 6 describes the implementation details of the developed models. Chapter 7 concludes the thesis and details the future research directions.

This thesis presents the idea and the background of the proposed structured output learning models. The formalisms of the proposed models are also briefly explained. The notation and the presentation of some of the proposed models are slightly improved to incorporate the models into an unified framework. The technical details and the empirical evaluations of the proposed models are not repeated, rather, they can be found from the original research articles in the latter part of the thesis.
Introduction
2. Regularized Learning for Classification

2.1 Regularized Risk Minimization

In this section, the author will introduce two fundamental concepts in statistical machine learning, known as empirical risk minimization (Vapnik, 1992) and regularization (Evgeniou et al., 1999) which create most learning algorithms presented in the remaining part of this thesis.

2.1.1 Empirical Risk Minimization

We assume that two random variables $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ are jointly distributed according to some fixed but unknown probability distribution $P(x, y)$ over a domain $\mathcal{X} \times \mathcal{Y}$, where \mathcal{X} is an input (instance) space and \mathcal{Y} is an output (label) space. We use bold face to distinguish vectors from scalars. The definition of the output space \mathcal{Y} will decide the type of the learning problem, for example, multiclass classification by setting $\mathcal{Y} = \{1, \cdots, K\}$, regression by setting $\mathcal{Y} = \mathbb{R}$ where \mathbb{R} is the set of real numbers, binary classification by setting $\mathcal{Y} = \{-1, +1\}$, and multilabel binary classification by setting $\mathcal{Y} = \{-1, +1\}^k$. In addition, we are provided with paired examples $(x, y) \in \mathcal{X} \times \mathcal{Y}$ which are generated by sampling according to the distribution $P(x, y)$. A hypothesis class \mathcal{H} is a set of functions that a learning algorithm is allowed to search against. The goal of statistical learning is to provide an estimator $f \in \mathcal{H} : \mathcal{X} \rightarrow \mathcal{Y}$ which predicts the best value of an output y given an input x.

We use loss function $L(y, f(x)) : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^+$ to measure the goodness of an estimator, which is a monotonic bounded function between a true value y and an estimated value $f(x)$. There are many ways to define the loss function including, for example, the hinge loss in support vector
machines (Cortes and Vapnik, 1995)

\[\mathcal{L}_{\text{hinge}}(y, f(x)) = \max(0, 1 - yf(x)), \mathcal{Y} = [-1, +1], \]

(2.1)

the 0/1 loss in structured SVM (Tsochantaridis et al., 2004)

\[\mathcal{L}_{0/1}(y, f(x)) = 1_{\{y = f(x)\}}, \mathcal{Y} = \{-1, +1\}^k, \]

(2.2)

the squared loss in ridge regression (Hoerl and Kennard, 2000)

\[\mathcal{L}_{\text{squared}}(y, f(x)) = (y - f(x))^2, \mathcal{Y} = \mathbb{R}, \]

the exponential loss in ADABOOST (Schapire and Singer, 1999)

\[\mathcal{L}_{\text{exp}}(y, f(x)) = \exp(-yf(x)), \mathcal{Y} = \mathbb{R}, \]

(2.3)

and the logistic loss in logistic regression (Chen and Rosenfeld, 1999)

\[\mathcal{L}_{\text{log}}(y, f(x)) = \log(1 + \exp(-yf(x))), \mathcal{Y} = [-1, +1]. \]

(2.4)

We will study the loss functions with the corresponding learning algorithms in detail in the following part of this thesis.

The true risk of an estimator \(f \) over all examples from a domain \(\mathcal{X} \times \mathcal{Y} \) is then defined as

\[\mathcal{R}(f) = \int_{(x,y)\in\mathcal{X}\times\mathcal{Y}} \mathcal{L}(y, f(x))P(x, y) \, dx \, dy. \]

(2.5)

As a result, the learning algorithm should search for an estimator \(f \in \mathcal{H} \) which minimizes the true risk. However, it is impossible to compute the true risk directly according to (2.5), as the distribution \(P(x, y) \) is usually unknown. Instead we are given a random sample of \(m \) examples, denoted by \(S = \{(x_1, y_1), \ldots, (x_m, y_m)\} \), called the training data. The empirical risk of an estimator \(f \in \mathcal{H} \) is defined as the average error made by the estimator on the training data \(S \) of a finite size

\[\mathcal{R}_{\text{emp}}(f) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(y_i, f(x_i)). \]

(2.6)

This suggests that the learning algorithm should search for an estimator to minimize the empirical risk (2.6), which is called empirical risk minimization (Vapnik, 1992) in machine learning.

2.1.2 Regularized Learning

The empirical risk minimization strategy is ill-posed as it will provide an infinite number of estimators with the same empirical risk on the same
training data. Besides, it quite often leads to overfitting, in particular when the dimensionality of the feature space is high and the number of training examples is relatively small. That is, the underlying true distribution $P(x, y)$ is difficult to estimate based on a finite sample of training examples. As a result, the estimator will generalize poorly on unseen test examples. Regularization theory (Evgeniou et al., 1999, 2002) provides a framework to tackle these two problems. In particular, it suggests to minimize

$$
\mathcal{J}(f) = R_{\text{emp}}(f) + \lambda \Omega(f),
$$

where $\Omega(f)$ is a regularization function that controls the complexity of the estimator by penalizing the norm of the feature weight vector, λ is a positive parameter that controls the relative weight between the empirical risk term and the regularization term.

For the linear function class, there are several ways to define the regularization term including, for example, the L_1-norm and the L_2-norm regularizations. The L_2-norm regularization, defined by

$$
\Omega_{L_2}(f) = ||w||_2 = \left(\sum_{i=1}^{d} |w[i]|^2 \right)^{\frac{1}{2}},
$$

controls the complexity of the estimator f and provides a smooth solution. It has been applied in, for example, ridge regression (Hoerl and Kennard, 2000), logistic regression (Chen and Rosenfeld, 2000), and support vector machines (Cortes and Vapnik, 1995). On the other hand, the L_1-norm regularization, defined by

$$
\Omega_{L_1}(f) = ||w||_1 = \sum_{i=1}^{d} |w[i]|,
$$

provides a sparse parameter estimation such that we obtain a high dimensional feature weight vector with many zero entries. This is an attractive property as feature selection is incorporated into the learning process. The model thus created is usually easy to interpret. The L_1-norm regularization has been applied in, for example, LASSO (Tibshirani, 1994). Many other regularization techniques have been widely studied, for example, the $L_{1,2}$-norm regularization (Argyriou et al., 2007), and the elastic net regularization (Zou and Hastie, 2005).
2.2 Single-Label Classification

In this section, the author will introduce the basic classification problem known as single-label classification, and explain two prominent algorithms in this area, namely logistic regression and support vector machines. Optimization techniques and the latest advances of these two algorithms will also be briefly discussed. The goal is to provide background information that is necessary to understand the algorithms presented in the latter part of this thesis.

2.2.1 Preliminaries

In this section, we focus on the standard supervised learning problem also known as *binary classification*, by explicitly assuming the output space \(\mathcal{Y} = \{-1, +1\} \). Additionally, we assume a feature map \(\varphi: \mathcal{X} \to \mathcal{F} \), which embeds an input into some high dimensional feature space \(\mathcal{F} = \mathbb{R}^d \). In particular, \(\varphi(x) \) is a vector of real values in \(d \) dimensions. We consider the hypothesis class to be a set of *linear classifiers* that is parameterized by a weight vector \(w \) and a bias term \(b \) defined as

\[
f(x; w, b) = \langle w, \varphi(x) \rangle + b,
\]

where \(\langle \cdot, \cdot \rangle \) denotes the inner product of two vectors

\[
\langle w, \varphi(x) \rangle = \sum_{i=1}^{d} w[i] \varphi(x)[i].
\]

For any \(1 \leq \rho \in \mathbb{R} \), the \(L_\rho \)-norm of a vector \(w \) is defined as

\[
||w||_\rho = \left(\sum_{i=1}^{d} |w[i]|^\rho \right)^{\frac{1}{\rho}}.
\]

For the convenience of presentation, we will explicitly use \(||w|| \) to refer to the \(L_2 \)-norm of \(w \) in the remaining part of the thesis.

2.2.2 Logistic Regression (LR)

Logistic regression is a classification model rather than a regression model (Bishop, 2007). The formalism nicely transits from risk minimization (Section 2.1.2) to regularized risk minimization (Section 2.1.2). Logistic regression has been extended to many other classification algorithms presented in the latter part of the thesis, for example, IBLR in Section 3.2.3, and CORRLOG in Section 3.3.2. The central idea of logistic regression, the
odd-ratio type learning in particular, is also the building block of M^3N in Section 4.2.3 and many other algorithms developed in this thesis.

Logistic regression models the conditional probability $P(y = +1|x)$ for a binary output variable $y \in \mathcal{Y}$. To model the probability, we do not restrict to any particular form, as any unknown parameters can be estimated by maximum likelihood estimation (MLE). However, we are most interested in the simple linear model as described in (2.9). To apply the linear model, we compute the logistic transformation of the original conditional probability by

$$\log \frac{P(y = +1|x)}{P(y = -1|x)} = \langle w, \varphi(x) \rangle + b.$$

Solve it for $P(y = +1|x)$, we obtain

$$P(y = +1|x; w, b) = \frac{1}{1 + e^{-\langle w, \varphi(x) \rangle - b}}.$$

(2.10)

We can also compute

$$P(y = -1|x; w, b) = 1 - P(y = +1|x; w, b) = \frac{1}{1 + e^{\langle w, \varphi(x) \rangle + b}}.$$

(2.11)

Putting (2.10) and (2.11) together, we define logistic regression as

Definition 1. Logistic Regression (LR).

$$P(y|x; w, b) = \frac{1}{1 + e^{-\langle w, \varphi(x) \rangle - b}}.$$

We predict $y = +1$ when $P(y = +1|x; w, b) \geq 0.5$, and $y = -1$ otherwise. The decision rule is such that we predict $y = +1$ when $\langle w, \varphi(x) \rangle + b \geq 0$, and $y = -1$ otherwise. Besides the decision boundary, logistic regression can output the class probability of a data point as the “distance” of the data point to the decision boundary. It is the probabilistic output that makes logistic regression no more than a classifier.

The parameter w and b can be obtained by maximizing the probability (likelihood) of the training data. The likelihood of parameters given data can be computed by

$$L(w, b|D) = \prod_{i=1}^{m} P(y_i|x_i).$$

(2.12)

To apply MLE, it is easier if, instead of maximizing the likelihood, we maximize the log-likelihood, which turns the product (2.12) into sum

$$\log L(w, b|D) = \sum_{i=1}^{m} \log P(y_i|x_i) = - \sum_{i=1}^{m} \log(1 + e^{-y_i(\langle \varphi(x_i), w \rangle + b)}).$$

(2.13)
MLE can generate a LR model that fits the training data. However, there is no guarantee that the model also generalizes well on the unseen test data. To achieve a better generalization power, we apply the regularization technique presented in Section 2.1.2. Many regularization methods for LR have been developed (Chen and Rosenfeld, 1999, 2000; Goodman, 2003) among which adding Gaussian prior on the weight parameter \(w \) is a standard option. In practice, we assume \(w \) is generated according to a zero-mean spherical Gaussian with variance \(\sigma^2 \). Thus, the MLE problem (2.13) is transformed into the maximum a-posteriori (MAP) problem of the following form

\[
P(w, b | D; \sigma^2) = P(w | \sigma^2) \prod_{i=1}^{m} P(y_i | x_i) = e^{-\frac{||w||^2}{\sigma^2}} \prod_{i=1}^{m} \frac{1}{1 + e^{-y_i(\langle \phi(x_i), w \rangle + b)}}.
\]

(2.14)

Instead of maximizing the posterior (2.14), it is easier to maximize the log-posterior

\[
\log P(w, b | D; \sigma^2) = -\frac{||w||^2}{\sigma^2} - \sum_{i=1}^{m} \log (1 + e^{-y_i(\langle \phi(x_i), w \rangle + b)}).
\]

(2.15)

In fact, (2.15) is an instantiation of the regularized risk minimization strategy described in (2.7) with the \(L_2 \)-norm regularization (2.8) and the logistic loss (2.4).

Many optimization techniques have been proposed (Minka, 2003), for example, the iterative scaling method (Darroch and Ratcliff, 1972; Della Pietra et al., 1997; Berger, 1999; Goodman, 2002; Jin et al., 2003), the quasi-Newton method (Minka, 2003), the truncated Newton method (Komarek and Moore, 2005; Lin et al., 2008), and the coordinate descent method (Huang et al., 2009). There also exists a line of research that aims to optimize LR from the dual representation (Jaakkola and Haussler, 1999; Keerthi et al., 2005; Yu et al., 2011).

2.2.3 Support Vector Machines (SVM)

Support vector machines (SVM) is probably the most widely used single-label classification algorithm in machine learning. Its extensions for multilabel classification will be described in the latter part of the thesis (e.g., SSVM in Section 4.2.5). In this section, we first introduce maximum-margin principle which is also the basis of many structured output learning models, for example, M³N in Section 4.2.3, SPIN in Section 4.3, and RTA in Section 5.4. After that, we will discuss the formalism of SVM, the
primal-dual optimization strategy, and kernel methods which allow SVM to deal with the high dimensionality of the input feature space. In the end we will briefly present the optimization strategies developed for SVM.

The framework of SVM was originally introduced by Cortes and Vapnik (1995). The theory and the algorithm details of SVM are also presented in the book chapters (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004; Bishop, 2007). We begin our discussion by considering a very simple case where the training data is assumed to be linearly separable. There exists a hyperplane in the feature space which separates the training data into two classes. Additionally, we assume the separating hyperplane has a simple linear form (2.9) as

\[f(x) = \langle w, \varphi(x) \rangle + b = 0. \]

As a result, we predict \(y_i = +1 \) if \(f(x_i) \geq 0 \) and \(y_i = -1 \) otherwise. Given that a feature weight parameter \(w \) achieves a correct separation on the training data, we can decide the label of an unseen test example \(x_{ts} \) by the decision rule \(y_{ts} = \text{sign}(f(x_{ts})) \).

There can be an infinite number of separating hyperplanes that solve the separation problem on the same training data, which is also suggested by the empirical risk minimization strategy presented in Section 2.1.1. We wish to find the hyperplane which also generalizes well on the test data. A good strategy is to look for a hyperplane that keeps the maximum distance from the examples of two classes, which is known as maximum-margin principle. To see this, imagine putting a separating hyperplane close to one class of examples, which will achieve better classification performance for the test examples from the other class.

We further use \(\gamma_i \) to denote the margin of the \(i \)’th example defined as the geometric distance from the data point to the separating hyperplane

\[\gamma_i = \frac{y_i((w, \varphi(x_i)) + b)}{||w||}. \]

We notice that if \(w \) and \(b \) are scaled by any constant \(\kappa \in \mathbb{R} \) (e.g., \(w \leftarrow \kappa w, b \leftarrow \kappa b \)) the margin \(\gamma_i \) stays unchanged. The same classification performance and generalization power can still be obtained. As the parameters are invariant to scaling, we set \(||w|| = 1 \). Given a collection of training examples \(S \), we define the margin with respect to \(S \) as the minimum margin achieved by an individual training example

\[\gamma = \min_{i \in \{1, \ldots, m\}} \gamma_i. \]
Based on the maximum-margin principle, the goal of learning is to find a separating hyperplane such that it maximizes the margin with respect to all training examples while separating the training examples into two classes. This corresponds to finding a “big gap” between the examples of two classes in the feature space. The corresponding optimization problem (Bishop, 2007) is given as

$$\max_{w, b, \gamma} \gamma$$

$$\text{s.t. } y_i(\langle w, \varphi(x_i) \rangle + b) \geq \gamma, \forall i \in \{1, \cdots, m\}.$$

This is very difficult to optimize not only because the constraint $||w|| = 1$ is non-convex, but also the optimization is not in any standard form. By replacing w with $\frac{w}{\gamma}$, we obtain the following optimization problem

Definition 2. Primal Hard-Margin SVM Optimization Problem.

$$\min_w \frac{1}{2} ||w||^2$$

$$\text{s.t. } y_i(\langle w, \varphi(x_i) \rangle + b) \geq 1, \forall i \in \{1, \cdots, m\},$$

where the goal is to find a weight vector of the minimum norm which corresponds to maximize the margin between the examples of two classes. The constraints state that the training examples should be correctly separated.

We do not use Definition 2 in practice for two reasons. First, many real world data is not linearly separable, where the solution to the optimization problem in Definition 2 does not always exist. Secondly, the data usually comes with noises and errors. We do not want the resulting classifier to over-fit the training data. Therefore, we relax the constraints by introducing a margin slack parameter ξ_i for each training example x_i and rewrite the constraints as

$$y_i(\langle w, \varphi(x_i) \rangle + b) \geq 1 - \xi_i, \xi_i \geq 0, \forall i \in \{1, \cdots, m\}. \quad (2.16)$$

ξ_i will allow data points to have a margin less than 1. In particular, with $\xi_i = 0$, the data point x_i is correctly classified, and lies either on the margin or on the correct side. With $0 < \xi_i \leq 1$, the data point is correctly classified, and lies between the margin and the separating hyperplane. With $\xi_i > 1$, the data point is misclassified locating on the other side of the separating hyperplane. Now the new goal is to maximize the margin while penalizing the data points which either lie on the wrong side of the hyperplane or have a margin less than one. This can be defined by
Definition 3. **Primal Soft-Margin SVM Optimization Problem.**

\[
\min_{w, \xi} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \xi_i \\
\text{s.t.} \quad y_i (\langle w, \phi(x_i) \rangle + b) \geq 1 - \xi_i, \xi_i \geq 0, \forall i \in \{1, \cdots, m\}.
\]

Definition 3 is an instantiation of the regularized risk minimization strategy (2.7) with the \(L_2\)-norm regularization (2.8) and the hinge loss (2.1). The optimization problem is usually transformed into a dual form by introducing for each constraint a Lagrangian multiplier (dual variable) \(\alpha\). We defined the dual optimization problem as

Definition 4. **Dual Soft-Margin SVM Optimization Problem.**

\[
\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \langle \phi(x_i), \phi(x_j) \rangle \\
\text{s.t.} \quad \sum_{i=1}^{m} \alpha_i y_i = 0, 0 \leq \alpha_i \leq C, \forall i \in \{1, \cdots, m\}.
\]

It is not difficult to verify that according to Karush-Kuhn Tucher (K.K.T) conditions only the examples with \(\xi_i = 0\) and satisfying the equality constraints (2.16) will be “active”, have a dual variable \(\alpha_i > 0\), and lie on the margin with \(\gamma_i = 1\). They are called *support vectors* during the optimization of SVM. In fact the number of support vectors is usually smaller than the size of the training data. As the weight vector can be expressed as a linear combination of training examples (Shawe-Taylor and Cristianini, 2004)

\[
w = \sum_{i=1}^{m} \alpha_i y_i \phi(x_i),
\]

the evaluation can be done efficiently by maintaining a small set of non-zero dual variables.

To solve the optimization problem in Definition 4, we only need the result of the inner product \(\langle \phi(x_i), \phi(x_j) \rangle\) rather than work explicitly in the feature space of \(\phi(x)\). This suggests that training data can be radically represented through pairwise similarities. In particular, we defined a function \(k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}\) such that training data \(S\) is represented through a \(m \times m\) matrix of pairwise similarities.

Definition 5. **Kernel function.** A kernel \(k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}\) is a function that for all \(x_i, x_j \in \mathcal{X}\) satisfies

\[
k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle,
\]

where \(\phi : \mathcal{X} \to \mathcal{F}\) is a feature map that encodes from an input space \(\mathcal{X}\) to some feature space \(\mathcal{F}\) which is also an inner product space.
Definition 6. Inner Product Space. A real vector space \mathcal{F} is an inner product space if it is defined with the inner product operation $\langle \cdot, \cdot \rangle : \mathcal{F} \times \mathcal{F} \rightarrow \mathbb{R}$ that is symmetric $\langle z_i, z_j \rangle = \langle z_j, z_i \rangle$, bilinear in both scalars $\langle \lambda z_i, z_j \rangle = \lambda \langle z_i, z_j \rangle$ and vectors $(z_i + z_j, z) = (z_i z, z_j z)$, and positive $\langle z, z \rangle \geq 0$, for all $\lambda \in \mathbb{R}$ and $z_i, z_j, z \in \mathcal{F}$.

Definition 7. Symmetric and Positive Semi-definite Property. Given a non-empty set $S = \{x_1, \cdots, x_m\} \subseteq \mathcal{X}$ of m objects, a function $k : S \times S \rightarrow \mathbb{R}$ is symmetric and positive semi-definite if it satisfies
\[
k(x_i, x_j) = k(x_j, x_i) \quad \text{and} \quad \sum_{i,j=1}^{m} c_i c_j k(x_i, x_j) \geq 0
\]
for any $c_1, \cdots, c_m \in \mathbb{R}$.

Kernel functions in Definition 5 are symmetric positive semi-definite. In particular, the symmetry can be verified by
\[
k(x_i, x_j) = \langle \varphi(x_i), \varphi(x_j) \rangle = \langle \varphi(x_j), \varphi(x_i) \rangle = k(x_j, x_i),
\]
and the positive semi-definiteness can be verified by
\[
\sum_{i,j=1}^{m} c_i c_j k(x_i, x_j) = \sum_{i,j=1}^{m} c_i c_j \langle \varphi(x_i), \varphi(x_j) \rangle = \| \sum_{i=1}^{m} c_i \varphi(x_i) \|^2 \geq 0. \quad (2.17)
\]
(2.17) also implies that kernels are positive semi-definite for any choice of the feature map φ. In particular, if \mathcal{X} is already an inner product space, we can define a linear feature map $\varphi_{\text{LINEAR}} : \mathcal{X} \rightarrow \mathcal{X}$, which corresponds to the simplest kernel, known as linear kernel
\[
k_{\text{linear}}(x_i, x_j) = \langle x_i, x_j \rangle.
\]
Kernels that are heavily used in practice include polynomial kernel
\[
k_{\text{poly}}(x_i, x_j) = (\langle x_i, x_j \rangle + b)^d,
\]
where b is a bias term and d is the degree of polynomial, and Gaussian kernel (RBF)
\[
k_{\text{RBF}}(x_i, x_j) = \exp \left(\frac{||x_i - x_j||^2}{2\sigma^2} \right),
\]
where σ is the Gaussian width parameter.

Any kernel function can be represented as an inner product in some feature space \mathcal{F}. Kernel enables us to work in a high dimensional feature space \mathcal{F} without ever computing the exact coordinate or evaluating the inner product explicitly in that space. Instead, kernel can be computed based on the inner product in the original input space \mathcal{X}.
Definition 8. Kernel Matrix. Given any choice of \(m \) objects \(S = \{x_1, \ldots, x_m\} \subseteq \mathcal{X} \) and a kernel function \(k \) on \(S \), an \(m \times m \) matrix \(K = (k(x_i, x_j))_{i,j} \) is called a Kernel matrix (Gram matrix) of kernel \(k \) with respect to \(S \).

The kernel matrix is usually normalized by

\[
K(i,j) = \frac{K(i,j)}{\sqrt{K(i,i)K(j,j)}},
\]

to ensure that all elements in the kernel matrix lie on a unit hypersphere.

Definition 9. Positive Semi-definite Matrix. An \(m \times m \) symmetric matrix \(K \) is a positive semi-definite matrix if it satisfies

\[
\sum_{i,j=1}^{m} c_i c_j K(i,j) \geq 0
\]

for any \(c_1, \ldots, c_m \in \mathbb{R} \).

It has been shown that any Kernel matrices are positive semi-definite (Shawe-Taylor and Cristianini, 2004). Positive semi-definiteness distinguishes between general similarity measures and kernels. The property is essential in kernel based methods. It ensures kernel based methods will converge to a relevant solution in convex optimization (Boyd and Vandenberghe, 2004).

The algorithms for solving the optimization problem of SVM have been intensively studied, for example, the “chunking” method (Vapnik, 1982; Pérez-Cruz et al., 2004), the decomposition method (Osuna et al., 1997; Joachims, 1998), sequential minimal optimization (SMO) (Platt, 1998, 1999), and the “digesting” method (Decoste and Schölkopf, 2002). There are some recent studies that aim to scale SVM learning on large scale datasets, for example, representing the training data with a small set of landmark points (Pavlov et al., 2000; Boley and Cao, 2004; Yu et al., 2005; Zhang et al., 2008), the greedy method for basis selections (Keerthi et al., 2006), the online SVM solver (Bordes et al., 2005), approximating the objective function of SVM (Zhang et al., 2012; Le et al., 2013), and approximating the kernel matrix with a low-rank matrix (Smola and Schölkopf, 2000; Fine and Scheinberg, 2002; Drineas and Mahoney, 2005; Si et al., 2014).

2.3 Ensemble Methods

Ensemble methods are general classification techniques in machine learning. The methods train several base classifiers and combine them in order
to achieve more accurate predictions. There are several variants of ensemble methods, to name but a few, bagging (Breiman, 1996a), boosting (Freund and Schapire, 1997; Schapire and Singer, 1999), stacking (Smyth and Wolpert, 1999), and Bayesian averaging (Freund et al., 2004). Ensemble methods have improved the classification performance when compared to their base learner counterpart, some of them are also supported with the theoretical analysis which guarantees the performance (Schapire et al., 1997; Koltchinskii and Panchenko, 2000; Cortes et al., 2014a,b). This section will be devoted to bagging and boosting as both methods are extensively studied and quite relevant to this thesis.

Ensemble methods and their theories are primarily developed for single-label classification. The extensions for multilabel classification will be briefly presented in Section 3.3.1. Moreover, we will present several new learning algorithms in the latter part of the thesis, which are related to the ensemble methods presented in this section but with significant differences.

2.3.1 Preliminaries

In addition to the notations introduced in Section 2.2.1, we assume there is a hypothesis class \mathcal{H}^w where we generate weak/base hypotheses $f^t(x) \in \mathcal{H}^w$. We use t to index the t'th weak hypothesis. Let $H(x)$ denote the ensemble framework which combines multiple weak hypotheses and generate a stronger one. In many cases, no other information about $f^t(x)$ is available to $H(x)$ except that each weak hypothesis will take in a parameter $x \in \mathcal{X}$ and generate an output $y \in \mathcal{Y}$.

2.3.2 Boosting

Boosting corresponds to a learning framework or a family of algorithms that takes in a weak classifier and tunes it into a strong one. We begin our discussion from the concept class. A concept is a boolean function over a domain \mathcal{X}, and a concept class is a class of concepts. A concept class is strongly learnable if there exists a polynomial learning algorithm which achieves high accuracy with high probability for all concepts in the class. On the other hand, a concept class is weakly learnable if the learning algorithm achieves arbitrarily high accuracy where the only requirement is that the learning algorithm finds a function which performs better than the coin flipping. The concept of learnability was proposed by Kearns and
Valiant (1989) together with the question whether the strong learnability and the weak learnability are equivalent which is known as the *hypothesis boosting problem*. Finding a weak learner which performs better than random guessing is easy in practice, but finding a strong learner is usually difficult. Schapire (1990) has proved that the two classes of learnability are equivalent which lays the foundation of the boosting algorithm that tunes a weak learning algorithm into a strong one.

Adaptive Boosting (ADABOOST) proposed by Freund and Schapire (1997) is the very first practical boosting algorithm and is the most influential one. In addition, Schapire and Singer (1999) proposed a variant of the algorithm which updates the adaptive parameters to minimize the exponential loss (2.3) of each weak learner. The algorithm is shown in Algorithm 1. The central idea of ADABOOST is to maintain a distribution D over all training examples, and update the distribution in each iteration such that the difficult-to-classify examples will get more probability mass for the next iteration (line 7). Particularly, in each iteration, the algorithm computes a weak learner $f^t(x)$ based on all training examples and the current distribution D^t (line 3), calculates the weighted training error ϵ^t (line 4), and computes the adaptive parameter α^t (line 5). The ensemble prediction is the weighted combination of all weak learners (line 9).

Algorithm 1 ADABOOST

Input: Training sample $S = \{(x_i, y_i)\}_{i=1}^m$, learning function W, number of weak learners T

Output: Boosting ensemble $H(x)$

1: Initialize $D^1(i) = \frac{1}{m}, \forall i \in \{1, \ldots, m\}$

2: for $t = 1 \cdots T$ do

3: \hspace{0.5cm} $f^t(x) \leftarrow W(S, D^t)$

4: \hspace{0.5cm} $\epsilon^t = \sum_{i=1}^{m} D^t(i) 1_{\{y_i \neq f^t(x_i)\}}$

5: \hspace{0.5cm} $\alpha^t = \frac{1}{2} \ln \left(\frac{1-\epsilon^t}{\epsilon^t} \right)$

6: \hspace{0.5cm} $Z = \sum_{i=1}^{m} D^t(i) \exp(-\alpha^t y_i f^t(x_i))$

7: \hspace{0.5cm} $D^{t+1}(i) = \frac{1}{Z} D^t(i) \exp(-\alpha^t y_i f^t(x_i)), \forall i \in \{1, \ldots, m\}$

8: end for

9: return $H(x) = \text{sign}(\sum_{t=1}^{T} \alpha^t f^t(x))$

For each weak learner $f^t(x)$, the strategy of updating the adaptive parameter α^t is to ensure that the exponential loss of $\alpha^t f^t(x)$ is minimized.

To see this, we first compute the exponential loss of $\alpha^t f^t(x)$ given the cur-
rent distribution D^t and the adaptive parameter α^t

$$L_{exp}(y, \alpha^t f^t(x); D^t)$$

$$= \sum_{i=1}^{m} D^t(i) \exp(-y_i \alpha^t f^t(x_i))$$

$$= \exp(-\alpha^t) \sum_{i=1}^{m} D^t(i) 1_{\{y_i = f(x_i)\}} + \exp(\alpha^t) \sum_{i=1}^{m} D^t(i) 1_{\{y_i \neq f(x_i)\}}$$

$$= \exp(-\alpha^t)(1 - \epsilon^t) + \exp(\alpha^t)\epsilon^t.$$

To minimize $L_{exp}(y, \alpha^t f^t(x); D^t)$, we take the partial derivative with respect to α^t and set it to zero

$$\frac{\partial L_{exp}(y, \alpha^t f^t(x); D^t)}{\partial \alpha^t} = - \exp(-\alpha^t)(1 - \epsilon^t) + \exp(\alpha^t)\epsilon^t = 0.$$

Solve it for α^t, we get

$$\alpha^t = \frac{1}{2} \ln \left(\frac{1 - \epsilon^t}{\epsilon^t} \right).$$

It is worth pointing out that ADABOOST described in (algorithm 1) requires the learning algorithm W work with some specific distribution defined on the training data. The distribution is usually generated by reweighing which initializes a uniform distribution over all training examples and updates the distribution in each iteration. For the learning algorithms that cannot work with distributions, resampling is often applied which generates a new training dataset in each iteration by sampling training examples according to some desired distribution.

DEEPBOOSTING (Cortes et al., 2014b) improves ADABOOST by allowing the base learning algorithm to use a complex hypothesis class. The theoretic analysis of DEEPBOOSTING also advances the previous performance guarantee of ADABOOST (Schapire et al., 1997; Koltchinskii and Panchenko, 2000).

2.3.3 Bootstrap Aggregating

Bootstrap Aggregating (BAGGING) (Breiman, 1996a) is an ensemble method that exploits the independency between weak learners. The algorithm is based on the fact that errors can be dramatically reduced by combining independent base learners. Let f^t denote the tth weak learner. The ensemble prediction $H(x)$ is the averaged prediction over all weak learners

$$H(x) = \text{sign} \left(\sum_{t=1}^{T} f^t(x) \right).$$

(2.18)
We assume that each base learner has a probability of ϵ to make an independent mistake

$$P(f^t(x) \neq y) = \epsilon.$$

As BAGGING (2.18) makes a mistake when at least half of the weak learners make mistakes, the probability of BAGGING making mistake can be computed by

$$P(H(x) \neq y) = \sum_{t=0}^{T/2} \binom{T}{t} (1-\epsilon)^t \epsilon^{T-t} \leq \exp\left(-\frac{1}{2}T(2\epsilon - 1)^2\right).$$

The probability decreases exponentially in the number of weak learners, which will approach zero when the number of weak learners approaches infinity. However, it does not hold in practice as base learners are generated from the same training data which can hardly be independent from each other. The goal of BAGGING is to best exploit the independency by adding randomness into the algorithm.

Bootstrap sampling (Efron and Tibshirani, 1994) is applied in BAGGING to generate subsets of training examples. Given a training set of m training examples, a subset of the same size is generated by sampling with replacement m times from the original training set. The sampling procedure is repeated T times to generate T subsets for constructing base learners. Sampled subsets will be similar as they are sampled from the same training set. However, they will not be too similar in that each subset will only cover around 63% of the original training data under the condition that m is large. To see this, consider the probability that the i'th training examples is not sampled once is $(1 - \frac{1}{m})$, and the probability that it is not sampled at all is $(1 - \frac{1}{m})^m$. When m is large, this probability will approach 37%. That is, around 37% of the training examples will not appear in any sampled training set. The property of Bootstrap Sampling also allows us to efficiently estimate the generalization error of the base learner known as *out-of-bag estimation* (Breiman, 1996b; Tibshirani, 1996; Wolpert and Macready, 1999).
3. Multilabel Classification

Multilabel classification is a natural extension to single-label classification presented in Section 2.2. In multilabel classification, each input (instance) is simultaneously associated with multiple outputs (labels). The research of multilabel classification has progressed rapidly in the last two decades with many learning models being developed and applied to the real world classification problems (Lafferty et al., 2001; Taskar et al., 2002, 2004; Tsochantaridis et al., 2004; Rousu et al., 2007). In general, there are two broad categories of research in multilabel classification, namely flat multilabel classification and structured output prediction. In flat multilabel classification, multiple interdependent labels are treated essentially as a “flat” vector of labels. Structured output prediction, on the other hand, models the correlation between multiple labels with an output graph connecting labels. The output graph is usually given \textit{apriori} in addition to the vector of multiple labels. This chapter will be devoted to flat multilabel classification in which several well-established algorithms will be presented. Structured output prediction will be covered in the latter part of the thesis.

It is prohibitive to present all the algorithms developed for flat multilabel classification, it is easier if we can categorize the algorithms into groups. In this chapter, we adopt the categorization scheme (Tsoumakas and Katakis, 2007; Tsoumakas et al., 2010) which gives us two major groups of algorithms, namely problem transformation and algorithm adaptation. Problem transformation aims to transfer the flat multilabel classification problem into other well-studied problems, for example, single-label classification, label ranking, label power set. The algorithm adaptation directly modifies the established learning techniques to solve the multilabel classification problem. Nevertheless, the presented algorithms aim to tackle the central problems of flat multilabel classification, namely
to explore the exponential sized multilabel space and to model the correlation between labels. It is impossible to cover every lines of research in the field of flat multilabel classification. Readers are pointed out to the recent research survey articles (Tsoumakas and Katakis, 2007; Tsoumakas et al., 2010; Zhang and Zhou, 2014).

3.1 Preliminaries

We borrow most notations from the single-label classification setting described in Section 2.2.1. In particular, we examine the following multilabel classification problem. We assume training examples are drawn from a domain $\mathcal{X} \times \mathcal{Y}$, where \mathcal{X} is an input (instant) space and \mathcal{Y} is a space of outputs (multilabels). The output space $\mathcal{Y} = \mathcal{Y}_1 \times \cdots \times \mathcal{Y}_k$ is composed by a Cartesian product of k sets $\mathcal{Y}_i = \{-1, +1\}$. We retain a single-label classification problem by setting $k = 1$. A vector $y = (y[1], \cdots, y[k]) \in \mathcal{Y}$ is called a multilabel and its element $y[j]$ is called a microlabel. We use $y_i[j]$ to denote the j’th microlabel in the i’th multilabel. In addition, we are given a training set of m labeled examples $S = \{(x_i, y_i)\}_{i=1}^m \in \mathcal{X} \times \mathcal{Y}$. A pair (x_i, y), where x_i is a training input and $y \in \mathcal{Y}$ is an arbitrary output, is called pseudo-example. It is worth pointing out that the pseudo-example (x_i, y) can be generated from a different distribution that generates training examples (x_i, y_i). The goal of learning is to find a mapping function $f \in \mathcal{H} : \mathcal{X} \to \mathcal{Y}$ which can compute the best multilabel for an input example such that the predefined loss function \mathcal{L} for the unseen examples will be minimized.

3.2 Problem Transformation

Problem transformation aims to transform the flat multilabel classification problem into other well studied problems. The most typical way of the transformation is binary relevance (BR) (Tsoumakas and Katakis, 2007; Tsoumakas et al., 2010), which transforms a multilabel classification problem into a set of single-label classification problems and to independently learns a single-label classifier for each subproblem. There exists many other types of transformations, for example, into the label power set problem (Tsoumakas and Vlahavas, 2007), and into the label ranking problem (Elisseeff and Weston, 2002; Brinker and Hüllermeier,
2007; Fürnkranz et al., 2008; Chiang et al., 2012). However, learning by label ranking will not be explained in detail as it slightly diverges from the main scope of this thesis. We will focus on BR in this section.

3.2.1 Multilabel K-Nearest Neighbors (ML-KNN)

Multilabel K-Nearest Neighbors algorithm (ML-KNN) developed by Zhang and Zhou (2005, 2007) is perhaps the most famous binary relevance classifier for flat multilabel classification. ML-KNN is also an instance based learning approach (Aha et al., 1991) that is derived from the K-Nearest Neighbors algorithm (KNN) designed for single-label classification. ML-KNN transforms the flat multilabel classification problem into a set of single-label classification problems and processes each microlabel independently. For each unseen example x, ML-KNN first identifies a set of K-nearest neighbors $N_K(x)$ from the training set. After that, the algorithm predicts the multilabel y of the example by examining the set of multilabels collected from the K-nearest neighbors.

Mathematically, let $C(j)$ denote the number of the neighbors of x with the j'th label being “+1”, let $H^b(j)$ denote the event that the j'th label of x is $b \in Y_j$, and let $E^l(j)$ denote the event that $0 \leq l \leq K$ neighbors of x have the j'th label being “+1”. ML-KNN processes each microlabel at a time and determines the value of the j'th microlabel by examining the following maximize a-posteriori (MAP) problem

$$y[j]^{*} = \arg\max_{b \in Y_j} P(H^b(j) | E^{C(j)}(j)) = \arg\max_{b \in Y_j} \frac{P(H^b(j))P(E^{C(j)}(j) | H^b(j))}{P(E^{C(j)}(j))}.$$

The prior probability distribution $P(H^b(j))$ and the likelihood distribution $P(E^{C(j)}(j) | H^b(j))$ can be estimated from the training data in terms of relative frequencies.

The central problem of ML-KNN is that the algorithm ignores the correlation between labels. Cheng and Hüllermeier (2009); Younes et al. (2011) proposed several variants of ML-KNN that aim to explore the label correlations. In addition, there exists many alternatives which also align to the direction of KNN typed learning for flat multilabel classification (Brinker and Hüllermeier, 2007; Chiang et al., 2012).

3.2.2 Classifier Chains (CC)

Classifier chains (CC) (Read et al., 2009, 2011) is another problem transformation approach for flat multilabel classification. CC involves k binary
transformations and forms a chain of \(k \) binary classifiers \(h = \{h_1, \ldots, h_k\} \), in which the \(j \)’th classifier \(h_j \) is built for predicting the \(j \)’th microlabel. For the \(j \)’th microlabel \(y[j] \), CC first constructs a new training data \(S_j \) by taking the \(j \)’th microlabel as the output variable and combining the original feature space with all \(j - 1 \) prior microlabels as the new input features defined by
\[
S_j = \{((x_i[1], \ldots, x_i[d], y_i[1], \ldots, y_i[j-1]), y_i[j]) \}_{i=1}^m.
\]

A classifier \(h_j \) is built by applying any single-label classification algorithm on \(S_j \).

Thus, CC takes the correlation between labels into consideration by incorporating the label information as the concatenated features in the new input feature space. The idea is not new which has been previously studied (Godbole and Sarawagi, 2004). CC makes a strong assumption that there is a high correlation between the output microlabel and the concatenated microlabels. The central problem of CC is that the additional label information only takes a small part of the input feature space especially when the dimension of the original feature space is already high.

Probabilistic classifier chains (PCC) extends CC by analyzing the algorithm with the condition probability theory (Read et al., 2009; Dembczynski et al., 2010). In addition, ensemble classifier chains (ECC) has been developed which improves CC by generating and combining multiple chains of classifiers (Read et al., 2011).

3.2.3 Instant Based Logistic Regression (IBLR)

Cheng and Hüllermeier (2009) developed instance based logistic regression (IBLR) with an extension to flat multilabel classification. IBLR is also an instant base learning approach (Aha et al., 1991) that is similar to ML-KNN. It extends ML-KNN by exploring the correlation between labels within the neighbors of an instant for posterior inference. The central idea of IBLR is to take the labels of the examples in the neighbor as the only features to predict the label of the current example. Similar ideas have been applied in collective classification (Ghamrawi and McCallum, 2005) and link based classification (Getoor, 2005; Getoor and Taskar, 2007).

In particular, for each unseen example \(x \), IBLR first identifies a set of \(K \)-nearest neighbors \(N_K(x) \) from the training data. The algorithm builds a logistic regression model (Section 2.2.2) for each microlabel based on the label information collected from the examples in \(N_K(x) \). Mathemati-
IBLR defines a posterior probability of the j^{th} microlabel of x being labeled as “+1” by

$$\pi^{(j)} = P(y[j] = +1|N_K(x)).$$

It constructs a logistic regression classifier for $\pi^{(j)}$ which can be derived from the following

$$\log \frac{\pi^{(j)}}{1 - \pi^{(j)}} = w_0^{(j)} + \sum_{i=1}^{k} \alpha_i^{(j)} \cdot w_i^{(j)}(x),$$

where i iterates over all microlabels, $w_0^{(j)}$ is the regression constant which can be computed from the training data, and $\alpha_i^{(j)}$ is the regression coefficient which can be obtained during training. $w_i^{(j)}(x)$ defined by

$$w_i^{(j)}(x) = \sum_{x' \in N_K(x)} K(x', x) \cdot y'[i]$$

collects the i^{th} microlabel from each neighbor $x' \in N_K(x)$ and weights the microlabels according to the similarity between x and x' encoded in $K(x', x)$.

3.3 Algorithm Adaptation

Algorithm adaptation directly modifies popular single-label classification algorithms to solve the multilabel classification problems. We will present the algorithms that are modified from ensemble methods and logistic regression. There also exists many other algorithms in the algorithm adaptation category, for example, the method based on label ranking (Crammer et al., 2003), and the method based on neural network (Zhang and Zhou, 2006). These methods are not explained in detail due to the divergence from the main scope of this thesis.

3.3.1 Ensemble Methods for Flat Multilabel Classification

Ensemble methods have been initially developed for single-label classification (Breiman, 1996a; Freund and Schapire, 1997) or regression (Breiman, 1996a), as it is straightforward to combine multiple scalar output variables. However, it is not immediately clear how to combine vector valued outputs in flat multilabel classification.

ADABOOST.MH (Schapire and Singer, 1999; Esuli et al., 2008) is a multilabel variant of the ADABOOST algorithm. The core idea of ADABOOST.MH
Multilabel Classification

is to apply the hamming loss instead of the 0/1 loss (2.2). In particular, the algorithm reduces a multilabel classification problem into a single-label classification problem by replacing each training example \((x_i, y_i)\) with \(k\) examples \(\{(x_i, y_i[l])\}^k_{l=1}\). The algorithm is described in Algorithm 2. In particular, it maintains a distribution over all examples and labels. In each iteration, the algorithm takes in the distribution over all training examples, generates a weak learner \(f^t(x)\) (line 3), computes the hamming loss (line 5), computes the adaptive parameter \(\alpha^t\) (line 6), and update the distribution (line 8). The prediction \(H(x)\) is a weighted combination of the base learners \(f^t(x)\) weighted by the adapter parameters \(\alpha^t\).

Algorithm 2 ADABOOST.MH

Input: Training sample \(\mathcal{S} = \{(x_i, y_i)\}^m_{i=1}\), learning function \(\mathcal{W}\), number of weak learners \(T\)

Output: Boosting ensemble \(H(x)\)

1: Initialize \(D^1(i,l) = \frac{1}{mk}, \forall i \in \{1, \cdots, m\}, l \in \{1, \cdots, k\}\)

2: for \(t = 1 \cdots T\) do

3: \[f^t(x) \leftarrow \mathcal{W}(\mathcal{S}, D^t) \]

4: \[\hat{y}_i = f^t(x_i), \forall i \in \{1, \cdots, m\} \]

5: \[\epsilon^t = \sum_{i=1}^{m} \sum_{l=1}^{k} D^t(i,l) 1_{\{y_i[l] \neq \hat{y}_i[l]\}} \]

6: \[\alpha^t = \frac{1}{2} \ln \left(\frac{1-\epsilon^t}{\epsilon^t} \right) \]

7: \[Z = \sum_{i=1}^{m} \sum_{l=1}^{k} D^t(i,l) \exp(-\alpha^t y_i[l] \hat{y}_i[l]) \]

8: \[D^{t+1}(i,l) = \frac{1}{Z} D^t(i,l) \exp(-\alpha^t y_i[l] \hat{y}_i[l]), \forall i, \forall l \]

9: end for

10: return \(H(x) = \text{sign}(\sum_{t=1}^{T} \alpha^t f^t(x))\)

Besides ADABOOST.MH, some other ensemble methods for multilabel classification have also been developed that are based on boosting or bagging (Wang et al., 2007; Yan et al., 2007; Kocev et al., 2013). In addition, there is a large body of work which aim to apply ensemble methods to solve the real world multilabel classification problems, for example, natural language processing (Collins and Koo, 2005; Zeman and Žabokrtský, 2005; Sagae and Lavie, 2006; Zhang et al., 2009), and text and speech recognition (Fiscus, 1997; Mohri et al., 2008; Petrov, 2010).

3.3.2 Correlated Logistic Regression (CORRLOG)

Correlated logistic regression (CORRLOG) is a model based approach for flat multilabel classification (Bian et al., 2012). CORRLOG is a major step forward of IBLR by constructing a logistic regression classifier over all mi-
crolabels and by modeling the pairwise correlation of labels with a function defined on the microlabel pairs.

In fact, CORRLOG is derived from independent logistic regressions (ILRS). Given a pair of an arbitrary training example and a label \((x, y)\), we can construct a set of ILRS classifiers, one for each microlabel. The posterior probability can be computed by

\[
P_{\text{ILRS}}(y|x) = \prod_{j=1}^{k} P_{\text{LR}}(y[j]|x) = \prod_{j=1}^{k} \frac{\exp(y[j]w^\top \varphi(x))}{\exp(w^\top \varphi(x)) + \exp(-w^\top \varphi(x))},
\]

where \(j\) is the index that iterates over microlabels and \(^\top\) denotes matrix transpose. The bias term as that appears in Definition 1 is omitted which is equivalent to augmenting \(x\) with a constant term (Bian et al., 2012). Otherwise, (3.1) can be derived into the same form of Definition 1 by replacing \(w\) with \(\frac{w}{\sqrt{\gamma}}\). ILRS has the problem of ignoring the correlation between labels and overfitting the training data when the number of microlabels is large. To alleviate the problems, CORRLOG augments the posterior probability (3.1) by a function \(Q(y)\) defined on the pairs of microlabels as

\[
Q(y) = \exp\left\{ \sum_{k<j} \alpha_{k,j} y[k] y[j] \right\}
\]

Putting together (3.1) and (3.2), CORRLOG can be defined as

\[
P_{\text{CORRLOG}}(y|x) \propto P_{\text{ILRS}}(y|x)Q(y) = \exp\left\{ \sum_{j=1}^{m} y[j] \langle w, \varphi(x) \rangle + \sum_{k<j} \alpha_{k,j} y[k] y[j] \right\}.
\]

Thus, CORRLOG examines the pairwise label correlations by augmenting the joint prediction with a quadratic term \(Q(y)\) built from the pairs of microlabels.

3.3.3 Multitask Feature Learning (MTL)

Multitask feature learning (MTL) (Argyriou et al., 2007) is another algorithm designed for flat multilabel classification. MTL is quite different from the algorithms discussed in the previous part of the section. Specifically, MTL is based on the assumption that different microlabels are related such that they share a common underlying feature representation. Similar assumptions are also made in other models (Caruana, 1997; Baxter, 2000; Ben-David and Schuller, 2003).
Let $f_t(x)$ denote a label specific function for the t'th microlabel. $f_t(x)$ can be expressed as

$$f_t(x) = \langle a_t, h(x) \rangle = \sum_{i=1}^{d} a_t[i] h(x)[i],$$

where $a_t \in \mathbb{R}^d$ is the feature weight parameter for the t'th microlabel. $h(x)$ is a linear feature mapping function defined as

$$h(x) = \langle U, \varphi(x) \rangle,$$

where $\varphi(x) \in \mathbb{R}^d$ is the input feature map in the original feature space and $U \in \mathbb{R}^{d \times d}$ is a square matrix. We further use A to denote the matrix composed by a_t. MTL assumes that microlabels share a small set of features in which A is assumed to be sparse with many entries being zero.

The optimization problem of MTL is defined as

Definition 10. MTL Optimization Problem in Primal

$$\min_{U \in \mathbb{R}^{d \times d}, A \in \mathbb{R}^{d \times T}} \left\{ \sum_{t=1}^{T} \sum_{i=1}^{m} \ell(y_{i,t}, \langle a_t, \langle U, \varphi(x_i) \rangle \rangle) + C \|A\|_{2,1} \right\},$$

where C is a positive parameter that controls the balance of the regularization term and the risk minimization term. The optimization problem is an instantiation of the regularized risk minimization (2.7) with the hamming loss and the $L_{2,1}$-norm regularization. As Definition 10 is non-convex and the second term is non-smooth, the optimization is transformed into an equivalent form which is solved by an alternative optimization approach (Argyriou et al., 2007).

Argyriou et al. (2008a) developed an extension of MTL that introduces a nonlinear generalization using kernel methods. In addition, Argyriou et al. (2008b); Jacob et al. (2009) have developed several similar but not identical algorithms based on the assumption that microlabels form clusters such that label specific weight vectors should be similar within the clusters. Recently, Romera-Paredes et al. (2012) proposed a method that exploits the information between unrelated microlabels based on a similar assumption that the microlabels of different groups tend not to share any features.
Structured output prediction is a natural extension to flat multilabel classification presented in Chapter 3. Unlike flat multilabel classification which takes multiple interdependent output variables essentially as a “flat” vector, structured output prediction assumes that multiple output variables are correlated and located in a structured output space. In other words, there exists an output graph (e.g., a chain, a spanning tree) given as input in addition to the flat vector of multiple labels. The multiple output variables are connected by the output graph so that the correlation between labels can be utilized during learning. In this chapter, we will start by introducing several structured output learning algorithms developed during the last decade. We will present our new algorithm SPIN that can predict an optimal directed acyclic graph (DAG) which best “responds” to an input, and examine the performance on the network response prediction problem within the context of social network analysis.

4.1 Preliminaries

Multilabel classification deals with multiple interdependent output variables, \(y \in \mathcal{Y} \). The problem is called structured output prediction when these variables are located in a structured output space. That is, the correlation between labels is described by an output graph connecting multiple labels. In particular, we define the output graph \(G = (E, V) \) by a node set \(V = \{1, \cdots, k\} \) which corresponds to the microlabels \(\{y[1], \cdots, y[k]\} \) and an edge set \(E = V \times V \) which represents the correlation between microlabels. For an edge \(e = (j, j') \in E \), we use \(y_e \) to denote the label of the edge \(e \) with respect to a multilabel \(y \) by concatenating the head label \(y[j] \) and the tail label \(y[j'] \), with an edge label domain \(y_e \in \mathcal{Y}_e = \mathcal{Y}_j \times \mathcal{Y}_{j'} \). We use \(y_{i,e} \) to denote the edge label of an example \((x_i, y_i)\) on an edge \(e \).
Thus, given a training example \((x_i, y_i)\) and an output graph \(G\), we can uniquely identify the node label \(y_i\) and the edge label \(y_{i,e}\) of the output graph. In addition, we denote the possible label of a node \(i\) by \(u_i\) and the possible label of an edge \(e\) by \(u_e\) where \(u_i\) and \(u_e\) are not constrained by any multilabel \(y\). Naturally, \(u_i \in \mathcal{Y}_i\) and \(u_e \in \mathcal{Y}_e\).

4.2 Related Methods

In this section, we will briefly present several related algorithms for structured output prediction including structured perceptron, conditional random field, max-margin conditional random fields, structured SVM, and max-margin Markov networks.

4.2.1 Structured Perceptron

The perceptron (Rosenblatt, 1958) is one of the oldest algorithms in machine learning. Structured perceptron (Collins, 2002; Collins and Duffy, 2002), as suggested by its name, is a generalization of the perceptron algorithm to the structured output space. The formalism of structured perceptron is quite similar to multiclass perceptron. The model assumes a score function \(\langle w, \phi(x, y) \rangle\) as the inner product between a feature weight parameter \(w\) and a joint feature map \(\phi(x, y)\). In particular, \(\phi : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^d\) maps an input–output pair to a vector of \(d\) dimension. The joint feature map is often defined based on the structure of the output graph (e.g., a chain in sequence tagging problem (Collins, 2002)). After the feature weight parameter \(w\) is obtained, one needs to solve the argmax problem to find the best output for a given input \(x\), which is defined as

\[
\hat{y} = \arg\max_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle. \tag{4.1}
\]

The argmax problem is solved by an algorithm such as Viterbi decoding (Collins, 2002) rather than an exhaustive search through the exponential sized output space.

The weight parameter \(w\) is learned through the standard perceptron iterative update by solving the argmax problem (4.1) in each iteration. In particular, the algorithm loops through all training examples and updates \(w\) whenever the predicted multilabel \(\hat{y}_i\) is different from the true multilabel \(y_i\). The update is given by

\[
w \leftarrow w + (\phi(x_i, y_i) - \phi(x_i, \hat{y}_i)). \tag{4.2}
\]
The update (4.2) usually leads to overfitting. A simple refinement is usually applied which is similar to averaged perceptron developed by Freund and Schapire (1999).

The central problem with structured perceptron is the loss function. In fact, Structured Perceptron tacitly applies $0/1$ loss (2.2) on multilabels, with which it is impossible to distinguish a nearly correct multilabel and a completely incorrect one. Both will lead to the same update to the feature weight parameter (4.2) during learning.

4.2.2 Conditional Random Field (CRF)

Condition random field (CRF) (Lafferty et al., 2001; Taskar et al., 2002) is a discriminative framework that constructs a conditional probability $P(y|x)$ for an input variable $x \in \mathcal{X}$ and an output variable $y \in \mathcal{Y}$. It optimizes the log-loss which is analogue to the $0/1$ loss (2.2) in the structured output space.

Mathematically, let $Y = \{y_1, \ldots, y_m\}$ denote a set of output random variables and $X = \{x_1, \ldots, x_m\}$ denote a set of input random variables to condition on. Let $G = (E, V)$ denote an output graph such that $y = (y[v])_{v \in V}$. CRF defines a conditional probability distribution

$$P(y|x) = \frac{1}{Z(x, w)} \exp \langle w, \phi(x, y) \rangle,$$

where $\phi(x, y)$ is a joint feature map defined according to the output graph G. $Z(x, w)$ is the partition function dependent on x that sums over all possible multilabels

$$Z_{x, w} = \sum_{y' \in \mathcal{Y}} \exp \langle w, \phi(x, y') \rangle. \quad (4.3)$$

When conditioned on x, random variables $y[v]$ obey the Markov property with respect to the output graph G.

Applying the similar regularization technique as used in logistic regression in Section 2.2.2, the feature weight parameter w can be solved by introducing a Gaussian prior and maximizing the logarithm of the resulting maximize a-posteriori (MAP) problem (Taskar et al., 2002)

$$L(w) = \sum_{i=1}^{m} [\langle w, \phi(x_i, y_i) \rangle - \log Z(x_i, w)] - \frac{1}{\sigma^2} ||w||^2. \quad (4.4)$$

The optimization problem derived from (4.4) is an instantiation of the regularized risk minimization (2.7) with the log-loss and the L_2-norm regularization (2.8). An improved iterative scaling algorithm (IIS) (Della Pietra
et al., 1997) is used to solve the optimization problem in the original work (Lafferty et al., 2001). To make CRF work in practice, one also need to make sure that the partition function (4.3) can be evaluated efficiently.

4.2.3 Max-Margin Markov Network (M³N)

Taskar et al. (2004) proposed max-margin Markov network (M³N) that combines the framework of the kernel based discriminative learning and the probabilistic graphical model. M³N extends SVM (Section 2.2.3) to the structured output space. It also improves CRF (Section 4.2.2) by which the evaluation of the partition function (4.3) can be avoided by introducing the odd-ratio typed learning that is not dissimilar to logistic regression presented in Section 2.2.2.

M³N defines a log-linear Markov network over multiple labels which exploits the correlation between labels. The compatibility score defined by

\[F(x, y; w) = \langle w, \phi(x, y) \rangle \]

(4.5)

can be seen as the affinity of a multilabel \(y \) to an input \(x \) according to an output graph. The feature weight parameter \(w \) ensures the example with the correct multilabel will obtain a higher score than with any incorrect multilabels. M³N defines a margin as the difference of compatibility scores between the correct example \((x_i, y_i)\) and the pseudo-example \((x_i, y)\). Under the maximum-margin principle in Section 2.2.3, M³N requires the margin to be at least \(\ell(y_i, y) \). To learn the feature weight parameter \(w \), we need to solve the following primal optimization problem

Definition 11. M³N Optimization Problem in Primal.

\[
\begin{align*}
\min_{w, \xi_i} & \quad \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{m} \xi_i \\
\text{s.t.} & \quad \langle w, \phi(x_i, y_i) \rangle - \langle w, \phi(x_i, y) \rangle \geq \ell(y_i, y) - \xi_i, \\
& \quad \forall \xi_i \geq 0, \forall y \in \mathcal{Y}/y_i, \forall i \in \{1, \cdots, m\},
\end{align*}
\]

where \(\xi_i \) is the slack allotted to each example to make sure the solution can always be found, \(\ell(y_i, y) \) is the loss function between a correct multilabel \(y_i \) and an incorrect multilabel \(y \), \(C \) is the slack parameter that controls the amount of regularization in the model.

For each example \(x_i \), the optimization calls for maximizing the margin between the correct label \(y_i \) and any incorrect labels \(y \). The margin is scaled by the loss function \(\ell(y_i, y) \) such that the completely incorrect multilabel will incur bigger loss than the nearly correct multilabel. The loss
scaled margin optimization will push the high-loss pseudo-examples further away from the correct example than the low-loss pseudo-examples. Definition 11 is an instantiation of the regularized risk minimization (2.7) with the hamming loss and the L_2-norm regularization (2.8).

The primal optimization problem of $\mathcal{M}^3\mathcal{N}$ in Definition 11 is difficult to solve as there are exponential number of constraints, one for each pseudo-example (x_i, y). The corresponding dual form is also difficult due to the exponential number of dual variables (Taskar et al., 2004). By exploring the Markov network structure, the original optimization problem (Definition 11) can be formulated into a factorized dual quadratic programming, as long as the loss function ℓ and the joint feature map $\phi(x, y)$ are decomposable over the Markov network.

As the number of parameters is quadratic in the number of training examples and the edges of the Markov network, it still cannot fit into the standard Quadratic Programming (QP) solver. Taskar et al. (2004) developed a coordinate descent method analogous to sequential minimal optimization (SMO) (Platt, 1998, 1999). Many other efficient optimization algorithms have been proposed, for example, the exponential gradient optimization method (Bartlett et al., 2005), the extra-gradient method (Taskar et al., 2006), the sub-gradient method Ratliff et al. (2007), and the conditional gradient method (Rousu et al., 2006, 2007).

To use $\mathcal{M}^3\mathcal{N}$ in practice, one have to solve the loss augmented inference problem defined as

$$\hat{y} = \arg\max_{y \in \mathcal{Y} / y_i} \langle w, \phi(x_i, y) \rangle + \ell(y_i, y).$$ \hspace{1cm} (4.6)

To compute (4.6) efficiently, the loss function need to be decomposable over the Markov network. Nevertheless, $\mathcal{M}^3\mathcal{N}$ improves CRF by avoiding the evaluation of the partition function (4.3) and allowing complex loss functions to be defined.

4.2.4 Max-Margin Conditional Random Fields (MMCRF)

Max-margin conditional random field (MMCRF) (Rousu et al., 2007) is a structured output learning method, that extends $\mathcal{M}^3\mathcal{N}$ by defining the joint feature map as the tensor product between an input feature map and an output feature map, and by developing an efficient optimization strategy. MMCRF is applied in Publication II in which the task is to reliably predict the multiple interdependent molecular activities.

In particular, MMCRF uses exponential family to model the conditional
probability of a multilabel y given an input example x

$$P(y|x) \propto \exp(\langle w, \phi(x, y) \rangle) = \prod_{e \in E} \exp(\langle w_e, \phi_e(x, y_e) \rangle),$$

where the joint feature map $\phi_e(x, y_e) = \varphi(x) \otimes \Upsilon_e(y_e)$ is defined as the tensor product between an input feature map and an output feature map which is the label of an edge $e \in E$ in an output Markov network G with respect to a multilabel y. To obtain w, one needs to solve the primal optimization problem that is not dissimilar to Definition 11. After the feature weight parameter w is obtained, the prediction of an input example can be computed by solving the following argmax problem

$$\hat{y} = \arg\max_{y \in \mathcal{Y}/y_i} \langle w, \phi(x_i, y) \rangle. \quad (4.7)$$

To solve the optimization problem, MMCRF uses the conditional gradient optimization method (Bertsekas, 1995) in the marginalized dual space (Taskar et al., 2004), which not only benefits from a polynomial-size parameter space but also enables kernels (Definition 5) that can deal with the non-linearity of the complex input space. The inference problem (4.7) is solved by loopy belief propagation (LBP) which is an instantiation of the message-passing algorithm (Wainwright and Jordan, 2003).

4.2.5 Support Vector Machines for Interdependent and Structured Outputs (SSVM)

Support vector machines for interdependent and structured output space (SSVM) is developed by Tsochantaridis et al. (2004, 2005). The formalism of SSVM is quite similar to M^3N described in Section 4.2.3. Compared to M^3N which scales the margin by the loss function, SSVM scales the margin errors (slacks) by the loss function. The primal optimization problem of SSVM can be defined as

Definition 12. SSVM Optimization Problem in Primal.

$$\min_{w, \xi_i} \frac{1}{2} ||w||^2 + \frac{C}{m} \sum_{i=1}^{m} \xi_i$$

$$\text{s.t.} \quad \langle w, \phi(x_i, y_i) \rangle - \langle w, \phi(x_i, y) \rangle \geq 1 - \frac{\xi_i}{\ell(y_i, y)},$$

$$\forall \xi_i \geq 0, \forall y \in \mathcal{Y}/y_i, \forall i \in \{1, \cdots, m\},$$

where ξ_i is the slack allotted to each example, $\ell(y_i, y)$ is the loss function between a correct multilabel and an incorrect multilabel, and C is the slack parameter that controls the amount of regularization in the model.
The interpretation of Definition 12 is also similar to that of Definition 11. Besides, Tsochantaridis et al. (2004) suggests that M^3N will work hard on the pseudo-examples (x_i, y) which incur a big loss though they may not even close to be confusable to the true multilabel y_i.

On the other hand, the optimization techniques employed by SSVM differ significantly compared to M^3N. SSVM will have to work with the exponential number of constraints as the optimization is not decomposable over the Markov network. An iterative optimization approach (Tsochantaridis et al., 2004) has been developed which creates a nested sequence of successively tighter relaxations of the original problem via the cutting-plane method (Bishop, 2007; Joachims et al., 2009). Constraints are added as necessary and the iterative optimization approach will converge to an optimal solution of ϵ precision within a polynomial number of iterations.

Besides the issue during the optimization, another problem with SSVM is the intractability of the inference problem. To find the most violating constraint, we need to compute the loss-augmented inference problem (Tsochantaridis et al., 2005) defined as

$$\hat{y} = \arg\max_{y \in Y / y_i} [1 - \langle w, \phi(x_i, y) \rangle] \ell(y_i, y).$$ (4.8)

The loss function appears as a multiplicative term making (4.8) not decomposable over the Markov network. This gives an intractable inference problem in general. In exchange of the intractability, SSVM can work with complex loss functions which do not assume any properties of decomposition. The generality of the loss function can be seen as an advantage compared to CRF, M^3N, and MMCRF.

4.3 SPIN for Network Response Prediction

Publication I presents a novel definition of the network response prediction problem and develops a structured output learning model for the problem. Unlike the previous methods which model the influence in terms of the network connectivity, the proposed model (SPIN) is context-sensitive. That is, the influence dynamics also depend on the properties of the action performed on the underlying network. The inference problem of SPIN is \mathcal{NP}-hard in general. We develop a semi-definite programming algorithm (SDP) with an approximation guarantee as well as a fast GREEDY heuristics.
4.3.1 Background

With the extensive availability of the large scale networks, there is an increasing amount of interest in studying the phenomena of the network influence, in particular, the structure, the function, and the influence dynamics. The outcome of the network influence research has been widely applied to many areas, for example, the spreading of pathogens or infectious diseases (Hethcote, 2000; Anderson and May, 2002), the diffusion of medical and technology innovations (Strang and Soule, 1998; Rogers, 2003), the opinion and news formations (Adar et al., 2004; Gruhl et al., 2004; Adar and Adamic, 2005; Leskovec et al., 2007; Liben-Nowell and Kleinberg, 2008; Leskovec et al., 2009), and the viral market (Domingos and Richardson, 2001; Kempe et al., 2003; Liben-Nowell and Kleinberg, 2003).

In the field of studying the network influence, one primary interest is to discover the latent structure that reveals the dynamics of influences. In general, the problem can be defined into two different ways depending on the availability of the underlying network structure. On one hand, one would assume that the underlying structure is hidden or incomplete and the only observation is a cascade of actions. The instantiations of the setting include, for example, the online news agents sharing information but not physically connected, in the epidemiological study where people are affected by pathogens through various ways. The task is to infer the network structure in terms of edges connecting nodes given a collection of actions. Many algorithms are designed to solve the problem in this setting, for example, NETINF (Gomez Rodriguez et al., 2010), NETRATE (Rodriguez et al., 2011), KERNEL CASCADE (Du et al., 2012), the two stage model for inferring influence (Du et al., 2014), the inference algorithm using cascades without any timestamps (Amin et al., 2014), and the general framework of inferring the diffusion structure (Daneshmand et al., 2014). However, we argue the problem is unnecessarily hard as in many cases the structure of the network is observed (e.g., the friendship network, the citation network). There are also many related research that aims to discover the hidden variables in the network (Saito et al., 2008; Goyal et al., 2010).

None of them consider the property of the action performed on the network. In particular, our network influence problem is motivated by the following observation: for a given action a performed on a network G, the
influence from a node \(u \) to a node \(u' \) not only depends on their connections but also depends on the action under consideration. For example, \(u' \) is a follower of \(u \) in Twitter, \(u' \) will retweet the message from \(u \) if it is related to science but not related to politics. Therefore, we propose the following definition of the network response problem

Definition 13. Network Response Problem. Given a complex network and an action performed on the network, predict an optimal subnetwork that best responds to the action. In particular, which nodes perform the action and which directed edges relay the action from one node to its neighbors.

4.3.2 Methods

We approach the problem by structured output learning, where we define a computability score as the inner product between an action \(a \) and a response network \(G_a \)

\[
F(a, G_a; w) = \langle w, \phi(a, G_a) \rangle.
\]

Intuitively, the action \(a \) with a correct response network \(G_a \) will achieve a higher score than with any incorrect response network \(G'_a \). The joint feature map \(\phi(a, G_a) \) is composed by the tensor product between an input feature map \(\varphi(a) \) of an action and an output feature map \(\Upsilon(G_a) \) of a response network. In particular, \(\varphi(a) \) can be a bag-of-words feature of an action (e.g., a posted message on Twitter) and \(\Upsilon(G_a) \) can be a vector of edges and labels of the response network \(G_a \). See Publication I for an example of input and output feature maps.

The feature weight parameter \(w \) is learned through maximum-margin structured output learning by solving the following optimization problem

Definition 14. Primal SPIN Optimization Problem.

\[
\min_{w, \xi_i} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{m} \xi_i
\]

\[
\text{s.t. } F(a_i, G_{a_i}; w) > \max_{G'_{a_i} \in \mathcal{H}(G)^*/G_{a_i}} (F(a_i, G'_{a_i}; w) + \ell_G(G_{a_i}, G'_{a_i})) - \xi_i,
\]

\[
\xi_i \geq 0, \forall i \in \{1, \cdots, m\},
\]

where \(\mathcal{H}(G) \) denotes a set of directed acyclic graphs of \(G \). To solve the above optimization problem, we have to compute the highest-scoring subgraph given an action. In particular, the goal during training is to find the
worst margin violating subgraph which corresponds to solving the following loss-augmented maximization problem

\[
H^*(a_i) = \arg\max_{G_{a_i} \in \mathcal{H}(G) / G_{a_i}} (F(a_i, G'_{a_i}, w) + \ell_G(G_{a_i}, G'_{a_i})).
\]

The goal during prediction is to find the subgraph with maximum compatibility given an action

\[
H^*(a) = \arg\max_{G \in \mathcal{H}(G)} F(a, H; w). \tag{4.9}
\]

As these two problems are different only in terms of the definition of scores, we explain our inference algorithm based on (4.9) by writing the problem explicitly in terms of the weight vectors and the feature maps

\[
H^*(a) = \arg\max_{H \in \mathcal{H}(G)} \langle w, \varphi \varphi \varphi (a) \otimes \Upsilon \Upsilon \Upsilon (H) \rangle
= \arg\max_{H \in \mathcal{H}(G)} \sum_{e \in E^H} s_{y_e} (e, a), \tag{4.10}
\]

where \(s_{y_e} (e, a) = \sum_{i} w_{i,e,y_e} \varphi (a)[i] \) denotes the score of an edge \(e \) with an edge label \(y_e \). The tuples \((i, e, y_e)\) index the elements in the vector \(w \).

We have proved the \(\mathcal{NP} \)-hardness of (4.10) by forming a reduction from the MAX-CUT problem (Garey and Johnson, 1990). In addition, we proposed two algorithms to solve the inference problem (4.10). The first is called SDP inference which introduces for each node \(u \in V \) a binary variable \(x_u \in \{-1, +1\} \) and transforms the inference problem into an integer quadratic programming problem (IQP). The IQP is tackled by a similar technique proposed by Goemans and Williamson (1995) such that each variable \(x_u \) is relaxed to a vector \(v_u \in \mathbb{R}^n \) and the relaxed problem is solved by semi-definite programming (SDP). The resulting vector is rounded back into binary values by incomplete Cholesky decomposition. The benefit from SDP inference algorithm is an approximation guarantee. In particular, the proposed SDP inference algorithm is a 0.796 approximation of the original IQP.

As SDP inference is not scalable to large scale networks, we develop a GREEDY heuristic based on the observation stated in the following lemma:

Lemma 1. The inference problem (4.10) can be expressed equivalently with a set of activated vertices \(V^H_p \) and the marginal gain function \(F_m(v_i) \) defined on each vertex \(v_i \in V^H_p \) as

\[
H^*(a) = \arg\max_{H \in \mathcal{H}(G)} \sum_{v_i \in V^H_p} F_m(v_i).
\]
The proof and the definition of the marginal gain function are given in the supplementary material of Publication I. As a result, the GREEDY algorithm starts with an empty vertex set and adds one vertex in each iteration such that the increment of the score is maximized over all possible choices of inactivated vertices. The procedure ends when the objective cannot be improved. It is worth pointing out that we are not able to give any approximation guarantee for the solutions produced by the GREEDY algorithm. The property of sub-modularity, which is often used to analyze the greedy algorithm, only holds for the special case of our inference problem.
Structured output learning relies on an output graph connecting multilabel interdependent output variables to exploit the correlation between labels. The applicability of structured output learning is limited due to the fact that the output graph needs to be known \textit{apriori}. In this chapter, we aim to develop several structured output learning algorithms that are not constrained by the availability of the output graph. As a result, structured output learning can be applied to a wide range of multilabel classification problems. In Section 5.1, we study the multilabel molecular classification problem with structured output learning in which the output graph is extracted from auxiliary datasets. In Section 5.2, we present MVE which uses majority vote to combine the predictions from a set of structured output learners built on a collection of random output graphs. In Section 5.3, we present two aggregation techniques, namely AMM and MAM, which perform inference on output graphs before or after combining multiple structured output learners. In Section 5.4, we present RTA which is a joint learning and inference model that performs max-margin learning on a random sample of spanning trees.

5.1 Structured Output Prediction for Molecular Classification

The molecular classification problem has been tackled by a variety of single-label classification approaches (Menchetti et al., 2005; Singh et al., 2012; Dutt, 2012). On the other hand, multiple interdependent molecular activities are often screened simultaneously in the field of drug research (Shoemaker, 2006), which presents two challenges for single-label classification. The first challenge is the scalability issue in which a set of single-label classifiers needs to be built to predict multiple activities of a molecule. This becomes infeasible in computation when we need to
examine a large number of molecular activities at the same time. The second challenge is that single-label classification ignores the correlation between multiple output variables. On the other hand, multiple molecular activities are often correlated which can be utilized to improve the classification performance. In Publication II, we explore the potential of structured output learning in the molecular activity classification problem. To apply structured output learning, we extract output graphs from several auxiliary datasets which encode the correlation between multiple molecular activities.

5.1.1 Background

Molecular classification, the goal of which is to predict the anti-cancer potentials of drug-like molecules, is a crucial step in drug discovery and has gained in popularity from the machine learning community (Singh et al., 2012; Dutt, 2012). Viable molecular structures are scanned, searched, or designed for therapeutic efficacy. In particular, expensive preclinical in vitro and in vivo drug tests can be largely avoided and special efforts can be devoted to few promising candidate molecules, once accurate in silico models are available (Burbidge et al., 2001).

A variety of machine learning methods have been developed for this task, to name but a few, inductive logic programming (King et al., 1996), artificial neural network (Bernazzani et al., 2006), kernel methods for nonlinear molecular properties (Trotter et al., 2001; Ralaivola et al., 2005; Swamidass et al., 2005; Ceroni et al., 2007a), and the SVM based methods (Trotter et al., 2001; Byvatov et al., 2003; Xue et al., 2004). Albeit with a large quantity of the developed methods, they only focus on predicting a single output variable (e.g., the inhibition potential of a molecule in a target cell line). On the other hand, a large number of interdependent molecular activities are often screened at the same time in the field of drug research. For example, in the recent NCI-60 human tumor cell line screen project (Shoemaker, 2006), thousands of molecular structures are tested against hundreds of target cell lines.

5.1.2 Methods

To efficiently and accurately predict molecular activities in multiple cell lines at the same time, we applied a structured output learning approach in Publication II, which is to our knowledge the first multilabel classifica-
tion approach for the molecular classification problem. The algorithm is an instantiation of MMCRF (Rousu et al., 2007) presented in Section 4.2.4. In particular, the model defines a compatibility score through the inner product of a molecular structure \(x \) and the activities in multiple target cell lines \(y \)

\[
F(x, y; w) = \langle w, \phi(x, y) \rangle,
\]
where \(w \) is the feature weight parameter to ensure that a molecule with the correct activity will be scored higher than with any incorrect activities. \(w \) is obtained by maximizing the minimum loss-scaled margin between the correct examples \((x_i, y_i)\) and the incorrect pseudo-examples \((x_i, y)\) over all training examples, which amounts to solving the optimization problem that is not dissimilar to Definition 11.

As MMCRF kernelizes input, we use graph kernel to measure the similarity between a pair of molecular structures. The common way to represent the structure of a molecule is to use an undirected labeled graph \(G = (V, E) \) with a set of vertices \(V = \{v_1, \cdots, v_n\} \) that corresponds to atoms and a set of edges \(E = \{e_1, \cdots, e_m\} \) that corresponds to covalent bonds. The adjacency matrix \(A \) of a graph \(G \) is defined such that the \((i,j)\)'th entry \(A_{i,j} \) equals to one if there is an edge connecting the \(i \)'th and the \(j \)'th atoms.

Walk kernel (Kashima et al., 2003; Gärtner, 2003) computes the sum of all matching walks in a pair of graphs. The contribution of each matching walk is down scaled exponentially by the length of the walk. Let \(w_m \) denote a walk of length \(m \) such that there exists an edge for each pair of vertices \((v_i, v_{i+1})\) for all \(i \in \{1, \cdots, m - 1\} \). In addition, we use \(G_x(G_1, G_2) \) to denote the direct product graph of two graphs \(G_1 \) and \(G_2 \), in which the set of vertices in \(G_x \) is computed by

\[
V_x(G_1, G_2) = \{(v_1, v_2) \in V_1 \times V_2, \text{label}(v_1) = \text{label}(v_2)\},
\]
and the set of edges in \(G_x \) are computed by

\[
E_x(G_1, G_2) = \{(v_1, v_2), (u_1, u_2)) \in V_x \times V_x, (v_1, u_1) \in E_1 \land (v_2, u_2) \in E_2\}.
\]

Walk kernel can be equivalently expressed in terms of the adjacency matrix \(A_x \) of the product graph \(G_x \) as

\[
K_{wk}(G_1, G_2) = \sum_{i,j=1}^{\left| V_x \right|} \left(\sum_{n=0}^{\infty} \lambda^n A^n_x \right)_{i,j},
\]
where $0 < \lambda \leq 1$ is a scaling parameter. Using exponential series or geometric series, walk kernel can be evaluated in cubic time (Gärtner, 2003) in the number of vertices V_x according to

$$K_{wk}(G_1, G_2) = e^t(I - \lambda A_x)^{-1}e,$$

where I denotes an identity matrix and e denotes a vector of ones.

Weighted decomposition kernel (Menchetti et al., 2005; Ceroni et al., 2007b) is an extension of substructure kernel (Komarek and Moore, 1999) that weights the identical atoms of two graphs by contextual information. The contextual information is defined as the matching subgraph in the neighborhood of an atom. In addition, we used Tanimoto kernel (Ralaivola et al., 2005) on a finite set of molecular fingerprints (Wang et al., 2009). The readers are also pointed to the comprehensive survey on graph kernels (Vishwanathan et al., 2010).

To apply the structured output learning method described above, we need an output graph connecting labels given apriori. However, the output graph is not known in the molecular classification problem. There exists a variety of auxiliary datasets (Shoemaker, 2006) which implicitly encodes the correlation of labels (target cell lines). To extract the output graph, we first compute a covariance matrix of cell lines from the auxiliary data, then extract the structure of the output graph by the following two methods. The maximum spanning tree approach takes the minimum number of edges that make a connected graph whilst maximizing the sum of edge weights. The correlation thresholding approach takes all edges that exceed a fixed threshold in terms of the pairwise correlation, which typically generates a non-tree graph.

5.2 Graph Labeling Ensemble (MVE)

The structured output learning approaches, relying on the representation of multiple output variables through an output graph, allow us to exploit the correlation between labels. To apply structured output learning, it is assumed that the structure of the output graph is known apriori. For the molecular classification problem in Publication II where the output graph is not observed, we can extract the structure of the output graph by examining a collection of auxiliary datasets which explicitly encode the correlation of labels. For most real world multilabel classification problems, however, we cannot take for granted the availability of the output
Structured Output Prediction with Unknown Output Graphs

graph or the auxiliary data that reveals the label correlations. Therefore, in Publication III, we explore the potential of using majority vote to combine the predictions from a set of structured output learners built on a collection of random output graphs. We also examine the classification performance on the molecular classification problem.

5.2.1 Methods

We use MMCRF as the base classifier trained on a collection of random output graphs. In particular, a random graph G_t is generated for each base learner to couple the multiple labels which are the activities of the molecule in all target cell lines. The base model MMCRF is learned with the training data $S = \{(x_i, y_i)\}_{i=1}^m$ and the output graph G_t. After all base learners have been generated, the predictions are extracted from the base learners and are collected for a post-processing step, in which we compute a majority vote over the graph labeling from the sign on the means of the base classifier's prediction

$$F_{j}^{\text{MVE}} = \arg\max_{y[j] \in Y_j} \left(\frac{1}{T} \sum_{i=1}^{T} 1\{F_{j}^{(i)}(x) = y[j]\} \right), \forall j \in \{1, \cdots, k\},$$

where T denotes the size of the ensemble which is also the number of random output graphs, and $F^{(i)}(x) = \{F_{j}^{(i)}(x)\}_{j=1}^{k}$ denotes the predicted multilabel from the t'th base learner. That is, the ensemble prediction on each microlabel is the most frequently appearing prediction among the base classifiers. It is also worth pointing out that MVE is not restricted to the base learner MMCRF and can be extended with any other structured output learning models as long as the model incorporates the output structure into learning and makes predictions based on the structure of the output graph.

In addition, we design two approaches to generate the random output graphs. The random spanning tree approach first generates a random correlation matrix and extracts a spanning tree out from the matrix, which outputs a tree structure connecting all vertices. The random pairing approach randomly draws two vertices at a time and couples the two with an edge, which outputs a set of disconnected pairs.
5.3 **Random Graph Ensemble (AMM, MAM)**

Section 5.2 has shown that the prediction performance in the molecular classification problem can be improved by applying majority vote to combine the predictions from multiple structured output learners built on a collection of random output graphs. This section is based on Publication IV in which we present two aggregation techniques to combine multiple structured output learners. The proposed model, namely AMM and MAM, also perform inference before or after combining the base learners. The performance of the proposed models is evaluated on a set of heterogeneous multilabel datasets from a variety of domains. In addition, we study the performance of MAM in terms of the reconstruction error of the compatibility score.

5.3.1 **Background**

We still work with the assumption made for MVE in Section 5.2 in which we assume the structure of the output graph is incorporated during learning and the prediction is made according to the structure. In addition, we assume that the base learner for AMM and MAM is defined on a Markov network. That is, the base learner computes a compatibility score \(\psi(x, y) \) for \((x, y) \in \mathcal{X} \times \mathcal{Y}\) based on the output graph \(G\), indicating how well an input \(x\) gets along with an output \(y\). The compatibility score \(\psi(x, y) \) is defined as

\[
\psi(x, y) = \langle w, \phi(x, y) \rangle = \sum_{e \in E} \langle w_e, \phi_e(x, y_e) \rangle = \sum_{e \in E} \psi_e(x, y_e),
\]

where \(\psi_e(x, y_e)\) denotes the edge compatibility score (edge potential) between an input example \(x\) and the edge label \(y_e\) of an edge \(e\). \(w\) is the feature weight parameter which ensures that an input \(x\) with the correct output \(y\) will achieve a higher compatibility score than with any incorrect outputs.

In addition, we assume that we have access to the set of edge potentials of the \(t\)’th base classifier

\[
\psi_e^{(t)} = (\psi_e^{(t)}(x, u_e))_{e \in E^{(t)}, u_e \in \mathcal{Y}_e}.
\]

With the edge compatibility scores, we can infer the *max-marginal* (Wainwright et al., 2005) of the \(j\)’th node which is the score incurred by assign-
Structured Output Prediction with Unknown Output Graphs

5.3.2 Methods

Let \(\mathcal{G} = \{ G^{(1)}, \ldots, G^{(T)} \} \) denote a set of random output graphs, and let \(\{ \tilde{\psi}^{(1)}, \ldots, \tilde{\psi}^{(T)} \} \) denote the max-marginal vectors from the base learners built on a collection of random output graphs. The prediction of the average-of-max-marginal (AMM) aggregation on the \(j \)’th node is obtained by averaging the max-marginals from all base classifiers and choose the maximizing microlabel for the node

\[
F^{AMM}_j = \arg\max_{u_j \in \mathcal{Y}_j} \frac{1}{T} \sum_{t=1}^{T} \tilde{\psi}_{j,u_j}^{(t)}(x).
\]

The predicted multilabel by AMM is composed by the predicted microlabels

\[
F^{AMM} = (F^{AMM}_j)_{j \in \mathcal{V}}.
\]

AMM performs inference to find the set of max-marginals before combining base classifiers. On the other hand, the maximum-of-average-marginals (MAM) aggregation first collects the local edge potentials \(\psi_E^{(t)} \) from each base learner, averages them and performs a final inference with the averaged edge potentials on a global consensus graph \(\hat{G} = (\hat{E}, \mathcal{V}) \) where \(\hat{E} = \bigcup_{t=1}^{T} E^{(t)} \) is the union of distinct edges of the set of random output graphs. Mathematically, MAM is defined as

\[
F^{MAM}(x) = \arg\max_{y \in \mathcal{Y}} \sum_{e \in \hat{E}} \frac{1}{T} \sum_{t=1}^{T} \psi_{e}^{(t)}(x, y_{e}) = \arg\max_{y \in \mathcal{Y}} \frac{1}{T} \sum_{t=1}^{T} \sum_{e \in \hat{E}} \langle w_{e}^{(t)}, \phi_e(x, y_{e}) \rangle.
\]

In addition, Publication IV, Lemma 1 simplifies the computation of MAM in terms of dual variables and kernels.

Besides the proposed algorithms, we also present a theoretical analysis to explain the improvement of MAM. The analysis extends the theory of single-label ensemble (Brown and Kuncheva, 2010). In particular, Publication IV, Theorem 1 states that the reconstructive error of MAM is guaranteed to be less than or equal to the average reconstruction error of base classifiers. The improvement can be decomposed into two terms,
namely diversity and coherence. The former measures the variability of the individual classifiers learned from different perspectives which shares the same argument as the analysis of single-label ensemble (Brown and Kuncheva, 2010). The latter measures the correlation of microlabel predictions in which the correlation has a positive effect on the performance.

5.4 Random Spanning Tree Approximation (RTA)

Publication V presents random spanning tree approximation (RTA) for structured output learning in which the output graph is not observed but believed to play an important role during learning. RTA is a major step forward of MAM by bringing in a joint learning and inference framework such that the base learners built from a collection of random spanning trees are optimized simultaneously towards the same global objective. Publication V also presents the theoretical studies which not only explain the intuition behind the learning model but also guarantee the performance by the generalization error analysis. Meanwhile, RTA lays the foundation of tackling the intractability of the graph inference on unknown graph structures in which the fast optimization and accurate predictions can be achieved with attainable computational efforts.

5.4.1 Background

The applicability of structured output learning is limited due to the fact that the output graph is assume to be known apriori. It is difficult to learn the correlation structure of labels from data (Chickering et al., 1994) if it is not harder than structured output learning. Instead we can resort to a complete graph by assuming that a complete set of pairwise correlations have enough expression power to describe the dependency of labels. With the complete graph as the output graph, we can construct a structured output learner and use the optimization algorithm to correctly reveal the hidden “parameters” defined on the edges of the compete graph (e.g., edge potentials).

Structured output learning on a complete graph is not an easy problem as the inference is \mathcal{NP}-hard in nature. The inference problem is often instantiated as finding a maximum a-posteriori (MAP) configuration on a graph structured probability distribution. In terms of the intractability issue of the graph inference problem, many techniques have been proposed.
but with important differences. Jordan and Wainwright (2004) developed a semi-definite programming convex relaxation for the inference on the graph with cycles. Wainwright et al. (2005) proposed a MAP inference with the tree-based and linear programming (LP) relaxation. Efficient inference algorithms on special graphs have also been studied (Globerson and Jaakkola, 2007).

Publication V is motivated by the well-established maximum-margin principle as described in Section 2.2.3. The work investigates whether the problem of inference over a complete graph in structured output learning can be avoided by exploring the properties of the maximum-margin principle. Starting from a sampling results, Publication V, Lemma 3 shows that with high probability a big fraction of the margin achieved by a complete graph can be obtained by a conical combination of a random sample of spanning trees. The number of the spanning trees does not need to be large. Besides, Publication V, Theorem 5 shows that good generalization error can also be guaranteed when learning with, instead of a complete graph, a random sample of spanning trees.

Thus, in addition to Publication IV, Theory 1, we further provide the theoretical justification of combining a set of base learners trained on a collection of random output graphs. Besides, Publication V, Theorem 5 suggests we should, instead of optimizing the margin separately on each spanning tree similar to that in MAM, optimize the joint margin from all spanning trees. The strategy leads to the learning model presented in the following section.

5.4.2 Methods

Let $\mathcal{T} = \{T_1, \cdots, T_n\}$ denote a sample of n random spanning trees, and $\{w_{T_i} | T_i \in \mathcal{T}\}$ denote the feature weight parameters to be learned on each tree. For each example (x_i, y_i), the goal of the optimization is to maximize the joint margin from all spanning trees between the correct training examples and the pseudo-examples (x_i, y) defined as

Definition 15. Primal L_2-norm Random Tree Approximation (RTA).

\[
\min_{w_{T_i}, \xi_i} \quad \frac{1}{2} \sum_{t=1}^{n} ||w_{T_i}||^2 + C \sum_{i=1}^{m} \xi_i
\]

\[
\text{s.t.} \quad \sum_{t=1}^{n} \langle w_{T_i}, \phi_{T_i}(x_i, y_i) \rangle - \max_{y \neq y_i} \sum_{t=1}^{n} \langle w_{T_i}, \phi_{T_i}(x_i, y) \rangle \geq 1 - \xi_i,
\]

\[
\xi_i \geq 0, \quad \forall i \in \{1, \ldots, m\},
\]
Structured Output Prediction with Unknown Output Graphs

where \(\phi_{T_t}(x,y) \) is the feature map that is local on each tree \(T_t \), \(\xi_i \) is the margin slack allocated for each \(x_i \), and \(C \) is the slack parameter that controls the amount of regularization. Definition 15 is an instantiation of the regularized learning (Section 2.7) in terms of the \(L_2 \)-norm regularization (2.8) and the 0/1 loss (2.2).

The key for the optimization is to solve the argmax problem efficiently. This is an \(\mathcal{NP} \)-hard problem in practice, as the size of the multilabel space is exponential in the number of microlabels. In Publication V, we have developed a \(K \)-best inference algorithm working in \(\Theta(Knk) \) time per data point, where \(k \) is the number of microlabels and \(K \) is the number of best multilabels we compute from each random spanning tree.

It is known that the exact solution for the inference problem on an individual tree \(T_i \) is tractable (Koller and Friedman, 2009) for which

\[
\hat{y}_{T_i}(x) = \arg\max_{y \in \mathcal{Y}} F_{w_{T_i}}(x,y) = \arg\max_{y \in \mathcal{Y}} \langle w_{T_i}, \phi_{T_i}(x,y) \rangle,
\]

(5.1)
can be solved in \(\Theta(k) \) time by dynamic programming also known as max-product or min-sum. However, there is no guarantee that the maximizer of (5.1) is also the global maximizer of Definition 15 over the set of random spanning trees. Therefore, we compute the top \(K \)-best multilabels for each random spanning tree. In total the computation costs \(\Theta(Knk) \) time for all spanning trees. Publication V, Lemma 7 provides a method to retrieve the best multilabel from the \(K \)-best multilabel list in linear time. We still need to make sure that the global maximizer is within the \(K \)-best multilabel list. Publication V, Lemma 8 guarantees that with high probability the global maximizing multilabel is in the list and \(K \) does not need to be large.

In addition, we derived the marginalized dual representation of the primal optimization problem in Definition 15, which not only works with a polynomial sized parameter space but also enables kernels to tackle the complex input space.
6. Implementations

The main contributions of this thesis are several new structured output learning models for multilabel classification problems. Additionally, each proposed model has been implemented into a software package. In this chapter, the author aims to briefly discuss the implementations and point out the locations from which the software packages can be found.

1. RTA, developed in Publication V, is a structured output learning algorithm for multilabel classification with an unknown output graph. RTA performs joint learning and inference on a random sample of spanning trees.

 (a) The learning system is implemented in MATLAB. The inference algorithm is implemented in C. The parallelization of the inference algorithm is implemented with OPENMP. Other parts of RTA are mostly implemented in MATLAB.

 (b) The package can be found from https://github.com/hongyusu/RTA.

2. SPIN, developed in Publication I, is a structured output learning algorithm for multilabel classification with an observed output graph. SPIN can predict an optimal direct acyclic graph (DAG) that best responds to an input. The algorithm has been applied to the network response prediction problem within the context of social network analysis.

 (a) The learning system of SPIN is implemented in MATLAB. The SDP inference algorithm is implemented with CVX toolbox which is designed for convex programming. The data preprocessing with Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is implemented in PYTHON and MATLAB.
(b) The package can be found from https://github.com/hongyusu/SPIN.

3. MVE developed in Publication III as well as AMM and MAM developed in Publication IV are the structured output learning algorithms that are not constrained by the availability of the output graph. The algorithms combine a set of structured output learners built on a collection of random output graphs.

(a) The learning systems are mostly implemented in MATLAB.

(b) The packages can be found from https://github.com/hongyusu/RandomOutputGraphEnsemble.
7. Conclusion

7.1 Discussion

In this thesis, we have studied supervised learning for classification. In particular, we focused on multilabel classification where the task is to predict the best values for multiple interdependent output variables given an input example. As multiple output variables can be “on” or “off” simultaneously, the central problem in multilabel classification is how to best exploit the dependency of labels to make accurate predictions. The problem has previously been tackled by the flat multilabel classification approaches which treat multiple output variables essentially as a “flat” vector. The approaches have difficulty of modeling the correlation between labels. Structured output learning arises as a natural extension to flat multilabel classification in which the correlation is modeled by an output graph connecting labels.

The first outcome of the thesis is a new structured output learning model for multilabel classification in which the output graph is known apriori. In particular, the proposed algorithm SPIN can predict a directed acyclic graph from an observed underlying network which best “responds” to an input example. The empirical evaluation on the network response prediction problem within the context of social network analysis shows that the proposed model outperforms several state-of-the-art flat multilabel classification approaches. The study demonstrates that accurate predictions can be achieved by structured output learning when the output graph is known and utilized during learning.

Current structured output learning approaches rely on an output graph connecting multiple output variables to exploit the correlation between labels. Thus, the applicability of structured output learning is limited
due to the fact that the output graph needs to be known \textit{apriori}. The second outcome of the thesis is that we have developed several new models for structured output learning which are no longer constrained by the availability of the output graph. Analog but with significant differences to the previously established ensemble methods, the proposed models aim to combine a set of structured output learners built on a collection of random output graphs. In particular, MVE applies majority vote to directly combine the predictions from the base learners, while AMM and MAM perform additional inference on the output graphs before or after combining base learners. In addition, we have developed RTA based on the theoretical study. The proposed model performs max-margin learning on a random sample of spanning trees. The joint learning and inference in RTA ensures that the base learners, which are built from a set of random spanning trees, are optimized simultaneously towards a same global objective. RTA has also laid the foundation of tackling the intractability of the graph inference on any unknown graph structures in which the fast optimization and accurate predictions can be achieved with attainable computational efforts.

In addition to the practical learning algorithms, the thesis also contributes to the theoretical studies which not only explain the intuition behind the formalisms but also guarantee the generalization error of the proposed models.

\section{Future Work}

The work presented in the thesis will be extended along two main directions. First, the algorithms developed in this thesis can be applied to other multilabel classification problems in which the output graph does not need to be observed but is believed to play an important role during learning. Secondly, the development of the learning algorithms and the theoretical studies are readily to be continued. As the first research direction is application oriented, we will focus on the latter part.

To serve as a starting point, the inference algorithm for SPIN can be further developed such that the model can be applied to large scale social network datasets. It is also important to obtain an approximation guarantee for the new inference algorithm in order to ensure the quality of the solution. Secondly, we plan to study RTA in the multilabel classification problems where the output graph takes a more general form. The
setting is interesting as in many real world problems the underlying output graph structure is usually more complex than a spanning tree or a chain but should be much simpler than a complete graph. The exact inference is also prohibitive for any polynomial time algorithms. To tackle the problem we plan to randomly sample spanning trees from the general graph structures rather than a complete graph. In particular, we are interested in the properties of the new algorithm (e.g., the generalization error bound, conditions for exact inference). We also need to develop the algorithm that allows to generate spanning trees uniformly at random. Next, we plan to investigate the possibility of learning a convex combination of a set of random spanning trees. Compared to the current conical combination, this approach will lead to a different objective function that is similar to the L_1-norm regularized parameter combination previously studied in multiple kernel learning (Rakotomamonjy et al., 2008). The objective function can be expressed equivalently as learning a weighted L_2-norm regularized parameter combination. The weight can be interpreted as the affinity of an output graph to the current training data. We can use the weights to select relevant output graph structures. We need to study the corresponding optimization algorithm as the current alternative optimization developed by Rakotomamonjy et al. (2008) is not very efficient. The theoretical analysis of RTA should also be extended to the new algorithm.
Bibliography

Aalto-DD144/2014 Eirola, Emil

Aalto-DD149/2014 Äijö, Tarmo

Aalto-DD156/2014 Sjöberg, Mats
From pixels to semantics: visual concept detection and its applications. 2014.

Aalto-DD157/2014 Adhikari, Prem Raj
Probabilistic Modelling of Multiresolution Biological Data. 2014.

Aalto-DD171/2014 Suvitaval, Tommi
Bayesian Multi-Way Models for Data Translation in Computational Biology. 2014.

Aalto-DD177/2014 Laitinen, Tero
Extending SAT Solver with Parity Reasoning. 2014.

Aalto-DD178/2014 Gonçalves, Nicolau
Advances in Analysis and Exploration in Medical Imaging. 2014.

Aalto-DD191/2014 Kindermann, Roland
SMT-based Verification of Timed Systems and Software. 2014.

Aalto-DD207/2014 Chen, Xi
Real-time Action Recognition for RGB-D and Motion Capture Data. 2014.

Aalto-DD211/2014 Soleimany, Hadi
Multilabel classification is an important field in machine learning that arises naturally from many real world applications. For example, in document classification, a research article can be categorized as "science", "drug discovery" and "genomics" at the same time. The goal of multilabel classification is to reliably predict multiple outputs for a given input. As multiple output variables are often interdependent, the central problem in multilabel classification is how to best exploit the correlation between labels to make accurate predictions. The main question studied in this thesis is how to tackle multilabel classification through structured output learning. The main contributions are several new learning algorithms that widen the applicability of structured output learning.