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Intervallipoistossa B-puuhakurakenteesta poistetaan kaikki annetulle avainvä- 
lille kuuluvat avaimet. Intervallipoisto on erikoistapaus yleisestä ryhmäpoisto- 
operaatiosta, jossa joukko avaimia poistetaan puusta. Kun poistettavan ryhmän 
aliryhmä muodostaa jatkuvan avainvälialueen puussa, voidaan soveltaa intervalli- 
poistoa. Relaatiotietokannoissa transaktion toteuttava prosessi tuottaa indeksiin 
kohdistuvia intervallipoisto-operaatioita tietyissä tilanteissa silloin, kun viite-eheys 
on säilytettävä.

Ylhäältä alaspäin etenevä tasapainotus on menetelmä, jossa puu tasapainotetaan 
päivitysoperaation etsintävaiheessa. Alunperin tasapainotukset suoritettiin vasta 
lisäys- tai poisto-operaation jälkeen erillisellä tasapainotusvaiheella. Rinnakkaisia 
järjestelmiä tarkasteltaessa ylhäältä alaspäin etenevä tasapainotus takaa sen, että 
solmuja tarvitsee lukita ainoastaan vakiomäärä, kun taas alhaalta ylöspäin etene
vässä tasapainotuksessa lukkojen lukumäärä on pahimmassa tapauksessa suhteessa 
puun korkeuteen. Siispä ylhäältä alaspäin etenevä tasapainotus mahdollistaa pro
sessien tehokkaamman rinnakkaisen suorittamisen.

Tässä työssä luodaan katsaus B-, B+-, Blink- ja (a, 6)-puihin ja niissä sovelletta
viin tasapainotusmenetelmiin sekä selvitetään nykyisin tunnettuja intervallipoisto- 
operaation toteutustapoja. Työssä esitellään yksityiskohtaisesti ylhäältä alaspäin 
etenevä yksivaiheinen intervallipoistoalgoritmi, joka suorittaa vakiomäärän tasapai- 
notusoperaatioita tasoitetun vaativuuden mielessä.

Työssä esitellään myös kokeellinen osuus, jossa pyritään vertailemaan algoritmin 
suorituskykyä muihin lähestymistapoihin ja hakemaan kokeellista tukea esitetylle 
teorialle.

Työn uusi tulos on ylhäältä alaspäin tasapainottava yksivaiheinen intervallipois
toalgoritmi.

Avainsanat: tietorakenne, algoritmi, hakupuu, puu,
ryhmäpäivitys, ryhmäpoisto, ryhmälisäys,
intervallipoisto, avainvälipoisto_____________________________
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In interval deletion a range of keys is to be removed from a B-tree index structure. 
Interval deletion is a special case of generic bulk deletion where there is a group of 
keys to be removed from the tree. When a subgroup of this group forms a continuous 
region in the tree an interval deletion can be applied. In relational databases where 
key-integrity constraints are to be maintained it is common, in certain situations, 
for the processes implementing these constrains to create interval deletion operations 
for secondary B-tree indices.

Top-down is a strategy where the balancing operations are done during the search 
phase of an update procedure. The original approach was to first perform the in
sertion or deletion operation and only after that the balancing within a separate 
balancing phase. This strategy is called bottom-up balancing. When considering 
a concurrent environment where a set of operations are simultaneously run, top- 
down balancing guarantees that only a constant number of nodes needs to be locked, 
whereas in bottom-up balancing the number of locks needed, in the worst case, is in 
relation to the height of the tree. Thus top-down provides higher concurrency for 
the processes.

In this thesis we give a brief overview of B-, B+, Blmk- and (a, b) trees and their 
balancing strategies and survey current approaches to top-down interval deletion. 
Next, we describe a top-down single-pass interval deletion algorithm thoroughly and 
prove that the algorithm performs a constant amount of balancing operations when 
a sequence of operations is considered in the amortised sense.

Experiments where the new algorithm is compared to another approach were 
performed in order to study and validate the theoretical claims stated previously.

A novel result in this thesis is the top-down single-pass interval deletion algorithm.

Keywords: data structures, algorithms, search trees, tree,
group update, bulk update, group deletion, bulk deletion, 
group insertion, bulk insertion interval deletion, range deletion
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Chapter 1

Introduction

B-trees, originally introduced by Bayer and McCreight in [5], and their variants 
are common search structures. They are the index structure of the choice in data 
base management systems (DBMS) where the qualities of the B-trees make them 
especially suitable for systems where there are two-level memory hierarchies 
like main memory and secondary disk storage. B-trees have found their place 
even in the two-level hierarchy of CPU cache and the main memory [39]. In 
other words, B-trees have gained popularity as an applicable index structure in 
cases where previously only avl trees or red-black trees had been considered. 
Normally, search tree structures implement the dictionary abstract data type 
(adt). That is, a given key can be either searched, inserted into or removed 
from the tree.

Nowadays, the need for bulk updating search structures is getting more 
common. Data mining and other applications generally require that the search 
structures can handle the classic dictionary operations for large data-sets. These 
kind of operations where a group of insertion or deletion operations are combined 
into a single operation are commonly called bulk updates or bulk insertions and 
bulk deletes. For example, a Usenet [22] news server might do a bulk update 
into its internal search structures when a batch of new news is fed into it from 
another server. Another example where bulk updates are common is the case 
where updates are deferred and collected into a separate structure. In certain 
time intervals these pending updates are brought into the main structure [38].

Bulk operations have been subject to large study in the literature. Bulk 
insertion operations for B-trees were studied in [38, 44] and for the red-black 
trees [12] in [14]. AVL trees [2] were considered in [34]. Other papers that 
consider bulk updating in various data structures include [3, 4, 9, 11, 20, 26, 28].

The B-trees are balanced. That is, each path from the root node into the 
leaves is of same length and contains certain number of keys. In order to main
tain these balancing conditions, special care has to be taken when implement
ing the insertion and deletion operations. Basically there are three alternatives: 
bottom-up, top-down [12] and a separate balancing process [40]. In bottom-up, 
the leaf node where the key is to be inserted or removed is first looked, then 
the operation is performed and finally the tree is brought back to balance with 
a separate balancing procedure. In top-down balancing the balancing is inter
mixed into the search phase of the update operation. In a separate balancing 
process the tree is not balanced at all during the update operation. The bal-
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CHAPTER 1. INTRODUCTION 2

ane ing is done only afterwards, e.g., at a time when the load of the system is in 
its minimum.

Interval deletion is a special case of bulk or group deletion. In interval 
deletion we have a given B-tree index structure and a key interval [L, R). The 
goal is to remove all the keys that belong to interval [L. R] from the tree so that 
the tree remains still a valid balanced B-tree. In this thesis we present a top- 
down balanced single-pass interval deletion algorithm. That is, the balancing 
phase is intermixed with the search phase and the algorithm does only one pass 
into the tree.

The structure of this thesis is that in Chapter 2 we give an overview and 
survey of the current B-tree algorithms without considering the bulk operations. 
In Chapter 3 we define the interval deletion problem, survey the current state 
of the art and present our new algorithm and give some theoretical remarks. 
Chapter 4 describes the experiments that were carried in this work in order 
to gain some empirical data on the behaviour of the new algorithm. We give a 
summary of the work, conclusions and suggestions for further work in Chapter 5.



Chapter 2

B-trees

2.1 Bottom-up B-trees

We define the directed tree T to be a B-tree of order m1, where m > 3 is a natural 
number, if the tree T the is either empty or has the following properties:

1. Given integer h > 0, each path from the root to leaf has the same length 
h. This is the height of the tree.

2. Each node, except the root and the leaves, has at least ("m/2] children. 
The root is either a leaf having no children, or has at least two children.

3. Each node, except the leaves, has at most m children.

A B-tree node N has the following structure

[POj k0, a0,Pl, ki, Ql, • • • , Pn — 1) kn—1, Qn-1, Pn] i

where [m/2] — 1 < n < m — 1. The elements k\, k2, ■ ■ •, kn are called the keys. 
A node that has n children, has n — 1 keys. The keys are stored in increasing 
order, that is, fci < fø < • • • < fcn_j. The elements p0,pi,... ,p„ are pointers 
to child nodes of N. On leaf nodes, where there are no pointers to child nodes, 
they are given the value NIL. The a, is the data in the index element (). 
The triple (ki,cti,pi) or omitting tv, is called an entry.

Each pointer pi points to a subtree TPi with height one less than the node 
N containing the pointer pr. Denote by K(pi) the set of keys in subtree pointed 
by Pi. One of the following properties shall hold:

1. Vfc € A'(po) : k < k0

2. Vfc G K{pi) : ki < k < ki+1, i = 0,1,... ,n — 1

3. Vfc e K{pt) : fcn_ i < k

The conditions above specify that the node Pi contains only the key range be
tween the possible two adjacent keys and thus can be used for searching the

1 Bayer and McCreight considered only the case where the m, the order of the tree, was 
odd, here we use the definition given by Knuth in [24, pp. 473-480].
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CHAPTER 2. B-TREES 4

Figure 2.1: A B-tree of order m = 4 with the data a* omitted.

keys. Usually B-trees are constructed so that the order of the tree or branching 
factor m is quite large. Large branching factor implies that B-trees grow height 
very slowly, which makes them a very suitable data structure for hierarchically 
organised memories: first levels of the tree can be kept in first level fast mem
ory whereas the leaves can be stored in second level slow memory. Bayer and 
McCreight presented B-trees in 1971 [5]. See Figure 2.1 for an illustration of a 
B-tree.

B-tree nodes are commonly organised as a fixed size linear array in computer 
memory. There is usually some extra book keeping information associated in ad
dition to the information presented above. For example, the number of elements 
n and whether the node is a leaf can be useful.

B-trees implement the dictionary abstract data-type. That is, the operations 
search, insert and delete are defined. We next define the operations carefully 
and give pseudo code implementations to them. The pseudo code uses some 
programming language like constructs instead of the more mathematical nota
tion used previously: when referring to the parts of a node structure: The ith 
key hi in a node is denoted node.key[i] and the pointer pt is denoted node.p[i].

We assume that the tree cannot contain duplicate keys. It is not hard to 
modify the algorithms to support duplicates but it would cause unnecessary 
complexity to algorithms and it was considered irrelevant for the presentation 
given in this thesis.

Search

The pseudo code for B-tree search operation is presented in Algorithm 1. Search
ing a key k starts from the root node and proceeds towards the leaves. In every 
node, the correct key is searched with the procedure node-search2. In plain 
B-trees all nodes contain data, so we have to always check whether the key k 
is found and return the data ct, if so (lines 4-5). Otherwise we descend to the 
corresponding child node p,, whose key range contains the key k (line 7). Once 
the search ends up to a node with NIL value, i.e., we have reached and processed 
the leaf, we know that the key is not in the tree.

If the branching factor m of the tree is large, NODE-SEARCH procedure per
forms a search in the sorted array formed by the keys of the node. This can be 
implemented with linear search or if the branching factor m of the tree is large, 
with a binary search.

2We omit the definition of NODE-SEARCH for B-trees. In Section 2.2 we describe them 
thoroughly.
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Algorithm 1 Internal bottom-up B-tree: search
B-TREE-SEARCH(root : node, k : key):

1: node <— root
2: while node ^ NIL do
3: i <— NODE-SEARCH (node, k)
4: if k = node.k[i] then
5: return ctj
6: else
7: node <— node.p[i]
8: end if
9: end while 

10: return NIL

Insert
Code for the insertion operation is given in Algorithm 2. The algorithm inserts 
the entry (it, a) to the B-tree index structure and balances the tree if needed. 
The balancing is described later.

If the tree is empty, a new node is created with the procedure node-alloc3, 
the entry is inserted to that node and a pointer to this new root is returned 
(lines 1-5). Otherwise the tree has at least one node. We perform a search to 
that node (line 8) with node-search in order to check if the key is already in 
the tree and give an error message if needed (lines 9-10). If the key is not in the 
tree, we store the index entry i and a pointer the current node into the stack S 
and descend to the child node, whose key-range contains the key k (lines 12-13).

The loop terminates when node= nil, that is, we have reached a leaf node. 
In B-trees, insertion occurs always at the leaf level, thus, we have found the 
correct spot where to insert the entry. First we pop the leaf out from the stack 
S (line 16) and check whether it is full (line 17). If the leaf is full, we have to 
split it before the entry can be inserted (lines 18-21).

In a split half of the entries are moved to a newly allocated node and a pointer 
to this new node and a key is inserted into the parent node. The splitting done 
is by calling split-child. If the parent node is also full, it has to be split 
before the new node can be inserted as its child. This can propagate all the 
way up to the root (lines 24-29). If the root node is full, it has to be split 
like any other node, but since there is no parent a new root must be allocated 
and the old root and the split half of the root are inserted as this new root’s 
children (lines 30-35).

This kind of balancing scheme, where the process first traverses the tree from 
root to leaf and stores the path into a stack and after the insertion backs up 
and balances the tree is called bottom-up balancing. We omit the definition of 
bottom-up balanced SPLIT-CHILD but later we define a variant from which it is 
easy to deduct the bottom-up split-child implementation.

3Procedure node-alloc obtains a memory area and initialises the node structures (e.g., 
resets node counters). We omit the definition of node-alloc since it is highly implementation 
dependant.
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Algorithm 2 Internal bottom-up B-tree: insert
B-TREE-lNSERT(root : node, k : key, a : data):

1: if root = NIL then 
2: root <— NODE-ALLOC()
3: NODE-INSERT (root, k, a)
4: return root
5: end if
6: node <— root
7: while node ^ nil do
8: i <— NODE-SEARCH (node, k)
9: if k = node.k[i] then

10: error “duplicate key”
11: else
12: push(S, node, i)
13: node <— node.p[i]
14: end if
15: end while
16: (node, i) <— pop(S)
17: if node.n = m — 1 then 
18: (parent, i) <— pop(S)
19: SPLlT-CHiLD(parent, i)
20: i <— NODE-SEARCH(parent, k)
21: node <— parent.p[i]
22: end if
23: NODE-insert (node, k, a)
24: node <— parent.p[i]
25: while S ^ nil and node.n = m do 
26: (parent, i) <— pop(S)
27: SPLIT-CHILD(parent, i)
28: node <— parent
29: end while
30: if root.n = m then
31: newroot <— node-allocQ
32: newroot.p[0] <— oldroot
33: SPLIT-CHlLD(newroot, 0)
34: root <— newroot
35: end if
36: return root
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Delete
The most complex operation in B-trees is the delete. The pseudo code is pre
sented in Algorithm 3. The goal of the operation is to remove the given key k 
and its data a from the tree. The algorithm starts with searching the node that 
contains the key k storing all nodes in the path to this node into a stack (lines 2- 
9). If we end up into a NIL node, the key is not in the tree and an error is 
signalled (lines 11-12).

» Otherwise we have found the node where the key k is. If this node is not a 
leaf, we need to get the smallest key larger than k from the subtree rooted at the 
same position where the key k lies. This is done with the find-min procedure 
which traverses the subtree and obtains the smallest key. This smallest key is 
always in the leftmost leaf of the subtree rooted in the position of k. Once we 
have obtained the smallest key, call it k\ we replace k with k! and recursively 
perform B-TREE-DELETE in order to remove k' from the tree (lines 14-16).

If the node where the key k is located is leaf, we remove the key with node
delete procedure, which removes the key and data a, updates the node count 
(line 18).

After removing the key k the node may contain fewer than [m/2] entries 
and needs to be compressed in order to keep the B-tree properties valid. Here 
the path stored in the stack 5 comes in need. We pop the parent of the node 
and compress it with compress-child (lines 19-23).

Compressing a node is somewhat more complex than splitting. Compression 
can be done by either sharing or fusingA In sharing, the entries in the node are 
rearranged with an adjacent sibling of the node so that both have at least the 
minimum number of entries. In fusing, two adjacent nodes are merged together 
as single node. Fusing is the opposite of the splitting operation done during 
insertion. The choice between doing fusing or sharing depends on the number 
of elements in the neighbouring nodes. If both the node and its neighbour 
have exactly m elements, they are fused together. Otherwise the elements are 
redistributed evenly. The procedure compress-child decides whether to fuse 
or share.

Finally, compressing the tree may cause the root to lose one of its children. If 
after the compression the root has only one child, the entire root can be removed 
and this only child is the new root. Thus, B-trees grow and lose their height 
only from root (lines 25-29).

We define COMPRESS-CHILD and the share and fuse operations in next section 
when we describe a more common variant of B-trees. The algorithms omitted 
here are almost identical to those presented in the next section. Since these 
original Bayer and McCreight B-trees are not used very much it was considered 
to be more useful to present the exact pseudo code when describing a more often 
used variant. 4

4The terms fusing and sharing are that of Mehlhorn et. al [35]. Bayer and McCreight use 
the terms catenation and underflow [5], Nowadays, more common terms would merging and 
redistribution.
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Algorithm 3 Internal bottom-up B-tree: delete
B-TREE-DELETE(root : node, k : key): 

l: node <— root 
2: while node ^ nil do 
3: i <— NODE-SEARCH (node, k)
4: if k = node.key[i] then
5: break
6: else
7: push(S, node, i)
8: node <— node.pji]
9: end if

10: end while 
ll: if node = NIL then
12: error ukey not in the tree”
13: else if not nodedeaf then 
14: 1 <— FIND-MIN (node.pji])
15: node.k[i] <— 1
16: return b-tree-delete(1, node.p[i])
17: else
18: NODE-DELETE(node, k)
19: while S ^ NIL and node.n = [m/2] do
20: (parent, i) <— pop(S)
21: COMPRESS-CHILD(parent, i)
22: node <— parent
23: end while
24: end if
25: if not root.leaf and root.n = 1 then 
26: oldroot <— root
27: root <— root.p[0]
28: NODE-FREE(oldroot)
29: end if 
30: return root
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2.2 Top-down B+-trees

One of the most popular B-tree variants is the B+-tree. In a B+-tree all data and 
keys lie in the leaves. The internal node contain only routers, which direct the 
search towards the correct leaf node. The leaf nodes are linked together from left 
to right to provide easy sequential accessing of the indexed keys. Trees, where 
the data is located on every node are sometimes called internal search trees 
whereas trees where only the leaves contain the data are called external search 
trees. According to Maelbrancke and Olivié [33] Knuth was the first to mention 
the B+-tree variant in [24] even though he did not give a precise definition to it.

Let us consider the implications of keys residing only in the leaves. Searching 
will always be processed from root to a leaf node, unlike in an ordinary B-tree, 
where encountering the key first time is an indication of the fact that key was 
found. If a search was unsuccessful, the search will terminate into a leaf, anyway. 
In ordinary B-trees failing search will always terminate in a leaf node, whereas 
successful search, may terminate in any level of the tree. Thus making searching 
a bit more expensive in B+-trees. This cost can be neglected, if one considers the 
benefits of making the keys reside only in the leaves: An efficient implementation 
of sequential accessing would be impossible in an ordinary B-tree.

The B+-tree node structure is similar to that of B-trees of Section 2.1. An 
internal node with n children has the following structure

[POj ho,Pi,k\,. . . , pn— 1, A;n_l, Pn\-

Similarly, a leaf node has the form

[qO? &(h Oil1 ^1 > • • • i —li kn— 1, Pnext]-

An internal node has at least [m/2j and at most m child nodes. Likewise, there 
are at least [m/2j — 1 keys and at most rn - 1 keys in an internal node. Also, 
every node has a variable that indicates the number of children (internal node) 
or keys (leaf node) the node has. In addition to this, there is a flag, indicating 
whether the node is a leaf. In top-down B+-trees, the branching factor must be 
m > 4, whereas in bottom-up trees m > 3 would suffice. We discuss this further 
in Section 2.3.

In a leaf node, the pointers po,pi,. ■ . point to some external data. The last 
pointer pnext points to the next adjacent leaf. Thus, there is room only for 
m — 1 data pointers and keys in a leaf node, if we want to make the leaf and 
internal nodes the same size. In ordinary B-trees the child pointers po,pi of a 
leaf were undefined and wasted space. An illustration of a B+-tree is presented 
in Figure 2.2.

B+-trees implement the dictionary and ISAM (Indexed Sequential Access 
Method) abstract data types. That is, in addition to the normal search, in
sert and delete operations of dictionary, a search-next operation is defined. The 
search-next operation searches the next larger key for a given key k. In an or
dinary B-tree this would require traversing the entire tree whereas in B+-t,rees 
with next links in the leaves, one can easily scan the leaves (i.e., the data nodes) 
with a basic linked-list scanning algorithm.
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Figure 2.2: A B+-tree of order m = 4. Internal nodes can have duplicates of 
the keys in the leaves’ nodes. Leaves are linked together.

Top-down vs. Bottom-up Balancing

Now we are ready to discuss the implementation of the actual B+-tree opera
tions. In Section 2.1 we presented ordinary B-trees with bottom-up balancing, 
here we present B+-trees with top-down balancing scheme. In top-down, the 
balancing is done in the search phase of the insert and delete operations. Dur
ing an insert operation, whenever a node that has vn children is encountered, 
it will be split immediately. In delete operations, if a node has exactly [m/2] 
elements, it will be either shared with a neighbouring node or fused if there are 
only [m/2] child elements in the neighbour too.

The benefits of top-down balancing compared to bottom-up come evident, 
when the tree is concurrently accessed by multiple processes. Ordinary bottom- 
up balanced algorithm has to lock the entire search path up to a node which 
with it can guarantee that no modifications will occur upper than that node. 
In worst case, this can mean that the root node has to be locked, thus no other 
process can access the tree at all. It is straightforward to implement top-down 
algorithms so that only constant amount of locks are needed during insertion 
and deletion operations.

Top-down balancing can do some extra work, making node splits or balancing 
when they are unnecessary: consider an insert operation that at first searches 
a path from root to leaf. Call this path qi,...,qh- Let <?i, <?2> • ■ • and
ql+i,__ qh be full nodes in the search path, let qL be non-full node in level
i < h. Now, bottom-up balancing will split only the nodes whose height > i in 
the tree, whereas top-down will split every node except <?». See also Figure 2.3.

Search
Algorithm 4 describes B+-tree search. The idea is similar to that of ordinary B- 
tree search of Algorithm 1 in Section 2.1. But here, unlike in the B-tree search, 
we always traverse the tree to the leaf and only in the leaf we check whether 
the key is in the tree. The procedure returns the node and index i to the entry 
which contains the searched key. The node is needed so that the search-next- 
key operation can be effectively implemented. We leave the definition of the 
search-next-key procedure as an exercise for the reader.

Insert
The operation insert is presented in Algorithm 5. The insertion uses top-down 
balancing scheme. That is, it is always guaranteed that before the algorithm 
descends to a node, there will be room for one more entry.
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Figure 2.3: The case where top-down balancing does extra work. Only the 
tree lower nodes need to be stored to the stack during a bottom-up balancing 
since the balancing stops to the third level. In top-down, balancing is done 
conservatively and the entire path from the first to the last node except the 
level three node will be split. (The sibling nodes are omitted.)

Algorithm 4 External top-down B+-tree: search

B+-TREE-SEARCH(root : node, k : key):
1: parent <— root
2: while not parent.leaf do
3: i <— NODE-SEARCH (node, k)
4: parent <— node.p[i]
5: end while
6: i <— NODE-SEARCH (node, k)
7: if i ^ nil then 
8: return (node, i)
9: else

10: return NIL
11: end if
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If the tree is empty, we allocate a new node, insert the key to that node and 
return (lines 1-5). Otherwise, if the root is full, we allocate a new root, split 
the old root and put the split nodes as the children of the new root (lines 6-11). 
After this we start traversing the path from the root to the leaf (lines 13-21). If 
a node that is full is encountered, it will be split (lines 17-20). When the leaf is 
encountered, it will have enough room to fit the new node due to the top-down 
balancing. Finally, the node is inserted (line 23).

Algorithm 5 External top-down B+-tree: insert

B+-TREE-INSERT(root : node, k : key, a : data):
1: if root = NIL then 
2: root <— NODE-ALLOC0
3: NODE-INSERT(root, k)
4: return root
5: end if
6: if root.n = to then 
7: newroot <— NODE-ALLOC0
8: newroot.p[0] <— root
9: SPLIT-CHILD(newroot, 0)

10: root <— newroot
11: end if
12: node root
13: while not node.leaf do
14: parent <— node
15: i <— NODE-SEARCH (parent, k)
16: node <— parent.p[i]
17: if node.n = to then
18: SPLlT-CHILD(parent, i)
19: node <— parent
20: end if
21: end while
22: {node is leaf and is not full due to the top-down balancing} 
23: NODE-INSERT(node, k)
24: return root

Split
Now we give the exact description of the top-down variant of the split operation. 
Algorithm 6 presents the relevant pseudo code. First, we allocate a new node 
(line 1), obtain a pointer to the full node (line 2), count the number of elements 
needed to move (line 3) and make room into the parent for a new node pointer 
(lines 4-9). Then, if the node is a leaf, we simply copy half of the keys and 
pointers to data into the new node (lines 11-14). If the node is an internal node, 
we copy half of the pointers (lines 16-18) and routers (lines 19-21). Finally we 
insert the new node and a router into the parent (lines 23-24), set up the node 
counters and other information (lines 25-28).

Note that whenever a leaf is split a key is copied upwards and becomes a 
router in the next level. That is, B+-tree can have duplicates of keys as routers.
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When an internal node is split, the routers do not get copied, which means that 
there is at most two instances of a key (the key and a router copy of it) in the 
tree at any time. See Figure 2.4 for an illustration of a split operation where 
the key is copied to upper level of the tree. In ordinary B-trees where the data 
is stored on every node there could not have been any duplicate keys since that 
would have destroyed the search tree properties of the structure.

Algorithm 6 B+-tree: splitting a child
SPLlT-CHILD(parent : node, i : index):

1: newnode <— NODE-ALLOC0 
2: fullnode <— parent.p[i]
3: t <— m/2
4: for j = parent.n — 1 downto i + 1 do 
5: parent.p[j+l] <— parent.p[j]
6: end for
7: for j = parent.n — 2 downto i do 
8: parent.key[j+l] <— parent.key[j]
9: end for

10: if fullnode.leaf then
ll: for j = t + 1 to fullnode.n — 1 do
12: newnode.key[j — t — 1] «— fullnode.key[j]
13: newnode.p[j — t — 1] «— fullnode.p[j]
14: end for
15: else
16: for j = t + 1 to fullnode.n — 1 do
17: newnode.p[j — t — 1] <— fullnode.p[j]
18: end for
19: for j = t + 1 to fullnode.n — 2 do
20: newnode.key[j — t — 1] <— fullnode.key[j]
21: end for
22: end if
23: parent.key[i] <— fullnode.key[i]
24: parent.p[i + 1] <— newnode 
25: newnode.n <— [m/2j 
26: fullnode.n <— [m/2]
27: newnode.leaf <— fullnode.leaf 
28: parent.n <— parent.n + 1
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I split

Figure 2.4: A B+-tree of order m = 4 with a child split. The key 25 duplicates 
as a router into the parent node.
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Delete
Deletion operation for B+-tree is presented in Algorithm 7. The deletion algo
rithm is somewhat similar to that of insertion. The idea is to guarantee that 
when the node is descended it will have at least the [m/2] + 1 entries. That is, 
the node can lose a child without becoming unbalanced.

At first, we check that the tree is not empty (lines 1-3). Then we traverse 
the path from the root to the leaf containing the key to be removed (lines 5-18). 
If we encounter a node that is half full, we compress it with compress-child. 
That is, depending on the sizes of the neighbouring nodes, the node is either 
shared or fused (see the Algorithms 9 and 10). If the root node becomes under
full, that is, it has only one child, we remove the root node and set the only child 
as the new root. This is the only case where the height of the tree decreases 
(lines 13-17). After all nodes have been compressed, the key is removed from 
the leaf (line 20).

Jannink gives a good description of bottom-up B+-tree deletion algorithm 
in [19]. Maelbrancke describes some optimisations in [33].

Algorithm 7 External top-down B+-tree: delete
B+-TREE-DELETE(root : node, k : key):

1: if root = NIL then
2: error “attempt to remove a key from an empty tree”
3: end if
4: parent <— root
5: while not parent.leaf do
6: parent <— node
7: i <— node-search (parent, k)
8: node <— parent.p[i]
9: if node.n = [m/2j then

10: COMPRESS-CHILD (parent, i)
li: node <— parent
12: end if
13: if not root.leaf and root.n = 1 then
14: oldroot <— root
15: root <— root.p[0]
16: NODE-FREE (oldroot)
17: end if
18: end while
19: {node is now leaf and can loose a child without becoming unbalanced}
20: NODE-DELETE(node, k)
21: return root 

Compression
The procedure COMPRESS-CHILD (Algorithm 8) decides whether an under-full 
node will be shared or fused. In B+-trees, the decision is simple: if the sum 
of the under-full node and its neighbour is exactly the size of the node, the 
nodes are merged together. If, on the other hand, the sum is greater than the 
node size, the contents of the nodes are shared. The procedure takes the parent
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node's pointer and index to the under-full child as its arguments and performs 
the compression operation by calling either the procedure FUSE or SHARE.

First, we obtain a pointer to the under-full node (line 1) and check whether 
the child has a right neighbour (line 2), if so, we set the procedure for sharing or 
fusing with it (line 3). Otherwise, the node is the rightmost child of the parent 
and it has to be compressed with a left neighbour (line 5). Finally, we obtain 
a pointer to the neighbour and fuse or share the elements depending on the 
number of elements in the nodes.

Algorithm 8 B+-tree: compressing a child
COMPRESS-CHILD (parent : node, i : index): 

l: child <— parent.p[i]
2: if i < parent.n — 1 then
3: j <- i + 1
4: else
5: j <- i - 1
6: end if
7: neighbour <— parent.p[j]
8: if child.n + neighbour.n < m then 
9: FUSE(parent, i, j)

10: else
11: SHARE(parent, i, j)
12: end if 

Fusing
In procedure fuse (Algorithm 9) the contents of the under-full node is fused 
or merged together with a neighbour. In this implementation fusing is always 
done towards left. That is, if we request a fusing towards right it is first flipped 
by calling tail-recursively the procedure FUSE (line 22).

First, pointers for the under-full node and its neighbour are allocated (lines 1- 
2). Then we check that we are fusing into the correct direction (line 3). If the 
node is a leaf we copy keys and pointers from the neighbour into the node 
(line 6-9) and update the parent’s router accordingly (line 10). If the node is 
internal, we move the routers from the neighbour into the node (line 12-14), 
move the key from parent into the node (line 15) and move the keys from the 
neighbour (lines 16-18).

At the end we shift the parent’s routers and pointers one step left (lines 24- 
29) so that the neighbouring node gets removed. Then the node counters are 
updated (lines 30-31).

Note that we move the router from parent to the child (line 15) only if 
the fused node is internal. That is, the router from the parent is not moved 
downwards if the fused node is leaf. This is naturally due to the fact that there 
might be a router whose corresponding key has been removed already.

Sharing
The main procedure share is given in Algorithm 10. It is merely a dispatcher 
that calls the appropriate sharing function SHARE-LEFT or SHARE-RIGHT de-
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Algorithm 9 B+-tree: fusing
FUSE(parent : node, i : index, j : index):

1: empty <— parent.p[i]
2: neighbour <— parent.p[j)
3: if i < j then
4: {move elements from right to left}
5: if empty.leaf then
6: for k = 0 to neighbour.n — 1 do
7: empty.p[empty.n 4- k] «— neighbour.p[k]
8: empty, key [empty, n + k] <— neighbour.key[k]
9: end for

10: parent.key[i] <— empty, key [empty, n + neighbour.n — 1]
11: else
12: for k = 0 to neighbour.n — 1 do
13: empty.p[empty.n + k] <— neighbour.p[k]
14: end for
15: empty, key [empty, n] <— parent.key[i]
16: for k = 0 to neighbour.n — 2 do
17: empty, key [empty, n + k] <— neighbour, key [k]
18: end for
19: end if
20: else
21: {move elements from left to right}
22: return FUSE(parent, j, i)
23: end if
24: for k = j to n - 1 do
25: parent.p[k] <— parent.p[k + 1]
26: end for
27: for k = j to n — 2 do
28: parent.key[k] *— parent.key[k + 1]
29: end for
30: parent.n <— parent.n — 1
31: empty.n <— empty.n + neighbour.n
32: NODE-FREE(neighbour)
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pending on whether the neighbouring node of the empty node is on the left 
or right side of the under-full node. Also, the main procedure sets the node 
counters after the actual sharing has been completed.

The procedure SHARE-LEFT (Algorithm 11) implements the actual sharing. 
First, obtain the pointers (lines 1-2). Variable t indicates the number of elements 
that are to be moved from the neighbouring node into the under-full node. In 
B+-trees this variable is always t = m/2 where m is the branching factor. If the 
under-full node is leaf, we first copy t keys and pointers from the right neighbour 
(lines 5-8) and move the elements in the neighbour t steps left (lines 9-12). 
After this, the parent’s router is set accordingly (line 13). If the under-full node 
is not leaf, the procedure is somewhat similar: first copy parent’s router into 
the under-full node (line 15). Move t keys from the neighbour into the node 
(lines 16-18) move a router from the neighbour into the parent (line 19) and 
shift the neighbour elements t steps left (lines 20-25).

We leave the definition of share-right as an exercise for the reader. It’s 
analogous to share-left except that the order with which to copy and shift 
the elements from a neighbouring node into the under-full somewhat different. 
Due to this fact it’s not possibly to just flip the i and j and call share-left as 
was done in the implementation of fusing in procedure FUSE.

The implementation given here is not very realistic: in a real implementation 
some kind of a block copying method5 would be used instead of the looping 
constructs used here.

Algorithm 10 B+-tree: sharing: main procedure
SHARE(parent : node, i : index, j : index): 

l: empty <— parent.p[i]
2: neighbour <— parent.p[j]
3: if i < j then 
4: SHARE-left (parent, i, j)
5: else
6: SHARE-RIGHT(parent, i, j)
7: end if
8: neighbour.!! <— neighbour.n — t 
9: empty.n <— empty.n + t

Node Operations

There are some auxiliary node operations needed and they are given in Algo
rithm 12. They operate on a single node and abstract away some of the repeated 
tasks that need to be done in implementing the actual B+-tree operations. These 
operations are described here because they are identical to all variants described 
in this chapter.

The procedure node-search performs a linear search into the array of keys 
of the node and returns an index to the element that contains the key. Nat
urally, in a real implementation where the size of the node can be quite large 
binary search would be much better approach. The procedures node-insert 
and node-delete insert and remove an element from the node.

5e.g., the memcpyO function of the operation system and/or the C library.
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Algorithm 11 B+-tree: sharing towards left

SHARE-LEFT(parent : node, i : index, j : index):
1: empty <— parent.pfi]
2: neighbour <— parent.p[j]
3: t <— m/2
4: if empty.leaf then
5: for k = 0 to t — 1 do
6: empty.key[empty.n + k] <— neighbour.key[i]
7: empty.pfempty.n + k] <— neighbour.p[i]
8: end for
9: for k = t to neighbour.n — 1 do

10: neighbour.key[i — t] <— neighbour.key[i]
11: neighbour.p[i - t] <— neighbour.p[i]
12: end for
13: parent, key [i] <— empty, key [empty.n + t — 1]
14: else
15: empty.key[empty.n — 1] <— parent.key[i]
16: for k = 0 to t — 1 do
17: empty.key[empty.n + i] <— neighbour.key[i]
18: end for
19: parent.key[i] <— neighbour.key[t - 1]
20: for k = t to neighbour.n — 1 do
21: neighbour.p[i - t] <— neighbour.p[i]
22: end for
23: for k = t to neighbour.n - 2 do
24: neighbour.key[i — t] <— neighbour.key[i]
25: end for
26: end if
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Algorithm 12 Auxiliary node operations 
NODE-SEARCH (node : node, k : key): 

l: i <— 0
2: if node.leaf then
3: while i < node.n and node.key[i] < k do
4: i <— i + 1
5: end while
6: if i < node.n and node.keyfi] = k then
7: return i
8: else
9: return NIL

10: end if
ll: else
12: while i < node.n — 1 and node.key[i] < k do
13: i <— i + 1
14: end while
15: return i
16: end if

NODE-INSERT (node : node, k : key, d : data):
1: i <— NODE-SEARCH (node, k)
2: if i ^ nil then 
3: error “duplicate key”
4: else
5: for j = node.n — 1 downto i do
6: node.key[j+l] <— node.key[j]
7: node.p[j+l] <— node.p[j]
8: end for
9: node.key[i] <— k

10: node.p[i] <— d
11: node.n <— node.n + 1
12: end if

NODE-DELETE(node : node, k : key):
1: i <— NODE-SEARCH(node,k)
2: if i NIL then 
3: error “key not in tree”
4: else
5: for j = i to node.n — 1 do
6: node.key[j] <— node.key[j+l]
7: node.p[j] <— node.p[j+lJ
8: end for
9: node.n <— node.n + 1

10: end if
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2.3 Top-down (a, b) trees

The (a, 6) trees or weak B-trees trees are a generalisation of the B+-trees. They 
were originally described in [17] by Huddleston and Mehlhorn. In (a, b) trees 
each node contains at least a elements and at most b elements. Further, a > 2 
and b > 2a - 1 [17, 35]. The algorithms defined in Mehlhorn’s and Huddleston’s 
papers use the bottom-up balancing scheme. Here, we present (a, b) tree algo
rithms that use the top-down scheme. Mehlhorn considered top-down in [35, 
pp. 212] but left the implementation as an exercise. In top-down (a, b) trees 
b > 2a, because in the case b = 2a - 1, splitting a full node would yield a node 
who has less than a elements and thus violates the balancing condition.

The (a, b) trees as we define them here are external top-down balanced search 
trees similar to the B+-trees of Section 2.2. Each internal node has at least a 
and at most b children plus a variable to indicate the exact number of children 
and a flag telling whether the node is a leaf. The structure for internal nodes:

[po,fc0,Pi,fci,. ■ ■ • Pn]-

And like in B+-trees, the leaves have the structure:

[ct(h Ah, ^-1) • • • i C*n—1, kn—i ,Pnext\-

The (a, b) trees are somewhat more flexible than normal B+-trees since the 
user has better control of the branching factor and thus the fan out rate can be 
made higher. Generally, (a, b) trees for small values of a and b are well suited for 
two-level memory structures6. Conversely, larger values are suitable for index 
structures stored in a hard disk.

Search

Searching in external top-down (a, b) trees does not differ from searching of 
similar B+-trees. Thus, the procedure B+-TREE-SEARCH in Algorithm 4 of Sec
tion 2.2 can be used as it is in order to perform a search in an (a, b) tree.

Insert
The algorithm for (a, b) tree insertion operation is analogous to B+-TREE-1NSERT 
procedure in Algorithm 5 of Section 2.2. The only difference is that the variable 
to has the value m = b. Because the changes needed to do in Algorithm 5 are 
trivial, we omit the exact pseudo code for (a, b) tree insertion.

Split operation is identical to that of split-child in Algorithm 6. Here, 
too, the variable to will be replaced with the variable b.

Delete

The algorithm for deletion is almost identical to the procedure b+-tree-delete 
in Algorithm 7. Only the expression [m/2] is replaced with the variable a.

The most notable difference when compared to ordinary B+-trees is in the 
compression procedures COMPRESS-CHILD, SHARE and FUSE. In (a, b) trees there 
is more latitude on how to do the compression. Let u and v be neighbouring

®E.g., processor cache and the main memory.
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nodes in an (a, b) tree. Denote by c(u) the number of elements (children or keys) 
the node u has. We assume that the node u has c(u) = a elements and needs to 
be compressed. We define two variables: the sharing threshold t and the number 
of elements shifted during a share s. Now, the compression is done as follows: 
Nodes u and v are fused together if c(u) + c(v) < t. Otherwise the contents of 
the nodes u and v are shared. When sharing is performed, s elements are moved 
from node v into node u. The threshold must be between 0 < t < b — 2a and 
the shifting number in range 1 < s < t + 1

The procedure compress-child in Algorithm 13 is changed to reflect the 
(a, b) tree compression operation. Here we omit the exact algorithmic descrip
tions of the procedures SHARE and FUSE and merely point out that the changes 
needed to modify the Algorithms 9 and 10 are trivial.

Algorithm 13 (a, b) tree: compressing a child
COMPRESS-CHILD (parent : node, i : index):

1: child <— parent.p[i]
2: if i < parent.n — 1 then 
3: j <- i + 1
4: else
5: j «- i - 1
6: end if
7: neighbour <— parent.p[j]
8: if child.n + neighbour.n < t then 
9: FUSE(parent, i, j)

10: else
ll: SHARE(parent, i, j, t)
12: end if
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2.4 Complexity Results

Theorem 2.1. Inserting (deleting) an element to a top-down (a, 6) tree will 
cause at most 0(h) balancing operations, where h is the height of the tree.

Proof. (The argument is similar to that of [35].) In Algorithm 5 the loop in 
lines 12-20 is repeated h times, where h is the height of the tree. Likewise, in 
Algorithm 7 the loop in lines 5-18 is repeated h times. There cannot be more 
balancing operations than there are iterations in the loops. Thus, the theorem 
follows. D

Theorem 2.2. The height of an (a,b) tree is logarithmic with respect to the 
number of elements in the tree.

Proof. This proof is analogous to Bayer’s and McCreight’s in [5] but here it is 
applied to (a, b) trees instead of internal B-trees. First we consider an (a, b) tree 
that is as empty as possible. That is, the root has two children and all other 
internal nodes have a children. We assume that the height of the root node is 1 
and the height of the leaves is h.

Nmin = 1 + 2(n° + a1 + o3 + • • • + ah~2) = 1 + ^ _ ~

The (a, b) tree is as full as possible when all internal nodes have b children.

Nmax = b° + b1 + b~ + ■ ■ ■ + bh 1 = b — i

Hence, The number of nodes N of an (a, b) tree whose height is h is

2(ah~1 - 1)
1 + -----------*a — 1

< N <
bh — 1 
b- 1

Next, we consider the sum of the number of routers and keys in an (a, b) tree. 
The root node has at least 1 key or router and every other node has at least 
o-l keys or routers. There are at most 6 — 1 keys or routers in every node. 
That is,

Amin = 1 + (a - 1)2(q/11 = 2a'1-1 - 1
a — 1

and
Kmax = (6- i)^—Y = bh - 1.

We obtain
2oh_1 - 1 < K < bh - 1

Solving h yields

log;, (K + 1) <h< loga [(A' + l)/2] + 1

and the theorem follows. □
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Theorem 2.3. Assume that i insertions and d deletions are performed to an 
initially empty7 (a, 6) tree where b > 2a + 3. The rebalancing operations needed 
during an insertion or deletion in this sequence have amortised 0(1) complexity.

Proof. We use Tarjan’s potential function technique [43]. The amortised anal
ysis presented here is somewhat similar to that of [28, 38] and is also published 
in [32], The number of elements for the node u (children or pointers to external 
data) is c(u). The potential of a non-root node is defined to be:

4>(u)

3, c(u) = a
1, c(u) =0 + 1

< 0, a + 1 < c(u) <6 — 1
2, c(u) = 6—1
4, c(u) = 6

The potential of the root node is defined similarly but the variable a is replaced 
with the constant 2. The potential of the tree T is the sum of the potentials of 
all the nodes in the tree:

$(T) = Y,
u£T

Insert
The actual insertion affects only the potential of the node where the element is 
inserted. The increase is at most 2 units.

Delete
The actual deletion affects only the potential of the node where the element is 
inserted. The increase is at most 2 units.

Split
Split changes the potential of the node to be split and its parent. Denote the 
node before a split q and its parent p. After the split, call the nodes q' and q" and 
the parent //. Before a split, we have c(q) = 6 and due to the top-down balancing 
a < c(p) <6—1. After the split, we have c(q’) = [6/2J and c(q") = [6/2]. 
Because 6 > 2o + 3, we have a + 1 < [6/2J <6 — 1 and a + 2 < [6/2] <6 — 1. 
The inequality

$(</) + $(p) > $(<?') + $(«") + W) (2.1)

holds, since $(<7) + <$>(p) > 4, because $(<7) = 4, $(<7') + $(q") < 1 and $(p') — 
$(p) < 2. Thus, the total decrease of the tree potential is at least 1 unit.

Compression

Compression occurs when a node q cannot lose a child. That is, when c(q) = a. 
Compression can be done either by sharing or fusing. Using q' to denote the 
sibling of <7, we perform fusing when c(q) + c(q') < 2a +1, otherwise the contents 
of the nodes are shared.

7See [18] on how to relax this constraint.
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Fusing
In fusing, call the nodes before the operation q, r and p for the parent. After 
the operation, the combined node is called q' and the parent p'. Now, we show 
that the inequality

$(9) + $(r) + 4>(p) > $(9') + $(p') (2-2)

holds. Since c(q) = a, a < c(r) < a + 1, it holds that + 4>(r) > 4. It is easy 
to see that 2a < c(q') < 2a +1 < 6 -1, thus $(9') = 0. The increase in parent’s 
potential is 4>(p') — $(p) < 2.

Sharing
Sharing doesn’t change the number of children in the parent node, thus the 
parent’s potential does not change. Name the nodes before sharing q and r and 
after it q' and r'. We have c(q) = a and a + 2 < c(r) < b. We perform sharing 
so that the contents of the nodes q and r is distributed evenly. After sharing, 
we have a + 1 < c{q'), c(r') <6-1. The inequality

$(9) + $(r) > $(9') + $(r') (2.3)

is valid, since $(9) + $(r) > 3 and $(9') + $(r') < 2, because a + 1 < 
c(q'), c(r') <6-1. Thus, the total decrease is at least 1 unit.

Conclusion
Now, consider a sequence i insertion and d deletion operations that are per
formed to an initially empty tree. Denote the potential of the tree after the jth 
operation by $(!)). Clearly, <h(T,-) > 0, for all 1 <j<n = i + d. Now, we have 
shown that inserting or deleting an element will increase the potential of the 
tree by at most 2 units and performing a balancing operation will decrease the 
potential of the tree at least 1 unit. The potential is always an integer. Thus, 
after n operations, the potential of the entire tree is bound by the following 
equation:

0 < 4>(Tn) < 2n - r ■ 1,

where r denotes the number of balancing operations performed. Now, solving r 
yields

r < 2n = 2(i + d),

which implies that, in the amortised sense, the number of balancing operations 
performed in a sequence of i insertions and d deletions is 0(i + d). □

In bottom-up (a, 6) trees one can construct valid trees when 6 > 2a - 1. 
The amortised constant bound is, however, valid only if 6 > 2a [16, 17, 35]. In 
top-down trees 6 > 2a and in cases 6 = 2a and 6 = 2a + 1 it is easy to construct 
a counter-example to contradict the amortised constant bound.

In the case 6 = 2a + 2 I have been unable to find an operation sequence that 
breaks the amortised bound. According to Mehlhorn [35, p. 212] the amortised 
constant bound should be valid when 6 > 2a+ 2. However, I have been unable to 
find a proof of this claim nor have I found a counter-example. Thus it is an open
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insert

delete

Figure 2.5: Part of an (a, 2a) tree. Inserting a key to the leftmost leaf and 
deleting it afterwards causes balancing operation on every second level of the 
tree. The blank nodes are assumed to have enough children so that they can 
either loose or gain a child without further balancing. The node where the key 
is inserted in and deleted from is marked with a vertical arrow.

t

insert

delete

t
Figure 2.6: In the above fraction of an (o, 2o + l) tree, balancing occurs on every 
second level of the tree during a sequence of insertion and deletion operations. 
Note that the figure and argument are analogous to the case of (a, 2a) tree.

question whether the amortised bound holds for 6 — 2a + 2. (See Figures 2.5 
and 2.6 for counter-examples in cases 2a <b <2a + 1.)

The above mentioned potential technique cannot be directly applied to the 
case b = 2a + 2, because it will contradict equations (2.1) and (2.2). If, in 
equation (2.1), c(p) = 6 — 1, then

$(6-l)>2$(a + l).

Similarly, in equation (2.2), if c(p) = a +1 and c(q) = a +1. Substitution yields,

2$(a + l) > $(6-1)

i.e., a contradiction. Using sharing in the case where c(r) = a + 1 does not 
help, because share operation would move the one element from r to q and both 
sides of the inequality (2.3) would be equivalent. This result indicates that it is 
not possible to find a potential function that uses only the number of elements 
c(u). I have also considered using the height of the node, the number of child
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Figure 2.7: A Blink-tree. Each level has a pointer to its next to right sibling.

nodes and leaf nodes as a second argument to the potential function but none 
of them have given any positive results.

2.5 Other B-tree Variants
In addition the variants of the B-trees presented in the previous sections there are 
quite a few more. Many of these variations are applicable for certain problems 
with extra cost on some other aspects. Next, we survey few of the more common 
variants of the B-trees and their algorithms without going into details.

Lehman and Yao present the Blink-trees in [31] and gave the algorithms for 
searching and inserting elements to them. In Blink-trees there are links to the 
right sibling on each level of the tree. In B+-trees these links exist only in the leaf 
level. See Figure 2.7. Later, Lanin and Shasha gave the algorithm for deletion 
in [27]. In a Blink-tree insertion or deletion operations need to lock only single 
node at a time, thus improving the concurrency considerably in comparison to 
previously discussed B-tree variants. The extra link pointer is used when the 
node does not contain the key it was thought to contain when the node was 
descended to. This can be the case when there are two concurrent processes, 
say P\ and P2, and a node N. Process P2 holds a lock on N. Process P\ obtains 
a pointer to the node. Process P2 operates on the node and splits moving the 
key A is interested in to a new node. Process P2 sets the link to point to this 
newly split node and releases the lock on N. Then Pi obtains the lock and finds 
out that the node does not contain the key. Therefore it follows the next link to 
the node where the key is located. Inserting a router and a pointer to the newly 
split node into the parent is done later by a separate balancing process [40], 
The exact description of the algorithms and proofs of their correctness are given 
in [27, 31].

Huddleston and Mehlhorn introduce level-linked B-trees in [17]. In level- 
linked B-trees every level has links to both siblings and the child nodes link to 
the parents. Level-linked trees are applicable when there is high areas of locality 
in the operations. Level-linked (a, b) trees can be used to implement many of the 
set operations in an optimal way. The balancing operations in both level-linked 
and normal (a, b) trees concentrate near the leaves. Thus, making the need to 
lock larger parts of the tree during a balancing phase uncommon.

One interesting alternative is so called relaxed B-trees. In relaxed B-trees 
the update operations need not uphold the balancing condition all the time. 
That is, for example, not all paths from root to the leaves are of the same size. 
Balancing is usually done in a separate process later when the system has less 
load. Larsen and others provide good discussion on this topic in [29, 30].
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Knuth describes a variation called B*-trees where every node is at least 
2/3 full [25, pp. 481-491] making the space utilisation much better than in 
ordinary B, B+ or even (a,b) trees. As a matter of fact (a,b) trees can be 
much worse than ordinary B-trees when space utilisation is concerned: in B- 
trees nodes are always at least half full, in (a, b) trees this is only the case if 
b = 2a. If b > 2a the utilisation is less than half. Also, the fan-out rate or 
branching factor does not need to be the same on each level of the tree [25]. 
Some authors—unfortunately—call B+-trees defined in Section 2.2 B*-trees.

Normally the node structure is a linear array where the keys or routers and 
pointers are stored and a binary search is performed in order to find the proper 
key or router. Some variants, namely, RB-trees of [10] and AB-trees of [37] 
differ from the usual linear array approach, in RB-trees the keys are stored as 
red-black trees in the leaf nodes. In AB-trees AVL-trees are used. These non- 
conventional approaches are well suitable for efficient implementation of certain 
bulk update operations.

Comer [8] provides a good, though a bit dated, survey of the basic B-trees 
and its variants. Knuth provides rather concise and well-founded description 
of B-trees and its variants in [25]. Johnson and Shasha discuss various aspects 
relating to the performance of B-trees in [21].



Chapter 3

Interval Deletion

3.1 The Problem
The problem of interval deletion is the following: Given two keys L and R, 
L < R and a B+-tree T, the goal is to remove all the keys that lie in the 
interval [L, R] in the tree and produce a valid balanced B+-tree as a result. See 
Figure 3.1.

For example, consider executing the following SQL statement on a database 
with a primary B+-tree index on attribute Cl

DELETE
FROM T1
WHERE Cl > 100 AND Cl < 200

The above type of statement is frequently used according to [36], Another 
example of a situation where an interval deletion might occur comes from data 
archiving [13]: Think of the relation ORDERS (OrderNr, Customer, Date) where 
a B+-tree index I exists on the attribute OrderNr. If we want to remove the 
paid orders that are older than six months, we can implement the operation as 
a sequence of interval deletions on 7, provided that there are only a few unpaid 
orders.

Database management systems generate the above kind of queries inter
nally when implementing referential integrity and cascade-on-delete is to be 
applied [36]: assume that we have two tables X, Y and a key k. In table X

single cut-path

separate cut-paths

Figure 3.1: B+-tree interval deletion operation removes the darkened area from 
the tree and balances the tree.

29
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key k is the primary key and in table Y key k is part of a foreign key {k, x) 
and has a B+-tree index I. Now, we perform deletion in the table X and since 
cascade-on-delete is applied, there will be a number of interval deletion opera
tions performed in table Y’s index I.

3.2 Previous Work
In this section, we survey various currently known algorithms for the interval 
deletion problem and discuss the assumptions that they are based on.

Normal deletion
The trivial approach to interval deletion problem is to perform ordinary deletion 
to every key that lies in the range [L, R\. This is very suboptimal since in the 
worst case there is 0{m log n) balancing operations where m is the length of the 
interval and n is the number of keys in the tree.

Deletion with tree splitting and concatenation

In [15] Hoffman and Mehlhorn describe operations for splitting a B-tree into two 
halves and concatenating two B-trees together. They also present an interval 
deletion algorithm that uses these tree splitting and concatenation operations. 
The basic idea is to split the tree twice. First the tree is split with the key 
L to obtain two subtrees: one containing the keys that are smaller than L 
and one containing the keys larger or equal to L. Then the latter subtree is 
split again with the key R. The tree is now partitioned into tree subtrees one 
of which contains the deleted interval and the others rest of the tree. These 
other parts are concatenated together in order to produce a B-tree without the 
deleted interval. The splitting and concatenation algorithms are presented more 
thoroughly in [35, pp. 213-215].

Top-down three-pass algorithm
Carey et al. describe in [6, 7] a method for performing a range deletion in a B+- 
tree index. The algorithm performs three passes to the tree. The first pass is the 
deletion phase where the tree is traversed from root towards the left and right 
limits of the deletion. The algorithm removes all subtrees that are contained 
in the deletion interval and updates the node counters to reflect this situation. 
Also, path from root to the leaves is recorded. In the second pass the path is 
traversed from the limiting leaves to the root in bottom-up manner and certain 
nodes are marked to be in danger. In the third pass the tree is once again 
traversed from the root towards the leaves and the nodes that are in danger will 
be rebalanced within their neighbouring nodes.

Bulk deletion with reorganisation

In [45] Zou and Salzberg describe a method for performing reorganisations to a 
B+-tree index. Their method is to first compress the leaves so that they form a 
continuous region in a disk storage. The reorganisation is done in-place, i.e., the 
actual pages are moved. After this the upper levels of the tree are compressed.
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This moving is done new-place. That is, new pages are allocated for the internal 
pages and information is moved to these pages. Concurrent operations that try 
to modify the pages already moved into a new place are collected into a side file, 
which is merged into the tree after the entirely reorganisation is complete. This 
approach guarantees that only one internal node needs to be locked at a time. 
After the internal pages have been reconstructed, the root pointer is switched 
to point this newly created tree.

Gartner adapts the algorithm presented by Zou and Salzberg for the bulk 
deletion problem in [13]. Ghrtner’s approach is to perform the reorganisation 
only into some parts of the tree. That is, the algorithm works by find a base 
node which is typically chosen so that the subtree rooted at the base node can 
fit in the main memory. Then the bulk deletion is performed on the leaves of 
this subtree and the subtree is reorganised.

This algorithm is for generic bulk deletion where there is a predefined set 
of keys to be deleted from the tree. The keys need not form any intervals, i.e. 
there is no need to have consecutive keys deleted from the tree. In principle, this 
algorithm will compress the entire tree and avoids clustering. The algorithm is, 
however, not very well suited for generic interval deletion, because it will perform 
lots of extra work due to the compression and de-clustering.

Other approaches

Mohan considers interval deletion in [36] but the focus of his paper is in the 
concurrent handling of the interval deletion transaction and he omits entirely 
the structure modifications that are done to the B+-tree index.

3.3 Top-down single-pass Interval Deletion
The new interval deletion algorithm presented here is top-down single pass. It 
performs removing and compression during the single traversal from the root to 
leaf nodes. Unlike in the bottom-up algorithms, there is no need to store the 
entire search path and only two levels of the tree need to be locked at the same 
time.

The general idea behind the algorithm is to delete all subtrees contained 
entirely in the interval [L, fi] from an (internal) node and make the subtrees 
that contain the left and right key adjacent in the node. After this, the node is 
compressed with its neighbouring nodes or, in the case of root, simply removed if 
the node becomes under-full. After compression is done, the algorithm descends 
to the lower level and performs the same operations there. This process is 
repeated until the leaf nodes are reached.

The algorithm starts by obtaining a pointer to the root and the limiting keys 
L and R. See Algorithm 14.

Algorithm 14 Interval Deletion: main algorithm
INTERVAL-DELETE (root : node, L : key, R : key): 

1: PROCESS-ROOT(rOOt, L, R)
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Processing the root

There are three stages in the algorithm. In the first stage the root node is 
processed (see Algorithm 15). First we remove the elements (subtrees if the 
root is not a leaf) that are entirely contained in the interval [L.R] (line 1). 
Then we are all done, if the root is a leaf (lines 2-4). If root is internal, we 
search for the subtrees (or keys) that contain the keys L and R. If the keys 
are located in the same subtree node child, we remove all elements from this 
node and balance the node (lines 7-10). Note that this can cause the root 
node to became under-full. In the other case, the deletion path diverges and 
subtrees are not rooted in the same child of the root. Then we perform range 
deletion separately for the left and right child (lines 12-16). Now, we check 
whether the root node has become unbalanced and balance it (lines 18-20). 
This is analogous to the operation performed in ordinary top-down deletion. 
This is the only place where the height of the tree can decrease. We perform a 
tail-recursive call to PROCESS-ROOT and start reprocessing the balanced node. 
Otherwise, if the root node has not become unbalanced, we search the limiting 
subtrees once again (lines 22-23) and if the keys are in the same subtree we call 
process-single. Otherwise PROCESS-SEP is called. Once process-single or 
PROCESS-SEP is called there will be no more operations to the root node and 
the height of the tree cannot decrease anymore.

Processing single cut-path
In the second phase we the deletion paths do not diverge. The process is pre
sented in Algorithm 16. If the node is leaf, we are all done (lines 1-2). Otherwise 
we look the indices to the subtrees that contain the subtrees with keys L and 
R (lines 3-4). If they are contained in the same subtree we move to process 
this node called child. First, we remove the subtrees that are entirely contained 
in the range [L, R] from the child and then we balance the child (lines 7-9). 
If the subtrees are not contained in the same child node, we remove the sub
trees contained in the range [L, oo] ([-oo, /?]) from the left (right) child and 
balance the children (lines 11-16). After this we search the subtrees once again 
from the parent node. If the keys L and R are now in the same child we tail- 
recursively call process-single with this child (lines 19-21). Otherwise, the 
deletion paths diverge and we call the procedure PROCESS-SEP to handle the 
separated cut paths (lines 23-25).

Processing separate cut-paths

The final phase is presented in Algorithm 17. In here, the cut paths have 
diverged and it is not possible to rebalance the tree so that the cut paths will 
merge together. If the parent nodes are leaves, then we are all done (lines 1-2). 
Otherwise, there are two subtrees rooted at nodes leftparent and rightparent. 
We first descend to the children of these nodes and remove the subtrees that 
lie entirely in the interval [L.R] (lines 4-9). After this we balance these child 
nodes (lines 10-11). We have to look the pointers to the child nodes once again 
because the balancing phase might have changed them (lines 12-15). Finally 
we tail-recursively call PROCESS-SEP (line 16).
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Algorithm 15 Interval Deletion: processing of the root
PROCESS-ROOT (root : node, L : key, R : key):

1: DELETE-RANGE(r00t, L, R)
2: if root.leaf then 
3: return root
4: end if
5: i <— NODE-SEARCH (root, L)
6: j <— NODE-SEARCH (root, R)
7: if i = j then
8: child <— root.p[i]
9: DELETE-RANGE(child, L, R)

10: ID-BALANCE-CHILD(rOOt, i)
11: else
12: left <— root.p[i]
13: right <— root.p[j]
14: DELETE-RANGE(left, L, 00)
15: DELETE-RANGE(right, -00, R)
16: lD-BALANCE-CHILDREN(roOt, i, j)
17: end if
18: if not root.leaf and root.n = 1 then 
19: root <— root.p[0]
20: return PROCESS-ROOT(root, L, R)
21: end if
22: i <— NODE-SEARCH (root, L)
23: j <— NODE-SEARCH (root, R)
24: if i = j then 
25: child <— root.p[i]
26: return PROCESS-slNGLE(child, L, R)
27: else
28: left <— root.pfi]
29: right <— root.p[j]
30: return PROCESS-SEP(left, right, L, R)
31: end if
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Algorithm 16 Interval Deletion: processing single cut-path 

PROCESS-SINGLE(parent : node, L : key, R : key):
1: if parent.leaf then 
2: return
3: end if
4: i <— NODE-SEARCH(parent, L)
5: j <— NODE-SEARCH(parent, R)
6: if i = j then 
7: child <— parent.p[i]
8: DELETE-RANGE(child, L, R)
9: lD-BALANCE-CH!LD(parent, i)

10: else
ll: left <— parent.p[i]
12: right <— parent.p[j]
13: DELETE-RANGE (left, L, 00)
14: DELETE-RANGE(right, -00, R)
15: ID-BALANCE-CHILDREN(parent, i, j)
16: end if
17: i <— NODE-SEARCH (parent, L)
18: j <— NODE-SEARCH (parent, R)
19. if i = j then
20: child <— parent. p[i]
21: return PROCESS-S!NGLE(child, L, R)
22: else
23: left e- parent.p[i]
24: right <— parent.p[j]
25: return PROCESS-SEP(left, right, L, R)
26: end if

Algorithm 17 Interval Deletion: processing separate cut-paths 

PROCESS-SEP(leftparent : node, rightparent : node, L : key, R : key): 
l: if leftparent.leaf then 
2: return
3: else
4: i <— NODE-SEARCH(leftparent, L)
5: j <— NODE-SEARCH(rightparent, R)
6: leftchild <— leftparent.p[i]
7: rightchild <— rightparent.p[j]
8: DELETE-RANGE(leftchild, L, 00)
9: DELETE-RANGE(rightchild, — 00, R)

10: ID-BALANCE-CHILD(leftparent, i)
11: ID-BALANCE-CHILD(rightparent, j)
12: i <— NODE-SEARCH(leftparent, L)
13: j <— NODE-SEARCH(rightparent, R)
14: leftchild <— leftparent.p[i]
15: rightchild <— rightparent.p[j]
16: return PROCESS-SEP(leftchild, rightchild, L, R)
17: end if
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Removing elements from a node

Next, we describe the algorithm used to perform the removal of elements from 
a node. The pseudo code for this is in Algorithm 18. The procedure delete- 
RANGE is somewhat complex due to the fact that it has to operate both internal 
nodes and leaves. In internal nodes all subtrees contained entirely in the interval 
has to be removed but not the bordering subtrees that contain the interval limits.

In leaf nodes, every key that lies in the interval deletion range has to be 
removed. First, assume that the node where the deletion operation is performed 
is a leaf. First we check that the left limit is contained in the interval, if not we 
fix the left limit accordingly (lines 4-6). The same is done for the right limit 
(lines 7-9). After this we simply shift the keys towards left so that the interval 
is removed from the tree (lines 10-12) and update the counter (line 13).

In an internal node, if the limits are consecutive (line 15) then nothing 
will be removed from the node. Otherwise, there is at least one subtree that is 
entirely contained in the interval. Remove the routers (lines 16-18) and subtrees 
(lines 19-21) and update the counter (line 22).

Rebalancing the node
There are two procedures for rebalancing given in Algorithms 19 and 20. The 
first algorithm id-balance-child balances single child and is very similar to 
ordinary (a, b) tree rebalancing algorithms (see Algorithms 8 and 13 in Chap
ter 2). The other procedure id-balance-children balances two successive 
child nodes.

Rebalancing after DELETE-RANGE differs from the rebalancing done after 
ordinary single deletion algorithm. In an ordinary B+-tree deletion a node loses 
at most one child during the deletion operation. Thus, it is enough to have 
a + 1 children in the parent node in order to guarantee the balance. In interval 
deletion, after the delete-range has been performed the node can contain 1 
or more children (if the node is internal) or 0 or more keys (if the node is a leaf). 
Thus, the balancing must take these special cases into account.

The procedure id-balance-child is applied when there is only single node 
where the keys were removed. First we check whether the parent has only a 
single child and return immediately if so (lines 2-3). This scenario is possibly 
only if parent is the root. If so, the PROCESS-ROOT will remove the old root and 
lift this new node as the new root. Otherwise, if the node is empty we simply 
remove it (lines 4-5). If the node is a leaf and has less than a elements, the 
node is rebalanced (lines 6-8). If the node is internal and has less than a + 2 
elements, we balance it (lines 8-9).

If the deletion paths diverge there are two child nodes that are the roots 
of the subtrees containing the keys L and R. Algorithm 20 handles this case. 
The procedure ID-BALANCE-CHILDREN first checks whether either of the children 
is empty (this can only occur if the nodes are leaves). If this is the case, the 
empty node is removed and ID-BALANCE-CHILD is called for balancing the other, 
possible unbalanced, node (lines 3-8). If both nodes have less than or equal 
to a + 2 elements, they are fused together and id-balance-child is called to 
perform the balancing for the fused node (lines 9-11). If the sum of the elements 
is less than or equal to the node size 6, then the nodes will be fused together 
and no further balancing is needed (lines 12-14). Otherwise the contents of the
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nodes are shared (lines 14-18). Note that the sharing in lines 14-17 is always 
possible and only one of the nodes need to be shared, because the other one is in 
balance anyway. This is a consequence of the fact that the sum of the elements 
in the two nodes is greater than b if the line 14 is reached.

Algorithm 18 Interval Deletion: deleting elements from a node
delete-RANGE(child : node, L : key, R : key):

1: 1 <— NODE-SEARCH (child, L)
2: r «— NODE-SEARCH (child, R)
3: if child.leaf then 
4: if child.key[1] < L then
5: 1 <— 1+1
6: end if
7: if child.key[r] > R then
8: r <— r + 1
9: end if

10: for i = r to n — 1 do
11: child.key[1 + (i - r)] <— child.key[i]
12: end for
13: child.n <— n - (r — 1)
14: else
15: if r - 1 > 1 then
16: for i = r to n - 2 do
17: child.key[1 + 1 + (i - r)] <— child.key[i]
18: end for
19: for i = r to n — 1 do
20: child.p[l + 1 + (i - r)] <— child.p[i]
21: end for
22: child.n <— n — (r — 1 — 1)
23: end if
24: end if
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Algorithm 19 Interval Deletion: balancing single child
!D-BALANCE-CHlLD(parent : node, i : index): 

l: child <— parent.p[i]
2: if parent.n = 1 then 
3: return
4: else if child.n = 0 then 
5: DELETE-CHILD (parent, i)
6: else if child.leaf and child.n < a then 
7: COMPRESS-CHILD(parent, i)
8: else if not child.leaf and child.n < o + 2 then 
9: COMPRESS-CHlLD(parent, i)

10: end if

Algorithm 20 Interval Deletion: balancing two children
lD-BALANCE-CHlLDREN(parent : node, i : index, j : index): 

l: child-1 «— parent.p[i]
2: child-2 <— parent.p[j]
3: if child-1.n = 0 then 
4: delete-child (parent,i)
5: ID-BALANCE-CHILD (parent,j)
6: else if child-2.n = 0 then 
7: DELETE-CHILD (parent,j)
8: I D-BALANCE-CHILD (parent,i)
9: else if child-1.n + child-2.n < a + 2 then 

10: FUSE-CIlILD(parent, i)
11: ID-BALANCE-CHILD(parent, i)
12: else if child-l.n + child-2.n < b then 
13: FUSE-CHILD(parent, i)
14: else if child-l.n < a + 1 then 
15: share-child (parent, i)
16: else if child-2.n < a + 1 then 
17: SHARE-CHILD (parent, j)
18: end if
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L R

Figure 3.2: The beginning. The deletion interval is contained in a single subtree 
of the root thus no deletion occurs at root level.

Figure 3.3: Locating lea and removing subtrees.

3.4 Example
An example run on a sample tree can be found from Figures 3.2-3.6. At first the 
root node is not changed at all (Figure 3.2). The lowest common ancestor node 
where the deletion begins is located at the second level of the tree (Figure 3.3). 
First the two middle subtrees are removed and the node is balanced. After 
this, the deletion proceeds to the third level of the tree (Figure 3.4). The keys 
to be removed are now located on the rightmost (leftmost) subtrees, thus no 
subtrees can be removed at this time. No balancing or deletion occurs but the 
algorithm descends to the fourth level of the tree (Figure 3.5). On the fourth 
level the rightmost (leftmost) subtrees are entirely contained in the interval and 
will be removed from the tree and the node is balanced. Finally the algorithm 
descends to the leaves containing the keys L and R and removes all keys that lie 
in the interval. After this, the leaves are balanced and the algorithm terminates. 
(Figure 3.6).
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L R

Figure 3.4: No deletion or balancing occurs since the keys are located in the 
leftmost (rightmost) subtrees.

L R

Figure 3.5: The leftmost (rightmost) subtrees are now entirely contained in the 
interval and will be removed. After removing, the nodes are balanced.

Figure 3.6: Finally the algorithm removes the keys that lie to the left (right) of 
the key R (L) and balance the leaves.
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3.5 Correctness
In this section we discuss the correctness of the interval deletion. First we 
consider the single cut-path and then the separate cut-paths case.

Single cut-path
Now we consider the case where the deletion does not diverge. That is, the 
elements are remove from a single child node. See Figure 3.7.

P

Q

Figure 3.7: Single child deletion. Marked elements will be removed.

We prove the following lemma:

Theorem 3.1. In the single cut-path, case after removing the dements contained 
in the interval [L, i?] from node q with the procedure delete-range, the node 
q has at least two children if the node is internal. If the node is a leaf, it has 
0 < c(q) < b keys.

Proof. If q is internal, only the subtrees that are entirely contained in the interval 
will be removed. No other subtrees can be removed. Especially, the subtrees 
that contain the keys cannot be removed, since they can contain both the keys 
that belong to the interval and the keys that do not. That is, the number of 
children is 2 < c(q) < b.

If q is a leaf, the procedure delete-range can remove no keys, all keys or 
between none and all. That is, the number of keys is 0 < c(q) <b. □

Now, we prove the correctness of the balancing phase of the interval deletion 
algorithm in the single cut-path case. The singe cut-path processing is done in 
Algorithm 16.

Theorem 3.2. In the single cut-path case after deleting elements from node 
q, balancing can always be done by either sharing or fusing with the procedure 
ID-BALANCE-CHILD.

Proof. Call the unbalanced node q, its neighbour r and the parent p. The 
neighbour is obviously in balance, that is, it has a < c(r) < b elements and 
naturally c(q) < a + 1. If q is an internal node, it must have 2 < c(q) < b 
children before balancing according to Theorem 3.1. Before balancing the parent 
has a + 1 < c(p) < b children.

If c(<j) = 0, it is the case that q is a leaf and it will be removed from the 
parent and no further balancing occurs.

Now, if c(q) + c(r) < 2a + 1, the contents of the node q and r are fused 
together. Call the combined node q'. It is obvious that a + 2 < c(q') < 2a + 1, 
if q is internal, and a + 1 < c{q') < 2a + 1 if q is leaf. Thus, node is in balance. 
The parent has now a < c(p') < b children and is still in balance.
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If c(q) + c(r) > 2a +1, the contents of the nodes are shared. Let q' and r' be 
the nodes after sharing. Because c{q) > 2 if q is internal, it is always possible to 
share the contents so that a + 2 < c(q'),c(r') < b. If q is a leaf, sharing yields 
a + 1 < c(q'),c{r') < b. Sharing does not affect parent’s number of children.

In conclusion, balancing in a single cut-path case is always possible and will 
yield a balanced tree. The node where the interval deletion proceeds will have 
c(q') > a + 2 children if it is internal. D

Separate children
Next, we consider the case of separate cut-paths and prove the correctness of 
this phase. This processing done in the interval deletion Algorithm 17.

Figure 3.8: Separate children deletion. Marked elements will be removed.

Theorem 3.3. In the separate-cut path case removing the range [L, oo] from 
node q and [-oo, R] from node r will leave the nodes 1 < c(q), c(r) < b children 
if the nodes are internal or 0 < c{q),c{r) < n keys if the nodes are leaves.
Proof. If q (r) is internal, then the subtree containing the key L (R) is rooted 
at q (r). Now, the deletion cannot remove the subtree containing the key L (R). 
thus at least one subtree must remain after deletion.

If q (r) is a leaf, the deletion can remove no keys, all keys or something in 
between. ^

The correctness of balancing after separate cut-paths is proven below.
Theorem 3.4. In the separate cut-path case after deleting elements from nodes 
q and r balancing can always be done by either sharing or fusing with the pro
cedure ID-BALANCE-CHILDREN.

Proof. First, consider the case where q and r are internal nodes and let p be the 
parent node. Due to the interval deletion top-down balancing parent node has 
a + 2 < c(p) < b children.

First, if after deletion, one or both of the nodes q and r are empty, they 
are immediately removed and no further balancing occurs. According to Theo
rem 3.3, this can happen only if q and r are leaves.

Otherwise, if q and r are internal, we have 1 < c(q), c(r) < b and the parent 
has a + 2 < c(p) < b children.

If c(q) + c(r) < 2a + 1 the nodes are fused together. If c(q) + c(r) > a+ 2 
the combined node is in balance and the balancing stops. Otherwise, we need 
to rebalance the combined node with a neighbouring node once more. This is 
analogous to the processing done in the single cut-path case.

If c{q) + c(r) >2a+l and if c{q) < a + 1 or c(r) < a + 1, we can perform 
sharing so that both nodes have c(q),c(r) > a + 1 elements. Note that the 
sharing is performed only with one of the nodes q and r, not both because if 
c(q) + c(r) > 2o + 1 it cannot be the case that both c(q), c(r) > a. □
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3.6 Amortised Analysis
Hoffman and Mehlhorn proved in [15] that the amortised cost of balancing in 
interval deletion problem by using tree splits and merges (see Section 3.2) for 
(o, 6) trees has the amortised bound 0(log m) where rn denotes the length of 
the interval. Here we give a similar result for the top-down interval deletion 
algorithm of this thesis.

First we state a fact about the height of the subtree where the interval 
deletion modifies the tree.

Lemma 3.1. Assume that the number of keys to be deleted with interval deletion 
is m. Then the actual deletion operations occur only in nodes whose height is 
less than or equal to logam.

Proof. By contradiction. Assume that the actual deletion operation removes a 
subtree q whose height is h > log„ m. The subtree q has at least ah leaves. By 
substitution we have m = ah > olog“m = m, which is impossible. □

Now, we are ready to formulate and give a proof of the amortised number 
of balancing operations when interval deletions are present.

Theorem 3.5. Assume that i insertions, d deletions, and k interval deletions 
of size m.j, 1 < j < k are performed to an initially empty (a, b) tree where 
b > 2a + 3. The rebalancing operations needed during an insertion or deletion 
in this sequence have amortised 0(1) cost and the rebalancing operations needed 
after interval deletions have O (log in) cost.

Proof. This proof is similar to that of Theorem 2.3 in Section 2.4. We use the 
following potential function for non-root nodes.

<F(u)

3, c(u) < a
1, c(u) = o + l

< O, o + 1 < c(u) < b — 1
2, c(u) = 6—1

, 4, c(u) = b

Naturally, for the root node the variable a is replaced with constant 2. The 
potential of the tree is the sum of the potential of all of its nodes.

The arguments given in Section 2.4 for normal insertion and deletion are 
still valid. Here we consider only the interval deletion.

Interval deletion

According to Lemma 3.1 the deletion operations will not occur on nodes higher 
than h = O(logm) where m is the number of keys in the deletion interval.

In the worst case, the deletion path diverges immediately so that there are 
2h nodes where elements are deleted. After removing, each of the nodes may 
have less than a elements and needs to be balanced. The potential increase of 
a single node is at most 3 units. Thus, the total increase in the potential of the 
tree is at most 6h = O(logm).
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Rebalancing after interval deletion

In rebalancing we have two cases to be considered: single and separate cut-paths 
(see the Figures 3.7 and 3.8). In single cut path, we have given the node q and its 
parent p. Balancing occurs when c(q) < a + 1. The parent has a + 1 < c(p) < b 
children.

In separate cut paths case, we have given the nodes q, r and the parent p. 
Balancing occurs if c{q) < a + 1 or c(r) < a + 1.

Fusing

• Single cut-path: Let q be the unbalanced node and p its parent. Now, we 
have c(q) < a. Call the node q' after fusing. Theorem 3.2 implies that 
after the operation we have a + 2 < c(q') < 2a 4-1 < 6 — lin the node q'. 
The potential is decreased by at least 3 units. Removing the router and a 
pointer from the parent may increase the parent’s potential by at most 2 
units. Thus, the total potential decrease is at least 1 unit.

• Separate cut-paths: Let q and r be the nodes. If fusing is to be applied
2 < c(q) + c(r) < 2o + 1. The balancing stops, if the combined node, say 
q', has o + 2 < c(q') <6-1 elements. The potential decrease is at least
3 units. Removing a router and pointer from the parent may increase 
parent’s potential by at most 2 units. Thus the total decrease is at least 
1 unit.
If c(q') is not in balance, we need to perform fusing or sharing once more. 
If fusing is performed, it is analogous to the single cut-path case presented 
above. Thus, the total potential decrease is at least 1 unit.

Sharing

Sharing does not affect the potential of the parent node at all.

• Single cut-path: Let q be the unbalanced node before sharing and q' be 
it after sharing. Obviously c{q) < a and according to Theorem 3.2 after 
sharing, we have a + 1 < c(q) <6-1. Thus the potential is decrease by 
at least 2 units.

• Separate cut-paths: In separate cut-paths, sharing is applied only once. 
That is, if we have nodes q and r. Only one of them is shared and the 
other is already in balance. Call the node after sharing q'. According to 
Theorem 3.4, we have o + 1 < c(q') < 6 and thus the total decrease of the 
potential is at least 2 units.

Conclusion

The interval deletion part and the Theorem 2.3 imply that a sequence of inter
mixed insertion, deletion and interval deletion perform 0(i + d + J2j=i log m*) 
balancing operations. D



Chapter 4

The Experiments

4.1 Introduction
The experiments were carried in order to study the complexity of the top-down 
interval deletion algorithm. The goal was to study the number of balancing 
operations performed with respect to the deletion interval size and the mem
ory/disk behaviour in a environment similar of a buffer pool in a relational 
database management system.

4.2 The Framework
A simulator environment was constructed and the experiments were carried 
within this environment. The simulator consists of instrumented algorithms, a 
buffer pool simulator, operation generation, a test execution module and the 
experiment execution system.

Test is a sequence of operations search, insert, delete and interval-delete 
operations performed to an empty B-tree. A test produces log which includes 
various informations described below. A sequence of tests with varying a pa
rameter is called an experiment. After an experiment has been carried out, it is 
analysed.

The algorithms implemented for this testing system are normal top-down 
(a, b) tree search, insert and delete algorithms described in Section 2.3. Insertion 
and deletion algorithms were instrumented to log primitive operations for further 
analysis. The insertion algorithm logs every split operation that is performed. 
Deletion logs every balancing operation (share or fuse) that is performed during 
the execution of the algorithm. The interval deletion algorithm of Section 3.3 
was implemented and instrumented to log balancing operations.

In order to study the memory behaviour of the algorithms a buffer pool 
simulator was constructed. The buffer pool simulator is somewhat similar to 
that used in Relational Database Management Systems (rdbms). That is, the 
algorithms must fix pages before they can reference to them and unfix when 
the pages are no longer needed. There is a two-level hierarchy in the memory 
simulator: a disk and main memory. The main memory is of fixed size which 
is a parameter to the experiment. The disk is assumed to be infinitely large.
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The buffer pool simulator counts the number of memory read/write and disk 
read/write operations and logs them after the experiment.

The operation generation module is related to an experiment. The module 
has a common and specific parts. The common part is common to all experi
ments carried in the simulator. The specific part contains variables related to a 
specific test. The common variables are the following: 

o, b Size of the (a, b) tree used in the test
num-pages number of pages in the main memory buffer pool
seedl, seed2 seeds for the pseudo-random number generator

The specific variables are defined when the actual experiments are described 
later on this chapter. An experiment is formed by giving the above parameters 
and the specific part to each test. The independent variable is varied and the 
observed variables (memory references, balancing operations, ...) are measured 
and logged for further analysis. To make the tests completely deterministic even 
though randomness is desired a hand-written random number generator [42] 
implemented for [41] was used. The seeds are stored so that the tests can be 
easily repeated, which was desired for the debugging and, in some cases, for 
further analysis.

For statistical purposes, each test is repeated fixed number of times to make 
the statistical analysis possible. After the experiment has been completed the 
log file is analysed and interpreted by constructing plots and doing statistical 
analysis. The statistical methods used are described in the Section 4.3.

The testing framework is implemented with PLT MzScheme implemen
tation for the Scheme programming language [23], The implementation uses 
mostly standard Scheme with some MzScheme extensions. It would be rather 
straightforward to port the framework to some other Scheme implementation, 
should that be desired. Some AWK and Shell scripts were used to generate ex
periment data, that is, the individual tests. Statistical analysis and collecting 
the data for plotting was done with a PERL script. Plots were generated with 
Gnuplot.

The environment where the experiments were carried was Intel Pentium 4 
2.00 GHz, 1 GB RAM, with Linux 2.6.11.8 kernel and Debian GNU/Linux 3.1 
distribution with Gnu C library implementation version libc6 2.3.2.dsl-21. De
bian packaged MzScheme interpreter version 209 was used. Gnu awk ver
sion 3.1.4. The simulation environment w-as completely deterministic and all 
measured qualities were fully simulated so the actual hardware and software 
platforms do not affect the results at all.

4.3 Statistical Methods
The goal of the experiments was to study and compare the various resource 
utilisations of the given algorithms. When comparing two or more algorithms 
it is important to perform some statistical analysis in order to gain knowledge 
on the statistical validity of the results.

The tests are constructed so that one parameter is varied, others are kept 
constant and some value is measured. A trivial approach would be to make 
one test per one parameter value, but this would easily give wrong conclusions: 
there is a high probability that the measured quality, or random variable, is
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subject to random fluctuation so that if only one test is performed the results 
are incorrect.

Thus, in order to gain some statistical validity, each test is repeated for 
n = 40 times. That is, for example, we measure two different algorithms for same 
performance measure and obtain the random variables x and y. We repeated 
the test, so that we obtain the datasets (xi,:r2,... ,£40) and (</i, 2/2, • ■ ■, ?/40)■ 
Then we calculate the averages x and y for both of these vectors.

Now, the statistical method to gain some trust on the validity of the results 
is to do confidence interval analysis. That is, given a dataset, we want to 
know with some probability where the actual value x or y is. We construct 
95% confidence intervals. That is, an interval for the random variable, where 
the actual value is located with probability 0.95. Before we can construct the 
confidence intervals, the distribution of the random variables must be known. 
Unfortunately, it is not known for the random variables x and y. But due to 
the Central Limit Theorem of probability, for the average of 40 independent 
repetitions should be normally distributed, no matter what the distribution for 
an individual random variable is.

To construct the 95% confidence interval for the expected (average) value 
when the variance is unknown, we use Student t distribution with v — n — 1 = 39 
degrees of freedom P(\T\ > ta/2) = a:

a = 0.05

The parameter s is the estimator for population standard deviation defined by

The parameter t is obtained from the Student t distribution table. For u — 39 
degrees of freedom with 95% confidence, tQ/2 ~ 2.023.

If the confidence intervals for the algorithms overlap, then it cannot be sta
tistically said which of the algorithms performs better. In each experiment 
described in the next sections it will be always indicated whether the results 
differ so that the confidence intervals do not overlap. That is, the difference is 
statistically meaningful.

4.4 Size of the Deletion Interval
The goal of this experiment was to study how the size m of the deletion interval 
affects on the number of balancing and memory/disk operations performed. The 
algorithms that were compared were the normal (a, b) tree top-down deletion 
and interval deletion (a-B-INTERVAL-DELETE, Algorithm 14). In addition to the 
common parameters presented in Section 4.2 there were two specific parameters: 
number of initial insertions and the size of the interval. The number of initial 
insertions n was kept constant during the experiment and the size of the interval 
was varied.
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4- T ! t

Interval size

Figure 4.1: Number of balancing operations (interval size 1-15).

The following parameters were used to conduct the experiment: 
a 2
b 7
num-pages 10 
n 1000
m {1,2,..., 15}, {50,100,150,..., 1000}

Naturally, for each value of m, 40 random number seeds were generated so 
that each test could be repeated.

The measured quantities were total number of balancing operations (share 
and fuse operations, Algorithms 9 and 10) and number of memory and disk 
references. Figure 4.1 presents the average number of balancing operations in 
n = 40 repeated tests with small intervals. Larger intervals are presented in 
Figure 4.2. The same plot with just interval deletion operations is pictured in 
Figure 4.3. All of these figures the y-axis error-bars describe the 95% confidence 
intervals.

From Figure 4.1 it is clear that for very small values of m, the traditional 
deletion algorithm performs better than interval deletion. This is obvious be
cause the balancing condition of interval deletion differs that of normal deletion. 
Thus, interval deletion has to do some extra work.

In Figures 4.2 and 4.3 we see the behaviour of the two algorithms with 
larger deletion interval sizes. From Figure 4.2 it is clear that the asymptotical 
behaviour of the normal deletion algorithm is clearly linear with respect to the 
deletion interval size m whereas it seems that the number of balancing operations 
needed in interval deletion is almost constant. In Figure 4.3 we have the same 
plot as in Figure 4.2 but the normal deletion line omitted. From Figure 4.3 we 
see that at first the number of operations increase until we reach interval sizes 
about the half of the tree size. After this the number of balancing operations 
is about constant until it drops to the height of the tree when we reach the 
maximum interval deletion size.

Figure 4.4 and 4.5 present the number of memory read and write operations
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100 1000
Interval size

Figure 4.2: Number of balancing operations (interval size 50-1000).

Interval size

Figure 4.3: Number of balancing operations (interval size 50-1000, ID only).
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performed during the experiment. From the figures it is clear that the number 
of memory operations performed by the normal deletion is linear and by the 
interval deletion is sub-linear. Similar results can be seen in Figures 4.6 and 4.7 
when measuring the number of disk operations performed.

From the figures one can conclude that the behaviour of the normal deletion 
algorithm is linear and interval deletion algorithm is sub-linear with respect to 
the interval deletion size with various performance measures. It is not seen here, 
however, whether the number of operations performed in interval deletion is in 
fact logarithmic with respect to the interval size as the theory of Section 3.6 
proves.
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del read 
id read 
del write 

Jd-write..

Interval size

Figure 4.4: Number of memory operations (interval size 1-15).

100000
-6— del read 
e— id read 

■+— del write 
-x- - id write10000

o - -o

X- X . „-X-X-X-.

Interval size

Figure 4.5: Number of memory operations (interval size 50-1000).
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-e— del read 
-e— id read 
H— del write 
-x— id write

Interval size

Figure 4.6: Number of disk operations (interval size 1-15).

10000

1000

100

100 1000
Interval size

Figure 4.7: Number of disk operations (interval size 50-1000).
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Conclusions

In this thesis we described and surveyed some of the most common variants 
of the B-tree structure. To gain some historical perspective, we described the 
original B-trees, the most commonly used variant B+-trees and (o, b) trees which 
are a especially suitable for theoretical analysis. We considered two common 
balancing strategies: bottom-up and top-down and discussed their pros and 
cons.

We extended the normal dictionary abstract data type to include a special 
case of bulk deletion operation called interval deletion. In interval deletion a 
key-range is removed from a B-tree so that the tree remains balanced and a 
proper B-tree. We surveyed the current approaches presented in the literature 
and presented a novel approach where the interval deletion is performed with a 
top-down balanced single-pass algorithm. We proved that in a sequence of inter
mixed insertion, deletion and interval deletion operations, a O(logm) balancing 
operations is performed when the number of balancing operations is amortised 
over the length of the operation sequence.

In the experimental study, we tried to find empirical data to validate the 
theoretical results obtained and to compare the interval deletion algorithm with 
the normal top-down deletion algorithm. We found that the normal deletion 
algorithm works linearly with respect to the interval size, whereas the top-down 
interval deletion algorithm perform a sub-linear amount of work.

We conclude from the theory and experiments show that with intervals larger 
than the node size the interval deletion algorithm performs better than the 
ordinary deletion algorithm.

In this thesis we omitted concurrency issues altogether. In a real database 
management system concurrency is a very important issue that cannot be ne
glected. We merely stated that the top-down algorithm is better for concurrency 
control since it requires only constant amount of locks whereas bottom-up might, 
require locks proportional to the height of the tree. Naturally, concurrency could 
also be improved with strategies that involve neither top-down or bottom-up bal
ancing but special constructs, like Blink-trees, with which it is possible to lock 
only single node at a time.

For further research I would suggest that the top-down interval deletion 
algorithm were extended to take the concurrency and memory management 
into account. Both the theoretical model and the experimental environment 
should be developed so that the concurrency could be studied further.
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The interval deletion algorithm could be modified to use bottom-up balanc
ing (similar or that of [7]) and Blmk-tree style ”lazy” balancing. These modified 
variants could be compared to the original top-down balancing presented in this 
thesis in order to gain better understanding of the behaviour of the various 
balancing schemes.

Theoretical studying and experiments are always idealisations of the real 
world situations. Thus, in order to gain better understanding and better results 
a real-life implementation of the interval deletion algorithm could be devised. 
For example the indexing structures of some open source database management 
system, like POSTGRESQL or MYSQL, could be extended to include the interval 
deletion operation. Naturally this would include a lot of extra work into the al
gorithms presented in this thesis and to various parts of the relational database 
management system. E.g., the RDBMS query optimiser should recognise queries 
that can be reduced into interval deletion operations. Unfortunately, MYSQL 
has bottom-up balanced B+-trees and POSTGRESQL has Blink-trees, so the al
gorithms presented in this thesis cannot be directly “plugged in” even into the 
indexing parts of these systems.
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