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Preface

Computer security is painfully hard to get right! The very programs and 
systems that we all use abound with critical security bugs. But it has always 
been like that. It is just that recently the Internet has connected all comput­
ers together. Now buggy or intentionally harmful software can cause much 
more disastrous results. Consequently, computer security is finally starting 
to get the attention it has always been craving for. Its importance is getting 
increasingly recognized also by the general public since the media serves 
us a dose of security advisories almost daily.

At present, computer security is still an evolving art and not an exact 
science. This thesis studies one particular area of secure software design, 
security modeling, and assesses the capability of different security models 
to function as a building block for secure systems in the future.
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Chapter 1

Introduction

This chapter explains the motivation for this thesis and defines its objective. 
Furthermore, a brief background on security modeling and policy based 
management is provided.

1.1 Motivation

1.1.1 The imperfection of the present

Users in companies and homes alike are increasingly being harassed by 
computer security problems. Ubiquitous computing brings with it an in­
creasing number and variety of new viruses, malware, spyware, trojan 
horses, Internet worm attacks, unsolicited email, and so on. A whole lot of 
new potential applications in areas such as e-commerce and e-govemment 
is also prevented from getting off the ground because people (justifiably) 
do not trust the security of current computer systems.

As computing and network connectivity become increasingly common­
place and widespread, computer security starts to gain importance. Nowa­
days it is common to see computer security advisories discussed even in the 
major non-technical newspapers and television news. It seems that time is 
now finally getting ripe for taking security seriously. We can expect big 
industry players to really invest in securing their products.

However, currently the computer security field is still in its infancy. As 
security has not been considered of much importance before, it is still com­
mon to design and implement security features in an ad-hoc fashion with­
out an explicit security design. This is hazardous since even minuscule 
implementation errors can translate to dramatic harm for businesses and 
consumers.
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INTRODUCTION Motivation

Security is a complex whole that is affected by technology, business, 
organizational and people issues. Skills are needed in all these disciplines 
to design an effective security system and consequently it is difficult to find 
people with all the required skills. Also, traditionally security has been 
only seen as a pure cost with no direct impact on revenues. Therefore it is 
difficult to get any management support before a real disaster takes place.

All security-aware software necessarily has a security model. It is a de­
scription of all security-related concepts and their interrelationships in the 
user organization that are to be somehow automatically processed by the 
software. However, in most cases the security model has not been not ex­
plicitly designed. Rather the model takes the form of an ad-hoc gut feeling 
in the minds of designers and implementers. This approach leads to obvi­
ous problems.

Well-defined security models have been designed since the 1970s. 
There are many models, all of which share the basic objective of facili­
tating the building a computer system that satisfies the organization’s se­
curity requirements. However, most security models are tightly coupled to 
the characteristics of the organizations and computer systems whose secu­
rity requirements they were designed to satisfy. Thus different models see 
security problems from their respective and slightly differing viewpoints. 
Hence, they also come up with different solutions and thus fail to establish 
common ground. So far, there has not been a security model that would 
have satisfied the needs of a large number of diverse organizations.

1.1.2 A vision for the future

This lack of common and reusable security models and respective imple­
mentations brings about constant reinvention of the wheel every time a 
new system is designed. The ICT industry, and with its increasing ubiq­
uity also the global society, would greatly benefit from a high-quality, field- 
proven, flexible security framework. Such a development would lead to 
more secure and reliable products at lower production costs. It would also 
accelerate the development of novel and innovative applications of infor­
mation technology, e.g. e-business, e-govemment, and collaboration in and 
between organizations.
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INTRODUCTION Objective

1.2 Objective

A commonly accepted general-purpose security model would be one step 
towards the vision depicted above. However, such a model does not yet 
exist at the moment. To better understand the requirements for such a 
model, first the knowledge in the currently available models needs to be 
analyzed.

Therefore the primary objective of this thesis is to study and compare 
currently available security models and find out what is common to all of 
them. The secondary objective is to briefly assess their applicability to serve 
as general-purpose security models and policy languages in a policy-based 
security architecture.

1.3 Structure

The currently available security models are presented in Chapter 2. Chap­
ter 3 compares the models and defines the common core. Chapter 4 dis­
cusses some of the experiences gathered and concludes the thesis.

1.4 Background

1.4.1 Security modeling

Security began to gain importance as a crucial quality of information sys­
tems in the 1960s and 1970s. Early research was initiated and supported 
mostly by government and defense-related projects.

Security was and continues to be a difficult concept to define. Differ­
ent parties have different requirements concerning security. The systems 
that ought to implement the desired security properties are complex and 
constantly changing. And finally, the weakest link of security is usually 
the connection between technical systems and human-oriented processes, 
which are very flexible and hard to define in technological terms.

In order to be able to discuss security this intricate system had to be sim­
plified by constructing models that represented its relevant security-related 
aspects. Early research concentrated on developing formal mathematical 
models. It was hoped that by modeling systems formally their security 
properties could be verified by mathematical proofs. While some notable 
models were developed and their security could in fact be verified, they 
proved to be of little use in most real-life situations. This was because in
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INTRODUCTION Background

order to construct models fit for mathematical manipulation a lot of as­
sumptions had to made in abstracting the real world. The assumptions 
made were too restrictive and simplistic for most use scenarios.

Various formal models were developed which provided valuable infor­
mation and insight. While the first models were only destined for mili­
tary environments, research later expanded to commercial environments 
as well.

Since the early formal models proved to be too restrictive for many real 
uses, most recent models are less formal, more flexible, and more prag­
matic [59]. However, this increased flexibility and informality also means 
that not much cannot be said about these models by mathematical analysis. 
In general, these later models focused on discretionary access control deci­
sions made by respective information owners rather than strict mandatory 
controls enforced by the system itself.

1.4.2 Policy based management

Policy based management has been seen as a viable solution for managing 
complex distributed systems for some time now [31, 41, 66]. It is appli­
cable to many areas of management, of which most attention has been 
received by network, Quality of Service, and security management areas.

The goal of policy based management is to view and specify policies in 
high level abstract terms and automatically refine these to low level tech­
nical policies and configuration that satisfy the higher level requirements. 
This approach has several advantages. Policies can be written in high level 
terms without knowledge of technological details. This is very useful in 
large organizations where new technologies are adopted at a quick pace 
and there is a lack of competent personnel for administering them. Given 
standardized management interfaces, policies can be automatically applied 
to a diversity of managed elements in a vendor independent manner. Poli­
cies can be automatically distributed to the managed components instead 
of individually configuring each component. Policy based systems can au­
tomatically react to a dynamic change in computing systems and adjust 
them appropriately without the need of human administrator intervention.

Traditional methods are neither scalable nor flexible enough to manage 
increasingly complex and heterogenous distributed systems typical of large 
enterprises of today. Systems are so complex that it is difficult to get a clear 
picture of the system and its state or to verify if the current configuration 
is coherent with high level objectives. Systems are so large that manag-
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ing each component individually becomes impossible. Vendor dependent 
management tools are not able to cooperate in a multi vendor network.

Policy based management is suggested as a solution to overcome these 
problems. System components such as users, services, and devices are or­
ganized into groups and roles as in Role Based Access Control systems [21]. 
Policies are defined in terms of more abstract concepts as high level policies 
which are automatically translated, or refined into lower level policies and 
configuration and distributed to the end devices. Algorithms could be de­
veloped that would detect conflicts between policies, even if at the moment 
this is still largely an open research issue. There is also ongoing work, such 
as the DMTF Common Information Model [18], to standardize in a ven­
dor independent manner the management interfaces provided by various 
devices and services.

Multilevel policies and refinement

There are many definitions for a policy in the literature. In most of the 
work, two distinct meanings are recognized. The first meaning is that of a 
high level policy goal such as a business objective that needs to be satisfied. 
The second meaning is a lower level policy rule that helps the system make 
the correct decisions to satisfy the policy goals.

Policies can be specified at various levels of abstraction, ranging from 
business objectives to service configuration and low level device specific 
programming languages. There doesn’t exist a clear division of policies 
based on their abstractness [1]. Also the automatic translation may be im­
plemented using several intermediate stages. For example, business objec­
tives could be (probably manually) translated to a generic policy language, 
which is then translated to a configuration language generic to a certain 
device type, and this is still refined to device and vendor specific configu­
ration. On the other hand, in some cases the policies could be translated 
directly into low level configuration. In any case, the general idea is to 
move from a generic, abstract and business oriented objective specification 
towards detailed, low level, and technology oriented representation that 
can be distributed to devices and services. This process is called policy 
translation or policy refinement.

The ultimate goal of policy based management is to facilitate policy 
specifications at very high levels of abstraction, such as business level ob­
jectives written in English, and then refine them automatically. This would 
allow policy specifications in familiar terms without expert knowledge on
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special policy languages. This is a very ambitious goal and at the mo­
ment the research community is nowhere close to it yet. Policies written 
in a human language are obviously prone to the well-known problems of 
human language processing encountered in the various areas of Artificial 
Intelligence research (human language policy analysis has been studied in 
[39]). Ambiguities and errors in the resulting low level policies would be 
particularly undesirable in the sensitive area of security management. This 
problem can be avoided by using a formal policy language that is directly 
interpretable by computers. However, formal languages are harder to use 
by humans and will therefore require a well trained policy expert to write 
them.

Policies can be defined using very diverse concepts, terms, and levels 
of abstraction. According to [1], different levels of abstraction correspond 
to points of view of different people in an organization. Policies can also 
be seen to form hierarchies [67, 41, 31], Different authors have different 
ways of dividing the hierarchy to levels. In any case, high level policies deal 
with abstract business oriented concepts, and low level policies are about 
low level technological details.

In the literature the process of deriving low level policies from high 
level ones is called policy translation, policy transformation, or policy re­
finement. In this work the term policy refinement is used. The objective of 
policy refinement is to perform such a transformation that low level policies 
completely implement all the requirements set by the higher level policies 
(correctness), and that the low level policies do not conflict with each other 
0consistency) [13].

In practice, policies are specified by many people, for different areas of 
management, at various levels of abstraction, and using diverse concepts 
and terminology. It is obvious that deriving a correct and consistent low 
level policy set in these conditions is difficult. In fact, automatic refine­
ment as a general problem has not been studied extensively yet [13] [42]. 
Consequently, current implementations focus on simple scenarios and re­
finement of lower level policies.

Recent work in policy refinement [61] [4] tries to leverage work in 
requirements engineering such as [15], The point here is to see high level 
policies as goals and use techniques such as refinement patterns and goal 
regression to gradually refine policies into their lower level counterparts.
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Policy conflicts

It is possible to for system administrators to write policies that conflict with 
each other. Conflicts may be caused by human errors, communication prob­
lems between different administrators, and dynamically changing policies 
over time. It is useful to be able to detect potential conflicts and resolve 
them. Policy conflicts are covered in more detail in Section 2.4.1.

State of the art

Policy based management is being actively researched by several groups in 
the academic and industrial worlds. Also most network equipment vendors 
have tools that support policy based management to various extents.

Ponder is a policy research project at the Imperial College of London. It 
includes in an integrated development environment a generic language for 
specifying management and security policies, a policy compiler framework 
for translating policies, a policy editor with a graphical user interface for 
easy editing of policies, and a domain browser for viewing and managing 
components and policies installed in the system.

The IETF Policy Working Group has developed the Security Policy Spec­
ification Language for describing low level security policies for use with 
IPSec. It is tightly related to IPSec and not useful for describing other types 
of security policies.

IETF and DMTF are collaborating on extending the DMTF Common In­
formation Model with policy based management. While not strictly focused 
on security, the model will eventually provide security as well as other types 
of policy. This effort is analyzed in detail in section 2.3.1.

The most important open research areas of policy research are conflict 
detection and automatic policy refinement. Here much work still needs to 
be done.

For a more extensive review of policy specifications see [13].
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Chapter 2

Presentation of security 
models

This chapter presents the most significant security models currently avail­
able. Section 2.1 explains traditional, mostly formal models developed 
from the 1970s to early 1990s. Section 2.2 describes two practical secu­
rity models from late 1990s. The chapter concludes with Sections 2.3 and 
2.4 that present the most recent models from the few last years that allow 
flexible security policies to be defined.

2.1 Traditional formal models

2.1.1 Bell-LaPadula

The Bell-LaPadula or BLP model is the best known single computer security 
model. It was developed by David Bell and Leonard LaPadula of MITRE 
Corporation in the early 1970s. The BLP deals solely with confidentiality. 
Other aspects of security such as integrity or availability are not considered. 
BLP is a so-called Mandatory Access Control (MAC) model which means 
that the security policy is unconditionally enforced by the system and the 
respective owners of information cannot have an influence on it at their 
discretion.

Actually the work consisted of several different models but it is custom­
ary to use the term “Bell-LaPadula model” to refer to a certain set of central 
properties [40]. In addition, in the literature several different simplifica­
tions have been presented [34, 36, 37, 22, 2], varying in details such as 
the formulation of state security properties and the number of access oper­
ations. The original model is documented in [7]. The discussion below is
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one possible roundup of the various presentations.
In BLP the system consists of the following:

• A set of subjects S. Subjects represent entities such as system users 
and computer programs executing on their behalf.

• A set of objects O. Objects represent entities such as documents and 
system files.

• A set of access operations A = {read, write}.

• A lattice of security labels (L, >)

In the original model there were two more access operations: execute 
and append. However, they are not as essential and hence not considered 
here.

Security labels

The security label concept originates from military information processing 
practices. Each piece of information is classified and tagged with a sensitiv­
ity level. The traditional sensitivity levels in increasing order of sensitivity 
are unclassified, confidential, secret, and top secret. Similarly, staff members 
are assigned clearances based on their reliability and how extensively their 
background has been checked. The basic rule is that a person is only al­
lowed to access information with a sensitivity level lower than or equal to 
his clearance level. This scheme is called Multi-Level Security (MLS).

Furthermore, information may be additionally tagged with one or more 
codewords, also known as categories. These categories could for example 
denote that the piece of information belongs to a certain project or de­
partment. Sets of categories are also called compartments. Based on the 
need-to-know principle, staff members are allowed access to some of these 
categories. Then, in addition to the sensitivity level requirement stated 
above, in order to access a piece of information a person must also have 
access to all the categories that the information has been tagged with.

A security label of a person or information consists of its sensitivity 
level and the related set of categories. A security label is said to dominate 
another if its sensitivity level is greater than or equal to the sensitivity level 
of the other and its category set is a superset of the category set of the other. 
Mathematically speaking, we have a totally ordered set of sensitivity levels 
SL and a set of categories C. Security labels are ordered pairs {(s,c)|s e
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SL, c e C}. A security label l\ = (si, ci) dominates h = (s2, C2) if and only 
if si > S2 and C2 C q. The dominates relation is then a partial ordering on 
the set of all possible security labels. Together the set of security labels and 
the dominates relation form a lattice structure. Lattices are used in several 
other security models as well [58]. Figure 2.1 illustrates a real military 
lattice that was described by Smith in [62]. It consists of the standard 
sensitivity levels TS, S, C, U and eight categories A, K, L, Q, W, X, Y, Z.

TS-AKLQWXYZ

TS-KQZTS-KYTS-KLX

TS-KL

S-LW

Figure 2.1: Smith’s lattice

System states

In BLP the system is modeled as a state machine. A system consists of states 
and transitions between them. Essentially, a state consists of the following:

• The set of current accesses B C V(S x O x A).

• The access permission matrix M = (Mso)ses,oeO, M,0 C A.

• Security label assignment functions F = (/s,/0). fs : S —► L gives 
the subject’s security label, and f0:0-+L gives the object’s security 
label.
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The access permission matrix can be used to impose discretionary re­
strictions on allowable operations in addition to the mandatory restrictions 
set by the BLP model itself. The access matrix is a concept originally in­
vented by Lampson [29] and adopted by many other security models as 
well. There is one row for each subject and one column for each object. 
Each element in the matrix contains the set of operations the subject is 
allowed to perform on the object. The storage of the matrix data can be 
implemented in two principal ways. One way is storing with each object 
the elements in the corresponding column of the access matrix as a list 
of (subject, operation) pairs. The columns are called Access Control Lists 
(ACLs). Another way is to attach the row of the matrix to each subject as 
(object, operation) pairs and is called Capability Lists. The access matrix 
concept is illustrated in Figure 2.2.

Access Control 
List

Allowed
operations

Capability List

Figure 2.2: Access matrix structure

In the original BLP model, subjects have an additional current security 
label in addition to the standard maximum security label. This allows them 
to temporarily lower their security clearing in order to for example inten­
tionally limit their access to sensitive material when running untrusted pro­
grams or to be able to write to documents with lower security labels (see 
the security properties of states below).
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BLP defines the following three fundamental properties on system 
states:

• Simple Security (ss) property (also known as No Read Up):

Vfc = (s, o,a) e B,a = read : fs(s) > f0(o)

In other words, a state satisfies the ss-property if for all current read 
accesses, the subject’s security label dominates the object’s security 
label.

• -k-property (also known as No Write Down):

V6 = (s, o,a) € B,a = write : f0(o) > fs(s)

In other words, a state satisfies the ★-property if for all current write 
accesses, the object’s security label dominates the subject’s current 
security label.

• Discretionary Security (ds) property:

\/b = (s,o,a) e B : a e Mso

In other words, a state satisfies the ds-property if for all current ac­
cesses, the relevant access operation is included in the access permis­
sion matrix.

A state is said to be secure if it satisfies all the three properties above. 

System security

Being a state machine model, the security of a system is defined through 
the security of its states. The model’s Basic Security Theorem (BST) argues 
that a system is secure if and only if its initial state is secure and all the 
state transitions are secure. So basically, the BLP-security of a given system 
can be proved by induction by showing that state transitions only lead to 
secure states.

The BLP formulation of system security has been a topic of a lot of 
discussion. In [34] McLean observes that Basic Security Theorem alone 
is a necessary but insufficient property for a system to be secure. As an 
example, he presents a variation of BLP with an inverted version of the ★- 
property called [-property for which BST holds but that is not secure in any
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real sense. Furthermore, in [35] and [36] he presents another variation of 
BLP called System Z that always downgrades all subjects and objects to the 
lowest possible level and enters all access permissions in all access matrix 
cells. Strictly interpreted, System Z is BLP-compliant even if it is obviously 
contrary to BLP design guidance. Bell presented his countercriticism in 
[6], Most notably System Z violates the tranquility property principle of 
BLP which says that the security labels of subjects and objects should not 
change during system operation.

2.1.2 Biba

The security model developed by Ken Biba [9] was the first model to ad­
dress integrity in computer system security. In computer security literature, 
several meanings are associated with the concept of integrity [33]:

• preventing unauthorized users from making modifications

• maintaining internal and external consistency

• preventing authorized users from making improper modifications

The Biba model addresses the most common of these, i.e. its goal is to 
prevent unauthorized users from making modifications.

The model structure very closely resembles the Bell-LaPadula model 
and shares its basic concepts such as subjects, objects, accesses, and system 
security as security-preserving state transitions. It is also a mandatory se­
curity model. As previously described, in the BLP model the security labels 
consist of a sensitivity level and a set of categories. The category concept is 
adopted as such in the Biba model. However, while in the BLP model the 
sensitivity levels measure confidentiality, in the Biba model they designate 
levels of integrity. Integrity is interpreted as the measure of trustworthi­
ness. While BLP sensitivity levels have real-life counterparts in military 
and government environments, Biba integrity levels don’t have such coun­
terparts and consequently it is difficult to assign integrity levels in practice.

The original work suggests five different ways, or policies, to achieve 
integrity: Low-Water Mark Policy for Subjects, Low-Water Mark Policy for 
Objects, Low-Water Mark Integrity Audit Policy, Ring Policy, and Strict In­
tegrity Policy. The last one, Strict Integrity Policy, is the best known and 
in fact the term “Biba model” is customarily used to refer to this specific 
policy.
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The mathematical formulation of the Biba model is analogous to the 
BLP model. The system consists of:

• A set of subjects S.

• A set of objects O.

• A set of access operations A = {read, write).

• A lattice of integrity labels (L, >).

• A function i : S U O —> L that gives the integrity label associated with 
a subject or object.

• A relation RCSxO: sRo&s can read o. Defines which subjects 
are allowed to read objects.

• A relation If C5xO:slVo«s can write o. Defines which subjects 
are allowed to write to objects.

• A relation I C S x S \ s\ I s? s\ can invoke s?. Defines which 
subjects are allowed to invoke actions on other subjects.

The security properties of the Strict Integrity Policy are:

• Simple Integrity property (also known as No Read Down):

s Ro => i(o) > i(s)

In other words, a subject may not read information that is less trust­
worthy than the subject itself. The motivation for this property is to 
prevent trusted information held by a subject from being contami­
nated by other, less trusted information.

• Integrity *-property (also known as No Write Up):

sW o =>• i(s) > i(o)

In other words, subjects may not modify information that is more 
highly trusted than themselves. The purpose of this property is to 
prevent unauthorized subjects from directly modifying trusted infor­
mation.
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• Invocation property:

si I S2 => f(si) > i(S2)

Invocation is the event where one subject requests another one to 
perform an action. Since invocation inherently transmits information 
from one subject to another, invocation is a special case of the write 
operation. Hence invocation is constrained by a restriction analogous 
to the integrity *-property.

2.1.3 Harrison-Ruzzo-Ullman

The BLP and Biba models assume that the subjects, objects, and access 
rights of a system remain fixed. This assumption is not very realistic, and 
the HRU model by Harrison, Ruzzo, and Ullman [24] specifically addresses 
this issue. The model was developed in order to investigate safety in an 
environment where subjects, objects, and access rights change.

Model

The HRU model defines an authorization system that is composed of the 
following elements:

• A fixed set of access rights R.

• A set of subjects S.

• A set of objects O.

• An access matrix M = (Ms<0 C R), s € S,o e O. The element MSi0 
records the access rights the subject s has on the object o.

• A set of commands C.

The commands are always of the following form:
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if n G MSu0l and 
r2 e MS2i02 and

rm €

then
opi
OP2

OPn
end

In the command, s, G S, o* G O, G R, and each opi is one of the 
following six primitive operations:

• enter r into MSi0

• delete r from Ms,0

• create subject s

• delete subject s

• create object o

• delete object o

A system configuration is captured by the triple (S, O, M), where the 
elements specify the current set of subjects and objects and the current 
rights in the access matrix. Execution of commands results in a change in 
system configuration.

Safety Problem

In their work, the authors consider the problem of deciding if in a given 
system a particular access right may be acquired by an unauthorized sub­
ject. This problem is called the safety problem for protection systems. A 
system with the initial state (50,00, M0) is said to be safe with respect to 
access right r if there does not exist a sequence of commands that would 
eventually enter r in M in a position that originally did not contain r.

The authors prove that the problem is undecidable in its general form, 
that is there does not exist an algorithm that can decide the safety of an ar­
bitrary authorization system. However, they also note that more restricted
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cases of the problem exist that are decidable. As an example they consider 
mono-operational systems, i.e. authorization systems whose commands con­
sist of only one primitive operation. A proof is presented that for mono- 
operational systems the safety problem is decidable.

2.1.4 Clark-Wilson

David Clark and David Wilson were the first ones to emphasize the impor­
tance of integrity in computer security systems. In their noteworthy paper 
they argued that the contemporary security models originating from mili­
tary and government environments were not sufficient in the commercial 
world [11]. The main point is that while the military models are mostly 
concerned by confidentiality, the most important aspect of commercial se­
curity is integrity. This lead the authors to develop another model centered 
around the concept of integrity.

Integrity Policy

Clark and Wilson observe that in commercial sectors, and in particular in 
bookkeeping and accounting activities, the major threats to integrity are 
errors and fraud. They proceed to define a commercial security policy for 
integrity based on two well-established existing commercial integrity pre­
serving mechanisms: well-formed transactions and separation of duty.

The well-formed transaction principle states that users may not modify 
data in arbitrary ways, but exclusively by using certified procedures that are 
known to maintain data integrity. Examples of the well-formed transaction 
principle include keeping logs to maintain audit trails and double entry 
bookkeeping.

Separation of duty is mostly concerned with preventing authorized 
users from making improper modifications such as frauds and thereby vio­
lating external consistency.

Model

In the Clark-Wilson model a system consists of the following entities:

• Constrained Data Items (GDI)

• Unconstrained Data Items (UDI)

• Integrity Verifying Procedures (TVP)
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• Transformation Procedures (TP)

All data in the system is divided into two categories: constrained and 
unconstrained. GDI contains data that through verification is known to be 
valid and consistent. All other data belongs to the UDI category. IVPs are 
used to verify the conformance of all GDI data to integrity specification at 
the time of invocation. TPs are the essence of well-formed transactions in 
the Clark-Wilson model. They are trusted procedures that modify GDI data 
but preserve their integrity. In the Clark-Wilson model, modifications of 
GDI data are only allowed via TPs. Consequently, if it is assumed that the 
system starts from a secure state, the system will always be secure with 
respect to integrity policy since all potential future states can be reached 
only by transaction procedures that preserve integrity.

The model presents nine rules that must be satisfied in order to comply 
with the integrity policy. There are two kinds of rules: certification rules 
(C) that must be satisfied by administrative personnel (security officer, sys­
tem owner, and system custodian) with respect to the integrity policy and 
enforcement rules (E) that must be satisfied by the system. The rules are 
defined as follows:

• Cl: (Certification) All IVPs must properly ensure that all GDIs are in 
a valid state at the time the IVP is run.

• C2: All TPs must be certified to be valid. That is, they must take a 
GDI to a valid final state, given that it is in a valid state to begin with. 
For each TR and each set of GDIs that it may manipulate, the security 
officer must specify a relation or function that defines that execution. 
A relation is thus of the form (TPi,(CDIa,CDIb,CDIc,...)), where 
the list of GDIs defines a particular set of arguments for which TPj 
has been certified.

• El: (Enforcement) The system must maintain the list of relations 
specified in rule C2, and must ensure that the only manipulation of 
any GDI is by a TI> where the TP is operating on the GDI as specified 
in some relation.

• E2: The system must maintain a list of relations of the form: 
(UserID,TPi,(CDIa,CDIb,CDIc,...)), which relates a user, a TR 
and the data objects that TP* may reference on behalf of that user. 
It must ensure that only executions described in one of the relations 
are performed.
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• C3: The list of relation in E2 must be certified to meet the separation 
of duty requirement.

• E3: The system must authenticate the identity of each user attempt­
ing to execute a TE

• C4: All TPs must be certified to write to an append-only GDI (the log) 
all information necessary to permit the nature of the operation to be 
reconstructed.

• C5: Any TP that takes a UDI as an input value must be certified to 
perform only valid transformations, or else no transformations, for 
any possible value of the UDI. The transformation should take the 
input from a UDI to a GDI, or the UDI is rejected. Typically, this is an 
edit program.

• E4: Only the agent permitted to certify entities may change the list 
of such entities associated with other entities: specifically, the entities 
associated with a TP

The first three rules (Cl, C2, El) guarantee internal consistency in the 
system. The following two rules (E2, C3) handle external consistency via 
separation of duty and with the help of the E3 rule that governs user au­
thentication. C4 says that an audit trail has to be maintained by requiring 
TPs to log all relevant information. C5 defines how unconstrained input is 
imported to the system. Finally, E4 enforces the separation of duty principle 
upon the certification operations.

2.1.5 Brewer-Nash

In their 1989 paper [10] Brewer and Nash published a security model based 
on a well known commercial security policy called Chinese Wall. This 
policy originates from the code of practice observed by analysts provid­
ing corporate business services. A single analyst may deal with information 
concerning several different client companies. It is assumed that when con­
sulting a client company an analyst obtains inside information regarding it. 
Naturally, the inside information entrusted to the analyst must not be used 
to benefit any of the client’s competitors. Thus the gist of the policy is that 
an analyst may not consult a client company if he has already obtained 
information regarding another company in the same competitive sector.
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Consequently, an analyst is free to choose to access information about 
any company in a new competitive sector. But once he has obtained in­
formation about a company in that sector, he cannot access information 
regarding any other company in that sector anymore.

Model

The Brewer-Nash model is constructed in a very BLP-like fashion so that it 
can be easily compared to the BLP model. It adopts the BLP concepts of sub­
jects, objects, and security labels. Subjects represent users and programs 
that act on their behalf. Objects are pieces of information concerning a 
single company. They are arranged in a three-level hierarchy as illustrated 
in Figure 2.3. At the lowest level there are information objects which are 
associated with exactly one company. At the intermediate level there are 
company datasets each of which groups together all objects concerning that 
company. Company datasets are identified by the name of the respective 
company. At the highest level there are conflict of interest classes which con­
sist of all datasets concerning companies in competition with each other. 
Conflict of interest classes are named after their business sectors. Finally, a 
boolean matrix N records the access history.

Conflict of Interest 
Class C

Conflict of Interest 
Class B

Conflict of Interest 
Class A

Company C1Company A1 Company A2 i Company B1 Company B2

Obj Obj ObjObj Obj ObjObj Obj Obj Obj Obj

Figure 2.3: Brewer-Nash object hierarchy

Brewer and Nash make a distinction between unsanitized and sanitized 
information objects. Unsanitized objects are company specific information 
and hence subject to protection measures. Sanitized objects are public in­
formation not related to any specific company. They are freely accessable 
and not subject to controls by the model.

Formally, the model can be defined as follows: •

• A set of subjects S.
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e A set of objects O. Each object o e O is associated with a security 
label (x(o),y(o)). y{o) denotes the company to which o belongs and 
x(o) denotes the conflict of interest class to which the company be­
longs. For sanitized objects, x(o) = y(o) = public.

• A boolean matrix N = (Nso), s G S,o G O. Nso is true if and only if 
subject s has previously accessed object o.

The Chinese Wall policy is enforced by two mandatory rules:

• Simple Security Rule: Subject s can read object o if and only if

V</> 6 O, Ns<t> = true : (x(</>) ± x(o)) V (y{(f>) = y(o)).

In other words, the subject may read the object if it belongs to a com­
pany dataset that the subject has already accessed, or if it belongs to 
a conflict of interest class that the subject has never accessed before.

• -k-Property Rule: Subject s can write object o if and only if

Nso = true A 
$<t> G O, Ns<f, = true :

(s can read (f>) A (y(0) ^ y(o)) A (y(</>) ^ PUBLIC)

In other words, the subject may write to the object if 1) the subject 
can read the object and 2) the subject cannot read any object which 
is in a different company dataset to the one for which write access is 
requested.

The simple security rule captures the Chinese Wall policy with respect to 
read access. However, the *-property rule is still needed to prevent indirect 
information leaks because information may still indirectly leak between 
competitors if two analysts consulting two competitors share a common 
client in another conflict of interest class. A malicious program such as a 
Trojan Horse could write information about one competitor to the common 
client in the other conflict of interest class and that information could then 
be read by the other analyst.

As an example of an indirect leak consider two oil companies OC\ and 
OC2 and one bank B. Analyst A\ consults B and OC\ while another ana­
lyst A2 consults B and OC2. Because of the simple security rule, A\ cannot
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directly read OC2 information and A2 cannot read OC\ information. How­
ever, a Trojan Horse used by A\ could write OC\ information to B and that 
information could later be obtained by A2.

The underlying motivation for the *-property is very similar both in 
BLP and Brewer-Nash models. The basic confidentiality policy is enforced 
by the simple security rule. In both models it relies on the assumption 
that security labels of objects correctly indicate their level of confidentiality 
(classification and categories in BLI? company name in Brewer-Nash). If 
write operations were allowed without any restrictions it would be easy 
for a malicious program to violate that assumption (e.g. in BLP by writing 
secret information to unclassified objects and in Brewer-Nash by writing 
company A information to company B objects.)

As observed by Sandhu [58] the Brewer-Nash *-property implies the 
following:

• A subject that has read objects from exactly one company dataset can 
write to that dataset.

e A subject that has read objects from two or more company datasets 
cannot write at all.

So, the *-property has the undesirable side effect of preventing con­
sultants from having more than one client company. It is true that if a 
computer program executing on behalf of a consultant holds information 
about more than one company an indirect leak will inevitably be possible. 
However, the *-property restrictions should really be imposed on computer 
programs rather than on the consultants since consultants can leak infor­
mation outside of the computer system in any case. The undesirable side 
effects can be avoided by executing programs with restricted permissions 
so that information concerning at most one company can be read at a time. 
So in effect a program is executed in a fresh new session that does not 
record information from any previous session and whose set of “already 
accessed companies” contains at most one entry.

In [58] Sandhu also demonstrates that contrary to authors’ belief, the 
Brewer-Nash model (without the aforementioned side effects) can be rep­
resented as a lattice based BLP variant. In his work Sandhu generalizes the 
model further so that objects may contain information pertaining to several 
companies of different conflict of interest classes.
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2.1.6 Role Based Access Control

Recent research on access control models has concentrated around a model 
called Role Based Access Control (RBAC). The first steps of RBAC devel­
opment were taken in the early 1990s when it was understood that the 
contemporary MAC and DAC models were not suitable for modeling secu­
rity policies of databases and commercial organizations in civilian environ­
ments [3, 51, 21]. The central idea of RBAC is to define access permissions 
in terms of roles rather than individual users. In large organizations there 
are possibly tens of thousands of users which makes it infeasible to admin­
ister permissions for each individual user. Furthermore, permissions are 
constantly changing since employees come and go and people change job 
titles and responsibilities. Administration is facilitated considerably if per­
missions are assigned to a small number of relatively static roles that rep­
resent natural and business-like organizational concepts such as job titles 
or responsibilities. Individual users can then be assigned to roles indepen­
dently of permissions and obtain permissions through their roles.

Essentially, RBAC is not a complete security model as the models pre­
sented above are. It leaves considerable degrees of freedom for system 
implementors and administrators in adapting the model to a given orga­
nization’s needs. In particular, it does not mandate any security policy. 
Rather RBAC is a useful modeling technique for constructing more refined 
models that fulfill security policies. Actually it has been shown that the 
RBAC model is flexible enough to express several well-known policies im­
plemented by traditional models such as MAC, DAC, and Clark-Wilson [48] 
[44],

While research on RBAC is going on there have been efforts to stan­
dardize some of most common and useful RBAC concepts [56, 57]. The 
following sections present on overview of the NIST RBAC models.

NIST RBAC Model

Several new ideas and features have been proposed around the core RBAC 
concept. The NIST model presents the most essential of these features in 
a stepwise manner using four reference models of cumulatively increasing 
features: Flat RBAC, Hierarchical RBAC, Constrained RBAC, and Symmet­
ric RBAC.
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Flat RBAC The flat model represents the minimum set of core features 
that any implementation should support in order to be considered RBAC 
compliant. The flat RBAC model is illustrated in Figure 2.4. It consists of 
the following entities:

• U: a set of users. Users are human beings or agents running on their 
behalf.

• R\ set of roles. Roles represent job tides and responsibilities within 
an organization.

• P: set of permissions. Permissions are positive authorizations to per­
form an action on an object. Permissions can represent actions on any 
level of abstraction such as low-level filesystem permissions or high- 
level business transactions; their semantics is not to be interpreted by 
the RBAC system.

• C/A C C/ x R: a relation that defines the assignment of users to roles.

• PA C R x P: a relation that defines the assignment of permissions 
to roles.

The basic features of the flat RBAC model are:

• Users obtain permissions through membership in roles.

• User-role assignment (C/A) is many-to-many; i.e. a user can be a 
member of several different roles, and a role can have several dif­
ferent members.

• Permission-role assignment (PA) is many-to-many; i.e. a permission 
can be assigned to several different roles, and a role can hold several 
different permissions.

• User-Role assignment can be reviewed efficiently. This means that the 
UA data must be stored and handled in a way that allows an efficient 
computation of the following two functions: roles : U —» 2R (to find 
the roles a user is member of) and members : R —> 2U (to find the 
members of a role).

• A user can have many roles active simultaneously rather than only 
one at a time. Users sign in the system via sessions in which they 
may activate only a subset of their available member roles to keep
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their permissions to minimum according to the principle of least priv­
ilege. However, the session concept is not explicitly defined in the flat 
model.

PERMISS- 
X IONSUSERS

USER
ASSIGNMENT

ROLES

PERMISSION
ASSIGNMENT

Figure 2.4: Flat RBAC

Hierarchical RBAC The Hierarchical RBAC model (illustrated in Figure 
2.5) enhances the flat model by adding role hierarchies. In mathematical 
terms, a role hierarchy in its most generic form is an arbitrary partial order­
ing on the set of roles. They are a natural way of modeling organizational 
structure in terms of senior and junior roles. A sample role hierarchy is 
illustrated in Figure 2.6.

PERMISS- 
\ IONS /USERS

USER
ASSIGNMENT

ROLE
HIERARCHY

ROLES

PERMISSION
ASSIGNMENT

Figure 2.5: Hierarchical RBAC

The basic interpretation of role hierarchies is that senior roles automat­
ically inherit all permissions from their junior roles. This type of hierarchy 
is called permission inheritance hierarchy. Role inheritance makes security 
administration easier because permissions of entire role hierarchies can be 
assigned to a user by a single assignment to a senior role. Without inher­
itance hierarchies a user should be assigned to each of a potentially large 
number of roles, or permissions should be redundantly duplicated in sev­
eral roles.

35



PRESENTATION OF SECURITY MODELS Traditional formal models

Director

Project Lead 2Project Lead 1

Quality 
Engineer 2

Quality 
Engineer 1

Project 
Engineer 2

Project 
Engineer 1

Engineer 2Engineer 1

Engineering Department

Figure 2.6: Sample role hierarchy

However, it is not always desirable for senior roles to inherit all ju­
nior role permissions. For example a senior user may want to deliberately 
reduce their permissions when performing tasks that don’t require them, 
following the principle of least privilege, e.g. to limit the effects of a trojan 
horse. Or in other cases the inherited roles may be in conflict with sepa­
ration of duty constraints. In such cases the role hierarchy is interpreted 
so that senior roles do not automatically inherit all junior roles but instead 
may choose at will which ones to activate. This interpretation is called role 
activation hierarchy. In some cases such as with dynamic separation of duty 
it is possible that the permission inheritance and role activation hierarchies 
are distinct, the latter being a superset of the former [54].

Constrained RBAC Augmenting the hierarchical model with constraints 
leads to the Constrained RBAC model. Constraints enable security admin­
istrators to enforce separation of duty (SOD) policies such as preventing 
a user from acting in both the roles of purchasing officer and accounts 
payable officer.

Separation of duty constraints can be either static (SSD) or dynamic 
(DSD). Static constraints impose restrictions on the assignment or users to 
roles as mutual exclusivity requirements. Any user may be assigned to at 
most one role in a set of roles marked as mutually exclusive. For example,
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a static separation of duty policy could specify that the aforementioned 
purchasing officer and accounts payable officer roles are mutually exclu­
sive. Like permissions, also static constraints are inherited through the role 
hierarchies. So, if a role is mutually exclusive with another role, all its 
senior roles will automatically inherit the constraint and thus be mutually 
exclusive with the latter role, too.

Dynamic constraints restrict the roles a user may have active during a 
session. This is useful when a conflict of interest situation does not follow 
immediately from static role membership but occurs only if these roles are 
active simultaneously during the same session. In general, constraints in 
terms of active roles allows for more fine-grained constraints than static 
constraints alone. Dynamic constraints are not inherited within a role hi­
erarchy. Figure 2.7 is an illustration of the Constrained RBAC model with 
dynamic separation of duty which is identical to the static version apart 
from the addition of the constraints arrow leading to session objects.

SOD CONSTRAINTS

ROLE
HIERARCHY

PERMISSION
ASSIGNMENT

USER
ASSIGNMENT

PERMISS- 
X IONSUSERS

user

Figure 2.7: Constrained RBAC with dynamic separation of duty

Symmetric RBAC Organizations are constantly in change because new 
employees are hired and old ones change titles, responsibilities and even 
retire. In administering security of an organization all users should obtain
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all the privileges they need to perform their due duties but no other priv­
ileges. In these dynamic conditions administration is a challenging task. 
The problem is complicated even further if the system is distributed in the 
sense that it covers several distinct but collaborating organizations.

One useful tool that aids in security administration is the user-role re­
view introduced in the flat RBAC model. The symmetric model builds on 
the constrained model, adding permission-role review as a new require­
ment. Given a user or a role, administrators can ask for its set of accessible 
objects or set of available permissions as (operation, object) pairs. The re­
viewer can choose to list only the directly assigned objects or permissions, 
or to include all inherited ones as well. And finally, in distributed systems 
the review must provide for selecting the target systems for which the re­
view should be performed.

RBAC Administration

As noted before, RBAC is very flexible in terms of what kinds of security 
policies it can express and does not enforce any specific policy itself. In­
stead security administrators are provided a lot of freedom to customize 
the model to suit their organizational security policies. Administering large 
systems is a very challenging task. System administrators are faced with 
the problem of policy refinement as discussed in Section 1.4.2. In the early 
days of RBAC little attention was paid to administration and a central­
ized administration model was assumed. Later it became clear that large 
systems cannot be effectively managed by a central authority but instead 
administrative responsibility must be decentralized, distributed and dele­
gated to smaller units in the organizational hierarchy.

So far research in RBAC has not yet produced proven best practices or 
off-the-shelf recipes that would specify how to configure RBAC to meet the 
most common security policy objectives. The connection between organi­
zational structure and responsibilities and the RBAC components has been 
studied [50, 46]. Using RBAC in inter-organization collaboration has also 
been studied [26, 25]. Some basic mechanisms to support decentralized 
RBAC administration have been published as the Administrative RBAC 97 
(ARBAC97) model [55] and its improved version ARBAC02 [47]. The fol­
lowing section provides a brief overview of the ARBAC02 model.

Administrative RBAC model The ARBAC model addresses the problem 
of decentralized security administration in the RBAC model. It specifies
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constraints that can be used to delegate administration authority in a con­
trolled manner. Figure 2.8 illustrates the ARBAC02 model components.

Hierarchy

Permissions

Sessions

Permission 
Pool unit

ConstraintsUsers

OS-P
Adminis­

trative
Roles

Admin.
permissions

Pool unit

Administrative 
Role hierarchy

OS-U

Figure 2.8: ARBAC02 components

Administrative roles and permissions were already present in the 
RBAC96 model [56]. The underlying idea is to separate administrative 
tasks from normal tasks and then to use existing RBAC principles to con­
trol itself. Administrative roles and permissions are disjoint from normal 
roles and permissions, respectively.

For administrative purposes, the organization’s structure is explicitly 
modeled. More precisely, it is the duty of the Human Resources (HR) de­
partment to maintain a tree structure of the organizational units and assign 
users to these units. This tree structure is called the user pool. Likewise, 
it is the duty of the Information Technology (IT) department to maintain a 
(inverted) tree structure of organizational units and to assign resource per­
missions to its nodes. This structure is called the permission pool. Finally, 
security administrators assign users from the user pool and permissions 
from the permission pool to actual roles. This role administration concept 
is illustrated in Figure 2.9.

The administrative operations in ARBAC are:

• Assigning and revoking users from roles (URA)

• Assigning and revoking permissions from roles (PRA)

39



PRESENTATION OF SECURITY MODELS Traditional formal models

USERS RESOURCES
Assigned by 
Information 
Technology 

f(IT) group

Assigned by 
Human Resource 

(HR) group HR and
IT Area

Org. structure 
for permission 
pool

Org. structure 
for user pool

Assign permission to role 
by security admin, group

Assign user to role 
by security admin, group Security

admin.
Area

Role hierarchy

Figure 2.9: Role Administration Concept in ARBAC02

• Modifying the role inheritance hierarchy (RRA)

Authorized administrative operations are captured by five relations: 
can-assign, can-revoke, can-assignp, can-revokep, and can-modify, respec­
tively. For example, user to role assignment is governed by the can- 
assign^x, y, z) relation, x denotes the administrative role whom this rule 
concerns, y is an arbitrary boolean expression called prerequisite condition 
whose terms are either role names or organizational units from the user 
pool. The terms are true if the user in question belongs to the role or unit 
in question. Terms that denote organizational rules are prefixed with an 
at sign C@’) and terms that denote roles are written as such, z is a role 
range that denotes a set of roles between two endpoint roles in the role 
inheritance hierarchy.

The meaning of the can-assign relation is that an administrator that is 
a member of administrative role x or any of its superior roles may assign 
users to the roles specified by z if the prerequisite condition holds for the 
user in question. For example, can-assign(Engineering Dept, @Engineering 
A ©Sales A proj Y, [proj X lead, proj X engineer]) means that engineer­
ing department security officers may assign users to any roles between the 
project X lead and engineer roles in the inheritance hierarchy if the users 
belong to the engineering unit but not to the sales unit and if they are not 
already members of the project Y role.

Revocation of users is controlled by a similar can-revoke(x, z) relation. 
The difference is that there are no prerequisite conditions but instead ad­
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ministrators can revoke any user from the given role range. ARBAC02 dif­
ferentiates between weak revocations and strong revocations. A weak re­
vocation removes a user only from the role to which it explicitly belongs. 
Strong revocations on the other hand revoke a user also from all the roles 
that are senior to the one being revoked.

The permission controlling relations can-assignp(x,y,z) and can- 
revokep(x, z) are analogous to the can-assign and can-revoke relations dis­
cussed above.

To make decentralization of administration possible the ARBAC model 
allows also the authority to manage a subset of the role inheritance hi­
erarchy to be delegated. The operations for managing the role hierarchy 
are create role, delete role, create inheritance edge, and delete inheritance 
edge. The can-modify(x, z) relation specifies that an administration that is a 
(possibly indirect) member of role x can perform the operations in the sub­
set of role inheritance hierarchy specified by the role range z. Furthermore, 
RRA distinguishes between three types of roles: abilities, groups, and UP- 
roles. Abilities can contain only permissions, groups can contain only users 
and UP-roles can contain both. The model still adds analogous relations 
for controlling management of these different types of roles: can-assigna, 
can-revokea, can-assigng, can-revokeg.

ARBAC specifies how organizations’ chief security officers may delegate 
administrative permissions to subordinates. The administrative operations 
of ARBAC are assignment and revocation of users to roles (URA), permis­
sions to roles (PRA), and roles to roles (RRA).

2.2 Recent pragmatic models

2.2.1 Java security

Overview

Secure programming has been one of Java’s goals right from the beginning. 
The Java development environment includes lots of different features that 
aid in producing secure programs. There are features built in the language 
itself such as strong typing, bounds checking, automatic memory manage­
ment, absence of pointers, and bytecode verification. In addition, there are 
several APIs for taking advantage of existing security technologies such as 
Java Cryptography Extension (JCE), Java SecureSocket Extension (JSSE), 
Java Authentication and Authorization Service (JAAS), Java Certification
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Path API, and Java GSS-API.
However, this work does not consider Java language features or secu­

rity APIs. Instead, it addresses the underlying security architecture which 
is concerned with controlling the authorized execution of protected opera­
tions by Java code.

Since the initial Java release many security related features have been 
improved and new ones have been added. The first versions were mainly 
concerned about threats by malicious code such originating from untrusted 
hostile networks. Remote code was always run in a restricted runtime en­
vironment called sandbox. Later it became possible for cryptographically 
signed remote code to run with full privileges as any other trusted code. 
In the most recent model code is not simplistically divided to trusted and 
untrusted code but instead different pieces of code can be assigned differ­
ent privileges in a fine-grained manner. The presentation below is based 
on Java 2 SDK Standard Edition version 1.4 [23, 28, 64]. This version pro­
vides an extensible policy-based authorization model that can be used both 
by standard Java libraries and application code.

Protection domains

In Java, every frame in the call stack of a thread of execution has an as­
sociated protection domain. A protection domain contains the following 
information: •

• An URL that specifies where the class that implements the corre­
sponding method originates from

• Any cryptographic certificates that were used to verify the signatures 
of the class

• Properties of the subject (user or service) on behalf of which the code 
is executing

• A set of permissions

The subject properties include identities and credentials. Identities are 
represented by instances of principal classes that are basically intended to 
denote identities such as user account names or X.500 identities. However, 
the fact that custom principal classes can be created allows them to be used 
for describing group or role memberships or any other arbitrary subject 
properties as well [28].

42



PRESENTATION OF SECURITY MODELS Recent pragmatic models

Protection domains contain a set of static permissions that are fixed 
when the corresponding class is loaded and its protection domain is cre­
ated. Furthermore, when a permission in a protection domain is checked 
the current policy object (see below) is queried for additional dynamic per­
missions that may change at runtime.

Permissions and policies

Protected operations are represented by permission classes. Permissions 
have a mandatory target name part and an optional set of actions. For ex­
ample, the name of a file permission is a file system path and its actions 
include read and write. The name part of a network socket permission 
is a host-port specification and its actions include accept, connect, and 
listen. Some permissions such as runtime permissions only have a target 
name but no actions, e.g. setSecurityManager. Developers can freely cre­
ate new permissions to represent application specific protected operations 
such as business transactions.

In the Java security architecture a policy is a mapping from the char­
acteristics of a protection domain to a set of permissions. This mapping 
is carried out by a system-wide runtime security policy object. Custom 
policy objects can be created in order to implement a variety of different 
policies. Furthermore, there exists a policy reference implementation that 
uses a simple text-based configuration file to specify policies. The policy 
configuration file is basically a list of grant statements that allow certain 
permissions if the protection domains in question meet the given condi­
tions. The types of conditions supported are:

• signedby <signer name>: the code was signed by the given signer

• codebase <URL>: the java class was loaded from the given URL

• principal <class> <name>: the subject has a principal of the given 
class with the given name

Figure 2.10 illustrates a simple example policy configuration file.

Authentication

Since Java 2 SDK version 1.4 authentication and authorization are taken 
care of by the Java Authentication and Authorization Service (JAAS). It pro­
vides a framework resembling Pluggable Authentication Modules (PAM)
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// code originating from company intranet running 
// as the admin role can modify password data 
grant codebase ”http://intra.acme.com”, 

principal com.acme.Role ”admin” { 
permission java.io.FilePermission ”/etc/passwd”, ”read,write”;

}

Figure 2.10: Example Java policy configuration file

[53] that takes care of authentication procedures on behalf of the applica­
tion. Authentication modules and configuration can be modified by admin­
istrators without changing the application itself.

As a result of a successful authentication process the application is pro­
vided a Subject class instance that contains properties of the subject that 
were collected by the authentication modules during the process. The prop­
erties may include identities, credentials, and also any other arbitrary cus­
tom properties such as role membership if supported by the application and 
the authentication modules.

Subsequently, if the application so wishes it can ask the runtime en­
vironment to continue execution in the role of the authenticated subject. 
This is accomplished with one of the doAsO -family methods of the Sub­
ject class. From that moment on, all authorization checks for the current 
method and any other methods below it in the call stack are performed 
with respect to the newly assumed subject role.

This feature is useful, for example, in situations in which a server ap­
plication is willing to act on behalf of a user and assumes the user role so 
that any subsequent authorization will based on that user’s permissions.

Authorization

In Java, access control checks are performed at runtime by a system Ac- 
cessController class. Any code, be it system or application, willing to 
check that the current access control context be allowed to execute a pro­
tected operation can call its checkPermission method, passing it a Per­
mission object presenting the permission in question. The access controller 
then consults the current security policy and compares it to the current con­
text. If the permission is granted execution continues normally. Otherwise 
a security exception is raised.
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The current access control context essentially consists of the protection 
domains of the stack frames of the current thread of execution. Because 
code originating from different sources such as system libraries, locally in­
stalled application code, and remote application code can arbitrarily call 
methods on each other, the protection domains in a stack are likely to con­
tain different permissions. Now, authorization decisions can not be based 
solely on the permissions of the protection domain of the deepest stack 
frame. Doing so would allow less privileged code to obtain more privileges 
by calling more privileged code (e.g. when application code calls system 
code). Instead, it is necessary that the permission be present in all the 
protection domains of the call stack. Thus the effective set of permissions 
is the intersection of all permissions of the protection domains in the call 
stack.

However, this intersecting method poses another problem. Namely, it 
prevents privileged code from performing protected operations when called 
by unprivileged code. In cases in which code having the correct permissions 
wants to perform the operation independently on by whom it is being called 
it can mark itself as “privileged” code using the doPrivilegedO family of 
methods of the AccessController class. Once called, any authorization 
controls on and below this stack frame ignore the preceding call history.

To summarize, a method can perform a protected operation if the cor­
responding permission is available both to the method itself and to every 
other method in the current call stack, up until to the last method marked 
as privileged.

Access control contexts

Normally permissions are checked with respect to the current access con­
trol context. However, sometimes it is useful to check against a different 
context. One example case is when another thread is performing the check 
on behalf of another one. Another example is when a server creates an 
access control context after authenticating a user, but not all the sensitive 
work is initiated by the same method.

For these purposes, a snapshot of the current access control context 
can be obtained and saved in an AccessControlContext object. Later on, 
permissions can be checked with respect to the saved context instead of the 
current context at the checking time.
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2.2.2 Firewalls

Firewalls have become an obligatory part of any organization’s network 
security arsenal. In theory all systems inside the network could protect 
themselves and no central measures would not be needed. However, in 
practice all systems have vulnerabilities. This makes firewalls an economic 
solution because they allow for a centralized way of access control that 
is relatively easy to manage. While not an ideal situation, this can help 
to enable vulnerable systems to continue operation inside the protected 
network. Otherwise those systems would have to be taken down or to be 
continually updated with latest security patches, which currently takes a 
lot of administrative effort. Moreover, often patches arrive too late or are 
not available at all, as is the case with legacy systems.

Firewalls only solve a small part of network security problems. The 
most often cited problem is that of insider threats. As firewalls are usually 
deployed at the network perimeter, they cannot protect from any flawed 
or malicious systems or users inside the network. This problem is exacer­
bated by the increasing use of wireless networks and mobile code. Another 
problem is that firewalls only have access to limited information which is 
not always sufficient to make good enough access control decisions. Fi­
nally, firewalls may form a network performance bottleneck themselves 
since they have to control all the traffic entering and leaving the organi­
zation’s network.

Model

In the literature there have been some efforts to model firewall concepts 
[60, 5]. The following sections present an overview of firewalls at a high 
level of abstraction.

The fundamental role of a firewall is to protect a set of trusted systems 
from a set of untrusted systems by separating the two with a controlled bar­
rier. The most common case is that of separating a trusted organization’s 
internal network from the untrusted public Internet. Another, increasingly 
common case is protecting private users from the public Internet by soft­
ware firewalls installed on personal home computers. In a more general 
sense, there could be any number of hosts and networks separated by a 
firewall an arranged in various subnet and demilitarized zone (DMZ) con­
figurations.

The basic functions of a firewall are access control and auditing. The
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access control function decides which network packets are allowed to tra­
verse and which ones should be denied. The audit function allows adminis­
trators to monitor the network by logging information concerning rejected 
or otherwise suspicious packets. These basic concepts are illustrated by 
Figure 2.11.

Firewall
Untrusted
Network

Access Audit 
Control

Security
Policy

Trusted
Network

Figure 2.11: Simplified firewall concept model

In addition to these basic functions, modem firewalls have lots of other 
features and properties as well. The following is a list of (not fully or­
thogonal) characteristics based on which the existing firewall space may 
be dissected.

• Position in the network layer stack. Most firewalls are capable of 
inspecting packets at network (IP) and transport (TCP UDP) levels 
which allows for basic access control based on network topology and 
the set of services. Some firewalls additionally understand applica­
tion level data (such as SMTP and HTTP) which allows for more fine­
grained and sophisticated access control.

• Statefulness. The simpler firewalls do not store any data on traffic 
that they have analyzed in the past. Hence they must completely 
base their access control decisions solely on the current packet at 
hand. On the other hand, more advanced firewalls maintain some 
state information. This allows them to e.g. track TCP connections 
or HTTP session states and in general to make more sophisticated 
decisions.

• User transparency. Filter-type firewalls operate in a transparent fash­
ion that is invisible to users (as long as access is allowed). On the
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other hand, some proxy-type firewalls require configuration at the 
users’ systems such as setting a proxy server address. Even though 
proxy-type firewalls usually operate at the application layer, not all 
application layer firewalls necessarily require user configuration.

• Address translation. Generally it is considered good practice not to 
reveal any information concerning internal network topology to out­
siders. Therefore many firewalls hide that information by dynami­
cally translating internal network addresses to a predefined address 
space (which is most often the address of the firewall itself). This 
technique is called Network Address Translation (NAT). It may also 
be used to conserve public IP address space by utilizing unroutable 
private IP addresses in the internal network.

• Centralized vs. distributed. The traditional firewall as a centralized 
choke point between external and internal networks has been chal­
lenged by the problems presented above (insider threats, wireless 
networks and dial-up access, mobile code, limited available informa­
tion at the network perimeter, and performance bottleneck). Some 
problems can be countered by removing the central choke point and 
instead distributing firewall functionality elsewhere the internal net­
work [8, 27]. Distributed firewalls can also improve resistance to 
attacks by adding to depth of defense.

• Hardware vs. software. Modem operating systems have all the nec­
essary facilities for building a software-based firewall. For perfor­
mance reasons however, high-end firewalls are directly implemented 
in hardware.

• Protection domain. Traditionally, firewalls are used to protect entire 
networks. However, software-based firewalls are increasingly being 
used on personal computers to protect only the computer in question.

Policies

The following sections illustrate the most common high level policy re­
quirements and how they map to low level firewall configuration.

High level objectives The most fundamental factor that affects firewall 
policies are the services that must be made available from the tmsted net­
work to the untrusted network and vice versa. Typically, organizations only
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allow outside access to a small set of well-defined internal services and by 
default deny all other access. Some organizations may only allow access to 
a predefined set of external services and deny everything else, while others 
allow all external services by default but deny some specific services.

In addition to the quite static set of allowed services, there are some 
more dynamic factors that can affect a firewall policy. For example, an 
organization may decide to allow some services only during certain time 
ranges such as business hours or holiday seasons. Additionally, an organi­
zation may have an intrusion detection system that maintains a “defcon” 
level, changes in which could involve change in firewall behavior. Other 
security alerts such as vulnerabilities in software used by the organization 
or alerts about ongoing Internet worm attacks could also serve as stimulus 
for dynamically adjusting firewall behavior.

Furthermore, a personal software firewall that protects a mobile device 
is likely to need frequent configuration updates since the network connec­
tion, topology, and the set of available services changes more often than in 
organizations with static networks and services. If the firewall policy itself 
is not aware of mobility, the firewall configuration may have to be manually 
changed when the device is taken into a new network environment.

Low level configuration The low level configuration of most modern 
firewalls is an ordered list of firewall rules which consist of two parts: a 
packet matching condition and an action. When a network packet arrives 
at the firewall, the firewall goes through the rules one by one, until it finds 
a rule that matches the packet. Then the rule’s action part defines if the 
network packet is either allowed to or denied from traversing the firewall, 
potentially auditing it.

Network packet matching is based on the various data present in packet 
headers, and to some extent in payloads. TCP/UDP port numbers can be 
used to differentiate between services and host names and IP addresses can 
be used to differentiate between users or systems. Naturally, this data is not 
completely reliable since services may run on non-standard port numbers, 
host addresses can be misconfigured or spoofed and so on. Furthermore, 
tying access control decisions to low-level packet header data makes the 
policy fragile with respect to even small changes in the network topology.

Firewall policy management Without proper tool support, firewall man­
agement in large organizations can be a very laborious, difficult, and error-
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prone task [32]. In the worst case, an administrator has to manually config­
ure a multitude of diverse devices, each of which has a different low-level 
configuration language, using unintuitive command line tools. Therefore, 
modern firewall management tools usually have some more advanced fea­
tures:

• Device independence. A firewall can be configured using a generic 
language that is not directly tied to any vendor’s configuration lan­
guage. The management tool is able to translate the configuration to 
the specific devices the organization uses.

• Centralized administration. Policies can be specified in a central lo­
cation and they are automatically distributed to the firewalls in the 
organization’s network. All firewalls can be monitored centrally.

• Graphical user interfaces. Instead of having to manually edit text- 
based configuration files or to learn command-line tools, firewall 
management is performed using intuitive graphical user interfaces.

• Policy abstractions. Instead of specifying configuration with respect to 
low-level information about host addresses, port numbers, interface 
names etc., tools can introduce higher level concepts such as trusted 
and untrusted networks and services, and separate the concepts from 
their low-level implementation.

• Policy analysis. In large networks firewall policies grow complex and 
errors are easily introduced especially if policies are manually cre­
ated. Tools may verify the conformance of firewall configuration to a 
security policy and identify conflicts and potential vulnerabilities in it 
[32, 68, 20].

Even with modern firewall management tools, policies are still closely 
tied to the topology of the organization’s network. As discussed above, 
the low-level topology information cannot be relied on, and may not be 
fine-grained enough for access control decisions. However, distributed fire­
walls promise improvements since more information is available to end 
hosts than to the intermediate firewall. For example, end hosts are able to 
decrypt encrypted connections, differentiate between the operating system 
processes and users that send or receive traffic, and have better knowledge 
about application-level packet payload.
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It is also recognized that distributed firewalls are fairly easy to circum­
vent if the firewall runs in the same host operating system [49]. In the 
DARPA Autonomic Distributed Firewalls project, a firewall has been embed­
ded to a network interface card to produce an Embedded Firewall [49, 38].

2.3 Customizable policy models

The following section presents the Policy Common Information Model, 
which supports custom security policies. But unlike the models in Section
2.4 it does not provide a language for specifying them. Rather it provides 
a conceptual model of policies.

2.3.1 Policy Common Information Model 

Background

The Common Information Model (CIM) is an ongoing standardization ef­
fort to ease the management of large distributed enterprise computing and 
networking environments. It is being developed by the Distributed Man­
agement Task Force (DMTF) and is based on earlier work at DMTF includ­
ing System Management BIOS (SMBIOS), Desktop Management Interface 
(DMI), and Directory Enabled Networking (DEN). It defines an open and 
extensible framework of standard interfaces for producing and consum­
ing management information, simplifying management application devel­
opment and allowing products from different vendors to interoperate.

The Policy Core Information Model (PCIM) is an extension to CIM. It 
provides generic object classes for describing policy related information. It 
is a joint development effort by the Internet Engineering Task Force (IETF) 
Policy Working Group and DMTF.

Web Based Enterprise Management (WBEM) is a DMTF initiative that 
specifies how CIM can be utilized using standard Internet technologies XML 
and HTTP

All the CIM standards are work in progress. Currently there is ongoing 
security related effort at least in three working groups: Security Protection 
and Management Working Group, Policy Working Group, and User and 
Security Working Group.
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Common Information Model

CIM is an abstract, conceptual information model for describing the entities 
and their relationships in a management environment. It is technology and 
data format independent. It adopts an object-oriented design strategy to 
leverage the benefits of object oriented systems such as abstraction, reuse, 
and extensibility.

CIM Meta Schema is a formal definition of the CIM model. It consists of 
definitions for elements like classes, properties, methods, and associations. 
The schema classes are constructed out of these primitive elements.

In CIM terminology, schemas are sets of classes that model some do­
main of the real world. Schemas always have a single owner and a name. 
They are used for administration and class naming. All class names within a 
schema must be unique. Classes are divided to two categories: classes that 
describe the managed elements and association classes. Association classes 
represent relationships such as aggregation between objects and are also 
modeled as classes.

The CIM Schema is divided to three layers: Core Model, Common 
Model, and Extension Schema. The Core Model is a small, stable set of 
fundamental classes that are applicable to all management areas. The Com­
mon Model consists of basic schemas for various areas of management such 
as systems, applications, networks and devices. However, the classes of the 
Common Model are technology and platform independent. The Common 
Model is currently being expanded to cover new areas. Extension schema 
classes are used to extend the Common Schema classes with technology or 
vendor specific additions .

Management information in CIM is defined in Management Object For­
mat (MOF) which is a text based language based on the Interface Definition 
Language (IDL). The MOF class specifications are also accompanied by a 
graphical Unified Modeling Language (UML) representation. Appendix B 
contains the definition of a public key certificate in Managed Object Format.

Policy Common Information Model

Introduction and Overall Concepts The policy related CIM extension 
models are being developed in parallel by DMTF and IETF and are thus 
different specifications but nonetheless very similar. The DMTF model is 
documented in the CIM Core Policy Model [17] and the IETF model in 
[43]. The discussion below is based on the IETF PCIM and PCIM Extensions
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documents. The purpose of PCIM is to enable administrators of complex, 
multi-vendor enterprise environments to represent and manage policies. 
The policy framework is built to be capable of representing policies about 
anything. Domain specific extensions such as QoS or security extensions 
will be separately developed that will leverage the existing policy frame­
work.

In the PCIM model, policies are basically coherent sets of condition- 
action rules that are targeted to some roles. Roles represent a grouping of 
managed elements. Thus for example, instead of writing individual device- 
or host-specific rules, a rule can be targeted to a group of elements, which 
allows the policies to scale in large scale environments. Rules can be com­
bined to form hierarchies and these can be reused as parts of other rules. 
This allows for flexible management and reuse of policies.

Rules and Grouping PCIM policies are represented as sets of policy rules. 
These individual rules are represented as subclasses of PolicyRule and 
are then combined to form the rule sets. Rule sets are represented as sub­
classes of the abstract class PolicySets. Rule sets may be nested, i.e. may 
contain other rule sets as subsets. The nesting relationship is indicated us­
ing the PolicySetComponent aggregation class which collects PolicySet 
instances as parts of the containing PolicySet. There are two concrete 
subclasses of PolicySet: PolicyRule and PolicyGroup. Since Policy­
SetComponent is an association between PolicySets, both policy rules and 
policy groups may contain other subrules and groups as subsets. Contain­
ment relations are not allowed to form loops.

Rule processing is governed by rule priorities and a decision strategy. 
The PolicySetComponent aggregations specify a priority value for each 
of the contained rules. Priorities are used to define the order in which the 
rules are evaluated. They are local in the sense that they only define the pri­
ority with respect to other rules in the same containing set. Consequently, 
priorities are much easier to assign than if they had a global meaning. 
Priority values are unsigned integers and zero denotes the lowest priority. 
Furthermore, a PolicySet instance is always characterized by a decision 
strategy which can be either FirstMatching or AllMatching. FirstMatching 
means that the rules of the set are evaluated until a rule matching rule has 
been found. AllMatching means that all the contained rules are evaluated. 
In both cases, the rules are evaluated in the order of the priority specified 
in the PolicySetComponent aggregation. In the case of a FirstMatching
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strategy, a contained policy rule is considered to match if its condition eval­
uates to true. A contained policy group is considered to match if at least 
one of its members matches.

All policy rules are represented as subclasses of PolicyRule which es­
sentially represents the “if condition then action” rule, i.e. the actions are 
executed if and only if the condition evaluates to true. When rules are 
nested, the condition of the parent rule is considered a precondition for 
its subrules. That is, the parent condition is logically ANDed to all subrule 
conditions. The parent rule is always evaluated first. So if the parent con­
dition evaluates to true, first the parent actions are carried out and only 
then the subrules are evaluated. If the parent condition evaluates to false, 
the subrules are not evaluated.

Rule Conditions Conditions may be either individual conditions or com­
pound conditions. Compound conditions are Boolean combinations of 
other conditions, expressed in either cnf (Conjunctive Normal Form) or 
DNF (Disjunctive Normal Form), where the individual subconditions may 
naturally be negated (see Figure 2.12). Also compound conditions can be 
combined, which allows for arbitrarily nested and complex condition ex­
pressions.

There are several classes related to condition aggregation. Policy- 
ConditionStructure is a common superclass that represents aggregations 
of PolicyConditions. Its subclass PolicyConditionlnPolicyRule asso­
ciates a condition with a policy rule. Another subclass PolicyCondi- 
tionlnPolicyCondition is used to logically combine a set of conditions 
to a compound condition. Compound conditions are represented by the 
CompoundPolicyCondition class. It includes a property ConditionList- 
Type that specifies if the subconditions are combined in a cnf or dnf 
format. PolicyConditionStructure furthermore contains two properties 
that identify how the subcondition is to be treated in the logical combi­
nation. First, GroupNumber indicates in which logical group it belongs. 
Second, ConditionNegated indicates if the condition is negated or not (il­
lustrated in the figure with the ± sign).

The abstract class PolicyCondition represents the top of the inheri­
tance hierarchy for all rule conditions. Four subclasses of it are defined in 
PCIM Extensions: VendorPolicyCondition, CompoundPolicyCondition, 
SimplePolicyCondition,and PolicyTimePeriodCondition.

VendorPolicyCondition is a generic extension mechanism for ven-
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(CNF) f\
i

(±cn V ±Ci2 v ... V ±Cini) A ...

group i
A(icmi V V ... V

(DNF) (±Cn A ±Ci2 A ... A ±Cini) V ...

group i
V(icrni A icm2 A ... A icmnnl)

Figure 2.12: PCIM Rule condition normal forms

dor specific extensions. It contains two properties: ConstraintEncoding 
that specifies the encoding and semantics of the extension as an OID 
and Constraint that is an octet string representation of the condition. 
CompoundPolicyCondition represents the concept of compound policies 
discussed above. SimplePolicyCondition represents the elementary 
Boolean expression of the type “variable match value". The matching op­
erator is implied by the model, i.e. not explicitly specified in the condition. 
Its interpretation depends on the bound variable type and the value in­
stance. Variables are discussed in more depth below in section 2.3.1. A 
PolicyTimePeriodCondition is used to express the validity period of a 
policy. The validity period is specified in terms of five different masks: an 
overall time range, month of year, day of month, day of week, and time of 
day masks. Not all of the masks have to be present in a given condition. 
The validity period of the policy is considered to be the intersection of all 
the specified masks. A PolicyTimePeriodCondition without any masks 
specified indicates a policy that is always valid.

Rule Actions Like rule conditions, also rule actions can be combined to 
form compound policy action sequences and can be contained in other ac­
tions. Actions are aggregated by subclasses of PolicyActionStructure. 
Its subclasses PolicyActionlnPolicyRule aggregates the action in a rule, 
and PolicyActionlnPolicyAction is used to combine actions into se­
quences. The sequences are represented by the CompoundPolicyAction 
class. The execution of the actions of a sequence is characterized by three 
aspects discussed below: sequence ordering, relevance of the ordering, and
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execution strategy.
The actions of a sequence are ordered by the ActionOrder property 

in the PolicyActionStructure aggregation. The order is represented as 
an unsigned integer. Lower values mean earlier execution and the special 
value of zero indicates that the order for that action is of no importance. 
It is possible for multiple actions to share the same order value. In this 
case the relative order of the actions sharing the same value is irrelevant 
and they can be executed in any order. The relevance of the ordering is in­
dicated by the SequencedActions property of the CompoundPolicyAction 
class. The three possibilities are:

• Mandatory: The actions must be carried out in the order specified, or 
they must not be carried out at all

• Recommended: If possible the order should be respected, if it is not 
possible the order can be changed

• DontCare: The order is of no importance.

Finally, the execution strategy indicates the desired behavior with respect 
to the success or failure of subactions when compound actions are aggre­
gated by other compound actions or policy rules. The Execut ionSt r at egy 
property in the CompoundPolicyAction and PolicyRule classes indicates 
how errors encountered in the action execution are treated. The three pos­
sible values are:

• Do Until Success: Execute subactions until one of them is successful

• Do All: Execute all subactions independent on if they are successful 
or not

• Do Until Failure: Execute subactions until one of them is unsuccess­
ful.

PCIM Extensions defines three concrete subclasses of PolicyAction: Ven- 
dorPolicyAction, SimplePolicyAction, and CompoundPolicyAction. As 
was the case with policy conditions, there is a generic extension class Ven- 
dorPolicyAction for representing policy actions that are not explicitly 
modeled. Also here vendor extensions contain two properties, Action- 
Encoding for defining the encoding and semantics, and an octet string 
ActionData for representing the data itself. CompoundPol i cyAct ions rep­
resent action sequences and was discussed above. SimplePolicyAction is
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the counterpart of SimplePolicyCondition and indicates the elementary 
operation of assigning a value to a variable: “SET variable TO value’’.

Policy Variables and Values PCIM Extensions introduces the concept of 
variables and values. Variables can tested against a value in policy con­
ditions and set in policy actions. Variables are divided in two categories: 
explicit and implicit. The explicit variables are the ones that have been 
modeled in a CIM schema, i.e. they simply refer to a property of an existing 
CIM class. On the other hand, implicit variables are defined and evaluated 
outside of the model.

All policy variables are represented by the abstract PolicyVariable 
class, of which PolicyExplicitVariable and Policy Impi icitVari able 
inherit. The PolicyExplicitVariable class contains two string format 
properties ModelClass and ModelProperty that indicate the class and 
property name to which the variable refers. Instead the Policylmplicit- 
Variable class only contains a ValueTypes property that lists the allowed 
policy value types that can the variable can contain. All policy value 
types inherit from the abstract PolicyValue class. PCIM Extensions de­
fines some low-level policy value types such as PolicylntegerValue and 
PolicyIPv4AddrValue.

As noted above, the MATCH operator implied in SimplePolicyCon- 
ditions is context-dependent and its interpretation depends on the ac­
tual variable and value instances. For example, different interpretation is 
needed in the following examples: “Destinat 1 onPort MATCH 80” (integer 
comparison) and “SourcelPAddress MATCH MyCompany. Com” (comparing 
an IP address to another one in the terms of its DNS address).

Furthermore, both variables and values may be multi-fielded. Each field 
may be either a single value (singleton), a range of values defined by lower 
and upper bounds, or a set of values. PCIM Extensions defines a set of 
matching rules independent on the type of variables and values for the 
different cases when singletons, ranges, or sets are matched against each 
other.

Roles Writing individual policies for each managed element is a method 
that does not scale in complex environments. Instead, policies are targeted 
at roles. A role is a functional characteristic or capability of a managed 
element. It is used to determine the applicability of a policy to a particular 
managed element. Consequently, all relevant elements can be managed
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with the same policy.
More specifically, roles are textual names for elements sharing a com­

mon characteristic. A managed element may have one or more roles that 
together form the element’s role combination. In PCIM terms, a policy with 
a given target role combination applies to a managed element if and only 
if the target role combination is a subset of the managed element’s role 
combination. The target role combination of a policy is specified in the 
PolicyRoles property of the PolicySet class. Thus, it is inherited both by 
PolicyGroups and PolicyRules. When rules and groups are nested, the 
semantics is that all roles of the containing rules and groups are automati­
cally inherited by the contained subrules and subgroups.

A group of managed elements sharing a common role are represented 
with the PolicyRoleCollection class. The relevant elements are aggre­
gated to it using the ElementlnPolicyRoleCollection association class. 
The name of the role in question is indicated by the PolicyRole property of 
PolicyRoleCollection. This name can be matched against the Policy- 
Roles array of roles in PolicySet when determining if the policy applies 
to the elements of the collection.

Conflicting policies There may be several policies that apply to the same 
managed element but have different actions. This can happen either when 
composite policies consist of conflicting subpolicies, or when the system has 
several top-level policies that apply to the same target roles. For the case of 
subpolicies, the PolicySetComponent association class has a priority field 
that resolves this conflict. In the same manner, top-level policy importance 
is established by the priority present in the PolicySetlnSystem association 
class.

Policy Reuse and Repositories Central to PCIM ideology is the reuse of 
policies. Useful reusable policy ”chunks” can be stored as named elements 
in the policy repository and then shared by different policies. The policy 
repository is represented by the ReusablePolicyContainer class. Using 
the ReusablePolicy association class, any subclass of Policy can be stored 
in a policy container, including policy groups, rules, (compound) conditions 
and actions, variables, and values. Even ReusablePolicyContainers can 
be nested using the ContainedDomain association class.
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Representation of PCIM in XML

The DMTF’s Web Based Enterprise Management initiative has produced a 
specification for the representation of CIM in XML [16]. It defines an XML 
Document Type Definition (DTD) that fully captures the semantic content 
of MOF files. So, MOF files can be mapped to XML and vice versa. Actually, 
the xmlCIM specification contains two conceptually different things: repre­
sentation of CIM information in XML and representation of CIM Operations 
in XML. CIM Operations are messages that are transported over HTTP be­
tween CIM Clients and CIM Servers. According to [18], work is underway 
to separate the XML representation from the operations specification.

2.4 Policy language models

The following sections present two general-purpose security models that 
provide an explicit language for the definition of policies.

2.4.1 Ponder 

Overview

Ponder is a generic policy framework that was developed by the Policy 
Research Group of Imperial College in London. It features a policy spec­
ification language [14] and a toolkit. Its goal is to support security and 
management policy specification in large scale distributed systems.

The Ponder language is declarative and object oriented. Everything is 
represented by an object interface and policies are written in terms of the 
interface methods. It includes grouping constructs and policy inheritance 
for scalability in large systems.

Domains

Domains are a central concept in Ponder. A domain is a filesystem-like 
hierarchy that is used to group objects such as users, resources, services, 
and devices into categories for management purposes. Policies can then 
be addressed to domains instead of individual objects. Thus subdomains 
can inherit policies from parent domains, and new objects added to the 
domains are automatically subjected to the correct policies. This allows for 
easier management of large numbers of objects. Following the filesystem
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analogy, in Ponder domains correspond to directories and objects corre­
spond to files. Domains may contain both objects and other subdomains. 
Objects can also belong to several domains.

Domain Scope Expressions are used to refer to parts of the domain hier­
archy. The basic feature is the domain path which can be used to refer to 
the objects in a single subdomain, of all the subdomains up to the specified 
depth, or of the complete recursive subhierarchy. The usual union, inter­
section, and difference set operations can be used to combine these results. 
Furthermore, Object Constraint Language (OCL) select and reject collec­
tion operations may be called on sets to subsequently select set members 
that satisfy a given boolean expression.

Basic policies

The basic policy types in Ponder are authorization, refrain, obligation, and 
delegation policies. Furthermore, meta policies are supported so that appli­
cation domain specific constraints can be imposed on the acceptable types 
of policies in the system. Policies can be specified directly as instances, or 
as reusable parametrized template-like policy types from which multiple 
instances can be created by passing the actual parameters.

Authorization Authorization policies are used to implement access con­
trol. In Ponder there are two kinds of authorization policies: positive poli­
cies which allow and negative policies which forbid carrying out the de­
sired action. Negative policies could be used for example when policies are 
specified as general rules with some exceptions, or to temporarily disable 
access.

Authorization policies consist of subject, target, action, and constraint 
definitions. An authorization policy states that the subject is allowed or 
forbidden to execute action on the target. Subject and target definitions 
are defined as domain scope expressions and the action is a list of methods 
of the target objects. The optional constraint limits the applicability of the 
policy to situations where the given expressions evaluates to true. The 
constraint expressions are specified in a subset of OCL and can be time or 
state based.

Figure 2.13 presents an example Ponder authorization policy that spec­
ifies that the color laser printer can be accessed by executives during busi­
ness hours. It is assumed that executives and printers be properly assigned 
to the respective parts in the domain hierarchy.
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inst auth+ bossPrinterPolicy { 
subject /staff/executives; 
target /printers/colorLaser; 
action print ();
when time .between (”0900’’, ”1700”);

}

Figure 2.13: Example Ponder authorization policy

Refrain Refrain policies are similar to negative authorization policies. 
The difference is that authorization policies are enforced by targets, 
whereas refrain policies are enforced by subjects. Therefore, refrain poli­
cies express the willingness of the subject not to perform the action on the 
target even if it would otherwise be allowed to do it. Refrain policies can 
be used instead of negative authorization policies when the targets cannot 
be trusted to enforce the negative authorization policy, for example if the 
target does not wish to be protected from the subject.

One example of a refrain policy could be not giving out detailed product 
information to the public before the product is officially released. Another 
example could be refraining from calling employees that are on vacation.

Obligation Obligation policies express responsabilities in the system and 
are basically event-triggered condition-action rules. An obligation policy 
defines the activities that a subject must perform on a target when a given 
event occurs. Events can be either internal to the subject, or generated 
by external monitoring or event services. More complex events can be 
built from basic events using event expressions. Events can also be defined 
separately and then be reused in several policies. Several actions may be 
specified and may be executed sequentially or in parallel. Uses of obligation 
policies include security event auditing, dynamic network reconfiguration 
based on network events, and backup scheduling.

Figure 2.14 is an example obligation policy adapted from [12]. This 
policy is triggered by 3 consecutive loginfail events with the same userid. 
The security administrator disables the corresponding user and logs the 
event.

Delegation Delegation policies are used to specify the circumstances un­
der which subjects can delegate their existing access rights to a grantee. In
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inst oblig loginFailure { 
on 3*loginfail (userid); 
subject s = /securityAdmin;
target <userT> t = /users->select (tl | tl.getldO = userid); 
do t.disable()->s.log(userid);

}

Figure 2.14: Example Ponder obligation policy

particular, in Ponder the delegation and revocation processes themselves 
are operations of the runtime environment and are not initiated by poli­
cies. Instead, delegation policies are only used to authorize delegations.

Delegation policies come in two forms: positive and negative. Positive 
delegation policies authorize the delegation and negative policies forbid it. 
A delegation policy is always associated with an existing authorization pol­
icy which specifies the access rights to be delegated. In Ponder, the grantees 
can further delegate their granted rights if allowed by the delegation policy. 
This is called cascaded delegation.

Delegations can be constrained in several ways. First, the targets and 
actions of the original authorization policy to be delegated can be limited 
by redefining them in the delegation policy. This way, actions and targets 
can be limited to subsets of the originals. Second, validity of delegation 
can be constrained based on time restrictions, on attributes of subjects, 
grantees, targets, and actions, and finally the maximum number of allowed 
cascading delegations can be defined.

Figure 2.15 presents an example Ponder delegation policy that specifies 
that bosses can delegate their printer access to their assigned secretaries. 
The policy is based on the authorization policy of Figure 2.13 and inherits 
its target and action fields. It is assumed that employees can be queried 
for the respective supervisors via the getBossO method.

Composite policies

Ponder incorporates several constructs that let related policies be grouped 
together for scalability and ease of administration in large systems. The 
composite constructs are groups, roles, relationships, and management struc­
tures. As was with basic policies, also with composite policies it is possible 
to define both direct policy instances and parametrized policy types.
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inst deleg + secretaryPrinterDelegPolicy { 
subject boss = /staff/executives; 
grantee seer = /staff/secretaries; 
valid secr.getBossO.userid() = boss.useridO;

}

Figure 2.15: Example Ponder delegation policy

Groups are used to group together policies that are somehow related 
from the administrator’s point of view. They don’t have any special se­
mantics and exist only for policy organization and reuse. Roles are used 
to gather together policies that relate to a certain organizational position 
such as a manager or an administrator. All policies in a role share the 
same subject domain which is defined in the containing role. Relationship 
composite policies describe relationships between parties. They are very 
similar to groups and roles, except that in the future Ponder is expected to 
include syntax for specifying the interaction protocol between the related 
parties [12]. Management structures are used to describe organizational 
units such as departments and branch offices that share common roles and 
relationships.

Additional reusability is attained by allowing composite policy types 
to specialize other policy types by extending them. Specialized policies 
automatically inherit all policies from the base policy. Existing policies may 
be overridden and new ones may be added.

Deployment model

The overall Ponder deployment architecture is depicted in Figure 2.16 
which is adapted from [19].

In Ponder, administrators create and edit policies using an administra­
tion tool. The administration tool includes a policy compiler that trans­
forms the policies to policy classes. These classes are stored in a policy 
server. These classes are instantiated to create policy control objects that act 
as a central point for managing operations of the respective policy.

A domain service keeps track of objects in the domain hierarchy and 
is responsible for evaluating subject and target sets at runtime. Because 
the domains to which policies refer can change dynamically, the domain 
server maintains a list of references to all installed policies that apply to
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Figure 2.16: Ponder deployment model

each subdomain. When the domain hierarchy changes, the relevant policy 
objects are notified of the change.

Policy objects do not directly enforce the policies but this responsibility 
is left to enforcement agents. In case of authorization policies the enforce­
ment agent is the access controller of the target object and for obligation 
and refrain policies it is subject’s policy management agent. When policies 
are loaded, policy objects distribute enforcement classes to the enforcement 
agent. Authorization enforcement objects are distributed to all policy tar­
gets while obligation and refrain policies are distributed to all policy sub­
jects.

Policy management agents of obligations policies register themselves to 
receive certain events from an event server. The event service collects sys­
tem events and notifies the registered event subscribers so that obligation 
policies can be triggered.

Policy conflicts

Policies may be written by many individuals, and they may cover aspects 
from different areas of management. Since policy specification in complex 
systems is not easy, human errors also often cause inconsistencies in the 
policies. Furthermore, policies can be specified in different languages and
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at different levels of abstraction. The refinement of these diverse policies 
can lead to conflicts in the low level representations. Policy conflicts can 
spring up in various situations. Policy conflicts have been studied in more 
detail in [30].

Modality conflicts arise when there are several policies that apply to the 
same situation and have different outcomes, or modalities. An example of 
a modality conflict is given by two policies the first of which says that users 
are not allowed to format hard disks and the second one says the system 
administrators are allowed to do it. This leads to a modality conflict when 
it needs to be decided if system administrators are allowed to format hard 
disks (given that system administrators are also considered users). Resource 
conflicts emerge when the policy controlled targets are not able to support 
the demands imposed by the policies. For example, policy authors have 
allocated more network bandwidth than can be provided by the hardware. 
This conflict may not be trivial to detect if the allocations only apply given 
sophisticated conditions, or if a change occurs in the underlying hardware 
(e.g. adding or removing a link).

Some conflicts can be detected at policy specification time, whereas oth­
ers can only be detected at runtime. For example, policies may have con­
ditions determining their applicability that depend on system state, which 
is only known at runtime. Some conflicts are generic in nature and can 
be detected by simply analyzing the policy structure. Others are applica­
tions specific and their resolution requires sophisticated knowledge about 
the application domain. Examples of these are conflict of duty, conflict of 
interest, and self management conflicts. Some of these conflicts can be de­
tected by encoding application domain knowledge in meta policies. These 
are policies that constrain the creation of other policies.

Policy conflicts must be resolved somehow, since conflicts may lead the 
system to a undefined and insecure state. In general, it would be preferable 
that even runtime conflicts be resolvable without human intervention.

One way to resolve conflicts is to modify the offending policies to work 
around the conflicts. This is often undesirable, though, because modifying 
the policies may have adverse effects elsewhere in the system. This is the 
case especially when there is a generic policy and an exception to it. Devis­
ing workarounds may also be difficult and may unnecessarily obscure the 
original intention of the policy. Another way of avoiding conflicts is to as­
sign explicit priorities to the policies. This method is known to be difficult 
in a large scale. For authorization and access control policies it could be
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specified that negative policies always have precedence. In the end, there 
is no single method that would be applicable to all situations.

2.4.2 XACML

Overview

XACML (extensible Access Control Markup Language) is a general purpose 
access control policy language specified in [45] by Organization for the 
Advancement of Structured Information Standards (OASIS). Its goal is to 
enable different access control systems of large scale systems to interoper­
ate by defining a common standard XML based authorization language. It 
is designed to be usable in environments where policies are authored by 
multiple parties such as different administrators and departments.

The XACML authorization model closely resembles the IETF PEP/PDP 
model [70]. A subject wants to access a resource that is controlled by a PEP 
(Policy Enforcement Point). PEP outsources the access control decision by 
sending an authorization decision request to its PDP (Policy Decision Point). 
PDP evaluates the request and returns a Permit or Deny response.

XACML specifies two languages. The first one is for writing authoriza­
tion policies. The second one is a language for exchanging authorization 
requests and responses between PEP and PDP Both of them are specified 
using XML Schema. For an introduction to XML Schema see [69].

Authorization model

Below there is a list of the major events that occur when XACML is used for 
access control (adapted from [45]). The steps are also illustrated in Figure 
2.17.

1. PAPs write policies and policy sets and make them available to the 
PDP. These policies or policy sets represent the complete policy for a 
specified target.

2. The access requester sends a request for access to the PEP.

3. The PEP sends the request for access to the context handler in its native 
request format, optionally including attributes of the subjects, resource 
and action. The context handler constructs an XACML request context 
in accordance with steps 4, 5, 6 and 7.
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Figure 2.17: XACML Data Flow

4. Subject, resource and environment attributes may be requested from a 
PIP (Policy Information Point).

5. The PIP obtains the requested attributes.

6. The PIP returns the requested attributes to the context handler.

7. Optionally, the context handler includes the resource in the context.

8. The context handler sends a decision request, including the target, to 
the PDP. The PDP identifies the applicable policy and retrieves the re­
quired attributes and (optionally) the resource from the context han­
dler. The PDP evaluates the policy.

9. The PDP returns the response context (including the authorization 
decision) to the context handler.

10. The context handler translates the response context to the native re­
sponse format of the PEP. The context handler returns the response to 
the PEP.

11. The PEP fulfills the obligations.
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12. (Not shown) If access is permitted, then the PEP permits access to the 
resource; otherwise, it denies access.

Policy elements and evaluation

The focal XACML concept is the Policy which forms the basis of an au­
thorization decision. Policies consist of Rules, which are the fundamental 
elements that can be evaluated. Rules cannot be used for authorization 
decisions in isolation, but are always contained in a Policy. PolicySets are 
grouping constructs that can include other Policies and PolicySets. Included 
policies can be either specified inline or by reference. The relationships 
between the language components as specified in [45] are illustrated in 
Figure 2.18.

Effect

Subject Resource Action

Condition

Obligations

Policy
Combining
Algorithm

Rule
Combining
Algorithm

Figure 2.18: XACML Language Model

The PDP must be able to find the policies that are applicable to the 
decision request given to it. Targets can be explicitly specified for Rules,
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Policies, and PolicySets. A Target defines the set of resources, subjects, and 
actions to which these will apply. The PDP can find applicable policies by 
comparing the information available in the request context to the targets of 
available policies. If a rule does not contain a target, it inherits the target of 
its containing Policy. A target evaluates to “Match” if all resources, subjects, 
and actions match or to “No-match” if they don’t. If some of the attributes 
referenced by the target cannot be obtained, the evaluation result depends 
on the MustBePresent attribute of the attribute. If it is true, the target 
evaluates to “Indeterminate”, and otherwise to “No-match”.

Rules are always associated with an Effect, which defines the effect of 
the rule if it is evaluated to true. It can be either “Permit” or “Deny”. 
Furthermore, rules may optionally contain a Condition which is a boolean 
expression that further limits the rule’s applicability. If the condition is 
absent, it implicitly evaluates to true.

Rule evaluation results in a value that can be “Permit”, “Den/’, “NotAp- 
plicable", or “Indeterminate”. If the rule’s target matches and its condition 
is true, the rule’s value is what was specified in its effect. A rule results 
“Indeterminate” if either its target or condition results “Indeterminate”. Fi­
nally, a result of “NotApplicable” is returned if its target doesn’t match or 
the condition evaluates to false.

Attributes are an essential concept in XACML. They are named values 
that describe properties of subjects, actions, resources, and the environ­
ment of the decision request. XACML attributes are typed and may contain 
multiple values. Examples of attributes are subject role memberships, sub­
ject email addresses and the time of day environment attribute.

Attributes can be referenced by attribute designators or attribute selec­
tors. Designators specify a name and a type and can refer to subjects, re­
sources, actions, and the environment of the request context. Selectors 
allow attribute lookup by any XPath query. An example use of selectors 
is that policies can be specified in terms of the resource contents, if the 
resource itself is an XML document.

When a PEP sends a decision request to the context handler, it includes 
any relevant attribute information in the request. In addition, the PDP 
may request further information which is obtained by the context handler. 
This information provided in the request context is then compared to the 
attribute values in its policies in order to make the decision. XACML pro­
vides standard operators and functions such as numerical, set, and boolean 
operators that can be used in formulating the matching expressions.
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Rules contained in policies may evaluate to different values. Likewise, 
policy sets consist of other policies and policy sets which may evaluate to 
different values. In XACML Rule Combining Algorithms are used to deter­
mine the decision result of a policy given the evaluation results of its rules, 
and Policy Combining Algorithms are used to determine the value of a policy 
set given the value of its contained policies. XACML allows users to define 
their own combining algorithms, and furthermore includes the following 
standard algorithms:

• Deny-overrides: If any included component evaluates to “Deny”, the 
combination results “Deny".

e Permit-overrides: If any included component evaluates to “Permit”, 
the combination results “Permit”.

e First applicable: The result of the combination is the result of the first 
applicable component.

• Only-one-applicable: (Policies only) If there are not any applicable 
subpolicies, “NotApplicable” is returned or if there are more than one, 
“Indeterminate” is returned. Otherwise the combination takes the 
value of the one and only matching policy or policy set.

Policies and policy sets may optionally be associated with Obligations. 
Obligations are always given a “FulfillOn" attribute that specify whether 
they should be applied when the containing policy evaluates to “Permit” or 
“Deny”. When a PDP evaluates policies or policy sets that contain obliga­
tions whose “FulfillOn” attribute matches the policy result, the obligation 
is returned to the PER If the decision result is “Permit”, the PEP is responsi­
ble for enforcing every obligation returned. If there are obligations that it 
doesn’t understand, it must deny access. If the policy result is “Deny”, PEP 
is only responsible for fulfilling the obligations it understands. Implemen­
tations are not required to support obligations since they are an optional 
feature of XACML.

An example policy

Appendix A contains a complete example XACML policy taken from Sun’s 
XACML Implementation Programmer’s Guide [65]. It is an imaginary 
server login policy. First, the policy defines a Target section that limits 
the validity of the policy to resources whose Attributeld is SampleServer.
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After the Target come two rules. LoginRule is the heart of the policy. It 
has a Target which indicates that the rule applies to server login actions, 
and a Condition that uses the environment’s current-time attribute, time 
comparison functions, and the boolean AND function to specify a validity in­
terval of 9:00 to 17:00. If the target and condition match, the rule permits 
the action because its Effect attribute is set to Permit. Finally, the policy in­
cludes the FinalRule which guarantees that access is denied if other rules 
do not match.
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Chapter 3

Analysis of Security Models

This chapter distills the knowledge accumulated in the presentations of the 
various security models and security policy systems in previous chapters. 
Section 3.1 summarizes the context in which security models and policies 
come into being. Section 3.2 proposes a rough classification of different 
models. Section 3.3 combines the different models to a unifying model 
and Section 3.4 compares the different models to the unifying model.

3.1 Security modeling context

Security models and policies are rooted in the context of an organization, 
such as a commercial company, university, or a public sector institution. 
While policies could in principle be used in small single user systems, their 
real benefits can only be reaped in large organizations. Standardization 
of security models and policy languages also paves the way for security 
policies spanning organizational boundaries.

3.1.1 Organizational security engineering

The need for security policies is ultimately imposed by business level objec­
tives of the organization. This requirements chain is illustrated in Figure 
3.1.

All activity in an organization aims to reach business objectives. To pro­
tect business critical assets from potential threats, organizations’ top ex­
ecutives identify and continuously update their security requirements, or 
security policy objectives, that declare the intent of protecting the identified 
resources from unauthorized use [63].
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Figure 3.1: Security requirements engineering context

In order to achieve the security policy objectives in practice an organi­
zational security policy is devised. It is a guide written in natural language 
for the individuals in the organization. It consists of rules and practices 
that must be followed in performing routine activities to meet the specified 
security policy objectives. Like security policy objectives, also the organi­
zational security policy is fundamentally dependent on the nature of the 
organization and its business domain. For example, combinations of differ­
ent industry branches, business models, and organization sizes will imply 
different security objectives and policies.

Automated security policy is the counterpart of organizational security 
policy in computer systems. It is a collection of rules that unambiguously 
instruct computers which system operations are authorized and which ones 
are not. Its purpose is to enforce the organizational security policy in com­
puter systems. However, as pointed out in [63], computer systems cannot 
enforce it completely. For example, since a computer cannot tell whether 
information is classified, it cannot prevent users from entering classified 
data into unclassified documents.

In order to be understandable by computers, automated security poli­
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cies must be written using special purpose languages and tools. Ideally, all 
security related policies would be managed using a single unified policy 
authoring system that would automatically take care of refining high-level 
policies into low-level configuration and distributing it to managed devices. 
However, as pointed out in the first chapter, in most current real world sys­
tems policies are “written” by manually configuring lots of heterogenous 
and incompatible devices and systems.

3.1.2 Models, policies, and policy languages

In literature, the term security model is used with different meanings. In 
the context of traditional models such as Bell-LaPadula, Biba, Clark-Wilson, 
and Brewer-Nash a security model consists of both a domain model and a 
built-in policy. For example, the domain model of Bell-LaPadula and Biba 
models consist of document objects with sensitivity labels, subjects with 
clearances, and access operations. Bell-LaPadula has a built-in mandatory 
multi-level security confidentiality policy whereas Biba has a corresponding 
integrity counterpart. Similarly, the Brewer-Nash model imposes a built-in 
policy that a consultant may not deal with more than one client in any 
competitive sector. While not really policies, also the Clark-Wilson princi­
ples of well-formed transactions and separation of duty are also built in the 
model. Here it is noteworthy that these traditional models focus on the pol­
icy and then build the required modeling infrastructure around it. Instead, 
Role Based Access Control is a pure modeling concept. It is completely 
policy neutral and does not even provide any facilities for authoring them.

On the other hand, all recent security policy language systems abandon 
the idea of built-in policies. They can be seen as a evolutionary step beyond 
the traditional models since they allow policies to be adapted to organiza­
tion’s needs. This is in fact a very natural development step since computer 
systems are increasingly used in diverse environments, unlike thirty years 
ago when they mainly served military and governmental institutions.

To clarify discussion and to distinguish between the aforementioned 
concepts the following terms are suggested for the purposes of the rest of 
this work:

e Security model: A conceptual model of all security related aspects of a 
computer system. May or may not support policy based management.

• Security system: An implementation of a security model ready for use 
by an organization.
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• Security policy system: A security system that supports policy based 
management.

• Security policy: A configuration of a security policy system expressed 
in a security policy language and written by security administrators 
that satisfies the security requirements of their respective organiza­
tion, or a fixed security policy implied by the security model itself.

• Security policy language: A language which is exclusively constructed 
to allow writing security policies with respect to a specific security 
model.

These definitions explicitly highlight the conceptual distinction between 
a security policy and a security model, and the distinction between a secu­
rity policy language and security model.

While conceptually different, it is obvious that a security policy lan­
guage is necessarily tightly related to the security model whose policies 
it expresses. In fact, in all security policy language systems presented in 
this work the languages exactly match their underlying models. However, 
RBAC is a clear counterexample since it provides modeling constructs but 
does not have a corresponding policy language.

These definitions also leave vague a lot about what a security model 
actually contains. This issue is dealt with in more detail in the following 
section.

3.2 Model classification

Each of the security models presented above has been designed with a 
distinct objective in mind. Therefore the models describe slightly different 
target domains and are of different nature. A rough classification of the 
models is illustrated in Figure 3.2 and is presented in more detail below.

At a high level, the models have been classified into two categories: 
proper models and metamodels. While the separation between the two is 
not absolutely strict, the distinctive factor is the security policy. For our 
purposes, a model is classified as a proper model if and only if it either has a 
clearly defined policy or provides a mechanism that allows one to be defined. 
Models without this property are classified as metamodels.
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Proper models Metamodels

Range ^ 
of appli- 
cability

Wide

Limited

Ponder
PCIM

XACML

BLP
Biba
B-N

Java
Firewalls

Fixed Customizable Policy 
flexibility

HRU
C-W

RBAC

Figure 3.2: Security model classification

3.2.1 Metamodels

Metamodels describe desirable properties of proper models. Because of the 
lack a security policy, they cannot be applied as such in real-life situations. 
Rather they provide guidelines and best practices that can be applied in 
the design of proper models and their respective security policies. While 
the Role Based Access Control and Clark-Wilson models are intended for 
real use, the Harrison-Ruzzo-Ullman model only serves the purpose of pro­
viding a foundation for proving the undecidability of the Safety Problem.

3.2.2 Proper models

The proper models have been further classified with respect to two dimen­
sions: range of applicability and policy flexibility. In the traditional Bell- 
LaPadula, Biba, and Brewer-Nash models security administrators have little 
power to modify the security policy. The only available means of customiza­
tion in these models is the assignment of security labels, but fundamentally 
the security policy always remains the same.

On the other hand, in the other proper models the security policy can 
be customized in a much more fine-grained manner. Ponder and XACML 
provide explicit languages for expressing policies. PCIM does not provide 
a language but rather a framework for modeling them. The Java security 
architecture has a flexible policy model that is not tied to any specific policy
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language, but the reference implementation comes with one such language. 
There do not exist any significant standards for expressing firewall policies.

The second dimension, range of applicability, measures the fitness for 
purpose of the models in different domains of application. The fixed-policy 
models are closely tied to the traditional problem of protecting sensitive 
documents in military and commercial organizations. The models for Java 
and firewalls have been designed to address only their respective needs. On 
the other hand, Ponder, Policy Common Information Model, and XACML 
have been explicitly designed to be applicable in a wide range of envi­
ronments. Hence they can be used in a wealth of diverse applications and 
devices, such as enterprise applications, web browsers, networked printers, 
electronic door locks, and mobile phones. It is also worth observing that 
they are generic enough to implement the security policies of the other 
security models.

To summarize, we have chosen policy definition, policy flexibility, and 
range of applicability as the criteria for model classification. These criteria 
classify models into four coherent groups:

• Traditional models (Bell-LaPadula, Biba, Brewer-Nash)

• Pragmatic models (Java security, Firewalls)

• Flexible models (Ponder, Policy Common Information Model, 
XACML)

e Metamodels (Harrison-Ruzzo-Ullman, Clark-Wilson, Role Based Ac­
cess Control)

We feel that these criteria provide useful insight into the nature of dif­
ferent security models (see Section 3.5 for more discussion about this). 
However, obviously there exist several other criteria that can serve as an 
alternative basis for classification. Some other potential model properties 
that could serve as classification criteria are listed below.

• Main security goal: confidentiality, integrity

• Intended industry: military, government, commercial, public sector, 
domestic

• Formality and mathematical verifiability

• Support for large-scale centralized management
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• Support for a formal policy language

• Age

3.3 Unifying model

This section constructs a single conceptual unifying model out of the dif­
ferent properties and capabilities of different security models that were 
presented in the preceding chapters. The purpose of the unifying model is 
to serve as a yardstick against which the different models are then analyzed 
in Section 3.4.

3.3.1 Security model capabilities

The core of a security policy system is the security model. Its design in­
fluences just about every other component in the system. Based on the 
different models presented in the previous chapters, four conceptually sep­
arate categories of related capabilities can be distinguished:

• Domain capabilities

• Policy capabilities

• Administration capabilities

• Policy deployment capabilities

These categories are discussed in the following sections.

Domain capabilities

Domain capabilities are features that facilitate description of security rel­
evant properties of business domain concepts. Usually domain concepts 
are mapped to OO-like objects that contain attributes and methods. In 
principle, domain objects can be modeled at any level of abstraction. For 
example, a security model to be enforced inside an operating system would 
define the model in terms of e.g. files and sockets, whereas a business ap­
plication would model entities such as business transactions, accounts, pro­
cesses, documents, or employees. Some models limit the modeled objects 
to a certain domain, whereas others are flexible enough to facilitate model­
ing a large variety of different problem domains. Furthermore, to facilitate 
management of complex systems a domain object model usually provides 
mechanisms to organize similar entities into groups or hierarchies.
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Policy capabilities

Policy capabilities determine which kinds of policies can be defined. The 
most fundamental distinction is between fixed and custom policies. Many 
traditional models impose a fixed security policy that cannot be changed. 
More recent models allow organizations to devise their own policies.

Fundamentally, there are two types of policies. Authorization policies 
are the essence of security systems. Furthermore, some systems also sup­
port obligation policies for automating management tasks.

An authorization policy essentially consists of rules that have two parts: 
applicability range and an authorization decision. An authorization deci­
sion simply states if access is permitted or denied. The applicability range 
specifies the conditions under which the decision is effective. That is, if 
the conditions match the current access context, the access will be permit­
ted or denied according to the policy decision. Otherwise the decision is 
ignored and other potential available policy rules are examined. The ap­
plicability range has been traditionally defined with respect to subject or 
object identities and the operation to be performed on the object. This ap­
proach is not always the most suitable one and is likely the main reason for 
the wide acceptance of the RBAC model. More generally, conditions could 
refer to anything that can be programmatically accessed and manipulated. 
Examples are other properties than identity of the parties involved in the 
operation such as company affiliation or a service account balance, state of 
the system such system load or Defcon level, or environmental factors such 
as time or date.

An obligation policy specifies actions that must be carried out when a 
given event occurs in the system. They are mainly used for automating 
tasks that come up in managing large systems and are not necessarily secu­
rity related. Examples include logging certain events, performing backups, 
reacting to failing components, and on-demand software installation. Un­
like authorization policies which are invoked upon an access request, obli­
gation policies are triggered by external events. Execution of the actions 
can be further restricted by using conditions like the ones in authorization 
policy applicability ranges.

Since both authorization and obligation policies are usually written in a 
declarative rather than procedural manner, it is possible for many policies 
to be applicable in a given situation. This is even likely if a large num­
ber of policies exist or if policies have been written by different people. For 
authorization policies, different policies can potentially have conflicting au­
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thorization decisions and hence the system must be able to decide which of 
the policies takes priority. For obligation policies, it may be desirable that 
when several policies match the event condition either none, just one, or 
all obligations be carried out. In general, both authorization and obliga­
tions policies need a conflict resolution strategy that determine system be­
havior when several (potentially conflicting) policies are applicable. Some 
possible strategies are assigning absolute numerical priorities to policies, 
specifying “A takes priority over B” relations, or preferring the policy whose 
condition somehow matches the current context most closely. Furthermore, 
authorization policy models need a default policy decision that stipulates the 
authorization decision in the case that there are not any matching policies.

Administrative capabilities

To ease policy administration most policy models provide programming 
language-like mechanisms for writing policies. In a spirit similar to com­
puter programs that are composed of subroutines and modules, policies 
are usually built out of rules and can be further aggregated into policy sets. 
Other well-known and analogous reuse mechanisms include parametrized 
templates and inheritance.

For some of the security models presented, it is possible to formally 
verify if an automated security policy satisfies the requirements set by the 
corresponding organizational security policy. The more formal and simple 
the model is, the easier it is to verify its properties. Thus the recent models 
with flexible policies do not have this capability.

In early security models little attention was paid to administration. Ei­
ther it was completely ignored or it was supposed that there was a cen­
tral security officer that somehow took care of administrating the system. 
As one indication of the static approach of the early models is the Bell- 
LaPadula tranquility principle which even requires that once fixed the se­
curity labels of subjects and objects never change.

Given the dynamic nature of many organizations it is not reasonable 
to expect that the static administration model work in practice. Conse­
quently, recent developments such as Administrative RBAC have put a lot 
of effort on studying how administration should be carried out. Firstly, it 
is taken granted that policies are written by several cooperating admin­
istrators. Secondly, it is also seen imperative that in large organizations 
administrative authority and responsibility can be decentralized because a 
central security team cannot possibly keep track of all the needs of different
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departments, projects, and teams. Instead it should be possible to delegate 
authority to the local groups of people where also the most knowledge of 
their security needs resides. One basic but useful way of decentralization is 
to delegate administrative rights along the lines of organizational hierarchy 
from higher positions to lower ones.

While delegation can be used to decentralize administration tasks, it 
is also useful outside the administration domain. Namely, temporary del­
egation can provide support for backing up absent people and facilitating 
collaboration [71]. Naturally, administrators should be able to specify poli­
cies that restrict the conditions under which rights can be delegated.

Finally, any policies administrators write should themselves be poten­
tially controllable by other policies. These policies are called metapolicies 
since instead of describing organization’s security policies they describe 
what kind of policies can be written. Metapolicies are a useful concept 
but it seems that their applications have not yet been studied extensively.

Policy deployment capabilities

The most notable policy deployment capability is the way policies are dis­
seminated. In the provisioning (“push”) model, policies are automatically 
distributed to all managed elements in advance and they are evaluated 
locally in the managed element. In the outsourcing (“pull") model policy 
enforcement points do not compute policy decisions themselves but instead 
outsource the decision to a policy decision point (“pull” model) at the time 
of access.

In addition to the separation of PEP and PDP a complete security pol­
icy system may be viewed as containing other conceptual services as well. 
A Policy Administration Point consists of the hardware and software used 
for authoring policies. A policy repository stores system policies and is not 
necessarily integrated with the PDE An event service may be needed to me­
diate obligation policy triggers. A context service may be needed to provide 
both generic environment and organization specific state attributes for pol­
icy evaluation. Depending on the security model and its implementation 
any of these components may be integrated together or be distributed.

3.3.2 Unifying the capabilities

We define the unifying model as a hypothetical security model comprising 
all the capabilities below (which were discussed above):
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• Domain capabilities

- Modeling arbitrary objects

- Grouping constructs

• Policy capabilities

- Custom policies

- Authorization policies

- Obligation policies

- Arbitrary properties

- Unambiguous policies

• Administrative capabilities

- Policy reuse

- Policy verifiability

- Delegation of authority

- Metapolicies

• Policy deployment capabilities

- Policy outsourcing

- Policy provisioning

There are obvious dependencies between some of the capabilities. For 
example, a security model that imposes a fixed policy model obviously does 
not provide mechanisms for policy reuse. Furthermore, some of the capa­
bilities are contradictory. For example, a model that supports custom poli­
cies with respect to arbitrary objects is unlikely to be formally verifiable. 
Hence the unifying model remains purely fictitious and exists only for the 
purposes of the following section.

3.4 Comparison with the unifying model

From Section 3.2 it can be seen that there is remarkable dissimilarity be­
tween some of the models. Consequently, as it is an artificial unification 
of the different models, the unifying model includes some capability areas 
that do not make a lot of sense when compared to some of the models.
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3.4.1 Metamodels 

Harrison-Ruzzo-Ullman

Domain capabilities The HRU model is oriented towards the traditional 
scenario where the access by programs acting on behalf of subject users 
to object documents is controlled. It is not well suited for modeling other 
access control scenarios. Being just a mathematical tool it does not provide 
tools for grouping subjects or objects but rather each of them is managed 
individually by directly modifying the elements in the access matrix.

Policy capabilities This model does not have the notion of a policy or 
policy customization. Nonetheless, an implementation of the HRU com­
mand set can be seen as implementing a policy. The HRU model deals with 
authorization policies but not obligation policies. Access control is exclu­
sively based on subject and object identities and the access matrix. Hence 
arbitrary properties cannot be used in policy decisions. Since the access 
matrix gives unambiguous decisions, there is no need for conflict resolu­
tion mechanisms.

Administrative capabilities Because of the lack of the notion of a policy 
this model does not provide support for policy reuse, delegation of author­
ity, or metapolicies. On the other hand, it has a strong focus on policy veri­
fiability (here a policy is considered to be equivalent to the implementation 
of the command set). The authors specifically prove that in its general form 
the policy verification problem is undecidable, but some restricted types of 
policy are decidable.

Policy deployment capabilities Given the lack of explicit policies, there 
are no mechanisms for policy provisioning or outsourcing.

Clark-Wilson

Domain capabilities The Clark-Wilson model does not explicitly state the 
nature of the data items whose protection it addresses. Nonetheless, it is 
quite obvious that the model has been designed to protect business doc­
uments from malicious employees. Hence it is not suitable for radically 
different environments such as network packet traversal or Java privileged 
operation invocation. The model does not provide any explicit mechanisms 
for grouping data items.
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Policy capabilities In the Clark-Wilson model, the relation of the E2 rule 
forces a representation of access control decisions but not how the policies 
leading to them are managed. Clark-Wilson deals with authorization poli­
cies but not obligation policies. The E2 relation is based on identities of 
users and data items, and thus arbitrary properties cannot be referred to 
in authorization decisions. Policy decisions are always unambiguous since 
all access is denied by default and only the accesses in the E2 relation are 
allowed.

Administrative capabilities Since it lacks the notion of a policy this 
model does not provide support for policy reuse, delegation of authority, 
or metapolicies. If a system and its administrative personnel fulfill all the 
Clark-Wilson rules, the system will always remain secure. However, the 
rules are generic high-level requirements that leave a lot of room for in­
terpretation in real implementations. Therefore, verifying the safety of a 
system based on this model reduces to verifying the conformance of the 
implementation to the model rules. Obviously, there is no general algo­
rithm for this.

Policy deployment capabilities Because of the lack of explicit policies, 
there are no mechanisms for policy provisioning or outsourcing.

Role Based Access Control

Domain capabilities By concentrating on roles rather than user iden­
tities, RBAC gains flexibility with respect to more traditional models. 
Nonetheless, it is still oriented towards user access control and not ap­
plicable to radically different situations such as network packet traversal or 
Java privileged operation invocation. RBAC provides roles as a convenient 
grouping mechanisms of subjects, but does not provide any mechanisms 
for grouping managed objects.

Policy capabilities Since RBAC does not have a policy concept, the cus­
tom policies and conflict resolution capabilities do not apply. The model 
addresses authorization policies, but not obligation policies. Since permis­
sions are directly related to subject roles, arbitrary properties cannot be 
referred to in policy decisions.
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Administrative capabilities Because of the lack of the notion of a pol­
icy, the capabilities of policy reuse, policy verifiability, and metapolicies 
do not apply. However, the Administrative RBAC model provides explicit 
constructs for delegating responsibility of subsets of the role hierarchy to 
subordinates.

Policy deployment capabilities Given the lack of explicit policies, the 
mechanisms for policy provisioning or outsourcing do not apply.

3.4.2 Proper models

Bell-LaPadula, Biba, and Brewer-Nash

Domain capabilities As these models are closely tied to the problem of 
protecting sensitive documents, they are not well suited to modeling arbi­
trary objects. For example, it would be unwieldy to model network packet 
traversal or Java privileged operation invocation with lattice-based secu­
rity label assignment. Multilevel security sensitivity levels and categories 
provide a basic but inflexible mechanism for grouping domain objects. The 
same applies to the mechanism of tagging documents with their respective 
corporation and industry in the Brewer-Nash model.

Policy capabilities All of these models incorporate a fixed authorization 
policy. None of these models are able to express obligation policies or any 
custom policies whatsoever. The fixed policies are defined with respect to 
built-in security labels and arbitrary object properties can not be referred 
to. Also, the predefined policy is always unambiguous and hence there is 
no need for a conflict resolution mechanism.

Administrative capabilities A fixed policy eliminates the need for a pol­
icy reuse mechanism. In the same vein, metapolicies are not needed for 
controlling policy authoring. Since these models are very simple, their 
safety properties can be formally proved. As a side note, the resulting 
proofs may be of little practical value, since the built-in fixed policy does 
not usually match the organization’s security policy. These models do not 
provide any mechanisms for delegating authority other than direct manip­
ulation of the security labels. Consequently, delegation is a difficult concept 
to implement with these models.
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Policy deployment capabilities Since the policy is fixed in these models, 
there is no need for policy provisioning or outsourcing mechanisms.

Java security

Domain capabilities Being tightly related to the authorization of privi­
leged Java operations, the policy model is not suitable for modeling arbi­
trary objects. Codebase URLs and principal properties provide basic mecha­
nisms for grouping subjects and the various permission classes can provide 
different levels of grouping for objects.

Policy capabilities The AccessController Java class provides an inter­
face for querying authorization policy decisions. Users may provide their 
own implementations, which allows for arbitrary policies to be constructed. 
In addition, the reference implementation includes a sample security policy 
language. There are no interfaces for obligation policies. Since arbitrary 
programs can be used to compute authorization decisions, any arbitrary 
subject and object properties can be referred to in the policies. Also the re­
sponsibility of conflict resolution is offloaded to the policy implementation 
logic. The reference model has a “deny everything except when explicitly 
allowed” logic which cannot cause conflicts between policy rules.

Administrative capabilities Since an implementation of the whole au­
thorization framework can be provided by users, the administrative capa­
bilities completely depend on the implementation. As for the reference 
implementation, the policy language does not support any policy reuse 
mechanisms, and because of the complex and dynamic nature of the au­
thorization framework and the policies, mathematical verification of safety 
properties is most likely very difficult if not impossible. There is no explicit 
support for delegation of authority or metapolicies.

Policy deployment capabilities As with administrative capabilities, also 
the deployment capabilities are dependent on the implementation. The 
Java software itself always outsources the decision to the access controller. 
However, depending on the implementation the policies may be distributed 
from a policy authoring point to access controllers in advance, or local 
access controllers may still delegate the decision to a remote decision point.
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Firewalls

There are neither widely accepted policy language standards nor authoring 
mechanisms for firewall security policies. The comparison below assumes 
the traditional method of manually writing low-level vendor-dependent 
packet filter rules directly on each firewall device.

Domain capabilities Like in the Java security model, also firewall poli­
cies are closely related to the traffic control problem and hence not usable 
for modeling other types of access control. Since network packets are of 
transient nature, there is no need for grouping specific objects in advance. 
However, conditions that match packet data fields can be used to define the 
applicability of firewall rules to groups of packets at a time.

Policy capabilities Firewalls must necessarily allow security administra­
tors a lot of flexibility in specifying their policies since every organizations’ 
network is unique. Firewall policies are concerned about the authorization 
of traversing network packets and there is no need for obligation policies. 
However, logging rules can also be seen as one form of obligation policies. 
While most policy rules are based on IP addresses and TCP/UDP ports, in 
principle policies could also be based on a wide variety of criteria such as 
IPSec credentials, time of day, a defcon level, or arbitrary data encapsu­
lated in the packet’s payload. Practically taken all firewall policies sidestep 
the conflict resolution issue by requiring that policy rules be ordered and 
giving priority to the rule that comes first.

Administrative capabilities Most low-level firewall policy languages do 
not have explicit mechanisms to facilitate policy reuse, delegation of au­
thority, or metapolicies. Since the packet filter concept is relatively simple 
and uniform among different firewall models, it is possible to verify some 
properties of firewall policies as discussed in Section 2.2.2.

Policy deployment capabilities Traditionally, policies are either au­
thored directly in the firewall or remotely and then distributed to the fire­
wall. For performance reasons, the outsourcing model is not appropriate 
for firewalls.
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Ponder

Domain capabilities Ponder is a generic framework that is capable of 
modeling diverse environments and arbitrary objects. It provides a domain 
mechanism that facilitates grouping both subjects and objects.

Policy capabilities Custom policies can be written in the Ponder policy 
language which supports both authorization and obligation policies. All 
entities are modeled as OO-like objects, whose properties can freely be re­
ferred to in policy decisions. In Ponder, it is possible to specify conflicting 
policies. The policy language does not any have mechanisms for assign­
ing priorities to rules to avoid unambiguities. However, there are tools 
for detecting conflicts that help administrators to resolve the conflicts by 
manually adjusting the policy.

Administrative capabilities The Ponder policy language provides pol­
icy inheritance and composite policies as mechanisms for policy reuse. It 
also has policy types for delegation policies and metapolicies. Since it is a 
generic-purpose language and policies may form conflicts, formal verifica­
tion of a policy is very difficult or even impossible.

Policy deployment capabilities The Ponder deployment model is based 
on the concept of automatically distributing policies and their enforcing 
agents to managed objects. While in principle it would be possible to build 
external policy decision points that would compute policy decisions for en­
forcement points, the Ponder model does not address this possibility.

XACML

Domain capabilities Like Ponder, XACML is a generic language that can 
express policies with respect to any objects. While XACML does not provide 
explicit grouping constructs, its ability to refer to arbitrary properties of 
objects can be used as a versatile mechanism of selecting a group of objects. 
For example, to implement the RBAC role concept, objects could be labeled 
with a set of strings that identify its roles. Or, to implement the Ponder 
domain concept, there could be a central domain entity that would track 
all entities, or all entities could be directly labeled with a set of domain 
paths to which they belong.
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Policy capabilities XACML allows administrators complete freedom in 
customizing policies. The basic function of the language is to describe au­
thorization policies. There is also limited support for carrying out obli­
gations as a result of evaluating authorization policies. As noted above, 
arbitrary properties of objects can be used as a criterion in policy deci­
sions. Rule and policy combining algorithms are used to unambiguously 
define the final outcome of a policy that consists of subpolicies and sub­
rules. Hence inside a specific policy, conflicts are not possible. However, 
the question of conflicts between separate top level policies remains appar­
ently unanswered in XACML.

Administrative capabilities The fact that in XACML policies may con­
tain other policies and rules as parts facilitates policy reuse. There are 
neither mechanisms for delegating policy authoring responsibility nor for 
specifying other types of metapolicies. As was the case with Ponder, the 
expressiveness of XACML makes formal verification very hard.

Policy deployment capabilities XACML deployment is focused on the 
outsourcing concept and the provisioning model is not addressed. Nonethe­
less, in principle there is nothing in the language itself that would prevent 
a system being built that would automatically distribute policies to enforce­
ment points in advance.

Policy Common Information Model

Domain capabilities PCIM has been designed to be able to model any 
objects (the CIM Schema already provides definitions of a wide range of 
managed objects). Policies are targeted to roles that define groups of man­
aged objects. Furthermore, the possibility of referring to arbitrary object 
properties allows for more fine-grained selection of objects.

Policy capabilities Even the basic SimplePolicyCondition and Simple- 
PolicyAction structures allow a wide variety of policies to be described. 
Furthermore, PCIM allows the specification of vendor specific conditions 
and actions. PCIM focuses on obligation policies. There are no explicit 
mechanisms for modeling access control conditions and decisions in partic­
ular, but in principle these could be implemented easily as new condition 
and action extensions. As discussed before, arbitrary object properties can
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be used in policies. Conflicts both in subpolicies inside composite policies 
and top-level policies are resolved by explicit priority properties.

Administrative capabilities Policy reuse is possible through compos­
ite policies and the storage of named policy chunks in the repository of 
reusable policies. As was the case with Ponder and XACML, the expressive­
ness of PCIM implies that verification is very hard. There are no mecha­
nisms for delegation or metapolicies.

Policy deployment capabilities The PCIM framework has been designed 
to fit the IETF outsourcing based management scenario. Again, there is 
nothing in PCIM itself that would prevent policies to be provisioned to 
enforcement points in advance.

3.4.3 Summary

A summary of the capabilities of the various models with respect to the 
unifying model is illustrated at a rough level in Figures 3.3 and 3.4. The 
legend used is: N = No, Y = Yes, P = Partial, NA = Not Applicable.

HRU C-W RBAC BLP Biba B-N
DOMAIN CAPABILITIES
Modeling arbitrary objects N N P N N N
Grouping constructs N N P P P P

POLICY CAPABILITIES
Custom policies NA NA NA N N N
Authorization policies Y Y Y Y Y Y
Obligation policies N N N N N N
Arbitrary properties N N N N N N
Unambiguous policies NA NA NA Y Y Y

ADMINISTRATIVE CAPABILITIES 
Policy reuse NA NA NA NA NA NA
Policy verifiability P P NA Y Y Y
Delegation of authority NA NA Y N N N
Metapolicies NA NA NA N N N

POLICY DEPLOYMENT CAPABILITIES 
Outsourcing NA NA NA NA NA NA
Provisioning NA NA NA NA NA NA

Figure 3.3: Summary of model capabilities (part 1)
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Java FW Ponder XACML PCIM
DOMAIN CAPABILITIES
Modeling arbitrary objects N N Y Y Y
Grouping constructs P P Y P P

POLICY CAPABILITIES
Custom policies Y Y Y Y Y
Authorization policies Y Y Y Y P
Obligation policies N N Y P Y
Arbitrary properties Y P Y Y Y
Unambiguous policies NA P N P Y

ADMINISTRATIVE CAPABILITIES
Policy reuse N N Y Y Y
Policy verifiability N P N N N
Delegation of authority N N Y N N
Metapolicies N N Y N N

POLICY DEPLOYMENT CAPABILITIES
Outsourcing Y N N Y Y
Provisioning N Y Y N N

Figure 3.4: Summary of model capabilities (part 2)

3.5 Common core

As stated in Section 1.2, the objective of this thesis was to study and com­
pare currently available security models and find out what is common to 
all of them, i.e. their common core. As can be seen from the summary 
in Section 3.4.3, none of the analyzed capabilities are common to all the 
models. (The authorization policy capability is an obvious exception be­
cause this work is about security models and that capability was chosen 
only to differentiate between authorization and obligation policies.) There­
fore, based on the findings of this chapter, the models when considered all 
together form a heterogeneous group whose common core is practically 
non-existent. Nonetheless, when the models are divided to classes as was 
illustrated in Figure 3.2, they form four largely homogeneous groups.

The traditional models (Bell-LaPadula, Biba, and Brewer-Nash) are very 
similar to each other and in Figure 3.3 they share exactly the same capabil­
ities. This is natural since the Biba model is directly based on BLP and all 
the models can be seen as special cases of Lattice Based Access Control.

The class of pragmatic models (Java security, Firewalls) is also quite co­
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herent. Both models are designed for a specific purpose but allow policies 
to be customized. Both models allow policies to be specified in a policy 
language. However, there are no standards for firewall policy languages, 
and the Java policy language is only an example implementation. It is evi­
dent that neither of the models has been designed for large scale complex 
environment since there is little support for policy administration.

The flexible models (Ponder, PCIM, XACML) have designed to overcome 
the main weakness of the earlier models: restricted domain of applicability. 
All these three models are generic frameworks that can be utilized in highly 
diverse environments. Consequently, all the models also provide a flexible 
policy model or language. These models are also the only ones to sup­
port obligation policies. Finally, Ponder has more advanced administrative 
features than the two other models.

Metamodels (Harrison-Ruzzo-Ullman, Clark-Wilson, Role Based Access 
Control) are rather similar from the capability viewpoint. Since they lack 
the concept of policy, they do not require many of the policy and admin­
istrative capabilities that the rest of the models provide. Harrison-Ruzzo- 
Ullman serves only as a theoretical devices as a means for the Safety Prob­
lem undecidability proof, while Clark-Wilson and Role Based Access Con­
trol provide guidelines for building real security models.
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Chapter 4

Discussion and conclusions

4.1 Model applicability

One important part of application security is transport security, i.e. ensur­
ing secure communication between applications. The advent of the Inter­
net has given rise to many technologies for securing communication over 
an untrusted network. Some examples include Transport Layer Security, 
IPSec, and Secure Shell. Another aspect is internal application security 
logic, i.e. the authorization of privileged operations inside business appli­
cations. Currently there are no standard mechanisms for internal appli­
cation security. In other words, there exist widely adopted standards for 
inter-application security, but not for intra-application security.

As stated in Section 1.2, the secondary objective of this thesis was to 
assess the applicability of the different security models to serve as general- 
purpose security models and policy languages in a policy-based security 
architecture. This conceptual architecture is basically an application of the 
generic IETF policy framework architecture for security management. The 
IETF architecture is illustrated in Figure 4.1 (as cited by [66]). There is 
also a related Framework for Policy-based Admission Control specification 
[70]. While it is primarily designed for Quality of Service management, it 
is suitable for access control as well.

As discussed earlier in Section 1.4.2, policy based management can re­
duce and automate administrative work considerably. But there are also 
advantages for system and software providers. The separation of appli­
cation logic and authorization logic improves maintainability not only for 
system administrators, but for software developers as well. Furthermore, 
reuse of policy language and policy decision engine components can cut
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Figure 4.1: IETF Policy Framework Architecture

down an development effort and costs. Some APIs are emerging for the 
application and security logic separation, such as Java Authentication and 
Authorization Service and Generic Authorization and Access-control API 
(GAA-API) [52].

In order to be reusable in a wide variety of application scenarios, a se­
curity model and the corresponding policy language should above all be 
generic and flexible. This requisite precludes all the models covered in this 
thesis except PCIM, Ponder, and XACML. All of these three models are de­
signed to be flexible and are therefore suitable as a part of the policy-based 
security architecture. Of these three, Ponder and XACML provide a policy 
language while PCIM only provides an object-oriented conceptual policy 
model and does not currently provide a language for policy representa­
tion. However, a policy language should be developed for PCIM for it to be 
widely adoptable.

A lot of work still lies ahead to realize the policy-based security archi­
tecture in practice, but the most important problems seem to have been 
conceptually solved. Most of the remaining work consists integration and 
tool support.

4.2 On security model research hurdles

Security model and security policy research would most likely benefit 
greatly from better understanding real organizations from the security
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point of view. At least two areas should be studied more extensively: secu­
rity policies and organizational issues.

Having abundant research material on real security requirements and 
security policies would provide good indication of what capabilities future 
security models should provide. Designing security models without real se­
curity requirements is analogous to designing software without a require­
ments specification. Unfortunately, most organizations either do not have 
explicit written security policies or they are confidential. Therefore real se­
curity policies are hard to come by, which makes it difficult to evaluate the 
usefulness of security models in fulfilling real security requirements.

Also studying the common patterns of organizational structure and be­
havior would allow models to be designed that better support the organi­
zation. As is the case with any other tool, also security models should fit 
the organization and not vice versa. This sort of multi-disciplinary research 
would require people skilled in technology, organizational sciences, and 
psychology.

4.3 Summary

The primary objective of this thesis was to study different security models 
and find out their common core. Based on the analysis, when viewed as 
a whole the models are largely disparate and have few common features. 
Nonetheless, there are significant similarities between some of the models, 
which lead to a division of models in traditional, pragmatic, flexible, and 
metamodels.

The secondary objective was to assess the applicability of the differ­
ent security models to facilitate the development of secure business appli­
cations in the future. The Ponder and XACML models were found to be 
flexible enough to provide a building block for a policy-based security ar­
chitecture. PCIM would also be suitable if there was a policy representation 
language.
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Appendix A

XACML Example Policy

<Policy PolicyId="SamplePolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:

rule-combining-algorithm:first-applicable">

<!— This Policy only applies to requests on the SampleServer —> 
<Target>

<Subjects>
<AnySubject/>

</Subjects>
<Resources>

<Resource>
<ResourceMatch
Matchld="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
<AttributeValue
DataType="http://www.w3.org/200l/XMLSchema#string"> 
SampleServer 

</AttributeValue>
<ResourceAttributeDesignator 
Dat aType="http: //m. w3. org/2001 /XMLSchema#str ing " 
Attributeld=

"urn:oasis:names:tc:xacml:1.0:resource:resource-id"/> 
</ResourceMatch>

</Resource>
</Resources>
<Actions>

<AnyAction/>
</Actions>

</Target>

<!— Rule to see if we should allow the Subject to login —>
<Rule RuleId="LoginRule" Effect="Permit">

<!— Only use this Rule if the action is login —>
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<Target>
<Subjects>

<AnySubject/>
</Subjects>
<Resources>

<AnyResource/>
</Resources>
<Actions>

<Action>
<ActionMatch
Matchld="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string"> 
login

</AttributeValue>
<ActionAttributeDesignator 
DataType="http: //www.w3. org/2001 /XMLSchema#st r ing"
AttributeId="ServerAction”/>

</ActionMatch>
</Action>

</Actions>
</Target>

<!— Only allow logins from 9am to 5pm —>
«Condition Funetion!d="urn:oasis:names:tc:xacml:1.0:function:and"> 

«Apply FunetionId="urn:oasis:names:tc:xacml:1.0:function:
time-greater-than-or-equal">

«Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: 
time-one-and-only">

«EnvironmentAttributeDesignator 
DataType="http://www.w3.org/2001/XMLSchema#time"
Attributeld="urn:oasis:names:tc:xacml:1.0:environment: 

current-time"/>
</Apply>
«AttributeValue Dat aType="http: //www. w3. org/200 l/XMLSchema#t ime " > 

09:00:00
</AttributeValue>

</Apply>
«Apply FunetionId="urn:oasis:names:tc:xacml:1.0:function: 

time-less-than-or-equal">
«Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: 

time-one-and-only">
«EnvironmentAttributeDesignator 
DataType="http://www.w3.org/2001/XMLSchema#time" 
Attributeld="um: oasis: names: tc: xacml: 1.0: environment: 

current-t ime "/>
</Apply>
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<AttributeValue DataType="http://wot.w3.org/2001/XMLSchema#time"> 
17:00:00

</AttributeValue>
</Apply>

</Condition>

</Rule>

<!— We could include other Rules for different actions here —>

<!— A final, "fall-through" Rule that always Denies —>
<Rule RuleId="FinalRule" Effect="Deny"/>

</Policy>
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Appendix B

CIM Public key certificate MOF

// PublicKeyCertificate

[Version("2.6.0"), Description(
"A Public Key Certificate is a credential "
"that is cryptographically signed by a trusted Certificate * 
"Authority (CA) and issued to an authenticated entity "
"(e.g., human user, service,etc.) called the Subject in "
"the certificate and represented by the UsersAccess class. "
"The public key in the certificate is cryptographically " 
"related to a private key that is to be held and kept "
"private by the authenticated Subject. The certificate "
"and its related private key can then be used for "
"establishing trust relationships and securing "
"communications with the Subject. Refer to the ITU/CCITT " 
"X.509 standard as an example of such certificates.") ] 

class CIM_PublicKeyCertificate : CIM.Credential {

[Propagated("CIM_CertificateAuthority.SystemCreationClassName"), 
Key, MaxLen(256), Description("The scoping System’s CCN.") ] 

string SystemCreationClassName;

[Propagated("CIM_CertificateAuthority.SystemName"),
Key, MaxLen(256),Description("The scoping System’s Name.") ] 

string SystemName;

[Propagated("CIM_CertificateAuthority.CreationClassName"),
Key, MaxLen(256), DescriptionC'The scoping Service’s CCN.") ] 

string ServiceCreationClassName;

[Propagated("CIM.CertificateAuthority.Name"),
Key, MaxLen(256), DescriptionC'The scoping Service’s Name.") ] 

string ServiceName;
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[Key, MaxLen(256), DescriptionC
"Certificate subject identifier.") ] 

string Subject;

[MaxLen(256), DescriptionC
"Alternate subject identifier for the Certificate.") ] 

string AltSubject;

[Octetstring, DescriptionC'The DER-encoded raw public key.") ] 
uintS PublicKey [] ;
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