
Helsinki University of Technology

Department of Automation and Systems Technology

Laboratory of Media Technology

Samu Ruuhonen

Visual Information of 3D Objects in Real-Time Rendering

Master's Thesis
6th of December 2004
Supervisor: Professor Pirkko Oittinen
Instructor: Ville Rousu M.Sc.

HELSINKI UNIVERSITY OF ABSTRACT OF MASTER’S
TECHNOLOGY THESIS
Department of Automation and
Systems Technology

Author Date
Samu Ruuhonen 6.12.2004

Pages
62 + appendices

Title of thesis
Visual Information of 3D Objects in Real-Time Rendering

Professorship Professorship Code

AS-75 Imaging Technology 2135
Supervisor

Professor Pirkko Oittinen
Instructor

Ville Rousu M.Sc.

The purpose of the thesis was to study methods of adding visual information into Tekla

Structures, which is structural building information modeling (BIM) system made by

Tekla Corporation, and possibly implement some of them. At the time, only some

colors and lighting were used to separate different materials of 3D objects from each

other, when viewing the structural model in a computer screen.

The author of this thesis had some previous knowledge about real-time rendering and

based on that some advanced 3D graphics techniques were studied and tested with

simple self-made testing software. These techniques included 2D texturing, texture
projector functions, bump mapping, procedural texturing, shading languages and anti

aliasing.

Based on research and testing, the 2D texturing support was implemented into Tekla Z-

kit, which is a 3D graphics software library used by Tekla Structures. Material and

lighting editors were also created to make the use of Z-kit easier. In the future, the

purpose is to take some shading language in use, and study what other 3D techniques

mentioned in this thesis could and should be implemented in Tekla.

Keywords
real-time rendering, texture mapping, bump mapping, procedural
texturing, shading languages

I

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ
Automaatio-ja systeemitekniikan osasto

Tekijä Päiväys

Samu Ruuhonen 6.12.2004
Sivumäärä

62 + liitteet
Työn nimi

Kolmiulotteisten kappaleiden visuaalinen informaatio reaaliaikaisessa
piirrossa

Professuuri Koodi

AS-75 Kuvatekniikka 2135
Työn valvoja

Professori Pirkko Oittinen
Työn ohjaaja

DI Ville Rousu

Diplomityön aiheena oli tutkia menetelmiä, joilla voitaisiin lisätä visuaalista

informaatiota Tekla Structures rakennesuunnittelu- ja mallinnusohjelmistoon ja

mahdollisesti toteuttaa osa näistä. Tehtävänannon aikaan käytössä oli vain joitakin väri-

ja valaistusmäärityksiä, joilla voitiin erottaa eri kappaleet mallissa tietokoneen ruudulla

katseltaessa.

Diplomityön tekijällä oli jonkin verran aikaisempaa tietoa tietokoneiden

reaaliaikaisesta piirrosta ja näiden perusteella joitakin kehittyneempiä 3D-tekniikoita

tutkittiin ja testattiin itse tehdyllä testausohjelmalla. Testattuja tekniikoita olivat 2D-

teksturointi, tekstuurien projisiointifunktiot, kohotekstuurit, prosessuaalinen

teksturointi, vaijostuskielet ja reunan pehmennys.

Tutkimuksen ja testauksen perusteella 2D-teksturointituki toteutettiin Teklan Z-kit 3D-

grafiikkaohjelmistokirjastoon, jota Tekla Structures käyttää. Myös materiaali- ja

valaistuseditorit luotiin helpottamaan Z-kit kiijaston käyttöä. Jatkossa on tarkoitus ottaa
jokin vaijostuskielistä käyttöön ja tutkia mitä muita tässä työssä mainittuja 3D-

tekniikoita voitaisiin ja pitäisi toteuttaa Teklassa.

Avainsanat
reaaliaikainen piirto, teksturointi, kohotekstuurit, prosessuaalinen
teksturointi, varjostuskielet

II

Acknowledgements

This thesis concludes my studies at the Helsinki University of Technology that have

lasted ten years. At some point it even seemed I will never reach this point, but

nevertheless here I am and now its time to turn the next page on my life and move

on.

It has been pleasure to work with this thesis and I have learned quite a lot while

making it, and not just from the subject. Some extra difficulties have risen from the

facts that English is not my mother tongue and I have been living in Estonia for the

last three years.

Fortunately, I have received lots of support from co-workers and family. I send my

grateful compliments to my girlfriend Sini, who gave me the strength to finish my

studies and also helped on grammatical issues on this thesis. I also thank my co

workers Juha Laukala for the help on implementations and technical support and

Kari Sydänmaanlakka for the help on project coordination, and of course my

instructor Ville Rousu and supervisor Pirkko Oittinen for the guidance.

7th of November 2004, in Tartu, Estonia

Samu Ruuhonen

III

Table of Abbreviations

API Application Program Interface - the specific method prescribed by a
computer operating system or by an application program by which a
programmer writing an application program can make requests of the
operating system or another application.

ARB Architectural Review Board - group of hardware and software vendors,
that approves and maintains the list of supported OpenGL extensions.

CPU Central Processing Unit - a term for the processor of the computer.
GPU Graphics Processing Unit - a term for processor located in the graphics

hardware board and responsible for the rendering work.
OS Operating System - such as Windows, Linux and UNIX.
RGB Red, Green, Blue - three main color components in computer graphics,

which are used to represent all other colors.
T-n-L Transform and Lighting - one part of the GPU responsible for

transforming the vertices from model coordinates to view coordinates,
and calculating the color of each vertex depending on lighting conditions.

rv

Table of Contents

1 Introduction... 1
1.1 Structure of the chapters.. 2

2 Background Information of 3D Graphics... 3
2.1 Graphics APIs.. 4

2.1.1 OpenGL.. 4
2.1.2 Direct 3D... 5

2.2 Fundamental 3D graphics concepts... 5

2.2.1 Vertex, line, triangle... 5
2.2.2 Material.. 6
2.2.3 Transparency and fog...7

2.2.4 Lighting and shading.. 8
2.2.5 Texture mapping..Ю
2.2.6 Screen aliasing / anti-aliasing...16

2.3 3D pipeline..17
2.3.1 Vertex operations... 18
2.3.2 Pixel operations... 19
2.3.3 Frame buffer operations..20

3 Research Problem.. 21
3.1 Adding visual information to the model... 21
3.2 Modeling materials efficiently...22
3.3 Editing materials easily.. 23

4 Review of the Most Used and New 3D Graphics Technologies................... 24
4.1 Bump mapping...24

4.1.1 Tangent space..26
4.1.2 Emboss bump mapping..26

4.1.3 Dot product bump mapping... 27
4.2 Displacement mapping... 28
4.3 Procedural texturing... 30

4.3.1 Periin noise..31
4.4 Programmable pipeline.. 33

4.4.1 Vertex shading.. 33

4.4.2 Pixel shading.. 34
4.4.3 Shading languages...35

5 Research Work... 38

V

5.1 Testing environment... 38
5.2 Testing various techniques.. 38

5.2.1 Testing texture mapping projector functions..................................... 39
5.2.2 Anti-aliasing testing with Steelmark.. 42

5.2.3 Testing dot product bump mapping... 43
5.2.4 Testing pixel shader materials using Cg.. 44

5.3 Comparing various techniques.. 49

5.3.1 Texture mapping.. 49
5.3.2 Anti-aliasing... 49
5.3.3 Bump mapping... 50
5.3.4 Procedural texturing.. 50
5.3.5 Shading languages... 51

5.4 Summary of research work.. 51

6 Implementations...54
6.1 Fog and texture mapping support.. 54
6.2 Support editors for Z-kit... 55

7 Conclusions and Future Work.. 58
7.1 Conclusions.. 58

7.1.1 Comparing results to problem statements... 59

7.2 Future Work... :..60
References...61
Appendix A - Steelmark run.. 63
Appendix В - Code for pixel shaders... 64
Appendix C - Code for planar and cylindrical mapping..................................... 66
Appendix D - Documentation and code for Z-kit editors.................................... 69

VI

Table of Figures

Fig 1. A model created and viewed with Tekla Structures...................................... 1
Fig 2. Real-time 3D graphics flowchart..3
Fig 3. Specular reflection..7
Fig 4. A scene rendered without and with fog...8
Fig 5. A cylinder rendered with wire-frame, with Gouraud shading and with

vertex normals shown.. 9
Fig 6. Flat, Gouraud and Phong shading... 10
Fig 7. Texture mapping... 11
Fig 8. Simple texture... 12
Fig 9. Planar mapping applied to a cube, a sphere and a cylinder........................ 12
Fig 10. Cylindrical mapping applied to a cube, a sphere and a cylinder................. 13
Fig 11. Spherical mapping applied to a cube, a sphere and a cylinder.................... 13
Fig 12. Aliasing effect on the left, mipmapping used on the right.......................... 14
Fig 13. Mipmapping applied to original texture.. 15
Fig 14. Trilinear filtering compared to anisotropic filtering................................... 16
Fig 15. Comparing aliased graphics with anti-aliased graphics.............................. 16
Fig 16. Direct3D 8.0 pipeline flowchart.. 17
Fig 17. View frustrum when using perspective projection...................................... 19
Fig 18. Clipping a triangle... 19
Fig 19. Disney Concert Hall modeled with Tekla Structures..................................21
Fig 20. A simple texture mapped to a sphere with planar and cubic mappings......23
Fig 21. A sphere rendered with world texture and bump-mapped world texture... 24
Fig 22. An elevation map of the world..25
Fig 23. A normal map created from the elevation map...25
Fig 24. Tangent space in three vertices (© Imagination Technologies Ltd, 2000) 26
Fig 25. An emboss map created from the elevation map..27
Fig 26. Dot product bump map created from the normal map and applied to a

sphere... 28
Fig 27. Bump mapping on the left, displacement mapping on the right (©

Microsoft Research Asia, 2003)... 29
Fig 28. Displaced vertices created from the vertices of the surface along the normal

29
Fig 29. Control mesh, subdivided mesh and displaced mesh (© Lee, Moreton and

Hoppe, 2000).. 30
Fig 30. One dimensional noise.. 31
Fig 31. Salt and pepper noise blurred and up-sampled... 32
Fig 32. Taking average of noises at different octaves yields usable results............32
Fig 33. Creation of procedural marble texture.. 33
Fig 34. Waving flag created from flat surface using vertex shader.........................34
Fig 35. Flat surface rendered with per-pixel lighting using vertex and pixel shaders

(© ATI, 2003).. 35
Fig 36. Three test objects; an I-beam with holes, an Y-pipe and a half-pipe..........39
Fig 37. A simple texture planar mapped to an I-beam from two directions............40
Fig 38. Hatch texture planar mapped onto an I-beam from two different directions

40
Fig 39. A simple texture planar mapped onto an Y-pipe from two directions........41
Fig 40. Two different textures cylindrical mapped to a half-pipe...........................41
Fig 41. Zoomed image from the model without and with anti-aliasing..................43

VII

Fig 42. Half-pipe textured with tiles, without and with bump mapping................. 44
Fig 43. Y-pipe covered with 3D periin noise with two different frequencies.........45
Fig 44. Y-pipe object covered with concrete material.. 46
Fig 45. Y-pipe object covered with stone material... 47
Fig 46. Wood rings created with pixel shader... 47
Fig 47. Y-pipe covered with wood material.. 48
Fig 48. Fog effect on material helps the viewer to see the depth in the scene........ 54
Fig 49. Brick wall created with the texture support of the Z-kit............................. 55
Fig 50. Material editor for editing Z-kit materials used in Tekla Structures........... 55
Fig 51. Presentation editor for editing Z-kit presentations used in Tekla Structures

56
Fig 52. Lighting editor for editing lights in the window... 56

VIII

1 Introduction

Tekla Corporation is the leading supplier of model-based operational software
products for infrastructure management in the world. The Building & Construction

business unit develops 3D model-based software for the construction industry. Tekla

Structures is the first structural building information modeling (BIM) system
covering the entire structural design process from conceptual design to detailing,

fabrication and construction. Tekla Structures allows for real-time collaboration

between users across industries and project phases. The 3D model contains all the

information required for design, manufacturing and construction; all drawings and

reports are fully integrated within the model - generating consistent output. [TEK04]

At the beginning of this project one could create different materials and apply some

surface properties to them (color, shininess, transparency) and attach the material to

an object of a model. It was also possible to create multiple light sources and position

them into the scene. When viewing the model on a two dimensional computer screen,

the rendering device calculates how the material properties and light sources interact

with each other, and renders the model so that different objects can be distinguished
from each other and makes the model look three dimensional. (Fig 1)

Fig 1. A model created and viewed with Tekla Structures

1

The number of needed materials is increasing and soon it might be impossible to

create materials that are possible to distinguish on the computer screen when using

only color and shininess, since the human visual system can easily separate only a
few dozens of different colors. This is important for the designer who is viewing the

3D model, since (s)he must be able to distinguish the different objects from each

other quickly. And for the architect it would be much better, if e.g. wood and

concrete would look somewhat realistic.

The purpose of this work was to research various ways to add visual information to

3D objects in real-time rendered 3D model and to develop the current 3D software

library (Tekla Z-kit) used by Tekla Structures to support these materials.

1.1 Structure of the chapters

In the next chapter (chapter 2) an introduction is given to the field of 3D graphics

and some of its aspects related to this work are explained. After that the research
problem is studied more closely and defined more precisely (chapter 3). After getting

familiar with the basic 3D graphics concepts and the research problem, some
carefully selected advanced 3D techniques are studied and explained (chapter 4).

Some of the techniques that could be used in the future are tested and reviewed

(chapter 5) and as a result some implementations are made (chapter 6). And finally, a
summary of the work and future thoughts can be found in the last chapter (chapter 7).

2

2 Background Information of 3D Graphics

In this chapter some basic background information of computer graphics focusing on

real-time 3D graphics are presented. This chapter is intended for readers who are not

familiar with the subject, others can jump directly to the next chapter. More

introductions to computer graphics can be found from Hearn and Baker’s book
[HEA97] and a very thorough introduction to the real-time 3D graphics rendering

can be found from Akenine-Möller and Haines’ book [АКЕ02]. From the web one

can read the article titled “3D Pipeline Tutorial” in ExtremeTech.com written by

Dave Salvator [SAL01].

Real-time 3D graphics is the common naming convention for interactive computer

graphics processed in three dimensions and usually projected to a flat two

dimensional computer screen for viewing. Interactivity means that the user can

change the appearance of the graphics by using the mouse or the keyboard (or other
input device). The basic flowchart for a
common 3D application can be seen in

the figure on the left (Fig 2). An
application such as CAD software or a

3D computer game is linked with a

graphics API (usually Direct3D or
OpenGL). In application run-time the

graphics API calls are routed to the

hardware device driver. The driver is
usually made by the hardware vendor and

Fig 2. Real-time 3D graphics flowchart . .
it is 3D accelerator specific.

The main computer components affecting real-time rendering include the CPU, the

memory and the bus. The bus is the data path on the computer's motherboard that

interconnects the CPU and the memory with attachments in expansion slots, such as

the graphics accelerator. The CPU retrieves the data from the memory and sends it to

the GPU through the bus. This procedure is called the push method. The GPU can

also directly read the memory through the bus, and this procedure is called the pull
method or direct memory access (DMA). The rendering speed is limited by the

Hardware Device Driver

API (DirectSD, OpenGL)

3D Accelerator Hardware

Application (CAD, game,
etc.)

3

slowest component of the computer, and to take full advantage of all the components

the system must be balanced. [AKE02]

2.1 Graphics APIs

Currently there are two major real-time 3D graphics APIs in use; OpenGL and
DirectsD. OpenGL is mostly used in the UNIX world and Direct3D in Microsoft’s

Windows. Currently, the Z-kit library is using OpenGL as its graphics API, but in the

near future the support for Direct3D is planned to be implemented. In this chapter a

brief introduction to both APIs is given.

2.1.1 OpenGL

The OpenGL API [SEG97] began as an initiative by SGI (Silicon Graphics, Inc.) to

create a single, vendor-independent API for the development of 2D and 3D graphics

applications. Prior to the introduction of OpenGL in the early 90s, many hardware

vendors had different graphics libraries. This situation made it expensive for

software developers to support versions of their applications on multiple hardware

platforms, and it made porting of applications from one hardware platform to another

very time-consuming and difficult. The result of SGI’s work was the OpenGL API,

which was largely based on earlier work on the SGI IRIS GL library. The OpenGL

API began as a specification, and then SGI produced a sample implementation that

hardware vendors could use to develop OpenGL drivers for their hardware. [SGI04]

Modifications to the OpenGL API are made through the OpenGL Architecture

Review Board, an industry group containing founding, permanent, and auxiliary

members. The current version of the OpenGL API is 1.5, but Microsoft has

implemented only the version 1.1 in the Windows OS [MIC04o], Software

developers do not need to license OpenGL to use it in their applications. They can

simply link to a library provided by a hardware vendor. [SGI04]

OpenGL is a very dynamic API in a sense that every new technique can be

implemented quickly with the extension mechanism. This also allows the new

techniques to be used with Windows OS, even though only the 1.1 version is

implemented by Microsoft. A big disadvantage that comes with the extensions is the

fact that they are mostly made by hardware vendors and you can never be sure how

4

an extension will behave in some specific hardware configuration without testing it.
A great resource for programming with OpenGL can be found from Woo's book

[W0097] and for advanced use one should check Blythe's web site [BLY99].

2.1.2 Direct3D

In 1995 and 1996 Microsoft established a new program to support games on PCs

running its Windows 95 operating system. Microsoft chose not to use the OpenGL

technology it already provided in Windows NT to handle 3D graphics for games.

Instead, Microsoft purchased Rendermorphics, Ltd. and acquired its 3D graphics API

known as RealityLab. Microsoft reworked the device driver design for RealityLab

and announced the result as a new 3D graphics API called Direct3D Immediate-

Mode. [AKI98]

For now the Direct3D has come to a version number 9.0 [MlC04d] and almost every

Windows software is using it as their graphics API. The advantage that comes with
the Direct3D is the fact that it is very exactly defined and specified, which makes it

less vulnerable to drawing errors and malfunctions. A good introductory book about

Direct3D graphics programming is written by Frank Luna [LUN03].

2.2 Fundamental 3D graphics concepts

In this chapter the fundamental 3D graphics concepts mostly affecting the visual
appearance of 3D objects and which are common to most software and hardware 3D

graphics systems are presented.

2.2.1 Vertex, line, triangle

Vertex is the fundamental building block in 3D graphics. It is a single point in a 3D
world and is usually represented with three coordinates; x, y and z (although other

representations are also possible). Mathematically the size of a vertex is zero, but

usually it is visualized with one pixel on a computer screen.

Line is a straight connection between two vertices. Mathematically the area and

volume of a line are zero and it has only one attribute, which is length. The line is

normally visualized with a one pixel wide line on a computer screen, but the line

width can also have some other values.

5

Triangle is formed with three consecutive vertices mathematically defining an area,

but the thickness of the triangle is zero. Triangles have always a front face and a back

face. If a right-handed coordinate system (OpenGL) is in use, the front face is

towards the viewer when the vertices of the triangle are processed counter-clockwise.

And if a left-handed coordinate system (Direct3D) is in use, the front face is towards

the viewer when the vertices are processed clockwise.

Almost all the GPUs are optimized for drawing triangles and therefore all the 3D

objects build from polygons are tessellated to triangles before sending them to the

GPU. The reason for this is the mathematical fact that only three vertices can

describe a plane unambiguously. An example object can be seen in the figure below

(Fig 5 on page 9).

2.2.2 Material

In 3D graphics a material consists of a number of material parameters, namely

ambient, diffuse, specular, shininess and emissive. The color of a surface is

determined by these parameters, the parameters of the light sources illuminating the

surface and a lighting model.

Ambient is a naming for light reflecting from other surfaces. In offline (not real

time) rendering this is normally calculated with ray-tracing and radiosity methods,

but in real-time rendering it is not yet possible because of the calculation time

needed. Due to this ambient is only modeling the reflection and usually some

constant value is given to it.

Diffuse material is totally matte lambertian reflector, which means it reflects light

equally to all directions without any highlights. The intensity of the reflecting light is

calculated simply by taking the dot product of normalized surface normal and

normalized light direction:

idiff =N-L = cos</> (1)

where both N and L are normalized. This causes the dot product to be one when the
surface is viewed perpendicularly (Ф = 0) and zero if the angle Ф > 7т/2, meaning

that the surface is facing away from the light.

6

Specular reflection is used when the reflection is
stronger in one viewing direction, i.e., there is a bright

spot, called specular highlight. This is readily apparent

on shiny surfaces. For an ideal reflector, such as a
mirror, the angle of incidence equals the angle of

specular reflection (Fig 3). In the figure L is the

incoming light, N is the normal of the surface and R is the reflected light. In practice,

this means that the specular contribution gets stronger the more closely aligned the

reflection vector R is with the view direction. The reflection vector is calculated by:

R = 2(N-L)N-L (2)

where L and N are assumed to be normalized, and therefore R is normalized too. If
N L < 0, then the surface faces away from the light and a highlight is not normally

computed. The specular intensity is calculated using the reflection vector R by:

i,„, = (* • ry (3)

where V is the view vector from the surface to the viewer and s is the shininess value.

Shininess represents the sharpness of specular reflection. With higher values the

surface is shinier and the specular highlight area is narrower, and with lower values

the specular highlight area is wider.

Emissive material, such as a lighting bulb, is giving away lighting. The emissive

color is added to the material after all the other lighting calculations.

2.2.3 Transparency and fog

Transparency effects in real-time rendering systems are relatively simplistic and
limited. Effects normally unavailable include the bending of light, attenuation of

light due to the thickness of the transparent object, and reflectivity and transmission

changes due to the viewing angle.

Real-time systems provide the ability to render a surface semi-transparent, blending

• its color with the object behind it. For this, the concept of alpha blending is needed.
When an object is rendered on the screen, an RGB color and a Z-buffer depth are

associated with each pixel. Another component, called alpha, can also be generated

Fig 3. Specular reflection

7

and stored. Alpha is a value describing the degree of opacity of an object for a given

pixel. An alpha value 1.0 means the object is opaque and a value 0.0 means the

object is not showing at all.

Fog is a simple atmospheric effect that can be added to the final image. Fog can be

used for several purposes. Since the fog effect increases along the distance from the
viewer, it helps the viewer to determine how far away objects are located, and thus it

increases the level of realism for outdoor scenes. Fog is often implemented in
hardware, so it can be used with little or none additional performance cost. An

example of fog can be seen in the next figure (Fig 4).

Fig 4. A scene rendered without and with fog

2.2.4 Lighting and shading

Lighting is a term used to designate the interaction between material and light

sources, as well as their interaction with the geometry of the object to be rendered.

Lighting equation determines how light sources interact with the material parameters

of an object, and it also partly determines the colors of the pixels that a particular
object occupies on the screen. This lighting model is a local lighting model, which

means that the lighting depends only on light from light sources, not light from other

surfaces. The total lighting intensity is the sum of ambient, diffuse and specular

components (Eq 1, Eq 3):

hot = himb + ¡cliff + i spec

8

Shading is the process of performing lighting computations and determining the
colors of the pixels. There are three main types of shading, namely flat, Gouraud and

Phong. These are explained below.

Vertex normal

In order to calculate the lighting of the surface, a normal vector must be supplied

with each vertex. Because every surface is composed from triangles, a surface can be

totally smooth only if the triangles are small enough for one triangle to occupy only

one pixel in computer screen. This however is neither possible nor practical and thus

the normal of the vertex defines the direction of the heading of the surface in that

vertex location. This can be visualized with the following figure (Fig 5), where a

cylinder is rendered with wire-frame (only the edges of the triangles are visible),

with smooth Gouraud shading and with vertex normals shown (short lines).

Fig 5. A cylinder rendered with wire-frame, with Gouraud shading and with vertex normals
shown

Flat, Gouraud and Phong shading

Flat shading is the same as shading triangles having only one normal, which is
perpendicular with the surface of the triangle. One color is computed for a triangle

and the triangle is filled with that color. Consequently all the triangles of the object
not facing onto the same direction are easily spotted from the surface (Fig 6 on the

left). Flat shading runs fast and is simple to implement.

In Gouraud shading [GOU71] the lighting at each vertex of a triangle is determined,

and these lighting samples, i.e. computed colors, are interpolated over the surface of

the triangle. This produces a much smoother surface and distribution of light on the
surface (Fig 6 on the center). Gouraud shading runs almost as fast as flat shading,

since it is quite simple to implement, but still gives much better visual quality. A

9

problem with this technique is that the shading is highly dependent on the level of

detail of the rendered objects. If the level of detail is too small, there are clearly

visible artifacts, especially on the edges of the triangles as can be seen in the figure.

In Phong shading [PH075] the shading normals stored at the vertices are used to

interpolate the shading normal at each pixel in the triangle. This normal is then used

to compute the lighting effect on that pixel. Since the lighting is calculated in every

pixel, Phong shading is visually very accurate and close to photo-realistic looks (Fig

6 on the right). It is however a much slower technique to render than the other two,

because per-pixel operations are more complex and much more costly than per-

vertex operations.

Fig 6. Flat, Gouraud and Phong shading

Both OpenGL and Direct3D can do flat and Gouraud shading by just enabling them,

but using the Phong shading needs some extra effort. The Phong shading can be done

on hardware with texture mapping techniques.

2.2.5 Texture mapping

In computer graphics, texturing is a process that takes a surface and modifies its

appearance at each location using some image, function or other data source. As an

example, instead of precisely representing the geometry of a brick wall, a color
image of a brick wall is applied to a single polygon. When the polygon is viewed, the

color image appears where the polygon is located.

To add texture mapping to the rendering process, texture coordinates must be
supplied with each vertex. Texture coordinates define the location on the texture that

is mapped to the given vertex. All the other locations between vertices are
interpolated from surrounding vertices. In the case of a line, the interpolation is done

10

between the two vertices of the line, and in the case of a triangle between the three

vertices of the triangle. This can be seen in the next figure (Fig 7), where an object

has been given texture coordinates (u,v) which are mapped to same coordinates of

the texture, and a mapped texture object is created.

Fig 7. Texture mapping

There are four different types of texture mapping, namely ID, 2D, 3D and a special

cube mapping. ID mapping is usually used only with lines, the texture is one

dimensional color table and only one texture coordinate is given with each vertex.

2D mapping is the most used one and is used with surfaces. The texture is a two

dimensional color table and two texture coordinates are given with each vertex.

With 3D texture mapping, three texture coordinates must be supplied with each

vertex. 3D texture mapping is used quite rarely, because it consumes so much more

memory than 2D texturing. For example, with 2D texturing a normal texture bitmap

with eight bits per texel (pixel of texture) and 256 texels width and height, is 256 x

256 bytes totaling 65 kB. With 3D texturing this is 256 x 256 x 256 bytes totaling 17

MB. For now, graphics accelerators in most cases have 256 MB memory at to be

used by vertex data and textures. Because of this the 3D texturing is mostly used

with procedural methods (more on this on chapter 4.3 on page 30).

It is also possible to apply many textures to same object, each with different texture

coordinates. The procedure is called multi-texturing and the techniques used vary a

lot, but usually the various textures are blended together with various weighting

coefficients to produce the final texture to be displayed.

11

2D projector functions

Texture coordinates of objects can be defined manually or by some function. With
big models of thousands of triangles the manual definition

is very hard and time consuming. A better method is to use

some projector function, which calculates the texture
coordinates for each vertex according to some predefined

function. In the next three figures, three different projector

functions, mapping a simple texture (Fig 8) to three
Fig 8. Simple texture

different objects, are introduced.

Planar mapping is the same as orthographic projection, meaning that the 3D object is

projected on to 2D plane from some direction and the 2D texture is mapped directly

to this plane. Three samples of planar mappings can be seen in the next figure (Fig

9). This produces one-to-one mapping on the flat surfaces, but very deformed

mappings on other surfaces.

Fig 9. Planar mapping applied to a cube, a sphere and a cylinder

To use the cylindrical mapping, one has to decide the axis of the cylinder and radius.
After this the texture is mapped onto the surface of this cylinder and it has no

deformations there, but on every other shaped object it has plenty of deformations

(Fig 10).

12

Fig 10. Cylindrical mapping applied to a cube, a sphere and a cylinder

A simple version of the cylindrical mapping can be calculated by:

arctan(z / x) + nи — t'/
2 к

v = y (6)

where x, у and z are the coordinates of the vertex, and и and v are the cylindrical

texture coordinates.

The spherical mapping applies the texture on a shape of a sphere. To use it, the

radius of the sphere and rotation axis must be defined. The effect of applying the

spherical mapping on sphere, cube and cylinder can be seen in the next figure (Fig

11).

Fig 11. Spherical mapping applied to a cube, a sphere and a cylinder

13

A simple version of the spherical mapping can be constructed by calculating texture

coordinate и as with cylindrical mapping (Eq 5) and texture coordinate v by:

^ _ arctan(y / V*2 + z2) + n ^
2n

where x, у and z are the coordinates of the vertex.

Mipmapping

When the texture image is mapped to a surface, the texture is drawn correctly on the

computer screen only if the surface has the same dimensions in pixels as the texture

has. This never happens, if not explicitly specified to do so, and therefore the texture

image is always somewhat minified or magnified and usually viewed from a certain

angle.

The magnification (zooming into the surface) is not a very big problem, since there is

no problem of interpolating the value of a pixel from a few surrounding texels from
the texture. The rendered image on the screen just looks somewhat blurred. When

minimizing (zooming out of the surface) there is more than one texel per pixel and

the interpolation is not possible, so some sort of filtering needs to be done. This is
because if the rendering process just takes the nearest texel when coloring a pixel, an

aliasing effect appears (Fig 12 on the left), and it can be fixed by using mipmapping

(Fig 12 on the right).

Fig 12. Aliasing effect on the left, mipmapping used on the right

Mipmapping is accomplished by pre-filtering the original texture to smaller textures

down to a size of one pixel, and then using these smaller copies when the surface is

minimized by averaging two of them at a time. An example of a texture and its
mipmaps can be seen in the next figure (Fig 13). The word “mip” stands for multum

14

in parvo, Latin for “many things in a small place” - a good name for a process in

which the original texture is filtered down repeatedly into smaller images [АКЕ02].

Original Texture

Pre-Filtered Images

Fig 13. Mipmapping applied to original texture

Anisotropic filtering

Anisotropic filtering (AF) is used to address a specific kind of texture artifact that

occurs when a 3D surface is sloped relative to the view camera. A single screen pixel
could encompass information from multiple texture elements (texels) in one

direction, such as the у-axis, and fewer in the x-axis, or vice-versa. This requires a

non-square texture filtering pattern in order to maintain proper perspective and

clarity in the screen image. If more texture samples are not obtained in the direction

or axis where an image or texture surface is sloped into the distance, the applied

texture can appear fuzzy or out of proportion.

To correct the problem, AF uses a rectangular, trapezoidal, or parallelogram-shaped

texture-sampling pattern whose length varies in proportion to the orientation of the

stretch effect. With AF, textures applied to the sloped surfaces will not look as fuzzy

to the viewer. A classic example is a texture with text, as the text scrolls off into the

distance, its resolution and legibility both tail off. The effect of applying AF to this

kind of texture image can be seen in the next figure (Fig 14).

15

¿rf". ^ "чзе

М^гч / func ЧСЧГП them ß'j&9 ft th»f> vwv\
fJw. гм* ъшг i« lost at
//. frx*m ull the stai-stj4*T\
у ¡'he toil of all xYxtiX
helps not the prxxxvaX
V it rums into к\лс

.Vi¿í/■», t /mv ьг accu iliviiv
Juft, t'Ul vvfivn Irtcy dtop oÄvvi

Z7*> S-tur ih loftl UV
//. trom nil rhe stлг-чо\чт\
у /7>с‘ toil of al\ xVxav
helps not the ptuwaX
V it rums into the

nd still the sea ts nd still the sea vs
Fig 14. Trilinear filtering compared to anisotropic filtering

The text texture on the left is sampled with trilinear mipmap filtering and on the right
with anisotropic filtering. It can be clearly seen that anisotropic filtering allows the

text to be more readable in far distant. Anisotropic filtering clearly makes the visual

quality of textured objects better, but this comes with the increased calculation cost,
which decreases the speed of the rendering. The amount of performance hit depends

on the used hardware and the number of texture samples used. [AKE02]

2.2.6 Screen aliasing / anti-aliasing

When a line or an edge of a triangle in a computer screen is drawn at an angle, it will

often appear with jaggedness. This effect is caused by the regular pixel grid in the

screen, and is called aliasing. To avoid this effect, the process of anti-aliasing paints

some nearby pixels in an intermediate color or brightness. In this way the visual

appearance of the line (or the edge) is smoothed out. The effect of using anti-aliasing

can be seen in the next figure (Fig 15), where some graphics is drawn without and

with anti-aliasing.

Fig 15. Comparing aliased graphics with anti-aliased graphics

16

Edges of polygons produce noticeable artifacts if not anti-aliased well. Shadow

boundaries, specular highlights and other phenomena where the color is changing

rapidly can cause similar problems. Almost any graphics adapter can perform some

sort of anti-aliasing. Mostly they use a full-screen anti-aliasing, which means the

anti-aliasing is performed at the end of the rendering process to the pixels of the

frame buffer. Anti-aliasing always slows down the rendering process, and the quality

and speed depend on the algorithm used. The general strategy of screen-based anti

aliasing is to use a sampling pattern for the screen and then weight and sum the

samples to produce a pixel color,/»:

P(x,y) = Yiwic(i,x,y) (8)
1=1

where n is the number of samples taken for a pixel. The function c(i,x,y) is a sample

color and w¡ is a weight, in the range [0,1], that the sample will contribute to the

overall pixel color.

2.3 3D pipeline
CPUs normally have only one programmable processor. In contrast, GPUs have at

least two programmable processors, the vertex processor and the pixel processor,
plus other non-programmable
hardware units. The processors,

the non-programmable parts of the

graphics hardware, and the
application are all linked through

data flows, which are called the

pipeline. In the previous figure

(Fig 16) is a simplified pipeline of

the Direct3D version 8.0. The

pipeline is divided into four parts,
namely data sources, vertex

operations, pixel operations and
Fig 16. Direct3D 8.0 pipeline flowchart frame buffer operations.

Data sources

Vertex operations

Pixel operations

Frame buffer operations

tes s elated

Pixel shader

Frame buffer

mullit exturing

17

Data source is the application, which can offer the geometric data in a form of

polygons, in which case they are tessellated into triangles inside the driver, or in a

form of already tessellated triangles. Most graphics adapters transform even the lines

into two distinct triangles [MIC04d]. After this the triangles are sent to vertex

processor one vertex at a time.

2.3.1 Vertex opera tions

Vertex operations can be done with two distinct paths. A few years ago there used to

be only one path, the fixed transform and lighting (T-n-L) pipeline, but today if the

GPU is programmable, the fixed transform and lighting can be replaced with the
vertex shader (more about this in chapter 4.4.1 on page 33). This part of the pipeline

is responsible for transforming the vertices from model space to view space, and

calculating the lighting effect on each vertex.

Model space is a three dimensional Cartesian coordinate system, where an object or

world has an origin, to which all the vertices are related to. View space is also three

dimensional Cartesian coordinate system, where the camera is located at the origin

looking along the z-axis and usually у-axis is pointing upwards. Lighting

calculations are done per vertex from the material properties of the vertex and from
the lights enabled at the scene. If the programmable vertex shader is used, both these

operations must be programmed inside it.

After the transform and lighting are done, rendering system performs projection,

which transforms the view space into a unit cube with its extreme points at (-1,-1,-1)

and (1,1,1). There are essentially two projection methods, namely orthographic (also

called parallel) and perspective projection. The view volume of orthographic viewing
is normally a rectangular box and the orthographic projection transforms this view

volume into the unit cube. In the perspective projection, the farther away an object
lies from the camera, the smaller it appears after projection. The view volume of the

perspective projection is called view frustrum (Fig 17).

18

A View Frustrum
Far Clipping Plane

Near Clipping Plane

View Frustrum

Fig 17. View frustrum when using perspective projection

Although these transformations transform one volume into another, they are called

projections because after display the z-coordinate is not stored in the image

generated (instead it is stored in a z-buffer). In this way, the models are projected

from three to two dimensions.

Only the primitives wholly or partially inside the view volume need to be passed on

to the rasterizer stage, which then draws them onto the screen. A primitive lying
totally inside the view volume will be passed on to the next stage as it is. Primitives

totally outside the view volume are not passed on further, since they are not

rendered. The primitives partially inside the view volume require clipping. Due to
the projection transformation, the primitives are clipped against the unit cube. In

clipping all the parts of the triangles and lines outside the unit cube are discarded and

a new vertex is inserted at every clipping point (Fig 18). After clipping the vertices

are sent to rasterizing stage for pixel operations.

new
vertices

Fig 18. Clipping a triangle

2.3.2 Pixel operations

Given the transformed and projected vertices, colors and texture coordinates (from
the geometry stage), the goal of the rasterizer stage is to assign correct color to the

19

pixels to render an image correctly. This is the conversion from two dimensional

vertices in screen space, each with a z-value, one or two colors and possibly one or

more sets of texture coordinates, into the pixels on the screen.

This stage is also responsible for resolving visibility. This means that when the

whole scene has been rendered, the color buffer should contain the colors of the
primitives in the scene which are visible from the point of view of the camera. For

most graphics hardware, this is done with the z-buffer (also called depth buffer)

algorithm. For each pixel the z-buffer stores the z-value from the camera to the

currently closest primitive. If a new z-value is smaller than the z-value in the z-

buffer, the primitive being rendered is closer to the camera than the previous
primitive at that pixel. Therefore the z-value and the color of that pixel are updated

with the z-value and color from the primitive being drawn.

The z-buffer algorithm allows the primitives to be rendered in any order, which is

why it is so fast. However, partially transparent primitives cannot be rendered in just

any order. They must be rendered after all opaque primitives and in back-to-front

order, which makes it much slower operation.

2.3.3 Frame buffer operations

After rasterization is completed, a set of frame buffer operations can be performed

with the final image. Another name for this is the accumulation buffer, which was

first introduced to real-time graphics by Haeberli and Akeley [НАЕ90]. In this

buffer, images can be accumulated using a set of operators. For example, a set of

images showing an object in motion can be accumulated and averaged in order to

generate motion bluer. Other effects that can be generated include depth of field,

anti-aliasing and soft shadows.

To avoid the human viewer from seeing the primitives as they are being rasterized
and sent to the screen, a method called double buffering is used. This means the

rendering of a scene takes place off-screen in the back buffer. Once the back buffer is

rendered, the contents of it are swapped with the contents of the front buffer which

was previously displayed on the screen.

20

3 Research Problem

In this chapter a deeper and more precise meaning is given for the problems

introduced in the first chapter.

3.1 Adding visual information to the model
The models designed and constructed with Tekla Structures are coming larger all the

time. The consequence of this is the massive amount of information stored in each

snapshot of the model. A good example of this can be seen in the figure below (Fig

19), where one can find an image of the Disney Concert Hall modeled with Tekla

Structures and located at Los Angeles, California.

Fig 19. Disney Concert Hall modeled with Tekla Structures

In the image one can notice that there are hundreds of steel members connected to
each other. Members are connected together with other structural objects such as

bolts, welds and steel plates. Each member contains physical information (geometry,

material and finishing) and also a lot of other information about the structure, for

example the type of the connection. None of this is shown in the image. When

models are coming more and more complex, the needed information on the computer

screen rises. This means the modeling is more precise, there are different kinds of

information and there are more members on the model. From here we come to the

21

first research question of this thesis, which means that we are finding solutions to add

as much information as possible to the model. It must still be viewable by the user in

a way that the information is comprehensible and the graphics of the model looks

good.

One aspect of this problem is to find out how to represent materials that are needed
in structural engineering. These materials include the natural building materials, for

example steel, concrete, wood and stone. And another group of materials is consisted

of different hatches, used in CAD software, representing some defined material and

visualized with line drawings.

3.2 Modeling materials efficiently

The second problem is connected to technical elements. Since there are only some

different colors and transparency used with the current materials in Tekla Structures,

more information can be added by increasing the number of possible materials in the

model. This could be accomplished with the techniques discussed in the next

chapters, but since there are so many different techniques and each of them has some

pros and cons, the different techniques must be studied and one must decide which

ones are suitable for different material definitions. Because the models are large and

they must be viewable in real-time, one must continuously bear in mind that the
techniques used must use as little memory and be as fast to render as possible.

Another technical problem concerning the new material definitions is the binding
problem. This can be stated with the following question. If there is a two dimensional

picture of some material, how can it be wrapped around a three dimensional object

smoothly with as little deformations and discontinuities as possible? A simple

example of these problems can be seen in the next figure (Fig 20).

22

Fig 20. A simple texture mapped to a sphere with planar and cubic mappings

In the figure one can see a simple texture (on the left) mapped to a sphere with
simple mapping functions; a planar mapping (on the center) and a cubic mapping (on

the right). When using the planar mapping to the sphere, the texture looks good on

one side but extremely stretched on the other side. When using the cubic mapping the
stretching problem is much smaller, but now there are discontinuities where the cubic

mapping changes face.

3.3 Editing materials easily

There is one last thing that must be kept in mind when finding solutions to the

problems described above. No matter how great some technique would be to solve

the problems above, there is no point of using it if it’s totally too complicated. This

means the solution must be simple enough, so that the user, who designs the new

material, can do it without being an expert in the field of 3D technology. The
solution should also be reproducible so that as many materials as possible could be

constructed with the same technology.

23

4 Review of the Most Used and New 3D Graphics
Technologies

In this chapter the advanced 3D rendering techniques that are widely used or are new

and might be widely used in the future, are covered. The amount of these techniques

is huge, and thus the ones that mostly interact with the problem statements in the

previous chapter are selected.

4.1 Bump mapping

Bump Mapping is a technique used to give an object more surface detail without

increasing the triangle count. It makes the surface of a smooth polygon appear
irregular or “bumpy” (Fig 21). These irregularities are constantly re-calculated when

the object is rotated in front of the camera. The technique was first invented by

James В linn in 1978 when he introduced the concept of wrinkled surfaces [BLI78].
After this pioneering work many other bump mapping techniques have been

developed and today they are widely used in many different applications. In this

chapter the concepts of bump mapping are introduced and an introduction to some of

the most common techniques is given.

Fig 21. A sphere rendered with world texture and bump-mapped world texture

A bump map is a texture map containing the surface information that will be applied
into a 3D model. A bump-mapped rendered surface is obtained by combining a base

texture with this bump map texture. The surface information can be given in several

24

forms. One example format is elevation or height map, which stores a height delta

value per texel. This texture map is generally stored in a grayscale format, since only

one byte is required for this information (Fig 22).

Fig 22. An elevation map of the world

Another example is a normal map which contains the normal vector for each texel in

the texture map. The RGB data is in this case used to encode the 3D coordinates of

the normal vectors (Fig 23). Usually these both surface maps are created offline

before rendering and used in real-time rendering to produce the bump mapped

rendered surface with the selected bump mapping technique. The two most common

ones are explained below. [IMAOO]

Fig 23. A normal map created from the elevation map

25

4.1.1 Tangent space

In order to create bump mapped surface from the elevation or normal map, a light

vector (L) must be calculated for each vertex of the object and for each light in the
rendering scene. Light vector is a vector pointing from the vertex to the light, so it

must be calculated only once if directional light is used, and separately for every

vertex if point light is used.

In order to obtain the light vector affecting

each vertex in the object, surface

orientation has to be known in every

vertex. This is accomplished by adding

two other vectors to the vertex normal to
define a cartesian space. The normal (N), a

tangent vector (T) and a second tangent,

also called binormal vector (B), form what

is called a “tangent space” (Fig 24).

Tangent space is basically a set of vectors used to define a local coordinate system. It

is convenient to choose the tangent axis to be parallel to the texture и direction, and

compute the binormal axis to be perpendicular to both tangent axis and the normal

vector. Next the light vector must be rotated into tangent space at each vertex. This is

done by multiplying the light vector with the matrix constructed from the three

vectors of the tangent space:

Fig 24. Tangent space in three vertices (©
Imagination Technologies Ltd, 2000)

Lrotated - [A A A]5
A
N„

Bx
B„

TV. Я

(9)

Finally the direction of the light in each vertex in its own tangent space is known,

and the information can be used in bump mapping calculations.

4.1.2 Emboss bump mapping

Emboss bump mapping is the simplest existing form of real-time bump mapping. It

is quite simple to implement and works in the following way. The elevation map

buffer (Fig 22 on page 25) is copied to another buffer and shifted in some amount to

26

the direction of light. Next the new buffer is subtracted from the original buffer and

the result is stored. In the figure below, one can see an example result buffer where
the light is coming from top-right comer (Fig 25). Finally the emboss map is blended

with the original texture and the result is applied to the 3D object.

Fig 25. An emboss map created from the elevation map

Emboss bump mapping can be used in real-time with hardware that supports multi
pass rendering, but it requires support for multi texturing and three texturing units if

it’s required to be done in one-pass. Multi-texturing is supported by almost every

modem GPU (under five years of age), but three or more texturing units have been

available for only a few years. Also the bumpy effect created with emboss bump

mapping is not visually very convincing, especially when the light hits the surface at

a low angle. More history and mathematics about emboss bump mapping can be

found from Schlag’s article [SCH94J.

4.1.3 Dot product bump mapping

Because the other bump mapping techniques were visually not very good looking, it

was probably Mark Kilgard from NVidia who first invented the concept of dot
product bump mapping [KILOO], This makes sense, since NVidia was the leading

GPU designer and manufacturer at that time. It’s much easier to develop some new

techniques when you can implement them in hardware at the same time.

27

The idea of dot product bump mapping is
very simple and is based on the dot product

of two vectors. If the vectors are normalized

(length is exactly 1), the dot product of these
two vectors is between -1 and 1. Most

interestingly it’s 1 if the two vectors are

parallel and 0 if they are perpendicular. This
result is used by taking the dot product of

the light vector L (chapter 4.1.1 on page 26)

and the value N of the normal map (Fig 23

on page 25) at each pixel,р/х,у):

Pd(x,y) - N • L И = 1>И = 1 (!°)

Since both vectors are in the same tangent space, the result indicates the amount of

diffuse light intensity in that pixel (Fig 26). Finally the dot product bump map is
blended with the original texture and the bumpy surface is achieved (Fig 21 right, on

page 24).

Dot product bump mapping produces quite convincing results and is today the most

used bump mapping technology. Like emboss bump mapping it requires at least three

texturing units to be done in one-pass and additionally a special hardware unit which

can compute the dot product quick enough. Almost any new GPU can do this.

4.2 Displacement mapping

Displacement mapping is a powerful technique for adding detail to three dimensional

objects. It was first mentioned by Cook [C0084] as a technique for adding surface
detail to objects in a similar manner to texture mapping. While bump mapping gives

the appearance of increased surface complexity, displacement mapping actually adds

surface complexity resulting in correct silhouettes (Fig 27). A major benefit of
displacement mapping is the ability to use it for both adding surface detail to a model

and for creating the model itself. For example all the detail required to model a piece

of terrain can be stored in a displacement map and a flat plane can be used for the

base surface.

Fig 26. Dot product bump map created
from the normal map and applied to a sphere

28

Fig 27. Bump mapping on the left, displacement mapping on the right (© Microsoft Research Asia,
2003)

Another way to process displacement mapping is to think it as a method of geometry

compression. A low-polygon base mesh is tessellated in some way. The vertices

created by this tessellation are then displaced along a vector which is usually the

Fig 28. Displaced vertices created from the
vertices of the surface along the normal

normal of the vertex. The distance they are

displaced is looked up in a 2D map called

the displacement map. This is visualized in

the figure on the left (Fig 28). The vertices

of the flat tessellated surface are displaced

with different amounts along their normals,

which produces the effect of displacement.

A more advanced view-dependent method

can be found from Wang's article

[WAN03],

Displacement mapping can be done on the CPU since it just involves moving
vertices along normals, but highly tessellated meshes can be expensive to send

through the bus, and a major point of displacement mapping is to avoid that bus

traffic. Hardware can accelerate this process by providing a tessellation unit, which

generates triangles on the simpler surface. For each of the vertices on these triangles,

the height field is sampled and an interpolated height is provided to the vertex

shader. The vertex position is then shifted by this height along the vertex normal.

Such functionality is supported in DirectX 9. [AKE02]

29

Even more compression can be archived by using a technique called displaced
subdivision surfaces, which was introduced by Lee, Moreton and Hoppe [LEEOO],

Subdivision surfaces is a method for compressing the geometry by storing only a

control mesh (Fig 29, left), which is then subdivided in real-time by tessellating the
polygons with some predefined algorithm to produce a smooth version (Fig 29,

center). After this, more details are added by using displacement mapping technique

(Fig 29, right).

Fig 29. Control mesh, subdivided mesh and displaced mesh (© Lee, Moreton and Hoppe, 2000)

4.3 Procedural texturing
Procedural texturing is quite a new method for producing textures with minimal

memory and bandwidth consumption. The ideas were first introduced to 3D graphics

by F. Kenton Musgrave and Ken Periin in the mid 80s, and today the procedural

texturing is widely used in real-time graphics. It’s a common naming convention for

the techniques creating the texture procedurally, which means that the texture is not a

stored bitmap but instead it’s created in runtime with some mathematical function.
Another advantage for using procedural texturing is that it helps the content creator

who designs the materials, since (s)he doesn’t have to do so much work applying the

material to an object. [EBE02]

Procedural texturing is mostly used for materials having some repeating but still

somewhat random pattern, like marble, stone or wood. They all look the same when
viewing them from a distance but have some random pattern when viewing at a close

range. The pattern still varies depending on the viewing location. It can’t be used for

creating textures with small details or varying patterns, like synthetic photographs or

exact detailing.

30

4.3.1 Periin noise

One of the most used procedural techniques is the concept of noise. It was invented

by Ken Periin in the mid 80's [PER85] and today the technique is widely used in

almost every game and motion film using computer generated animation or

materials. Procedural noise provides a controlled method of adding randomness to
various graphical concepts, including textures, bump maps, animation and just about

everything. [SPI03]

Noise is not just random values which are non-linear, but instead the noise consists

of random values varying smoothly. Another important feature is that the noise

values are actually pseudorandom, so with the same seed values it produces the same

output results. It can be constructed without obvious repeating pattern continuing

endlessly to all directions. In the figure below (Fig 30) a one dimensional noise is

drawn with red points marking noise values and blue interpolated smooth curve

connecting the values.

Fig 30. One dimensional noise

The noise can be constructed with various methods. The simplest way is that at first

one makes an array of salt and pepper noise and blurs it with averaging the values as

many times as needed and finally up-sampling to receive a smooth result (Fig 31).
This however is a very time consuming task and therefore suitable only for offline

content creation.

31

Fig 31. Salt and pepper noise blurred and up-sampled

The noise itself is not very interesting or great looking, but it can be used as a

building block to produce many natural effects that can be constructed
mathematically. It can be made more usable, when many noise maps are summed

and averaged. Usually the same noise function can be used to produce noise maps

with different frequencies (called octaves since usually the frequency doubles

between them) which are then averaged (Fig 32).

Fig 32. Taking average of noises at different octaves yields usable results

This averaging can be done in various ways, thus constructing very different noise

maps with small input variable changes. The actual noise map can be also used with
various methods depending on purpose. For example, a simple marble texture is

constructed by taking an average of dark and light bar texture and the noise map (Fig

33).

32

Fig 33. Creation of procedural marble texture

The creation of the noise can be done in real-time on the CPU or GPU, or offline on

the CPU and the choice between these depends on the purpose of using the noise. If

it’s done in real-time, there is no memory or bus overhead but it consumes more

CPU or GPU processing time. And on the contrary, if the memory and bus traffic do

not create a bottleneck, pre-calculated noise can be used and GPU power saved for

some other tasks.

4.4 Programmable pipeline

The fixed-function pipeline can not be complete enough for advanced and more

realistic lighting calculations. Because of this the hardware and software developers

created the programmable pipeline that could be used as an alternative to the fixed-

function pipeline. With it, one can use an assembler type of language to program the

GPU to do tasks with the data sent from the CPU to the GPU pipeline. Separate

programs must be created for both vertex and pixel processing and the programs can

be changed between the objects. It is also possible to replace only one of these and

let the GPU handle the other.

4.4.1 Vertex shading

Vertex shaders provide a way to modify values associated with each vertex of a

triangle, such as its color, normal, texture coordinates and position. This functionality

was first introduced with DirectX 8, and is also available as OpenGL extensions. The

capability to perform transform and lighting of vertices on the GPU became

available on consumer-level hardware in 1999. Up to this point it was normally done

on the CPU. As a drawback it forces to use the basic Gouraud/Phong model for

lighting, and any other variations can not be handled.

33

The vertex shader offers a big improvement to this situation. When the vertex shader

is enabled, the hard-wired T-n-L model (Fig 16 on page 17) is no longer available. In

its place the transform and lighting engine is replaced by a vertex shader unit, which

executes a series of commands written by the user. Vertex shader and fixed function

pipeline cannot be used simultaneously and a choice must be made which one to use.

The vertex shader program is stored in a form of assembly language, though macros

or higher level languages can be used to help in programming (more on this in

chapter 4.4.3 on page 35).

Every vertex passed in is processed by the vertex shader program. The vertex shader

can neither create nor destroy vertices and results generated with one vertex cannot

be passed on to be used by another vertex. Also there is no conditional branching in

the first and second generation versions of vertex shader, which means that no if, for
or while statements can be used, and every instruction of the shader is executed with

every vertex. Conditional branching is a part of the third generation shader version in

the near future. [AKE02]

Some of the using samples of vertex shader include effects such as shadow volume

creation, motion blur and silhouette rendering. Also different lens effects, such as the
fish-eye lens and object definitions by defining a polygon only once and having it be

deformed by the vertex shader (Fig 34), are possible.

Fig 34. Waving flag created from flat surface using vertex shader

4.4.2 Pixel shading

Pixel shading (also called fragment shading) takes place on a per-object, per-pixel

basis during the rendering. The idea is the same as with fixed-function multi-texture

pipeline, which means that a series of instructions operate on a set of constants,

interpolated values and retrieved texture values to produce a pixel color and

34

optionally an alpha value. Pixel shader can also compute texture coordinates and then

use them directly, modify the z-depth value and perform other operations not fitting

into the fixed texture stage concept.

The pixel shader is an alternate part of the pipeline that can replace the multi

texturing (Fig 16 on page 17). There are three sets of inputs for pixel shaders; the
interpolated diffuse and specular colors and alphas, eight constants, and four or more

texture coordinates. Each of these is a vector of up to four values. A pixel shader

consists of definitions of the constants, a number of texture address instructions and a

number of arithmetic instructions.

The term “texture coordinates” is a little bit misleading, since the data stored can

represent anything. Each texture coordinate is accessed by a texture address

instruction, which treats the coordinate as a traditional lookup and filtering of a

texture, as a vector or as part of a matrix. The texture coordinates themselves can
also be passed through and directly accessed by arithmetic instructions. [AKE02]

The possible usage area of pixel shader is wide, but usually they are related to per-

pixel effects, such as per-pixel lighting and fragment post-processing. In the figure

below is an example where vertex and pixel shaders are used with textures to

visualize per-pixel lighting with bump mapping (Fig 35).

Fig 35. Flat surface rendered with per-pixel lighting using vertex and pixel shaders (© ATI, 2003)

4.4.3 Shading languages

Creating assembly language programs for vertex and pixel shaders, rather than
defining complex multi-texturing pipeline setups, means that editing and reading the

code is easier. Even so, individual shaders for particular hardware are hard to write,

35

have often portability problems and can quickly become obsolete or inefficient

without active maintenance to move them to newer architecture.

Although the vertex and pixel shaders are new to real-time graphics, the idea of

higher level languages for shading came from Cook’s ideas [С0084]. They have

been used in an offline rendering software such as Pixar’s RenderMan interface

[Р1Х00]. When the real-time shading assembler language came with the new

hardware, the hardware and software vendors started to develop a C-style higher
level language and compiler for both DirectSD and OpenGL. The first attempt was to

develop a language that would be platform independent, but it turned out to be
impossible, and due to this now there are three shading languages that are similar but

have some individual specialties.

OpenGL Shading Language (GLSL)

The OpenGL Shading Language is based on ANSI C and many of the features have

been retained, except when they conflict with performance or ease of
implementation. C has been extended with vector and matrix types (with hardware

based qualifiers) to make it more concise for the typical operations carried out in 3D

graphics. Some mechanisms from C++ have also been borrowed, such as

overloading functions based on argument types, and ability to declare variables

where they are first needed, instead of at the beginning of blocks. [KES04]

The OpenGL shading language is constructed on top of OpenGL version 1.4 and

since the Windows operating system is supporting only version 1.1 of OpenGL, this

language is not very important in this thesis.

DirectX High-Level Shader Language (HLSL)

Microsoft DirectX 9.0 contains the first release of a high-level shader language for

developing and debugging shaders in a C-like language. This capability is an

addition to the assembly language shader capability used to generate vertex shaders,

pixel shaders and effects, which began with DirectX 8.0. The language supports
many standard language features such as functions, expressions, statements, standard

data types, user-designed data types, and preprocessor directives. [MIC04d]

36

Shader programs are compiled to assembly language of vertex and pixel shaders in

real-time, which is usually done once per application runtime, and then the compiled

code is used in the vertex or pixel shader. It is possible to make separate shader
programs with each object, but usually this is not recommended since loading and

offloading the program takes time. It is advised to render the objects in the order of

materials, e.g. to render all the objects of the same material in a group, and then

move on to the next material.

C for graphics (Cg)

Cg is a similar language to HLSL and was created and is maintained by NVidia

Corporation. Actually at the beginning they were the same language, but at some

point Microsoft and NVidia decided to start developing their own languages.

Cg is a multiplatform language in a sense it can be compiled to be used for both

DirectX and OpenGL. The compilation can be done in real-time or as an offline
process in software compilation time. The user must choose the version of the shader

which will be used. The different versions are called profiles and a new profile must

be created for every new shader version. [NVI02]

37

5 Research Work

In this chapter the various techniques that have been tested during the work on this

thesis are explained. The findings made during the testing are presented and a

summary of the research is given.

5.1 Testing environment
For testing different techniques a graphical application was created that was easy to

use and simple to expand. It consists of a single window, in the center of which a

single object is presented, and a mouse as an input device, which can be used to

rotate the object and zoom in and out. The following hardware and software were

used:

• Mainboard: Intel Corporation D815EEA
• Memory: 512MB SDRAM
• CPU: Intel Pentium III 864MHz
• GPU: ATI Radeon 9700 Pro 128MB
• API: OpenGL 1.1
• OS: Windows XP pro (spl)

The hardware is not balanced, in a sense that the GPU is newer and much more

powerful compared to the CPU. The consequence from this is that the GPU has to

wait for the CPU in certain tasks and because of that is running idle occasionally.
This however affects only on speed testing and there is a separate note on text where

needed.

5.2 Testing various techniques

In this chapter the results of testing various surface rendering techniques are
presented. Three different objects were selected for the tests to represent some of the

most used object shapes in structural engineering; I-beam with holes, Y-pipe and

half-pipe. These can be seen smooth shaded without color in the next figure (Fig 36).

38

Fig 36. Three test objects; an I-beam with holes, an Y-pipe and a half-pipe

5.2.1 Testing texture mapping projector functions

The first test was to implement different 2D texture mapping projector functions and

visualize how they would act when applied to different 3D objects. The purpose of

this test was the idea it would be nice and easy to apply a texture to an object with

one function that would do it quite automatically. This way there would not be any

need for calculating the texture coordinates. The only tasks would be the decision of
which function to use and potentially the parameters of the function (starting point,

direction). Two different functions were tested, planar and cylindrical, onto three

different test objects (Fig 36).

Planar mapping

As noted earlier (chapter 2.2.5 on page 12), the planar projector function is the
simplest one to implement and it produces no discontinuities regardless of the shape

of the 3D object. However, it can only be applied to a flat 2D surface without any

deformations. If this is not a problem, it can be applied to any object as can be seen
in the following figures. In a figure below (Fig 37) a simple texture is mapped onto

the I-beam with planar mapping from aside and from top.

39

Fig 37. A simple texture planar mapped to an I-beam from two directions

As can be seen, in this case the deformations are not so annoying, since the object

contains mainly flat surfaces and right angles. However, the inconvenience of the

deformation depends on the texture used and the angle from which the planar

mapping is applied. In the figure below, one can see a hatch texture (Fig 38 on top)
mapped to an I-beam with planar mapping directly from aside (Fig 38 on left) and

from 45 degree angle (Fig 38 on right). On the former method the hatch is not

recognizable on top of the I-beam, and on the latter method it is recognizable but it

has stretched into one direction.

Fig 38. Hatch texture planar mapped onto an I-beam from two different directions

40

With Y-pipe this is no longer the case, since there are no flat surfaces, and because of

this the flat texture becomes deformed almost in every point of the surface of the Y-

pipe. This can be seen in the figure below (Fig 39), where the simple texture is

mapped with planar function onto the Y-pipe from two different angles. The code

that was created for the planar mapping can be found from Appendix C.

Fig 39. A simple texture planar mapped onto an Y-pipe from two directions

Cylindrical mapping

With cylindrical mapping (chapter 2.2.5 on page 12) one has to decide the axis

direction and location of the cylinder. This was tested with a naturally cylindrical
half-pipe object. The length axis of the half-pipe

was chosen, which guarantees that the texture

image is not deformed on the surface of the

object. It is however a little smaller on inside

surface of the pipe compared to the outside. Two

different textures were mapped to the half-pipe,

as can be seen in the figure (Fig 40).

Cylindrical mapping can be mainly used to

cylinder shaped objects, since mapping to objects

shaped differently produces both discontinuities

and deformations. The calculation of texture

coordinates is still quite a simple procedure. The

code that was created for the cylindrical mapping
Fig 40. Two different textures
cylindrical mapped to a half-pipe can be found from Appendix C.

41

5.2.2 Anti-aliasing testing with Steel mark

Full-screen anti-aliasing (chapter 2.2.6 on page 16) was chosen for testing, because it

makes the rendered image smoother and lowers the amount of jaggedness at the

edges of the objects. This is normally perceived as increased visual quality of the

rendered image by the viewer. The down-side of this increased visual quality is that
the anti-aliasing techniques are very time consuming, and due to this decrease the

speed of the rendering. The purpose of this test was to measure the impact on
rendering speed. Since the main testing environment (chapter 5.1 on page 38) is not

balanced, the following testing hardware and software were used when testing anti

aliasing:

• Mainboard: Dell Latitude C810
• Memory: 512MB SDRAM
• CPU: Intel Pentium III Mobile 1133MHz
• GPU: NVidia GeForce2 Go 32MB
• API: OpenGL 1.1
• OS: Windows XP pro (spl)

To test the impact of anti-aliasing on rendering speed, a small Tekla utility called

Steelmark was used. It is a small program displaying a copy of a real 3D model on

the screen with resolution of 800x600x32 (width, height, color bits) and shows a
short animation by flying through the model. The rendering speed is measured by

calculating the average rendering time per frame and taking an inverse from that

time. This tells the average frames per second (ips) speed. The model used was

chosen to be of an average size, so that the test result would be usable. The

Steelmark was run without anti-aliasing and with 2x anti-aliasing and the result was

that without anti-aliasing the rendering speed was 19.8 ips, and with anti-aliasing
11.6 ips. So without anti-aliasing the rendering was 71% faster. (Appendix A)

However, this speed difference varies a lot depending on the balance of the GPU and
the CPU. For example, with the main testing environment (chapter 5.1 on page 38),

enabling the anti-aliasing has no effect on rendering speed, since the GPU

outperforms the CPU so clearly. And the more powerful the CPU is compared to the

GPU, the more the speed difference will be between anti-aliased and aliased

rendering.

42

Another speed test with almost the same GPU as was with the original testing
environment (ATI Radeon 9700, chapter 5.1), but with balanced hardware, was also

compared [SAL02], In this test the rendering speed was measured with the
Futuremark's 3DMark2001SE with resolution of 1024x768x32, but the results were

similar. The speed score without anti-aliasing was reported to be 14539 and with

anti-aliasing 10748. This gives 35% speed increase without anti-aliasing.

The impact of anti-aliasing on the quality of the rendered image was checked by

inspecting the image visually. In the figure below (Fig 41) there is a zoomed area

from the model where one can clearly see the difference between aliased and anti
aliased images. The difference between these two is visually more evitable when the

screen resolution is smaller and the screen pixel size is larger.

Fig 4L Zoomed image from the model without and with anti-aliasing

5.2.3 Testing dot product bump mapping

From different bump mapping techniques (chapter 4.1 on page 24), the dot product

bump mapping was chosen for testing, since it is the most used, supported and most

likely the best looking bump mapping technique (as can be read from Imagination's

bump mapping comparisons [IMA00]). When using OpenGL, there are ARB
extensions for direct support of this kind of bump mapping, and this can be used if

the underlying hardware is capable of multi-texturing and dot product between two

textures.

43

The bump mapping was implemented with two passes (meaning the object is

rendered twice and the results are combined). In the first pass the light vector from

the light source to each vertex is calculated in tangent space and the dot product is

taken with this light vector and the normal vector from the normal map. This

produces the lighting value for each pixel, which is then modulated in the second
pass with the base texture color. The results can be seen in the figure below (Fig 42),

where the half-pipe is textured with tile-texture on the left, with bump mapping

enabled on the center and from another angle on the right.

Fig 42. Half-pipe textured with tiles, without and with bump mapping

As can be seen, the bump mapped version gives a feeling of individual tiles, but this
comes with the cost of incremented drawing time. Even when the dot product is

supported by hardware, the bump mapped version of an object will always take quite

a lot more time than the smooth object to draw and this should be taken into

consideration when using it. Similar results were achieved in Imagination

Technologies' bump mapping comparison tests [1МА00].

5.2.4 Testing pixel shader materials using Cg

For testing various material creations with pixel shader, the Cg language (chapter
4.4.3 on page 37) was chosen as the development environment, because it seemed it

could be the future standard of shading languages. The same testing software

mentioned before was modified to use Cg, and in this chapter the materials created

with Cg are presented.

44

Periin noise

When creating natural materials, the periin noise (chapter 4.3.1 on page 31) is very

essential since it gives the material the feeling and look of some randomness and

irregularity common to natural materials. The periin noise was used in the testing by

creating a 3D texture map with the pattern being repeatable to every direction, which

assured that no discontinuities were visible. In the next figure (Fig 43) one can see

the 3D periin noise texture mapped onto the у-pipe with two different frequencies.

Fig 43. Y-pipe covered with 3D periin noise with two different frequencies

On the right the frequency is doubled compared to the left version. The periin noise

alone is not very useful, but when adding the different frequencies together with

different weighting coefficient and some color, interesting results can be seen. This

method is used with all the materials described below.

Concrete

Because concrete is the basic building material in structural engineering, it was

chosen to be the first material tried to simulate. It was constructed very simply by

just adding three different frequencies of periin noise with different coefficients, and

blending them with grey color. The largest weight was given to the basic frequency,

half the weight to the higher frequency and one quarter weight to the highest

frequency:

45

p(x,y) = Cv(\-C (11)
Nfl + 0.5Nfl + 0.25iV/4 л

L75)

where p(x,y) is the resulted pixel color, Cv is the color value from vertex shader, TV/is

a noise value from three different frequencies and C is a constant for selecting the

contrast between dark and light areas within the concrete. The results of this can be

seen in the figure below (Fig 44) and the pixel shader code for creating concrete can

be found from Appendix B.

Fig 44. Y-pipe object covered with concrete material

Stone

Stone is another building material in structural engineering and thus it was chosen for
testing. Stone was constructed by adding two different frequencies of the periin noise

with different weights and blending them with reddish color. This time the largest

weight was given to the highest frequency and half the weight was given to the basic

frequency (for explanation, see Eq 11):

N f4 + 0.57V np(*,y)=c,(\-c /4i5 f~) (12)

This simulates the small graininess of the surface of a stone. The result can be seen in
the next figure (Fig 45) and the pixel shader code for creating stone can be found

from Appendix B.

46

Fig 45. Y-pipe object covered with stone material

Wood

Wood was chosen to be the third material to be simulated, since it is also important

building material and can be modeled quite simply. Wood was created by modeling

the structure of a tree in three dimensions. This was done by first creating the cross-

section of the tree, which models the annual rings of the tree (Fig 46).

Fig 46. Wood rings created with pixel shader

The annual rings were created at the pixel shader by calculating the distance to the

center of the given object axis, and giving the pixel dark or light color values

depending on the distance. The transition from light to dark color was smoothed with
slope function. The irregularities at the annual rings were created by taking a random

47

number from the 3D periin noise texture map, and varying the distance between the

annual rings and their center with this number:

d = a(yjx2 + y2 +N/b) (13)

f = 3d2 -2d3 (14)

where d is the distance from the center to the texture coordinates (*,/) shifted with

noise value N. a is a factor for scaling the rings, A is a factor for scaling the noise and
/is the used slope function for smooth transition from light to dark color. The final

pixel color p(x,y) was determined by:

p(x,y) = CJ(\-N/c) (15)

where Cv is the color value from the vertex shader,/is the slope function (Eq 14), N

is the noise value and c is a constant for scaling the noise value.

The third dimension, which is parallel to the rings, was also randomized by adding a
value from the 3D periin noise map to the location of the dark rings in the third

dimension. When the 3D wood is applied to an object, the vertex coordinates of the

object can be used as texture coordinates, and only some shifting and the direction of
the rings must be decided. In the next figure (Fig 47) one can see the wood material

applied to a Y-pipe and viewed from two different directions. The pixel shader code

for creating wood can be found from Appendix B.

Fig 47. Y-pipe covered with wood material

48

5.3 Comparing various techniques
In this chapter the different techniques discussed previously and tested in the

previous chapter are summed up. The advantages and disadvantages for using each

of these techniques are given and some thoughts about how they correlate with the

problem statements are made (chapter 3).

5.3.1 Texture mapping

The clear advantage of using texture images and texture mapping (chapter 2.2.5 on

page 10) is that complex surface patterns can be represented with one bitmap image,
instead of creating a triangle for each separate color of the surface. One can also take

a photograph of a real material and use the image as a texture.

The big problem is how the texture coordinates should be generated. There is no

common solution how to cover or wrap the three dimensional object with the two

dimensional texture without deformations. This can be done only in specific
circumstances (chapter 5.2.1 on page 39). With 3D textures the problem would not

exist, but the memory consumption with static 3D textures is so large that there can

only be a few of them in use.

To sum up texture mapping with the problem statements, one can say that they add

visual information to the model. 2D textures are fast to render, don’t consume much

memory, but the texture coordinates are hard to edit. Static 3D textures are also fast

to render, their texture coordinates are easy to edit, but they consume lots of memory.

5.3.2 Anti-aliasing

Full-screen anti-aliasing (chapter 2.2.6 on page 16) is a very simple technique to use.

Today almost every GPU has the ability to perform full-screen anti-aliasing, and it

can easily be switched on and off by the user from the settings of the GPU. It is quite

clear the technique makes the rendered image more pleasant to look at, but in some

cases this comes with the cost of highly increased rendering time (chapter 5.2.2 on

page 42).

49

5.3.3 Bump mapping

With bump mapping (chapter 4.1 on page 24) one can make the surface of an object

look rough or grainy instead of flat. This highly increases the natural look of the

surface, especially when it is used with the texture mapping. The most used and

supported technique, dot product bump mapping (chapter 4.1.3 on page 27), was
tested (chapter 5.2.3 on page 43). As a result, it was noted this technique adds visual

information to the object by helping the viewer to see the irregularities of the surface.

The memory consumption is the same as with texture mapping, since the normal

maps are stored as texture maps, but the impact on rendering speed is noticeable.

However, as the graphics hardware evolves, the difference of the rendering speed

between bump mapping and flat surface rendering gets smaller and the technique can

be used without a large performance decrease. The implementation of dot product

bump mapping requires quite a lot of work, and the material editing problems are

almost the same as with texture mapping.

5.3.4 Procedural texturing

The biggest advantage of using procedural texturing (chapter 4.3 on page 30) is its

low memory consumption. Since all the texture graphics are calculated on-the-fly,

there is no need to store any texture bitmaps (chapter 2.2.5 on page 10), which

normally consumes large amounts of memory. Also there is no fixed bitmap

resolution, since the level of detail needed is decided on runtime. Additional
advantage from this is that there is no repeating pattern like with the normal texture

map that is repeated, so the texture can cover arbitrary large areas without repeating.

The biggest disadvantage is the computation time needed to produce the procedural
texture. The time needed can vary vastly, but usually it’s longer than the time to get

the values from a bitmap texture. Another disadvantage is the aliasing effect when

using the same procedural function with all distances between a camera and an

object. This has the same effect as using texture mapping without mipmapping (Fig

12 on page 14), and it requires lots of work to overcome this problem.

50

5.3.5 Shading languages

When testing the shading languages, the Cg was chosen as it seemed to be the future

standard of shading languages at the time. It is the only language that can be

compiled to both OpenGL and DirectSD, and since both of these must be supported

(chapter 2.1 on page 4), it was the natural choice. Only the pixel shader was chosen

for testing, because the vertex shader is also responsible for lighting calculations, and

the basic Gouraud shading (chapter 2.2.4 on page 8) implemented in OpenGL was

adequate enough in this work.

Three different materials where created using pixel shader to procedurally create
concrete, stone and wood. The advantage of this, compared to bitmaps in texture

mapping, is that there is no need to store the bitmap anywhere and hence no memory

consumption. This is especially a big advantage when creating true 3D materials, as

was the case here. Since the materials are three dimensional they can be applied to

any object, regardless of their shape, without any discontinuities or deformations

(chapter 3.2 on page 22) and the texture coordinate definitions can be done

automatically.

There are also downsides when using pixel shader. With the test configuration, the
impact on rendering speed was clearly noticeable when compared to conventional

texture mapping, but it will get better in the future with new hardware, since lots of

research is put on the development. The bigger problem is the anti-aliasing effect and

the problem of solving it. Since the materials are created in pixel level on computer

screen, it is hard to construct a mechanism for calculating the anti-aliased material as

it is done with the basic texture mapping (chapter 2.2.5 on page 10).

5.4 Summary of research work
The ground for research work was laid out in chapter 3, where the research problem

was studied and presented. Keeping these in mind, carefully selected 3D graphics

techniques were selected for deeper investigations and these were presented in
chapter 4. In this chapter all the material in the first four chapters was studied, and

on that basis the research testing was carried out.

51

At first a testing environment, powerful enough for testing even the newest

techniques, was constructed (chapter 5.1). However it turned out unsuitable for speed

critical testing and another testing environment was used when needed.

Secondly, testing software was built for testing various 3D techniques introduced

previously. It was not possible to test every 3D graphics technique, so only those
techniques that seemed possible and meaningful to implement were included in the

testing software. The techniques selected for testing and the results of these tests

were presented in chapter 5.2.

In the next chapter (5.3) the tested techniques were put on deeper analysis; their

advantages and disadvantages were discussed and their relation to the research
problem statements (chapter 3) was investigated. As a result it was noted they all add

some visual quality to an object and also some visual information to the model.

For efficiency, the rendering speed and memory consumption were studied, and it

was noted that rendering speed was decreased with anti-aliasing, bump mapping and

pixel shader, but the amount of decrease is dependable on the hardware used. Also as
the hardware evolves, the amount of decrease of the rendering speed will get smaller.

With memory consumption it was noted that static 2D texturing is possible to

implement, but static 3D textures in general consume too much memory to be usable.
Bump mapping requires twice as much memory as 2D texturing. With pixel shader

materials the memory consumption is very marginal, since they use procedural

rendering methods.

The third point of research problem was the editing problem, meaning that no matter

how great some technique might be otherwise, it can't be used if it is too hard to be

implemented or edited by the user. 2D texturing is quite easy to be implemented, but

the texture coordinate definition is quite a challenge. This however can be overcome

with the projector functions. Full-screen anti-aliasing is easily enabled from the
settings of the GPU. Bump mapping requires quite a lot of work to implement, and

the texture coordinate definition problem remains the same as with 2D texturing.

Also pixel shader material support requires lots of work to implement, but after the

support is done, it should be quite easy for the user to create new materials with the

Cg language.

52

In the table below (Table I), one can find the five techniques tested and their relation

to four indicators, which are visual quality, memory consumption, rendering speed

decrease and implementation difficulty.

Technique Visual quality Memory
consumption

Rendering
speed decrease

Implementation
difficulty

Texture
mapping

Better than plain
colors

2D: moderate,
3D: high Low Low

Anti
aliasing Smoother edges None High on average Low

Bump
mapping

Adds roughness
to surfaces

2 x texture
mapping Moderate Moderate

Procedural
texturing Varies Low Moderate High

Shading
languages

Almost anything
Is possible Low Moderate High

Table I. Comparing five tested techniques

53

6 Implementations

During the work on this thesis, some of the techniques described were implemented

to the Tekla Z-kit library (chapter 1) and to its support libraries.

6.1 Fog and texture mapping support
First the fog support was implemented (chapter 2.2.3 on page 7) to material

definitions, to help the viewer of the model to see more precisely the depth of an

object (Fig 48). The fog is dynamically calculated so the closest object to the viewer

is not affected by the fog effect, and the farthest object has the same amount of fog

regardless of the view distance.

Fig 48. Fog effect on material helps the viewer to see the depth in the scene

Another technique implemented was the basic texture mapping support (chapter

2.2.5 on page 10). This means the users of Tekla Z-kit have the ability to assign a

texture bitmap to a material, and when doing so, the object must be supplied with the

texture coordinates. An example of this can be seen in the next figure (Fig 49), where

a simple object is covered with texture bitmap emulating a simple brick, which

makes the object look like a brick wall.

54

Fig 49. Brick wall created with the texture support of the Z-kit

6.2 Support editors for Z-kit
For editing the different material definitions and the lighting of the scene, three

simple graphical editors were created. A material editor can be used to edit the

properties of a single material definition, such as color, transparency (alpha) and

shininess (Fig 50). Separate colors must be defined for both surfaces and edge lines

of surfaces. Also the visualization effects are separate for both. The material editor is
constructed in a way that every change made in the editor can be seen real-time in

the model.

Fig 50. Material editor for editing Z-kit materials used in Tekla Structures

A separate presentation editor was created for creating different presentations. A

presentation consists of selected materials (Fig 51). The idea of having a presentation

55

is that it is easy to change the look of the whole model by changing the presentation.
Also the presentation editor was created in a way that the modifications made could

be previewed in the model at the same time. A class in the editor is a definition of

Tekla Structures for materials with different states.

Fig 51. Presentation editor for editing Z-kit presentations used in Tekla Structures

The visual look of the materials on the surface of an object depends on the lighting of

the scene and how they interact with each other (chapter 2.2.4 on page 8). This
interaction is controlled by the lighting processor or the vertex shader of the GPU

(Fig 16 on page 17). To help the Z-kit user to see how the different lighting settings

affect with the materials, a lighting editor was created that could help to edit the

lighting in the window (Fig 52).

Lighting: WINDOW LIGHTING

Lighting
Liqhts Settings

1 ambient Hue

light 2 Saturation

Value

Type

Create Delete
Position

Direction

Preview

7>
>

|o.oo |o.oo [Ш
|o.52 |0.43 [Ö77

R [CL5T

G [¡ШГ

в [¡ш

Fig 52. Lighting editor for editing lights in the window

Every window must set the global ambient color and zero or more light sources.
Light source can be directional or point light, and for now the lights are always

56

relative to the camera (local lights). The directional light emulates the behavior of the

sun, and the point light is like a lighting bulb, which have a position in space. The

direction and position can be altered with the mouse by rotating the small ball around

the big ball, as can be seen in the figure above (Fig 52). Also the lighting editor was

created in a way that the modifications made could be previewed in the model

window at the same time.

The documentation and code for these three support editors can be found from

Appendix D.

57

7 Conclusions and Future Work

In this final chapter the thesis is reviewed in short, conclusions are made and some

thoughts about future work are given.

7.1 Conclusions
The problem statement given by the Tekla Corporation was not defined very exactly,

which gave the freedom to choose the way it would be approached. It also forced to

think deeply what should be included in the thesis and what shouldn't, and how to

include all the essential texts that would be required to make this thesis reasonable.

The work was started by thinking about the overall problem (chapter 1) and defining

the research problem (chapter 3) more clearly. Shortly, the problem was that

previously only colors and lighting were used to distinguish different materials from

each other in Tekla's structural engineering software Tekla Structures. The work was
about finding new techniques to define new materials and possibly implement some

of those in Tekla.

The writer had some basic knowledge about 3D graphics techniques and based on

those, books were read and articles concerning new 3D techniques searched. From

these some of the most used and new 3D techniques in use, were selected, and an

introduction to the techniques was given (chapter 4). Bump mapping is widely used,

but requires some special hardware support and is somewhat complex to implement.

It also has some shortcomings, which are tried to overcome with displacement
mapping technique. Procedural texturing techniques are also widely used and they

should be used when the memory consumption is the key factor of performance. The

newest heading in the field of 3D graphics are the vertex and pixel shaders, which
make the GPU act very much like the CPU, meaning it can be programmed by the

user with high level languages. It is however quite difficult to take shaders in use and

to build an implementation that supports them.

On the next phase, a testing environment was constructed for testing how difficult

the various techniques would be to implement and how difficult it would be to
evaluate their performance hit on rendering speed and memory consumption (chapter

5). The testing environment consisted of decent computer and a high-end graphics

58

accelerator with self-made software that could load and render basic 3D objects with

different material definitions. Various 3D techniques from previous chapters were

selected for testing, and they were also compared to each other, as well as their

interaction with the research problem was studied.

As a result it was noted that the basic static 2D texture mapping is quite easy to

implement, but texture coordinates definition is difficult to handle. Projector

functions can provide some help, but on general level they can be used only to
specific objects. Full-screen anti-aliasing can be easily enabled, but with most

hardware configurations it causes considerable decrease of rendering speed. Bump

mapping however does not cause any remarkable performance decrease with high-

end graphics hardware, but it is quite difficult to implement and use. The newest

field in 3D real-time rendering is the vertex and pixel shaders, which bring the

programmability of the CPUs also to GPUs. This opens up huge possibilities since
now the graphics accelerator programmer can do almost anything with the GPU. In

this thesis the pixel shader was used to create procedural materials simulating real-

life materials, and it was noted that the result was visually pleasing, but the

implementation of the shader support requires some more work.

On the final phase some implementations were carried out (chapter 6). The basic fog

and 2D texture mapping support were added to the Z-kit library and material and

lighting editors were created as stand-alone support libraries that could be added to

any software using the Z-kit library.

7.1.1 Comparing results to problem statements

The main purpose of this work was to find methods how to add visual information to
large models created with Tekla Structures (chapter 3.1). Here the visual information

was meaning a more pleasant look and feel of the model, and also how one could add
some visual object related information on the model. The various techniques tested

do give the objects a more pleasant look, and they increase the number of materials

possible to view on the screen. They do not, however, increase the methods to add

visual object related information very much, and thus more work needs to be done

with this problem.

59

The minor purpose of this work was to possibly implement some of the techniques,
keeping in mind that they must be efficient (chapter 3.2) and easy to edit (chapter

3.3). The implemented techniques to Z-kit (fog and basic 2D texture support) are

very efficient, since neither of them slows down the rendering process noticeably.

Also the fog support consumes no memory, but the texture support needs some extra

memory handling routines.

For editing materials easily, three graphical support editors were created. These help

the user of the Z-kit to edit the materials and lighting conditions with graphical user

interface. Compared to editing them manually with a text editor, the graphical editors

give a big improvement.

7.2 Future Work
From now on the development of the Z-kit library continues, and in the next phase

the intention is to use the vertex shader to do some of the vertex related calculations
currently done in the CPU. This will increase the rendering speed, since now lots of

the rendering work is done on the CPU, and the Z-kit library is CPU bounded with

most hardware configurations. Other implementations to be done are the support of

texture coordinate generation into the material editor and the possibility to use

projector functions. This would help the user of the Z-kit library to use the

implemented texture mapping support. Other 3D techniques introduced in this thesis

are also taken into consideration, and they might be in use in the future.

60

References

[AKE02] Akenine-Möller, Tomas & Haines, Eric - Real-Time Rendering, 2nd ed.,
A. К. Peters Ltd., 2002

[AKI98] Akin, Alan - Microsoft and 3D Graphics: A Case Study in Suppressing
Innovation and Competition,
http://www.vcnet.com/bms/features/3d.html, 1998

[BLI78] Blinn, James - Simulation of Wrinkled Surfaces, SIGGRAPH
Proceedings of the 5th annual conference on Computer graphics and
interactive techniques, pp. 286-292, 1978

[BLY99] Blythe, David et al. - Advanced Graphics Programming Techniques
Using OpenGL, SIGGRAPH 99 Course,
http://www.opengl.org/resources/tutorials/sig99/advanced99/notes/notes.
html, 1999

[C0084] Cook, Robert L. - Shade Trees, Computer Graphics, Vol. 18, Nr. 3, pp.
223-231, July 1984

[DUN02] Dunn, Fletcher & Parberry, Ian - 3D Math Primer for Graphics and
Game Development, Wordware Publishing Inc., 2002

[EBE02] Ebert, David et al. - Texturing & Modeling: A Procedural Approach, 3rd
ed., Morgan Kaufmann, 2002

[GOU71] Gouraud, H. - Computer Display of Curved Surfaces, Transactions on
Computers, Vol. 20, pp. 623-629, 1971

[HAE90] Haeberli, Paul & Akeley, Kurt - The accumulation buffer: hardware
support for high-quality rendering, Computer Graphics, Volume 24,
Number 4, August 1990

[HEA97] Hearn, Donald & Baker, M. Pauline - Computer Graphics, C Version,
2nd ed., Prentice Hall Inc., 1997

[IMAOO] Imagination Technologies Ltd - A comparison of Bump Mapping
techniques,
http://www.pvrdev.eom/pub/PC/doc/f/Bump%20Mapping%20Comparis
on .htm, 2000

[KEROO] Kerlow, Isaac - The Art of 3-D Computer Animation and Imaging, 2nd
ed., John Wiley & Sons Inc., 2000

[KES04] Kessenich, John et al. - The OpenGL Shading Language (Version 1.10),
http://www.opengl.org/documentation/oglsl.html, 2004

[KILOO] Kilgard, Mark - A Practical and Robust Bump-mapping Technique for
Today ’s GPUs, Game Developers Conference (GDC) Proceedings:
Advanced OpenGL Game Development, 2000

[LEEOO] Lee, Aaron et al. - Displaced Subdivision Surfaces, ACM Proceedings of
the 27th annual conference on Computer graphics and interactive
techniques, pp. 85-94, 2000

61

[LUN03]

[MIC04d]

[MIC04O]

[NVI02]

[PER85]

[PH075]

[PIXOO]

[SALOl]

[SAL02]

[SCH94]

[SEG97]

[SGI04]
[SPI03]

[TEK04]
[WAN03]

[W0097]

Luna, Frank D. - Introduction to 3D Game Programming with DirectX
9.0, Wordware Publishing Inc., 2003
Microsoft Corporation - DirectX Graphics, MSDN Library,
http://msdn.microsoft.com/librarv/default.asp7urWlibrary/en-
us/directx9 c/directx/graphics/dxgraphics.asp, 2004
Microsoft Corporation - OpenGL Start Page, MSDN Library,
http://msdn.microsoft.com/librarv/default.asp7urWlibrary/en-
us/opengl/openglstart 9uw5.asp, 2004
NVidia - Technical Brief: The NVidia Cg Compiler,
http://www.nvidia.com, 2002
Perlin, Ken - An Image Synthesizer, ACM Proceedings of the 12th
annual conference on Computer graphics and interactive techniques, pp.
287-296, 1985
Phong, Bui Tuong - Illumination for Computer Generated Pictures,
Communications of the ACM, Vol. 18, Nr. 6, pp. 311-317, June 1975
Pixar - The RenderMan Interface, Version 3.2,
https://renderman.pixar.com/products/rispec/index.htm, 2000

Salvator, Dave - ExtremeTech 3D Pipeline Tutorial, Extreme!ech,
http://www.extremetech.com/print article/0,1583,a=2674,00.asp, 2001
Salvator, Dave — ATI's Radeon 9700 Scores Big, ExtremeTech,
http://www.extremetech.com/print article2/0,2533,a-30125,00.asp, 2002

Schlag, John - Fast Embossing Effects on Raster Image Data, Graphics
Gems IV, Academic Press Inc., pp. 433-437, 1994
Segal, Mark & Akeley, Kurt - The OpenGL Graphics System: A
Specification (Version 1.1), Silicon Graphics Inc.,
http://www.opengl.org/documentation/specs/versionl. 1/glspecl. 1/index.
html. 1997
SGI - OpenGL, http://www.sgi.com/software/opengl/, 2004

Spitzer, John - Real-Time Procedural Effects, Game Developers
Conference Europe (GDCE),
http://www.gdconf.com/archives/2003E/index.htm, 2003
Tekla Corporation - Tekla Structures, http://www.tekla.com, 2004
Wang, Lifeng et al. - View-Dependent Displacement Mapping, ACM
Transactions on Graphics, Vol. 22, Nr. 3, pp. 334-339, July 2003
Woo, Mason et al. - Opengl Programming Guide: The Official Guide to
Learning Opengl, Version 1.1, 2nd ed., Addison-Wesley Publishing Co.,
1997

62

Appendix A - Steelmark run

Steelmark run without antialiasing:

steelmark vO.2
Computer name : ZSMR
Operating system: Microsoft Windows XP Professional Service Pack 1 (Build 2600)
Prosessor:

count 1 (586, 6, 11, 1) (type, level, model, stepping)
speed 1129 MHz
memory 511 Mb

Display driver:
Dell C810 (nv4_disp.dll)
6.14.10.4482 (product, version, subversion, build)

digitally (WHQL) signed without date
loadTime 4.68 s
maxFrameTime (ms): 135.32 102.21 101.83 101.78 100.92 100.71 100.61 100.46 100.4
0 100.17 99.89 99.84 99.61 99.59 99.46 99.34
minFrameTime (ms): 19.55 20.20 20.22 20.27 20.29 20.29 20.34 20.35 20.37 20.46 2
0.47 20.49 20.50 20.52 20.71 20.81
total frames 591
total frames time used 29.892641 s (99.642%)
avgFrameTime 50.58 ms (19.77 fps)

Steelmark run with antialiasing:

steelmark vO.2
Computer name : ZSMR
Operating system: Microsoft Windows XP Professional Service Pack 1 (Build 2600)
Prosessor:

count 1 (586, 6, 11, 1) (type, level, model, stepping)
speed 1129 MHz
memory 511 Mb

Display driver:
Dell C810 (nv4_disp.dll)
6.14.10.4482 (product, version, subversion, build)

digitally (WHQL) signed without date
loadTime 4.79 s
maxFrameTime (ms): 273.87 147.85 146.97 146.02 145.57 145.07 144.73 144.63 143.6
5 142.83 142.72 142.52 142.19 142.15 142.15 140.01
minFrameTime (ms): 37.26 37.52 38.44 39.28 41.11 41.16 41.16 41.18 41.36 41.36 4
1.86 42.49 42.53 42.55 42.69 42.74
total frames 348
total frames time used 29.964377 s (99.881%)
avgFrameTime 86.10 ms (11.61 fps)

63

Appendix В - Code for pixel shaders

The following is the code for the pixel shader creating concrete

ll
// pixel shader code for creating concrete

struct vertout
{

float4 position
float4 coloro
float4 texcoordO

};

// output from vertex shader

POSITION; // position in view coordinates
COLORO ; // pixel color
TEXCOORDO; // pixel texture coordinates value

//--
//IN - incoming fragment to be processed
// noiseTextureSd - a texture for the pixel shader to use, 3d periin noise map
//----------------------------------- ---

struct pixout // output from pixel shader
{

float4 color : COLOR; // pixel color
};
pixout main(vertout IN,

uniform sampler3D
{

pixout OUT;
float noisevalue =

(tex3D(noiseTexture3d,
tex3D(noiseTexture3d,
tex3D(noiseTexture3 d,

noiseTexture3d)

IN.texcoordO.xyz) +
IN.texcoordO.xyz * 2)
IN.texcoordO.xyz * 4)

//
* 0.5 + //
* 0.25) / 1.75,-

normal frequency
double frequency
//quad frequency

OUT.color = IN.color0 * (1 - noisevalue / 4);

return OUT;
]lll

The following is the code for the pixel shader creating stone:

ll
II pixel shader code for creating stone

struct vertout // output from vertex shader
{

float4 position ; POSITION; // position in view coordinates
float4 coloro : COLORO ; // pixel color
float4 texcoordO : TEXCOORDO; // pixel texture coordinates value

};
//--- -------------------------------------
//IN - incoming fragment to be processed
// noiseTexture3d - a texture for the pixel shader to use, 3d periin noise map
//-- ------ ----------------------

struct pixout // output from pixel shader
{

float4 color : COLOR; // pixel color
};

pixout main(vertout IN,
uniform sampler3D noiseTexture3d)

{
pixout OUT;
float noisevalue =

64

(tex3D(noiseTexture3d, IN.texcoordO.xyz * 4) + // quad frequency
tex3D(noiseTextureSd, IN.texcoordO.xyz) * 0.5) / 1.5; // normal frequency

OUT.color = IN.coloro * (1 - noisevalue / 4);

return OUT;

The following is the code for the pixel shader creating wood:

lllllllllllllllllllllllllllllllllllllltlll
II pixel shader code for creating wood

struct vertout
{

float4 position
float4 colorO
float4 texcoordO

} ;

// output from vertex shader

POSITION;
COLORO;
TEXCOORDO;

// position in view coordinates
// pixel color
// pixel texture coordinates value

//--
//IN - incoming fragment to be processed
// noiseTexture3d - a texture for the pixel shader to use, 3d periin noise map
//--
struct pixout
{

float4 color : COLOR; // pixel color
} ;
pixout main(vertout IN,

uniform sampler3D noiseTexture3d)
{

pixout OUT;
// switch x and z, and shift for now, fix texcoords for permanent solution
floats coord = IN.texcoordO.zyx + floats(-2,-2.5,0);

// lower frequency in z, noise3d E[0,1]
float noise3d = tex3D(noiseTexture3d, floats(coord.x, coord.y, coord.z / 3)).r

// distance from center
float distcent = length(coord.xy);

// noisy wood ring, noisydist E [0,1]
float noisydist = frac((distcent + noise3d/100) * 15);

float factor =1; // light wood
float p;
if (noisydist < 0.15)

p = noisydist /0.15; II smooth transition from light to dark wood
factor = 1 - 0.5 * (3*p*p - 2*p*p*p); // E[1,0.5]

}
else if (noisydist < 0.2)
{

factor =0.5; // dark wood
}
else if (noisydist < 0.35)

p = (noisydist - 0.2) /0.15; // smooth transition from dark to light wood
factor = 0.5 + 0.5 * (3*p*p - 2*p*p*p); // E[0.5,1]

}
OUT.color = IN.colorO * factor * (1 - noise3d/8);

return OUT;

/ / / III III III III III III III III///Ш////////////////////////////////////!/!/!! / / / / /

65

Appendix C - Code for planar and cylindrical
mapping

The following is the code for calculating the planar mapping for texture
coordinates:

ll
#include <math.h>

typedef struct
{

double x, y, z;
} vector3d_t;

*/

*/

if (Plane.z != 0.0)
// rotate angle so that plane.y will be 0
rotangleX = atan(Plane.y / Plane.z);

else
rotangleX = Plane.y < 0.0 ? -piitwo : Plane.y > 0.0 ? piitwo : 0.0;

Plane.z = Plane.y * sin(rotangleX) + Plane.z * cos(rotangleX);

typedef struct
{

double x, y;
} vector2d_t;

/*--
static int
linearMapping3d2d(vector3d_t Vertex,

vector3d_t Plane,
vector2d_t *pResult)

/*--
{

double rotangleX, rotangleY, tmpY, tmpZ;
double piitwo = asin(l); // pi/2

if (Plane.z ! = 0.0)
// rotate angle so that plane.x will be 0
rotangleY = atan(- Plane.x / Plane.z);

else
rotangleY = Plane.x < 0.0 ? piitwo : Plane.x > 0.0 ? -piitwo : 0.0;

// rotate vertex around x-axis
tmpY = Vertex.y;
Vertex.y = tmpY * cos(rotangleX)
Vertex.z = tmpY * sin(rotangleX)

Vertex.z * sin(rotangleX);
Vertex.z * cos(rotangleX);

// rotate vertex around y-axis
tmpZ = Vertex.z;
Vertex.z = tmpZ * cos(rotangleY)
Vertex.x = tmpZ * sin(rotangleY)

- Vertex.x *
+ Vertex.x *

sin(rotangleY);
cos(rotangleY);

(*pResult).x = Vertex.x;
(*pResult).y = Vertex.y;

return 0 ;
}
/*--- ----------- ------------------------- --------- ---------------------------------------*/
static int
calcTextureCoordinatesPlanar(vertex_withnormals_t *pVertices, int nVertices,
vector3d t projectionPlane)
/----------------- ------------------------- -- */
{

vector3d_t vertex;
vector2d_t result;
double minu, minv, maxu, maxv;

for (int i = 0 ; i < nVertices; i++)
{

vertex.x = pVertices[i].x;
vertex.y = pVertices[i].y;

66

vertex.z = pVertices [i] . z ;
ÜnearMapping3d2d(vertex, projectionPlane, «.result);
pVertices[i].tu = (float) result.x;
pVertices[i].tv = (float) result.y;

if (i==0 11 result.x < minu) minu = result.x
if (i==0 11 result.x > maxu) maxu = result-x
if (i==0 11 result.y < minv) minv = result.y

}
if (i==0 II result.y > maxv) maxv = result.y

for
{

(i = 0 ; i < nVertices; i++)

if (g_fScaleTexture)
{

pVertices[i] .tu *= 3;
pVertices[i].tv *= 3;

}
else
{

}
}

pVertices[i].tu -=
pVertices[i].tv -=
pVertices[i].tu /=
pVertices [i] -tv /=

(float) minu;
(float) minv;
(float) (maxu - minu);
(float) (maxv - minv);

return 0 ;

ll

The following is the code for calculating the cylindrical mapping for texture
coordinates:

ll
/*___ */
static void
CylinderMapSmr(double x, double y, double z,

double *u, double *v)

double longitude = atan2(x, z); // E (-PI,PI]

*u = (longitude + PI) / TWOPI; // E (0,1]
*v = y;

static int
calcTextureCoordinatesCylinder(vertex_withnormals_t »pVertices, int nVertices)
/*-- */
{

vector3d_t vertex;
vector2d_t result ;
float minu, minv, maxu, maxv;

for (int i = 0; i < nVertices; i++)
{

vertex.x = pVertices[i].x;
vertex.y = pVertices[i].y;
vertex.z = pVertices[i].z;
CylinderMapSmr (vertex.x, vertex.y, vertex, z, «.result.x, «.result .y) ;
pVertices[i].tu = (float) result.x;
pVertices[i].tv = (float) result.y;

if о
IIII

*H 11 result.x < minu) minu = pVertices[i].tu;
if о

IIII result.x > maxu) maxu = pVertices[i].tu;
if о

IIII

•rl result.у < minv) minv = pVertices[i].tv;
if н- II II о II result-у > maxv) maxv = pVertices[i].tv;

}

67

for (i =0; i < nVertices; i++)
{ //x determines the sign of angle, when y-axel is used xn atan2

vector3d_t normalx = { 1.0, 0.0, 0.0 } ;
vector3d_t normals = { 0.0, 0.0, 1.0 }; // z determines the side of circle
vectorsd_t trianglevertex[3];
int iO = i;
int il = i+1;
int i2 = i+2;
if (iO % 3 == 1)

i2 -= 3;
else if (iO % 3 == 2)
{

11 -= 3;
12 -= 3;

}trianglevertex[0].x = pVertices[iO].x;
trianglevertex[0].y = pVertices[iO].y;
trianglevertex[0].z = pVertices[iO]. z;
trianglevertex[1].x = pVertices[il].x;
trianglevertex[1].y = pVertices [il] .y;
trianglevertex[1].z = pVertices[il].z;
trianglevertex[2].x = pVertices[i2].x;
trianglevertex[2].y = pVertices[i2]. y;
trianglevertex[2].z = pVertices[i2].z;
if (classifyVertex(normalx, trianglevertex[0]) < 0 &&

classifyVertex(normals, trianglevertex[0]) < 0) // vertex in "min" side
{ if ((classifyVertex(normalx, trianglevertex[1]) >= 0 &&

classifyVertex(normals, trianglevertex[1]) < 0) ||
(classifyVertex(normalx, trianglevertex[2]) >= 0 &&
classifyVertex(normals, trianglevertex[2]) < 0)) // "max" side

pVertices[iO].tu += 1.0; // triangle belongs to "max" side
}

}
for (i = 0; i < nVertices; i++)
{

int iO = i ;
int il = i+1;
int i2 = i+2;
if (iO % 3 == 1)

i2 -= 3;
else if (iO % 3 == 2)
{

11 -= 3;
12 -= 3;

}
// fix texture u if vertex lies in y-axel
if (pVertices[iO].x == 0.0 && pVertices[iO].z == 0.0)

pVertices[iO].tu = (pVertices[il].tu + pVertices[i2].tu) / 2;
}

}
if (g_fScaleXexture)
{

for (i - 0; i < nVertices; i++)
{

pVertices[i]-tu *= 9;
pVertices[i] .tv *= 3;

}
}
return 0 ;

//

68

Appendix D - Documentation and code for Z-kit
editors

From the next page starts the documentation and code for the support editors of Z-kit

that were created during this thesis.

69

Z-
ki

t e
di

to
rs

.<£ S
0)
P o<D

! « s
3 a> c\i
¿ ^
3 5 sI g §
» в SCD

fl) У

Dl I
ra ^

CL S
.E c
ГО I
S I
tn I
o s
*i -o
"О я
0) -s

Ñ
•5
<

i

■RJ
C3 Ofeb-S
g ё
C3 £
.2 Й

73 i <u
Ig 1o 3

■6 ^
11
N ¡2 %

1 'I 3 ^
c ¿

2 a> c ■£
c O «8 5

и У 3 ^•S 2 •*- «
.3*3 31
|3 ”
E- H • •

j.Ei
ill

II
I =

t/l '- -2 “O 73 ÇJ
^ .2 >.
« я «JÏ s|
H -5 S
.1 ы I
St£
C ce cu
"¿2
й — я
a2 Q73 , 73g N 5

E 3 1
» i 'S
1 “I
"ад £ è
- °"3

U) u
<ü •§V) cM g
« JS
O „
■о Я
C ^ :ra 3
2 Iо « ■
■S U .
TJ I
Ш H

JS
§ d° 2
1 û

11

J EI J
£a J
V. y

11— c
I * à «•s
= 1 73 73 W;

Û>
a>JZ

■g -o « §
u U1 5 "S ■§

1 - a> èg
m z >a> g S
TJ
o>

i i
e m °
~ = «<u
■a
JS
о

■Ö

я Й
■O S fe
qj -o i
& и a
¿i Æ <u
Г- H -C

2c
0)+■>c
O
O
4-o
0)

Xi
.ro

: ta¡y

y
> ш'■ O O O O O

ä ” '6 J3
S*

U

73 73III'
£ x £
lui

о c
U U>4 >>CQ CQ

105Í S S a
« J E u

■ii
û û

U.1 ^ "Яо о ш
•5 73 0 5> T T ^ DÜJ Й £ £ BOM) 50 roa~ 2 ¡3335

73 73 73 T3 73 73 O O O2 ш ш ш ш

5 5 £ i
ii
Q O

■Si » a q -ë

m чо oo —• <N rt r~VI Vï V) чО чО 40 чО

X ■£

О) *с
■о о
с 2
0> to л
il □ '1 1
</) 0> S о
L. ¡I ■3
о+■> (Л ’s и.'

SX
c

ъ .S •3 •C■aо
4->

ъ0) 3
5 ¡5 x Q
Ñ Ñ

СО -

% i
Ч !«? У. У

оо
: _ i %

: л "3 "5 *3: £• Ы Ш Ы
: о S S S

ям Я Я Л•С U Û U и
о о аа со со

gi ’s е .5 “ Ч i q
•c •c

Lj j S
111 û 5 5

S S 8 $ $ев ев « « «^ ¿ D. й. В.
3 3 3 3 3
Û 5 Û Û 5

— m С" оо ©\ ©гч m тг 'î- тг V-I

X ,_2
0)

T3 .1
c 1
0) ■*-» ö : ®
to OT E : "5
(0 □ :• : M

и
OT i
OT £ : * 5

<0 ro ” о О в
1— o So■+-Í <2 1 td Ы "S m *5 *

^5 O 1 til
0) 7 § I 1 £

+■1 Ф и 3 3 3- - « £■ .=

N
'3 X о о о

1°

I I
i ?

I * Ï?l *1

»»-i-S
~i E S E “i ï
51 ?

1.1,1

U ¡J 5
« « Ms s ^ 3
> > J i

ï ï « ap

!, I a1 ■ i

.2P.2P « УУ У 9 14» 4> 4) Л
3E ? g §

“ 5 Q

û E
« «2 “ii
S..................

> > > §

•5 -ä ^ i S S 5I , b1

i ■?1
i «

E 50

?11
i I
i к.
a'i

и
S I
c 1
11
■; g

?' ?!I o
* -g '
Й.

I „
E «

-, 4,
s i I
o U ¡JÎÎ
3 g 5 “
a •* “i J > ÿ .a
■o J 2 *■(
?! g E
С и1 O -|

co E

b:
я » 1 = a i о «

S, ë' E S¡J TJ "|
* “ S

I O

«, I

E _

^ ce v U O b.1
„ a >
-a'-a'-a' И

I
"i ", ui —i-s -a -s -s

я E я 5 » £ CÖ g
5 я о ï. 3 § и
¡' a r s >» со -c —

I 3 I CO I ^ - CO
!lis!fss j ! s г j ! ï гO a Cl O 1> -Ы C. O>, Il I >. П I

EEE—(EEE
c e c ^ c c e

e' e' -, ”,
S E

4> Ц Ц 4»

ТЭ ’O “O *o

c
O

U
(Z)
<D
Q
"O
Ф

3<D
Q

D
O

- £ <u о
> 73

'5b .S
о ^

•— u
- >

-о <g

II

Ï1

-&.2P

C
O

3
c
Q>
E
3
O
о
û

O
3

V)
<D
Q
об

O
U
3

V)
c
O
O

S
TJ
Ш
o>c

•¿3

58
às

c
O

'■5

J3c
o>

E
3
O
O
Q
v>
(Z)
я

O

2о
T3
<D

¡5

Ñ

ф
O
c
Q>
«
<D
o:
(/>
</>
m
O

.5* »
|b

*5 «
? > 1-8
> i
ï -,

во -S .5 Я
Ж j

i I ï|
ï s s: u S

« I ï
ï I ;>

I II
lli

V)
c
O

q -a •-=

||2s
’“"fs

■O
Ш
O)

O) a)
□ *§

<0
Û

12
3

CL

2 - ю *
B-9

I 1
uj ?u M M
fi "u 5 ^ я

5 5
о O E
я & ̂ 2
U 15 g ^ ^ 6Í m Í -c
C “ -fi ^ Я -5 .5 -E. ■=-
5 5 U .5» M 5 55 Je * U U мм
U u .S s « ti 2
® g. 8 2 -2 * *
O y U t 4) « Hu & CL u -3 C C
c c c c c C C

</>
c
O
U
C
3

0)
jQ
E
Q)
S

ro>

û
i

s
a1

û

? I,

>; о
•-, f

O -O
il

9 fl'-B

? .3».a —i> 4> 1 ~l 1.1-° £ g .S
* 1
s ï•E ~i

-a1
Î"n s

■~l•3

55'
ä Ë
|!J g)

11 111 Q 5-a'
ай

> í> а'- о е_

а ■о н с q

О Q U Í м Ё1

S м -о ® о «
TJ О OU ÏU
-5 э|-5 "> а1 о
J3 Е м « — и0> — в» Q в> 0>
£ 3 TI О С С
Л ® G С « «

э и и -о о и
tn m ге с m л•И 4-1 4-1 И *J 41
¿í л л I л л
■ооо о о

V|*,SV,
O' O' O' -H O' о* N N N > N N
•o -O -O ® T3 T3

i 2 i
J i ® e

4 -S S

i и "S

m

2 6 o
с Л 5»il e

3 eJ

sVV'

e

o
■5

¿ <U
' ^ ; : o ;

|cn 00 05 «О 0Э 00 "IsO a.

SS

s e.

5§
E "O

Q N N N N N I

„I У E », J

W.
O' O' O' O1

e1 SS
4J s >
® "m -o

л л л a

O)

d

1I

■Q

|-2

S 1
■O Oi
Ш c
O)-o
C -C

' VO Г- CO 44 O' o .

Ill

N » « И
- !-3 -

- 7; M - !-•5 -S1 с n *□ I I • « o ^
2 i я 5 »
" 5
О 43

■н 5 S S S о
Л о и I ^ з

С ® « С|3 4)
О Е В В -Н 44

но г- m о о г) n м n n '

в1« S о

л л jo в

л л л ®

ьш

g.

О О О О 3

Л Л О Л 'ГУ 11

•И O' О -Н

•О
ш
О)

É s:

4J TJ -М О 4-> О
O' >4 O' I O' I

hl « й « й in

с с с с л c — --

Zå

»oh
£ > H

an an а 4-1o x: o x: o .c
M M O' U O'

!o -o S § lo 3

зг'-оэо'онемг

M
em

be
r F

un
ct

io
n D

oc
um

en
ta

tio
n

2 j¡a -5

5 5 g

H i^r
® * c F* ‘

— -4 .22Si >

s ^

: O :
i =>

-и ° E

•И -S >

] Л lO Л 1Л

§ Q,

ill

5 O' Q. O'

32

Г in vo Г~ 03 O' O il H NÎHHrtHHN 14 Cl N) л IO Л Л in if) ï Л Л

ш I
O)
d

! í1 ® í
* "5 1

o ^
— I §-ü
>c q с а

SK

■o V 5 о £ 7
8.5 g «'Л5

■о -U £ Q id 4J Я # # | T3 «

)iniOtf)inini/>mu

« -U H "ODD 3 « «J * 4) U r-i £ И > M U O' £

41 ф 4) £ Il U 41
<н «M ч-i £ 44 <ы <н4J 4-> 4-> O' 4-1 £ 4->O) 4) 0) OS « 41 4)O' O' O' О И И юI I IH III
tj tj тз > tj tj тзid id id to id id idTJ T3 TJ £ TJ TJ TJ

TJ ï 3 0) 5 H
M O' л £ £ n >

id id id ^ id id id> > > O' > > >TJ TJ TJ TJ TJ TJ

nwn > «и "и чч*J *UJ IMJ *J u4) 4) 41 X 41 4) 4>o> O' o< O m ю m
TJ TJ T3 £ TJ T3 TJ
TJ TJ TJ M TJ TJ TJ

l¡

2 E1 иM|Q 4 1O' O' O' O'

SI

) J s

)Г'ЮО'ОНС1П'ГЮ«|' M CO O') 1Л Л Л Л Л Л Л u) Ю 4MO IO '

2- 2-

73 A
Я “■S D

i 8
_ C 60.Я Я — -

^ Æ gс О ■“ c

» I

Й2

b'Es

1 5 o !o 7 0.7
: o 14-) c o, c 4 o и: i m e m j и 5 -о 3 и 3) *J Q Id £ M £
> 4) TJ 4> £ 4>

jcoæiiicooioioioi

а-

Q Н

S3

ti и ~ « Q М
« Ё в) л О ~

W OI О H N JnVUlWMDOlOHN 4) fO V ir «Г |ТЧ'Ч1Ч'<ТЧ'Ч,1ЛЮ1П Q <С <С Ю Ф ЕФ1С10ФФФФФФ«0

■S J> у sEgí:
фк

i -о i

«Mejwoi-iCMro^rinvor-ooaiOi-icMco«(NCNrofnmntnmmrororovxr^irQr-p-r-r-r-p-r-p-p-r-p-p-r-p-p-r-

Uá ¿3 O
- 5 S э »«. *- «

! j

XIo

L2

'S 3> ^ 1
e o;
3 => •iК

I “ эJC ti ce -3
> ^
E $

I s s s

S « I 2 sE 3 G h *J
e в e -5 2

u_ 5

8;

*5 £ I I> * g

u o:
^NnVin'Ol'OílOrlfiiœœoœajoaiaiismoïclinminioifiioirtininuiinu

a a a

■e
o

(МЖЙОнЬмМЧ’Л JOOOr-»t-* ti r-< H H H¡фффшюЗфшюш
a 3

^ ;o :
- 5ce 3

1O)
_l
t:O

Ü 5 .1> ;
e g:

p.XШ

V g g; H M H ^ V „ H M H (OH Ile II и 111$) Il *0 M I I I I I и I I I I I Д I O' O' Q O' O' O' O' O1 Ö O' O'
pilli" ïlllll 5$”!«

Í5ssEsSSSE8i5SS58ll!ll!Í!!!5'l!
S

Ol
cаc
Olù

S
îío8

S
5
$

p o _

ISSSssa'SSSSsSSg'SSâSSsSSsSsSiSsSsHlSïsiïiSssSîlüîsSâsgsîssSHSâSÏSSïsSili'iSîEsS

-I-

йй
§8

йз

II

•о о. ы 23 x

< H *J £ ¿ W í
< И И-H « # «I
! Д1 ® * -i! -и -и
I 1 *3 -H « # #

4-> U V 3 3 3
O' H O' <0 <0 CQ
«¡ -о ¡3 £ jo v

ияд и S и,

-и -и -и О I Ю « «
•О-О-ОСЕТЗ-ОТ) о. a о. е1

? > > >

^1 “| “|

í -ñФ u
5 fс Я
S c

ш n
c ^
1 t
3 ^ti N

í i

E °ï3 ® •

« §,c

r^oomoHCMrovinor-cooto.-ccMrovinor^oooioHCMrovinor
ООШаэ<Х1О>ОЧ0>03ОЗО\ОЧОЗОЗООООООООООтЧг"Сг-1т-Сг-С»Нг-1г
'0'0'£>че'£>ЧО'0<0'0'0'01Ф><ОГ-Г-Г-Г~-Г'-Г-Г'Г-Г~-Г~Г'Г~Г'Г'С~-Г~Г-Г

<o r- V ш

I1 «'Il

s't's'f

e e e о

» 5I Sl 3I 3I
O' O' O' O'

Ф O H N n 9 >0 (O'O-sMnOlOHJNWMVjinH'O «MOOIOHN
NnnnnmminHnnnvf |rr cn тг «r iirm^ovv^ininin OOOOOOO IO • O O O O O N О H H H H H rt H gHOHHHHHQHC

5
О)

5 Cñ

1..! 5 -а

м ..
О I I

1 Е °5
> 3 ® •

£.

Q il # « И ¡J Ч
® о и и н и ?

^ 4> i) № Oi и С

с -о ^ -о -о -о 3

4Мг-СС\1ГОЧ,'П'ОС~-0
Оюдаююазшшо

£ &

*1 *1

о о о -н ии D.-H 2 JJ
o*î O' и о»-о

3 о 3 5 2 о

в) о « о « •
с ° с С с о

о с и О о -Р0) « » -и # и
V М V -Н « м
и O' и m и -Н
в) • м о со тз

тз о тз *-> тз л

РЕ1

I X

.о

О

> ы ;
e о:

III

41 § С

§ 2

з V £ о û

•Q1 5 ü Q Ч

ч см см см см см •• ..) СО СО 03 Ш СО 3 <пг- m o' о н о п т-
см см -н см О m Of'

' r-ч со U m О, а

4M Г- СО О О 1-С с
Q Ф Ю « Ч> Ф I

Q
i Q

"Cо

2

I

•rl N N N

5 O O Û

f-

¡0 « "¡0 ” « O Û Д Л O 4j H N

H " 1 Ш Ï Ufl
* H H r2 ÎO "l® c
in « m и H| E « эÛ Л Л и » »*J *jI JJlMrt O f

П
3
o

n

II
I f
§ I

cl 2
m 3>s I
s .1

S s
O) o. c _
? Cd
O» —
5 "33 c

8ч + ^

5 5 5 5 +
•H Б BE >*

-H O O O ^m a a a +

NSf

1НЛЛЛ|П1

2 2 2 ^-ч A
« m m ° in -S o
Л Л Л H *J h N

" " 6 m e> o «5

h h h h m "| ® c
««'¡o o H| 6 m 3
л л л n o> » +» +*
E1 E1 E ё'т> h2®

• ш oi o h су и m i ю ю « ф Ю cn^vo _

^5
Q $
5 H
^ и o a

«Г
•o a
5É

*1fli
^■o

”,m
о
*s
p а s
ol

S 33 Am Ф

§ O O
o E ES Ni g
o- !

q"
Ü 2
il i ?! £

!*ï >.
P 5 -°
i о -p
: -o ü
1 ç 15

HS ^ u

II

4ï

H e 5

9 m
5 Å

1,1N -Q
2, a»
CD a»1

II
il
cû <i>
S 3
3 O
o E
S Nl
о ^
Ü 9si
sisi

'S P ? r~ œ

■5

°¡l

W № № Ol Ol

Q
■c

Í r-,
I ФN -p £

3 к -o
CD h у
О £Ф л > “

о
E 2

1 s; у « I*
S c
3 —

C c
O —
Li 9si 11Ш

I!
■C I

$
3 о

2 J.= fl
•H O § O H

O)C
<e

- 3

•c
о

M
-ç

5 5 *i*i

5iS*
0 — 0»

e1 e1 e1

O O O O O

♦5 = S O»1 ai1

JOOOOO
winio-Hr-ooiOH
Г-Г'Г'Н|'Г'1'Ю(Пooo |o о о о о

S E

ч-i сл ai oi c • aoiOfiriNOiTin »<na»OHOOooo
I rl rl H ßrIHHrllH

Ш =
C •“

TJ
о

о
$

ro 5

ro
Q

S
E
O)

?
O

T3

S ЧЭ

d £

O C

-I £

«= *
o

c ®
o £
i >
C -H
Ф MO £

¡5
1 >
«s M
Q Å

O
E

E

I

T3
Ш

o»
d

«= o

oo 3

” ¿5 —

J
E d g

E h
O £

Is

O “
? Û
O) S
.E >
H
d
- o
® "o Q c! £
oi

So
IS
¡I

15"C .ti
C -*

o5

O
"5
S

5 J ° “

T3
oo

O
5o
>
E'

Q ts O
ф

.3 — -3 o
~ c Z °

Q
X
o Q

X
Q
X

g
o

0) O' Ф Ф
о. та o. o> •

h m и ш n
Ф ti ф ti O.

та m m 2 5

HNnvmv(N M M N (N C

> |]

2
S

Q
■o

I
N1
3
CÛo

3 S
Is

c c
O ~

s|f!

I> ï1

•«»OH 12 "c
-i oi oi сч oi <9
< *4 H ^ H Q

c ^

* U

TJ -rl
„ +J

9 5

1 «Г

3£

T c o o
*,3

it
m o1
o a
li

liO J35 ®
® o
§E,
O N
E
'Ú Q
Si
S|

S z-J o
.ti -o

cro -r
ei

1.3
■H * T *1
oi
в _
o

w|
il
ï,«
N1”,

■rt П ® O H N

CQ >O f
O. o
? S

CO = • 2
S E,
O N
E -o

? s
SI
fl

S1 ? *°
d S u

S. и
-ti «Г lO VO Г~ CD•и vo vo vo vo vo0) OI OI OI OI OI

~ K,1

Q
t3
X

■C
O _ T3
*,3 SÎN1 J g
3 m E
CO m • —O " i
® ^ 3

f 1 c

§ * I
g= !
h . o
L Q u
о X 2 •g § S 5"° =
|l I
d ~| >4
O) > -O
d ° wI I 73ÔJ U

c N

•ti -ti ti ti

iti œ со со ro œ Ф oi oi oi см oi

Q

I
3
■c
O -ti
? o

I H
N 4J

O “

s. o > •&11
3 2

1?
Li Q
o >

” o

s|
l!

!> ï'
-J O .ti "O JC c ro 5s 5
.E -a

S

U
ИО MO ai o I OI 91 OI OI O

E
V)

■Ош
О)

te
о

5 JJ
I а 5
э О О

D
ef

in
iti

on
 at

 li
ne

 10
1 o

f f
ile

 D
ak

itL
ig

ht
in

gE
di

to
r.h

.in
t D

ak
itL

ig
ht

in
gE

di
to

r::
m

_t
em

pl
at

eB
al

l
[p
ri
va
te
]

о
tn
ф
Û
Е
ф
о

ЭО tíя .«
■3 О

о 5
и Е

•5 g

ео

:i
с H

c S

о3
"tn
фû

3
I

«e

о «
I 1
С X
с ~ Е о
5 iо У
D »

S з
о Т

1Лсо
о

VË

3S

*^222
lili O' O' O' O'

в *1 с

S 2 о 2 2 MUOUÜ

5 5 g J
•н а>-н о» enM N M N N« v a> T3 -o

p s
Ы ^|QS|3
Il s1

JÄ-S-

h 2 2 2 £

■H « Я « -H
В Д Л Л »

O' O' O' -H

lii

il и

3 i < я

О Я -H 2 ®

ï e1 гс S и

S s i E rc1 В л «мю rc (

SS

3^ Is

S «S

0)o
c
Ф
li AЛ) rC4-<D я
a: S
¡5 -o<2 ы
O -H

"O
Ш

tn c
o0) ^
o c 3

Q>
ro

■d3
-kro
Û

4"C
<y
Q

1
г

3 o -
u- £ 5
ф-QE
Ф
S

-Q
30-

V £ £ "Я-cg,_ o ? ÿ"ôo 8 Ä1 S i
o£| Зб äi
ï 2 Í и o =
«•ti I "E -C Urtilli1 ! M.:

: 'S -e

и a
I ^
II
.5 te

s ?!?ti s s t
Ê °^rS scd e O u «
m > > 2 « _v

"О V S X U5 t. wi « v T

lii Hiili JUJU! ё

tn
c
o
o
c
3

Ф
-DE
ф

rotn

у -,

Q 15

■S 1
« «5 « 5:
2Í

2 "c C MI 1
*2
Q «
“ £ « £

â e

E
«a

□
я

'C

S E
•S *t

g i S £Q o
Я ‘У

*5 "О я
Q «

5" « 15 t
«У
Q

2 "C

tnc
о
и
c 'Г' Uw a

j .2

E _
«У g
§1
I û

I ü
S S 1L - » »

l| Ï
■e = ®

£ 1
C 5 < 5*7

S J
® £ 4!
5
0)ro
>

í -5 H 5 3 5
s -

л •c
I

5E
E1
У

2 5 1 sa Ô *

O E
o .2
*.|E эр
l'l

Û

g
û i
i i

E *'J»

g'l I
i

—1 я —x ^ x

.l-S * K..2 5 ~i >2P E

5 22

M
em

be
r F

un
ct

io
n D

oc
um

en
ta

tio
n

41 *,

s'l

’ll,

■55355« -o 5 О ■§
^ -о -О U •§

N N C N

6OÖ
От:a>*0)
>n

2
■O
Ш

s 5
I Eg
§ 1

00 £

>2 ^ '

И Ы 3 -D

3 ' 5 5 S ^
2 О 5 -o'S Ü•и -и ® « # i

1Г-1Т11—11—1Г11-1Т-11—If<INCNCMCMCM<NCMCN<

"O
UJa

2
V
Ш

5

s
4

"2 2

§ S

5 5 — -

ia
.. 0
S I
S s.
sa.

5 » « « О Й
•o m nj a> c *jg
•н a -и !o « c
й и ~ ТЗ й й

® я

8Я
*; з т» ш
Д 6
s *
I 1
» ü
Q —_ u,
О
оn

я а

1 ° m n

JQ 3, 6 e» е

* E I
о § 5

_ Û
« E g
о. 5 ä

М I

ад "| Q £

I ?

85 Й I

§ 5
¡I г
III

ïa S
>,| S

JS

i il
§3
£ o

II!

*'2

O Q U

•H *|-

’.*1*1

0) D ü U D>•h «n «i <a T3> +J 4-j MJ Ы

O' O1 O* -H *1 *1

e
§

« 0) M и 5
2-3 й -о Й

S S 5 5 îi i I I E
- 00 o> o H n йспч’Ю'Ог'-ооО' : МГ T in lii in ^|lrt Л Л in in in in

I
11
11

; _t¡ £ -g > S -и p S « -1

: > н > н

unuz

л *,5 =

H 2 t-< >1 Z M i
> Ш H H Ы M
нииниг
H IZ > 1Ш h а ы h q отСО нЭ CO H 1-3 I
Z Ы |H Ы QM H Q CO H (-3CO bj t-3 z bl Ы
liuu IH

ia m m to z

w “ «'S 0
S "О ïj z'tD *Ф

O' O* "le* P 3
TD -H О» Ф P rt)
ф td c O' d м

SS

n4-'(ua'aiuaJuu,u'.-JMai
) rt) 1-0 I Ф I l-H TD S3 T) C> M Ф Ф С I rt) <0 P Ф P « -H13 3 |0) (V £ £ £ ! С U C
i u и и a) d a o. o> o> o m-H)rt)rt)4)Mi-ir-iH-HOMOx:
: и > it »j) я a и *) «j »4 _»

> .2 S S p p
! jo E -Q % л
) ч n) ч *; *z
) TD TD TJ td td

) « v v «

a) a) ai a) <u a) i
p p p p 4-» P 4
d d d d d d :

S3 S3 S3 S3 S3 S3 J
n M m m n M '
P P P 4-1 P P
4J +J 4-» P P P
rt) rt) rt) rt) rt) rt)•o -O "O -o -o -o

« « a> « v« m n n «I I I I I■o -o -o -o -o
TD TD TD TD TD

4J p P P P P
0) 0) 0) 0) 0) 0)
tn to 0) M tn toI I I I I I

■o X) -O T) TD T3
rt) rt) rt) rt) rt) rt)

TD TD TD TD TD TD

И1 515

I “s1

OOO'Or-tCMCO'TintOr'OOO'OrcotBffimaimoimaioiouJioc
nnnOrtinrtlrtHOIOrtltOT'

ti
T

■E. I
D K

Sp

s
15

o S « g

§■

« «
o 3
o “
O 15

X
D

I E

2 S

I1

- 6 1 5.

V ti 10 S ^ и

* 8 8 ¡E 5 o

o P P ¡S s Д

ti «

Sí:

SS

*ps

I 8 8 E p

e

is

SS
> о и и S S

< S C C C G

» U M o> U 0) o-t и -H -h e c tu
I) -H > a «M -H Ф-» e ф ф p гн c
4 rt) U С Ы Ф -H

3 >. О Г» О ТЭ 0)
) D U 1) I« O D<
5 <P P TD CP 4)
4 0) 1) » -H 0) •
ч q û • r-i a <m

to rt) a) o» o) Q
•rt -H Q "O -H H

5 S rt) ** S H
ro «j м Ф S S6 E 4) Q E p

. Ol/> O « 44 I
-• 4> X3 a> o< » P i
t 4» Ф 4» TD ï C T

Itn Г O' 4) O' O'
4) ТЭ O' "О -rt O'" 4) 4
O' O) TD 4) T3 C O' 3

4 В 4) ф Ф t

Р TD TD TD ТЗ§ • • * •
i td ф d a a o O' c
» rt Ol S3 rt) rt) г-4 44 4-

C >i Ю -rt >.-rt
И rt Ф rt rt -rt "i

H m >4 8 w S !
H G 64 10 G tn '

2 Q1 CO H CO

64 H Z 64 >4 Z O
H > U M H Ы й

< Ы Q1 Ы

D
§S*'S

Ico I |CO td I

2 Q

g'3^S â'iC

! з aaoi

sill
rt Ф Ф Ф Ф
ф р р 4-1 Р
Р <0 <0 Ч) <0
ю e e e е

О, г4 ф -rt ф O'
• 0, -rt O' rt TD

•rt S3 TD Ф Ф

o ” G Ф d rt

e ф p •o p ф
¡3 о x: ф с и
G M Ol O' O rt
>, O -rt O rt o

•O p H P P P
4J p p p p p

» Ф rt) rt) rt)

ффффффффффффффффффффффффф II 4
3dddddddddddddddj3dddddj3dd ^ ^

го p<>>>>>>>>>>>>>>>>>>>>>>>>> P CTDTDTDTDTDTDTDTDTDTDTDTDTDTDTDTDjOTDTDTDTDTDTDTDTD > -j

>ФФФФФФФФФФФФФФФФ4)ФФФФФФФФ P f

} В P P P 4

} P Д S3 S3 j

3 rt| W rt) rt)

P ф ф Ф Ф Ф

JV4J4JPPPPP t
.................. T> Ф Ф Ф Ф

444РРРРРРР4444 44 Ч4Ч4 44 Ч4
JPPPPPPPPPPPPPPP
ЗФФФФФФФФФФФФФФФ
---------------O. «. tn. «. «. to. to. to. to, tn, «, tn,I I I I I I I I I I I I I I I I ! I I I I I I i I »DTDTJTDTDTDTDTDTDTDTDTDTDTD-OTD-OTD-OTDTDTDTD-O-OTD

ОГО
DTDT>TDTDTDTDTDTDTDTDTDTDTDTDT)TDTDTDTDTDTDTDTDTDT>

D ф ф ф Ф
» tn to to tn

3 rt) rt) rt) *0

ф ф ф Ф

•о'-о’-о1

)1вМвв10НМП'
trtHHrlNNNNf
imntotonntortit

ЛШГ'ССО'ОНМО'ГЮФГ'О
NNNNNrtlrtltOtOfOnfOtOr
(OfOOfOfOtOrtlfOfOtOrtltOOP

)1АГЧ)Л0г1МПТ1|П1вМ»1)10НМ1Т1ЯП1»Г- CO O' o rwriTtniniOinininiOininiOlOlOlfiClOiOtØlCKIlOh
inrttonrtlioiototontortltoiotototontortxofortnoto

t N n «t in Ф M» C
-Г'Г'Г'Г'Г'Г'Г'Г
) rt) n to to to f) 1*1 г

) H N rt) Oi Л « Г“
lOOCDOOtnOOOOOO 1 rt) rt) rt) rt) Ю rt) rt)

"S 12 w1 V

> > > >
« « « V
» « « »
A3 A3 A3 A3

IM im im <M

-atas
5I*>

) if) A lA lA 1Л 1Л Б tf> lO U

•a•c

■e s g
5 J 3

5 u i “ill-
I = “
О.О

SS

ÍÍ 3 «

a -2 S
■o'-o'S

lOHNnViA'OI'fflO'OHNO1>и»ЮЮЮ>»«0<0Ю1<>1СГ~Г'Г'Г'lAiniAiOininininininiAlAiniA

E
•o

•c SP

X
D

5!та

¡I

u S

3“;

5 Ï
? 2

I § S

ITAIAMeeiOHNIAWAIA
)C0O3COCOOD0D(IlOlCJ\ö\OllJl01lAAlAlAAAAAAlAlAAA

E
"5
00

2 §

II

I I

s1

.. M 4) A3 O- » C : s 3 3 jG o» : ® ■ 4) У •-! Q, TD 43

fl Hi fl 10 ^ fl fl>>>>«>>TD TD TD TD TD TD
4)fl)fl3 43jC4343434>

II
W H W W £1 W H У У У У O' У У V IMI tl fl II toi o« O' o» o m иTD1 TD TD TD TD TD TD TD TD TD JX TD TD

td v d а 43 У -4 Q,
® M H H • 3 fl fl H MOi.Q<e.c.cm>ie

а а « а > а «« а>>>>Oi>>>>TD TD TD TD TD TD TD TD
4) 43 4) 43 У 4> 4) I

■m <H <H *ы > im im 4
*D У *D *D О) У У «
41 V V 41 X Ф 41 I
OI O' OI OI О ОТ ОТ I

td'td'td'td S td'td1A3 A3 A3 A3 O' A3 A3TD TD TD TD H TJ TJ

A3 A3 A3 A3

У У У У fl fl fl Ф

ssss
43 43 4) 4)

E E E E
IH

О
о
о

L С 15

•с 2?

25

^ S S]

ïs|
^13 ü>

C 4) 4) ~ - 41 : -H
О O' O' X) e O' 4» O'
H TD TD 4) 4) TD O' -H
У 4) 4» O' 4) TD TD
A3 I I - TD I 43 I
M 4) A3 O' 4) С I A3
3 3 £ Ч I 4) 4) -C
У •—I Qi TD 43 3 а
ОТ > A3 У M O' JÛ ю

•О "О О "О " -о -о -о -О
43 43 43«£43434343

yyyyoiyyyy
41434)410343434)41OiOiOiQiOOTOTOTMTDTDTDTD^TDTDTDTD
tdtdtdtdxttdtdtdtd

"Si c* fl1 от"

S »2 «x
A3 A3 A3 A3 "i
> > > > O'
43 43 43 43 У
« Ф ф Ф X
OI O' O' Ol O

td'td ts'td1^A3 A3 A3 A3 O'TD TD T3 TD У

t~ to CTI О г - D Ilf Aier*OOlOi»OOOOOOrHrI A A in А Л Л lA II PAAraAOHNrtfliAAr
IHHHrlrlNN(MNNNN(
lAAAAAAAAAAAAl

AOTOHNOTM M ОТ ОТ П M
Л А А А Л А

m á

E
Об
Q

>
-О

S
об

I 1

t:
о

> s

44 vo г- со ст» о н D со œ оз œ oi ci Q ID U> Ю <0 Ф H

'C
S

E
t:
o
n.X
Щ

I a
II

•C
s

L .g
S 15
ш S

I I

5 §
15

Ü
J5

! 5

s
K

О ro ГО У
веч

SS

1 g

eI

® S

MUOHNnvmiDI'<HINNNNNNNN
-Г^Г-Г-Г'-Г"С~Г~Г~Г~

E<1

■cS

■1
S

E 3

§ s s

I г

s „
P "ÖI 5

■»• o§3

s, 2
ti S

.1 * •o ^ Ш **1

.2 'S
S91”
I I

«S
° TS

5 r U

S 5

V 9) И Ш 11 3 3 3:3 3

4J 4J +J +J

•'oi В O n M

гн n n ti iu

*j ro ro ro ro ro
0) S3 S3 S3 -O S3
m ® « e ® «
и IH IU 1Ц IH H

4-1 4-1 4-1 4-> 4-> 4-101 » V 0) « 01ОТ Oi В В В O'
S3 S3 S3 S3 S3 S3ro ro ro ro ro ro •o -o -O •O S3 TJ

H «M IM •O *2

С Ф 3 и ч
•M í¡ 5 e Ф £ Ы С ГО U OI Dl O C M
r-4 44 44 S3 44
44 «И 4-4 4-1 <Hsssss
0) tt> ® « «41 4> 41 41 41ro ro ro ro ro

o S
5 я
■o E
- 'S■c S)

S S Ф Ф IC H 1 ID ID ф ф ф 1) ID ID ID ID ID ID _
i I "
D O'

o o ro ro

3 » ® ä ro
®)2 g

■M ro ro ro ro
« -o -O -O S3

4J 4-1 41 4-1 4-1
m ai oi oi ai«I e. cn| D. tn

S3 S3 S3 S3 S3
S3 S3 S) S3 S3

[u Cu Cu

c c c c

mœoioHPina'iniOMDiiOHPiniiiniOM»
limnirTJrirTiriTTJr^rinifiiniiiifiiiiinifliii
QlDiDIDIDIDIDIDIDIDIDIDIDiDIDIDIDIDIOIDIDiD

z
&

8
3

> 3 b

Is •c
S

4Ю1ЛОН(ЧП4'1П103U3Vt>r-P-f~t~f~I~r-
jlOlDIDIOIDiDIDIOIO

S «5 u:
O £
— V)oo

ОбÛ-

— ф
Т О
® ф <е
I 2
Е Å x
I «
sl
S E
'S 00
3 Г'

5 ®
У 5

.ti Q"

E
ОбÛ

E
Об

E -g -S 5 í 2

Q
c
О

E «

ш **, я

iSs <
SE* и

-8
sE
ïi

’SS

m v « flH M "|*,|

3 J f

Й5-

g
?

ш

•S

о
S
ш

c
о

с
ф
Q

о
5

О
ф

«в Г-,
с ®
о £9 5
С н

|и
<в ?

ф а

n'q■° ё

I °•о ош о
со о
•С >

ш
?

О g Z О
ф g g ©

«= I с ■g Е о ‘g
2 о J 5

~ ш -а =

il I J-
'Е § I Ё.ie jé с
□ о о -

■§ я
с >
■с м е о.
2 §,
•S ш
1 X

S S
I °2<¿

Я О

5 ç и.

О с -Я £ и
■= I Е
n 2 °
•с 2

11

il
«с .*
о 5

N1 Я

■о « £ > kl Н
О м
Ä о.

S ф

О ф

= ш
Я С

о ® О n
.t¿ 5
c *i

о а

•о ■Ф
Ы U)
"5 "я
С С

1 ? ?ф 2 ¡2Е «в я
э о о

о « -2 2 « ¿
н n ti I о> m
•н я с я! н в
TJ W Ф Q л M

! ф ф -2 -о ф

af'Jxrm'ot'ooCTiOHCMfOTL-Г'Г'Г'Г'Г'Г'Г'ОЭсооэдасосэаэаэеоаэаэсоаэаэаэсосэаэс

•с
ф
5
О
об

S

•С
2

II

Ю Г' ОЭ <Tl о сч оэ оэ а) оэ О) ал öl

О

"5
Ш

С
о

с
Q)
Е
з
о
о
о
2ГС
О
Фп
Е
ф

S D
ef

in
iti

on
 at

 li
ne

 59
 o

f f
ile

 D
ak

itM
at

er
ia

lE
di

to
r.h

.d
z_

re
nd

er
in

gd
ev

ic
e_

t
D

ak
itM

at
er

ia
lE

di
to

r::
m

_r
en

de
rin

gD
ev

ic
el

D
 [pr

iv
at

e]
re

nd
er

in
g

de
vi

ce
 fo

r c
ol

or
s

cо

о</>Ф
О

s
0)
О

1

-о
I 3
¡iS
у G

si
VI С 1 £

2 С■; оШ -д
U
ш

5с
ф
Е3оо
О

о3
to
ф
О

об
О
о3
V)со
О

со
с
о••й5

О

CL
Еx
о

ш

1«
118 § о 11 £ «в

så
=5 Е

S»«
5 8
Й= о о еа о
c S
5 S
I?
If
Q ><

ч ч

4S
li

ii

И

не1««

от ¿¡ О S -и

ш « о ч « о M +J и
я -и с а 2
S ^ Q. « «

t Е

о! x
11

о
т5
ш

о
m
532

оi

оа2

) от от л от от от

.л

iÜÜ

SU
II

•н щ от v n
c 2 2 2°
2 -S S S S

и -о л 3 m
41 C -P <0 -P

o- o* ñ o m

о ^|о! ^|ш

C
О
(В 5
ti -ОС ш
ЕФ <ем
3 -2

о я S♦5 C 7,оc3
U- &
I и

0>о

£
CDa:
</></>
JS
O

"O
Ш(/)</>
JS
O>%m

>iCQЙO

4,cc

%
I
I
5
1y
ffl

E
X

-P </)c c
a) Oот *J3a) о
£ §ü £

жmu

UJ
IU
Ш

Q та

S i

C <o
Q) Q
<Л V

£ 0)£ ?
<0û

-Q n .2S2 » 0m 2
'J
û 5

68
-ris
'E .§ Г2 ТЭ ® S8 il I

« U c .5 XA о •« Ä ‘C « Q .£• в
v .2

■ U? 2

1 2 S
— eu a «

(ЛcO
Oc
3

Ф-O
E
ф

^ 3
i 2 ■=

Ûooojjoooooooo

-Q
3û.
O
s

55

■iM8.1

0)cO
Oc
3

LL

Ф

Eф5

О Л"5 я
2 H
s S s s
ь 5 :

£ Û
Si
H §

11« §
¿1

11
£ 5

^ -g J
5 5-3

i „
g û8 8 = fl

. l'S V

=3 “
“i s
S «j

>, gCQ «II
il
£ C

II
X 3

Û
й

sil
I So I-s fe > % * л-g n

U u
II

u — «2 О¿uS; « « s¿ 4¿

I í > •= «
c o ^ % iti

8|-й s
I « « ■“"5 8 «
S a. S

.$11 UI
I <2 $

я О
G g

-5 8

Il J JUU II

û
•S

u

II«Suu S « .s
V) >,I ï
n•c

Ф

B « J ü о
x « « « .-
g s s E 2

lllli
-2 от ! 2 i.

e 3 51e,E E

5 > *

£ S *
III II

E E¡3 s

й_к

"iS

¡a1

m
cоа

S
S

X
D

s a e pл я S Б
SÍES;

s s

X'~u

o
mCO
5

oiOrtNM'nnier'OffiOr«rinmininininininmin'OuMMCMMC4J<NI01<M<M<M<MWC

8я
я 1

5 6 E

Sm«®»m чм n П| П!

Û м м см c

)г!МПЧ1ПЧ1МВЛОНМП
slWWNMWWWNNWWWW

S cd
■Б jfШ ed
« C « иJ5 8

ч i? I
o -g
1 -8

í S2 =>
I 3
O

II
£ j m ччп V) mb m 1)0000000 ifOrtfOrtCJrtrt

'S
fО
О

8.О

"ОUJа

&3

9
оо

13 иа
■о
о

ш
о

5 о

£CL БШ

82 2 j

I 5
ОС

J « v S 8 £>
3 s н 2 -S 5

: 5 ® 5 5 *

HNM'Tüin'eCfflO'OHNnflO'OФ0илб1^в1в1б1№№0000000

О
СО

Ь 5 Е 5
-=í ф
и а:

I
1 с.

»i

Û. *> £

о
со

0L -Р .tí rt
-St 4->

3Û

•o 5 « ON O H M <

2c

S ’S
JS c
О = 8

,я

О
'Я
3

1 S Е

S S I
- о к

Q -н О *

нЗ 0,5

Dl
3

<¿ E
« s
s !5 Ft

E U3 Eg
Q g

il

•H v> t~ со o> o r

£
aoÖ
o
>4
m

Q.
E
x

73

‘5

c Qo 5

£

t ~

SIc *» c o
® 4J
L 0
O M
,t¿ a
"O “
Ш _20
-S3
o s c

a
Об

mcoа
3

Q.
E
X

o -g

Åi
ф g

Q §

C o*
O

ÏI
s §

E
P

Ii

2
e

s 5 « .. ? *
o О об
1 s ^ S3 S 11

об e ” 2 в В S 1

O 2 1
“
1

£ ё 1

2 Í
Ф
5

U D
éf

i
43

2
43

3
43

4
43

5 а*
73 2

si

Q.

* 5
я . t)

O I®
2

! 8 Ä

i! э
0) I -s
Й O

¿ 1^* Å o

E 3 E -5
X w
♦i»1® «
<0 U Q -5
I?1 =
— о I .g
™5| 5

"о. ф a> o

? E
po. « i

" q o *a
s

» я S I'
” c " 2
о®*'1 -
m _
о «в «

SS
aS

Q „

° I
il£ m
> §

11
? 5 u

> 5
2 = 5
O O >■> o Q.

O %

s -S

- -S
— СЛo

2 *« g. «

!55

-h m h w y> d<м *) n м in 3c n W) CM Mn # л я -*j
r- 2 3 *
in °* c c a w
•S 4> « m n D
И J *J *) # o
^ 4> C C "O <M

С Ф 5 5 £ O
O S CL CL U £)

f S f

ОТ ОТ ОТ M
tl tl V «J
OI OI OI 4)

2 .. <*-Û. 00 -
•-e E ?
я > 3 ®

5 S 5

oo

•o ^1-0 5 •» tl

Ы E ы e -~ >
*j I ti и ai w
XI UTJ M *J e
a и a cl -и m
D tlDUH 3
<M > «H -H 4J *J

JOIOriNC

I
•O
Ш

o
Ш

Ь ¡M il

g z 5
b'Î i

ti

8.

o
m
eo
3
e

а
а

e _
а 5

E 5

i I

I-

s5s

лаа

O W н 2 T «
H nu II V n
■H Я C II u n•о ч-i 01 гЧ 0> <ы
о> с м -о « со» w а и w w•о +J *J д пив • # « 041•о м от u — м

g, ОТ -2 5
от от от <н и
ОТ « ОТ в>

ЧЧ~:
_ А « ОТ ‘О

m Ц от « а

35

■Mløf-COONOr-ICMmViOWr-OOOtOr
iioocoisoioioioioioioioioicnoc
P tn 'fl Ю Ш Ш Ю Ш Ш Ш Ц) Ю Ш Ц) Ц) г* г

i я м» m о н г
и г- г- г- г- г- '

О
tí
"О
ш

о
m

8

I å
•ас
s

I e i i
О)
к

sl

?■-

,v 5~
й£

2 “■
« I

- Q -

-J

II31
iss-

SK
(П'ОГ'ЮО'ОНМОТг-г~г~г~г~аэсоаэоо
inininininininmm

00 СО 00 ОТ 00
л л л В от

ютонмпч'ототг'Шв'ОНмasejOTOioioiOTOTOiflioioi 000OTiniriOTOTOTOTOTininOTOTOTOTOT

о
■С

о“

s

Е
Об

Е
Об Е

Об 51

S -
2 3 3

I -
В ■о

£ “

o: t
^ ß "ü
¡í 1
s®1 E
5« 1
™ 2 s
S! I
11 ё

“ £
£ g S
О «
1 s
> 06

«H Ю VO гsss:

S » O
ie- 3
D-g f

= E |
Я S. -o

m ® '1с я 5SS S

: 9 S

! u
oö

® ^ O

6 ESS
•s-S1

m 3
I s
If

li
O «

sis £
9 s
■e “• -5и ; u

1*

■■s
S

S
ш

o = г

! S
a.

i от Ф M
§ In In m u

1 I

OTOT««“ u ”1^1

OI O H N n T ОТ H (N <N <N ем (N (N 1
tn in in in in m in i

«je

) Г~ XCOOIOHNOTiiOT
I IM iNNnnnnnn lin ЁОТОТОТОТОТОТОТОТ

4 3
CD -O

Д ü

c 5

o *
53 >

51g л
£ -c

Í O

О Об

o o

ia m
c c
o o
*3 53
3 3

e=£

CO
c
o5
3

o.
E

-S Я

c
CD
E
3
и
o
Û
S o 3
(O ti cro
Û

Фn
E
0)

S
E

1.5

Ш g,

«« 2
O 75 5

Ш* C *o

c -5

J i

il
2 J

è o

O LU

П - t Ü er trIt
Ф §

£ 6

E
x

c «
o ®
II

C JÉ
o <e
O O

.= и
о Д

-C -
I| в

■O o CJ
■ÜO я
¡5 « s
0*1
>» я «5

CO S I
c % oSil5 5 ?

S °i e
« C J=
ф Я -
£ L S
5 o v

S ш

? 3

«2 I -
C 53
= 3

O o

i 9=
C JC
Q 5

>
П

O ^ O OL

£ T3
¿ o
S >.
т msl

3 *c
o 3

tf
S °II

s 3 e s
bo

i Ф
■ti

,E -

f ш
to c u ce
Ф o 5, Vca ¿3 ro

3 _ g
g Q tg

c 2 •
° £ -c u.

ill 1
C JÉ c ф re c
O O «6

и
o«

S

о

о
>.
со
с
о

53
3

о
о —

53 ф
5Ï

>S

tl
I i
II
S c1S f:

11
Q Ш

Ь E

с Я

O
CO ffl

O = S

= 3
I 25 ou
c .ti
53 JÉ
Ф ro
O Q

5 Ï

I 5 o u ►> >.
,V) CO CO

I IÜ

3 £ £ « 12 12
g 2 2

E
Об
Û

O

m

53
3

S 5
Ф
01

о ф -2 2 Í ф
•o <2 ф c¡ ¡Q <2

-o'5 -u o ^ 5
Я Ф Ф -H T> Ф
•n m m 4-> — m

Й 3 2 -2 o
2 2. u 2 « >01 » CU
$2222
o « 2

•2 E

5 £

\ O H N n Ч1 Ю Ф §i~OOCTlOH<N<n<rмл m m m m л in ||Пюлф«с«>фюi л л in ui in in in Einiftinininininin
3 3

o«h2««
UHUS! НИ•н та ti < н та2 «w v Q и *m

3 o c -o1 o та и и о я и
та ф ф -н -о Ф •о м м *> — м

е'5 -2

▻ бита

о <2 я та

_ c¿
ЮН(МП«1П) ю Ф « « <о U) i m io имв e m

lOr'O^OHNPlVinW
IOVOIOICl~r~t~r-t~r~r~ффффффффффф

” ф
о tl
13 л
5-5

Så

(Л л
S| u
^ и s
I 8 3

<¡¡£ 1
5,3 E
Ï3 s
g (Я Я
5 e 73
3 s -3
|% S

0) B и
&S s

«I i Q S 57! e “
О 2
s а.

i 1

о « -2 S « «rH JO "О о> «

та w ф о .о *ы

э и с -о1 3

та ф ф -и тэ ф

(Nn’finU'MOO'OH

¡ФФФЮФФФФГ'Г- Г~Г~Г~Г~Г'Г'Г~Г-Г-Г~

фосф
«8фа:
о3

и-1 фо 8
я €

û *5 - я
о »■

в *э•= ti
J о
О -5

i § 151S3) < « * b _з
= о * *Л5¡I I V-s'q

ф
Ез
о
оо
го
го
Û

фп
<с©о

о“о

ш
О)

3
о

■Оша

Iо

4>- .5 1 з
1 1=$ û

ф
О
С
ф л

х:
фт
оэ
55

» е

tiS 5с д«i v

ro
■О

</>S3 jQ
5 Si «
<1=1
= 111
3

v -C л “ *i

Co

c
Ф
E
3
ooO
roа
ф-Q
E
ф

25
Jo

o
S

:«
o

os

ts
o

! I I I
3 .S

Фо

£
Фо:

со

•Ош

Scф
(Лф

V) с
Ф „.S ♦Í ЧО 5 Э vi 2
■О а I

< 1 Í
.у s э5 "5 о3
Û. . •

С
О

с0)
Е3ооо
гоо
фп
Е
фS

шсо
s

о

о
ш
со

Û
d

S
■О
ш

о>*
СО
со•■с3

се о о ё
ф "о— ш С Œ
oü,
Я О
ф Ä
с v— ш

- С

с I
О з
5 С
"Е ®С s ® 2 о а

1C

Ы

«5

2
а

Ф
ос
ф
Ä

фа:

CZ)

■аш

ф

го

(Л -

I SF¡
Л CL'S■с « S S E" < g S
O h 2

■— 2 «5 u c
3

CL . e

c.2 y
ro 10
i 1! FоO Jû °

.Q
E
Ф

2

E
Vs

•zS

1C
о

3 5c -

i «3 Û

■о
■2

5
-Q
Iа

Q u
® -S
® c
I I
*ô Irt *5
S « "
OM S

ti"
IfM, 1

c -o
E i
o “
O <¿
O o
§ i
tSc
3

LL

S E> P
? *
i 1
°6 cdÛ "

'5
I л

s S I ».

c
I

I
9

=
o.

II

11

I! g

oc

(S DI-S £1

JCTlcr»(TtCXt(X\C7^(T4<J\

* 2

»ccо

rø rø rø rø rø rø<1> tt) tt) 4) 4) 4)M M M M M иÍÍÍ длл

:>>>§
rø rø rø rø i

l»trøi)U»-UUUUl

iDtßMBOtOHPintt'intflMeOlOHNntt'int,
Qjtoajæmototiltototfltffiototoiooooooc NNNNNNNNNNN *ic'iforørørørørøt'

Î X OT
* a*a

åOxoHtNrovmvor-
IrlNNNNNNNN)МПЛГ)«ПГ)Р)П

c
о

‘.5
5 c
Ф
E
3о
о
о ä
® 2
il S
<2 S
о ?
« •—

ф

О)
О
с
а>

«
0)о:

-Р O'
•и с
ТЗ -и
Ы 4->

х:
с CD

•H -Н
Р ^
.tí СО
O' tí = :
■НОЛ,

Ö)

I
N

JsCroо

дл Р о ф
Р •Н м с -У X чн
Ю Д* ф tí X Ф
В
V

N Q Рч ТЗ ТЗ ?
ф Ф Ф Ф ф ф ф

тз ТЗ ТЗ ТЗ ТЗ ТЗ ТЗ
0 tí tí tí tí tí tí

Г—1 Г-Н i—1 Г-Н <—1 Г-Н
и и и о и о иtí tí tí tí tí tí с:
-н *н •н •н •Н

t А

tf)
Q>
(Лtf)ГО
U

" 5 *
S S S

ф ts >| ||

*Q>

О • • •

•a
"C

о о У.-Sсд С5 * цГ
fe.’Q.S Я

о О • Ö
с е= X g,

7.1

CÛ ^
и а
J ¡ttf) у .2

о iå
Л2 I

g gl

j § á -s'
® чз g 2"

" e¿-° о

Wí
f U о I
! 11 *i55 3 n

' .a > « w
J»£ .S =ос ^ 15 «
H í ¡ I
! м i » $
TD TD TD o .Q"5 "5 "5 2 ,ГО

ГО

<ГС
X1
шÛ
Z

^ CÛ
о О
— II

■ а 8 Г
litó-
м и b -9 о *; Il

? "II вв

Э Ч ы
w ш м

.5 с 5 -с •5 « « Ы М

’ О " Ы UJ -
м -g

U U 2

11 &Я 3 *
ü 2 « "т■р vid* м М о1

С * * S

Я 3 -S
11 -а
«' g*3

1,1, !

со
с
а>
Е
з
оо
û
фс
ф
Û

15

Í 3

5 i

ití
фа

сфа

c
о

5

<2
О

C i?
Ф -iE 5
э £
o i
S £
ф
П
<ö

■Qf,

•o
Ш
en

5

■O
Ш
O)

й h h 2 и
q'o'û'o'q1►J ij tJ J ij
Ы Ы Ы Ы Ы

(u Uj Cu [14 Cu

û Û Û Q Q

CO
e
o

Ш
O)

■O
T3
d

Sí
Ф _

CO! <
e шli
is'
o o

"O
Ш
en

d d

S O
» Ф

= -pс fli
С -p

.5 "-5 *5

5

ш
en

cc
o

3

cc
o

cc
Ф
Q

3
-Q
■O

CC

O
$ 5

O)

d

cc
S —

e
o

■Ç
e
cc
Ф
Q

?

>-
Q.

s

e> -o -o -o -a
C Rl iQ (Q Q

e o o. o. a e>

e "
Q, o.
E ?
® ¿O

"O'S
O

o
5.

2 d

ro ia m '

J ro ro ro o

sl

1 H N n 4J 2 |J
J *J Ü4J Dl № D>

i u v JS
H M ro £ S S £^ *J *J *J 4J 4J CT
ГО ГО ГО O O O 41
41 41 4> G e C £

UOOOOUUUO U U O O O I

Гс'ссс’сс'с
ЗГОГОГОГОГОГОГО
4МЙММИЙМ4
laaaoiQiDiCu

4> 4) 4> 4) 4) <
CT CT O' CT CT Iro ro ro ro ro ■

comortNmi'iniøi'æilOHtГОМГОГОГОГОГОГОГОГОГОГО^ТЧ14мгоммгогогогогогогогогогог ■О
о

IW <Я О H N ГО 41
Sin IO « Ш Ю 19

19 19 <9 19 19 19
1 9 Г- Ш OI Ои " IN И V Ul W Г I« Ul U П I1Л1ЛЛ1П1П1П1Л1П1П1П19191 Г Л 9 Г» (О 91 О г

одаоооодаоосооодаоооооэс

<D
О
C
ф

ф

ф
а:

о.
о.
о
m

TS
ы
O'c

11 =•

I s
II 5
S 2 Z

4) «

I ? tiu

ia h *Il a
й «

° r = O'
£ л л г -н
•Q • • Л Л
IM -u 4-1 * 4-)
"ÍÍ- -H -H -p -H
ö) л; Д! -H Л
C X <0 ^ fö73 73 N Qг : : : :O) a) a) a) a)*1 73 73 TJ *0¿0000
*5 и и о и^5 o c c c
Q 4«: 4t= * 4*:

0i = T
c O 3

5 1 jU 03 £

3 J J
S 8 8
5 5 5

V)co ^ ^
t5 "5 "5 "5 ‘5
3
IL ... •

•3
ЫDJD

01
i-!

c 1
о в
.9- å

8 !
S I
T3 •=

i sд £
® « о и

o o

Д -

c 5.2 £
1 i
S I

S c
-I £
CO1 *

q -o

c

0)
E
3 o
O
Q
Co
c ° 3

i
=8

+J J Ы S Cm 4J Qi Q. M

O
O)
cs

to
O

i
=8

.~l

U » £ » U
О в) « 4) >
o « >!§ *
О Ц *-> M Q.л в л m л

aog.oaoo.o

KTJHTJMDMT)4->Ы4->Ы4->Ы4->ЫnanananOi

e> и в>
e н в

Ф
О
С
ф

Ä
фо:

<d тэ
л ыtd о
Р 01 td td
Q Л

ö> Л J*
C 0) to
^ S Û

О)

JC
m
û

0) 0) TJ 73
O 0

•5
.=

3

1
V) û
</) «
<8 ”

5 .

0)
о
c
а>

<D
а:

Q.
О.
О

■Ош

Ал • л O' Äс • -и л
М -Р
-Р ю
СО g

4->
s <0 Л 2

• -р
•Р -И •Н X ^ <0
n а

д л
■р -Р
-и -н ¿4 ¿4 X <ti -о TJ

С -Р
>1 со-о *и¿4 *Р•о лТ$ 73

го
g
¡5
CQ
Û

0) 0) 73 тз 3 3гН 1—1
о о с с

-Н -Н =№ *

ф ф 73 73 3 3 1—1 1—1 и и Й с

'S 733 3
'S 'S
3 3

•H -H -И ”

11
-
g
"C

■О >
CL Cu

о О G G

: 4* 4t: 4* 4t=

V)
a>

s
s

8

G <
S S
C CG G

(Л
C
o

(Л f c Uта Ф
4t 4t c

D
O o • • U-

G G > M

« G
j£ u

H H

."H .*2

<
=,
2Û
Z

m
û

Il ¡Z3
II

? £v слû. û.'tiïïl
is°s*3 изagi

3 « 5 s s í

° ° î r 1 £
S 2

? 2 й
fil
2 S 2

¡ ч s ?..У I 3

1 f
1 I

I I o'
iis-
»2 ü
2 G 1

•C . <
E я
3 "O: 2 и
я g.
J 8

> > c
ПЗ• • >

1 « I J

ot .5 о -o

m Q-
I 8

V V V V
« a v «

£ S Ü Smo.ma
s ti

о z о H *

å * a - a -
s tu o O ö O o>
S—-S на. c a. c
Ы ~ Ы U. X -H X -H
2 CT 2 он +J И *J

§ ï § î
Й A Й A

£> S -P U L marna»

CÛ
U

O
■o

2 3 I ^
Ш 5
o -n

a «

оIIeо

-О
TJ
dо.о
о
Бш<0

J

2'•5

«с
О

о!
Е

L
"о
dао
1тзш
2
I
ûфс
о

£

5

л; лг л: .* .* л:
v v v а> ti О)

■Са

О)

го
О

л rtj .а x и о Е ^ 5 —
i + е + £ о

I^I.OIOV + N

V V V V Ф Vи и и и m и
- и и и и и и -

iriniOf^oomor^fNro'rinvor'OoO'Or-icM
4''r4'4,4'4,ininininu)in^uiinin'C'0'0
<N<NCM<N<NC>l<NeM<NCN<Nf>ieM<NrN<N<N<N<N

i го «г л « г

Со
го
сго
ЕD
О
о
Ого
лго
го>

5
-О

5

« 2 § û'û'q1

О.
СО£2

■О
dао
о
dш

13
!2 ti
55

„ со
? <

”2II
I

а о D
ef

in
iti

on
 at

 li
ne

 34
 o

f f
ile

 D
ak

itM
at

er
ia

lE
di

to
r.c

pp
.in

t i
dx

M
at

er
ia

lE
di

to
rs

Fi
el

ds
Q

 =
{0

, -1
 } [s

ta
tic

]

Ф
о

фо:
ф

Q.
CL
О

CÛ

"Ош

е£ Е
•н
vы

Xi S S P
• xi Xi S Ю

O' • • XX 2
CPP • P

■H -H -H P -HTZ m m M -и л:
.2 p x <ti <o
b. n T3 T3 N Û
ф V s 5 = =

ns Ф û) ф a) Ф
ST3 "O T3 TJ TJ C O C 3 O
.'S H .4 rH Г-4 гЧv; и и и и и(У с с с с с
О

± s ä

(/)
с

S з
ё ^
3

LL •

SSÏад1 м1£> V fe
о 5

•С о
со> .

¿е
5
о

В «2
о С
</) .2
S I
■D «
f I
® 1 Û U

1
2
Í

с
о

с
ф
Е
3
и
о
Q
с
о

-a Xí

I 8

mо I
=9

о
с
3

и

3 !

1 м «Г я £> м «2 !
, 1''СГ-ИГ-

ioreocnoo‘CO'1 lcÇ,c g

) 4) U « О в) О
I 4-> И *J U -P U
) 4> О 4) 41 41 0)i 6 н Е U Ё tf
) Я О 4 ’О Я ТЗ
> U и М 4> и 4>» я л <о л m л

g -и е с в «м в
Л JZ Л Н <0 ч-l ГО

4) > 4» О 4»
O' Т) 0"М O'

и и и р и
*J (U 4-> 4» 4->
U 4-> О *> Uв # « # в
^ Я Я Я и
л m л (0 л

i> ы *j ы Í w а « о. в

i 0.0 äo k
i и -н и -n и -и i
I К TJ к t Я ТЗ I
I 4-> Ы У Ы 4J Ы *un о, m о. от о. о

О О. О О. с

Ы к Ык ы -М Ы -Р ы
а m а m а

Ф
О
С
ф

в
ф
т

^ .5

"Ош
ф

го
J¡Cго
О

Щ
5

<л
ф
V)
(/)го
О

Фо
c
ф

ф
а:
ф

Q.
CL
О

"Ош
(Л
сл

JS
О
>*

CÛ
с
о
3
с
ф
<л
ф

V
н

и
>1
m
с

тз
0)
с

р = р<о .ti ю
р • -р
С Û с

А ОТ И со
X! Ф Ф Ф = =

• л = р з р х: хз
со x: х: 04 а) а • •
ti • . 4J -Н Р Р Р
-н хз р -и > -н -н -и
ррч^дллд:
рф,*(0Ф<0Х<0
от g N û S "О "О Т)
VVsrssrs

<ü
Û

i il
и

¡3 хз
(tí •
ti P >1 от

X4 P
to x)
-o TJ

фффффффффф
тЗ'О'О'0'O'd'd'd'O'O сл Г

S £V) ts ro
O .

<
X

Q
Z.

CÛ
Q

□2Г
S ë_« Oc

«2 ë —
o .tí II

(Л
0)

X2
(Ö

s « a ь2 2 c c
III-g $ ¿ -o
a. £ и в
Í c ” -f

:> û1 g1 f
âih
*' -y 5 ь

i •§ %

3 ô s
Isa?

" §
■a

g « h
■5 о

. §£ c 5 ы

s S !il s

Г t 8
:■ ;•£
-° ? §
2 -S о
JJ «

e 25 «s S -Ö,
’S ¡5 JJ2L Ö а

“ ï |,a
S u .5? *-3 J» — -O

E
■S I
E .

O -C
<0• >

:■!
Г :

8 U -Уc *b r=3 ^ £
YY

c
O

1
c
Ф

E
3
Oо
Q
c
O

c3

<l<Nlm i от от от
«r io vo t~

i I I I . от от от от

£33333333
•VUUUUUUUUU

li

2 2 2 2 2
e й м м м й :
й з э з з з *
3 4J *J *J *J 4J <U # # # « li IV Й Й Й Й Й

! Ill

Ч< ОТ ОТ Г“ OS

0) 0) V 0) VeeeeeH H H H H
(o m m m m <0 (0 (O <0 <0

~ O H <4 СО V Oi

: i
tt) 4) 4) tt) tt)
esees
« 0) П « « '

ououuuuuu'

Ils

jiwiHWiMWiun^WWHVjiH tt)
о
s2

) TJ 4) X) 4) tl tt)
Ji tt) Ol -У Ol tt) Ol
3 O' « О « Й <0
: Oí й£ 0£) Ч-i и >М и 1М и

< й >2 MÄ й <2
4 ai «н v <й а) <м]4)Ы*)И*)Иtt) tt) 4) 4) tt) tt)

e » e 01 e oi
(0 "O (TJ T) (TJ TJ
Й tt) Й tt) Й 1)
(TJ A (TJ A (TJ A
ai ai ai

Й TJ Й TJ Й "Ol 4-1 Ы 4-1 Ы 4-1 Ыu от an a o) a

)(OVO(0(DVO(D(J

11

£0 5U -o
Q «

ô

ès
£

:t ri

tt) « « V «
(TJ tt) (TJ <0 (TJ
Й Й Й « Й
(TJ A (Ö A (0^

g iJ 8 Ü gЙ TJ Й TJ Й 4JU4JU4)mana«

U-S ,
« j « «

U.a

CÛ
O

■e
O
a

II

4

§ § I
c
Os
c
Q>
E
3
U
o
û
0)

JÛГО
ro>

s
5
C/5

CÛ
y
O

Iti
Û

in
t ¡

nt
Fr

om
Cl

as
s (

Pr
es

en
ta

tio
nB

yC
la

ss
Ty

pe
_t

 cl
as

sT
yp

e) [s
ta

tic
]

D
ef

in
iti

on
 at

 li
ne

 3
6 o

f f
ile

 D
ak

itP
re

se
nt

at
io

nB
yC

la
ss

Ed
ito

r.c
pp

.d
bf

_t
ab

le
_t

*
tb

IP
re

se
nt

at
io

nE
di

to
rs

0 [s
ta

tic
]

8Q.

.J

о -Jj
? **
Ф “
О о

3cО)
E
í

«с
о

о
аз

о о
iï«: р
5 —

«s
«С Р

и
аз

о Ч
2 j
с Л) С 4-> а> m
о —

оs
3

с
о

= 4-1с л)
CS Р

о
азсо•■г
3

II
55
С с

?! о

= '°1 5
15 о! -Й
с E -и ОЭС
2 2 о
,5 л
<*- I ® «
О -о

О

а 'и с и
О 4J •5 rtj
д р£ •ю

о
*
о2 о

È1 -2 ф *я

fl I
SÉ i

•t: Ф c о « hü“ 2 -осо а я
ф 2
•Е-g я
~ J ^
я с о с Е «д о э тз
2? S
I"! 3

I

О

аз

«*=
о

«с©
Q

tn с с с с с
1) U М Й м мМ Э 3 3 3 3
Oi 4-> 4-1 4-> 4-> 4->и а) ai а) а) а>
•H M И M М й

) to р- аэ m

23

) Ч> г~ оэ

со m со соa a a a
: м :
1) 0) о» o>¡йййй
tn tn w n

rtjnjrommSmflS
o o o o o

3sså
) 0> 0> <V 0) <S g; §: a & §
• H H H H f

IH
1 ä __

IIIHf

Oc
'S

co
E
P

3
to

o
m

h « « tn ы1
а» а а а <
.5 g 8 g S
4-j И « « S

3to

о>»
аз

3to
E

о < < < «

c « « e ç

±3 tn tn tn м

~ Я
lOHNflVinV
)Ш№№№Ф(ПС 522::

c
o

5
c
<D
E
3o
o
Û
a>
nro
ro>

<2o

o.
5

5

I "
О- *
4 P

£
CD
OS
Я -, E o

■o ^ ш V-
1I2 со o <

DÛ X|
c x

fä S 5

к _™ -O “
ф Ш §
C C H= s >

Q Q Q

« 3

o
m

1 « So O ÊB £

Q O
® °

2 il
s i

2
5
ф

E o.
»- <2 S e «=
° o o o °

•■= xJ

c o.
o c

i= ol

O o"

Ф
осф
&ф
а:
ф

о.
О.и

DÛ
О

"Ош
(/)
(Лго
О
>m

<s í
С x Û) ТЗ
<0 =
2 Q)
£ 1

ТЗ
ы

0) (У 0)Т$ тз -о
3 3 3

^ и и и и Я С ß С J
О # # #

« .5 u -о
* Й
й -5 '

I и и %c c Jr ‘ о о .
; -С -С й
! о a S
“'lm

</> J!
§ 5
ÿ *
C
3

£ £ 3I I ¡7m eo Ï U U к
я iS “■
Q Q 5

5 "5 ’5 "о > > > >

V) >а) ь
S a
.5 Q

m> .

"О0)
JS £
» « Q и

% G
w§ aa

2

E
г
1

С U

В t
5c
Û)

E
з о
О
О

о
•■3
3

m
ис

о _
о 0*3
с тз и
3 о

å J?g 1

V. »

+j а! та S
та i-i -P û.

И £ U И

в) и а! ro та v та м

§•21*2 о•3

шо
о
3
о

1 з! ■*

ф
ос
ф
дфа:
ф

73
Ш
(Л
0)го
О
>*

Ш
с
о
3
сф
(Лф

с =
О 3

S "ч

б б
X X

0) 0) •о т$ 3 3
го
G

я
у
В

2
(Л Оа> «</) я(0 Ij

•и -н —О

pa
ra

m
et

er
 wh

ic
h

bu
tto

n
w

as
 p

re
ss

ed

о ” о

I
U X о X 2'

.1 о §-§,.1,
о 2 б 3 оь s sas
Л Û 8 U U

O -ø (N— Ш — t00 ¿£ .3 I I ^
- - O

uu - ТЗ 2* r "ö— о Ш Ш8* Sll

I*

_1j2 so go t: -5d v
•g « «
Q 4э 4э -3 u C C 5) 5).5

ti ti g. Ы
" E IIe'e1

- ¡'S ШO jj-eJo
N -g о f S

я я ^ ш ?
’°1Т,| ui Г“| E E E E Е

-1
m со

E Е

$ - 22 = s = ~-§2 „-о Í5mm
-•II
*5 со со „g со са .S 5 2 cO-E.EuStslgg •li-ii-Si 1 IIq S к-,=1-1 °l °lEEEEEEEEE

= ° =3
: - Ô

! — J
50 50 50 — = ^ e с Ш
CCC"3«000«>
111 ¡в а и и и я»»«‘ruuouT;-raTJ-oJsccectrCCGC9000ÜC
E E E E a, E E

о о л я —
s 4-2 CQ
E Îa a

E E E E E

- X

- E
il

: J¿ oo
S * M

j> Í> •§
fil
E E E

2 Q
CÛ Г- ^u - .~ ■ m t и '5* CQ !- U id

|Q 5
ils
K*

PP««3 O J S
tn Щ > §

„IE E E E E E E

X
<D

"O
C

'•3 иШ i
Z ZüS£ o £ O >^Q

’S ti *3 S oti 60 ш g чз Sp.E ~5 ■z, Я 'c «SSSl
ç 5

л sba
a 3 i i £
L5 id L5 id 'J5Û Û Û Û Q

S CQ

§ §>3 I
I! “ 2
5 и

.55 o
Q =

SI 13 8 6 '■I £ ^ S
o io s

Я "О Я "O nano.

5 E

« со ?
O -a

Ï
fr

ЗЦ

I g

O ¡0 « ¡V g
ITJ 41 m n rtj
m л n л ma ^ a ^ a
a o a o a

я тз я -о я
U Ш u u w n a n a n

^ я ы fl

<u e> « o
« я « «

*j S *j snana

E -S

CQO

O. J

li 11

4s

szzt) <o r~ a> ci о г

CO

c0)
E
3
o
oÛ

-Q(D
ro>

"O
Ш
a

o

5

£
b

■ S V .2 О 2 U .5 Я rt— vi t: vi «5 ui«-Ç urt 4> rt о rt U 60^
щ SSaa e._,.
-äS-äg-äg-äs-Q ^ Q ÜÛ У Û £

5 § *g- r

mu
я

« 'S X oс -e ^ я
5 s 5 S i ■ 3 £ S *

s IL « SI os 5 *1 7.- ” suS « c
S CL, « « o £
j 1-3-36 i

§ &ё.г I S S S-S-5 ÎÏ.5-
o

i i i $ $ "S
8 " "m -" 5¡8 « S U “ "5 n f4do-aJiSSTj-^
to m e 6 1 S o 3 S и о и g .« £ ia 5fïï la.fl I

■as
■о -3 ■аз Б 2

I a,
■ о

ûûû Üa'l 13

Щ S ш
о <N J§ о J5 m S2

оо m — rs (j rors^j

§ o S m <5 m § o m

s s 3 g! ais! iss "tiû -3 M.E И C T= « bû"5
c .5 c
I о Я £
У lu d il

! ï 2 '

5"S s S .gS I ¡6 a
60 <u v c rtv III S II 2 1 -tlD a q a q ? JN'-Ü

O S-Q Q

B c ^

111
? и -a
Q äo

aju ш UJ

y з |з
¿sisSeitiääo ! O |Q

S
I

v S s
vf*o -d

* d£
S |s

E E E

У ~ X- ö rt у ;7 7 Q
: _r « ^ ‘“'Cm

я a c ^
S dS j.

I j
S U СЛ

111 ill
e' e' E1 E1 1 1

o- . a ILI fif
O £ Э S

„ -c c S — G o.= . t=Я у I a -s a e -5 -s, S
12 3 щ у щ

ЯЯ аI SbО О О О и
II
•i *8

s I f
з J "В'1 1

о

ti "С "ä g 2 § о S

-3
i,5 b I,'Í å Яч : *сзЕ

i i d
"si
zb 5
S £?S

yesS 2 1.21132?---u ш- - -
a иI ¡3 2

i
I 25.

S J
о 3

0 I

2 ¿2
3 6?Q

~ ш
I?
?QQ

'ffl’S 4U g .я
å 11

f el
« ^ SS Q S■a 1 »
û

Уш
о и O

I II »¡o! i i I h- s
i-i

и S
К I S I 3 s 2

cu ¿ cl "EL >. titi' -5
a 3 2 'E S g щgfl-Stll I I

dj У

»a G
^ SO CQ O
~ * U U 2 c•2 5 c « я T о m ^ о -с "С j« "5 — „
О u ;g 2 2lililí ¡So
§ of!!s £ 2 e
r e E 43 %.% er.eiei8iSiQ|.S E E E E E E o o

I I
E o LjCQ CO oo •£c U У g

2 Sí S g»-c
1 i S -S 5
и и u U r.3 3 3 36 sO O O .« <U5 2 5 > rt

3 g d

с в .E CQ
S 1
U O
g I c c =
c o o o o o. !

o -5 o 2 2 2 2 2LH Щ. _G _ . -Я -Я -ñ -ñ -ri

ffl* 5)
r-tf-a d
j.|| 8.

Is"

з o £ ;
У cd «

U U H
S S S

> Mr? _'.■s II
"J O -jP | 2
1 §5 8 S

"i, O '§>’»
j b j _J

T3 T3 -a _ „ Щ Щ Щ 60 M) 60 60 60 C G G C G

U U U

a , cd §
e cg *5- ^ со CS 2 2 s s g»

i й S ш S S -2
> > U .s .£ .E .S J,
j - i 3 i-lffg
:”.Й J33ddi
: S EP 8 -2 û

Q Q

g i ^ _
S á 2 r<-
C G 5 1

*§) ’S) ’S) У
а|3|агй
uSul
I i-а 1
û û a ■*

Q

.«
ob 5

s
5

I 2 ¡3

Я <л о яÛ о •

С и
S grt .2S .H.I s

2 и
*q o ш — >« e nШ »

O g 11

«rt o' '>
1| ¡II1
1П7 « S

■F. b « ä
БЗ
0-7XV XV /X. . ™ vv c-o-o-doovvtc 60S .

441
g "E и

e s §I I I I
E E E

CQ О о ш

с 00 •“v со ” Ü>
û. и U

III
о S û

cg

•а -о S
*5 Ш ы Ся 80 — о С .5 -c -S% Я S о v оо я а;
£ âJïs
I °lllQ 2 Q Q g

•5 -5
Ы -С LU
f-S .f
l>l3 "я 3
i ”iû «û !p <

VI »1

■S S S
'C c .31I s

¡3
2P в= .B o s e .S

« m
Q "5

I O ■§> B
3 § 3 a
5 3 5 я
û Z a m

g о

11Q CQ
8

g -I
3 sQ d

|l|
c ^ cЯ H Я
30 5Û 00-

d -s d "
ISI.Û d O ■

03 I
JS-

c

S ^
iis; û У

u i_T >>O O CQ
d -5 о Ш Ш -5

s a
cЯ S 8

. _2 jn я

3 Ш
11-8.

^ c ^ .SP U 52 û. o J ; S3 I i 6 B € SI s S S -S i i i i'Г2 d ‘O ‘3 л* 3 •2 u- 3 U, v -F-- v -P- v <-*

и -a a -a -S '5

Ç
8 8 8

.. eS-cS „
eo S «Í S g> S g1 S
iSS53|lül

■asQ t8
i i ä $ 'i .1 i
Q Q Q g D e Q 8 S

il IlilSISIsïû|djQJ05
Xi Я Я Я Я

О о о 2 с
■5 ^••5 .г !ш и Ш "ОЯ 2 Я у :iSli !
f || |J
111 1 -
û 2 û o. c

'В O
Isx
Hi

E
c

m I o

O S S
S 33
1 11

3 s
Si,Q o S S 5

125

li 5

ц:
til
352
■I I 8Q Q I

o o

S и S
60 o. 6pffl

Il У

. I
1 i
So g>q и -S

I ■&! I g I 8 üS2|3|",J1"!
1 SÏ SQ 3 Q 5'¡O.E E

-5.3•a s -aQ g Û

is'a
33 o
»*£ 5

.III

d ^ d ш E Шfif

dш

d § Ш -sя 2'C c 2 8

O ffl C O
w d o o d S Ш -C Q Ш2 i

Я d ^ d Sdsldti § i 8 d 8 d .ao d .“'3 — d « B d h d d э Я з Я

5.3
II
11

5 В£

_ *i u "3* Q 5 Q : 5 5¡ Q O 2 2 Q Q II 2 *3Q

CQ ШУ s
If
35 Я 32 Û

85
d 60

J15 Q

Я2 2
’S. i

D û

Г* ¡ CQ

00 Я O ed OU 2 i £ IL s £

CQ
d

il fc q i .1 s I I 2 g g
Q3=E üSQQ

|| t
51 j
<a и .1 ¿
° « S :
g q •§ :8 50« :

U 2 « 2 д 2 2 —d d • ш ш 3 3

i i iQ 2,Q
E

: q -c
: eo 2

c
“,û

g 5 i
III
“a n
E

i_i =: Я Я Je c
5 j t¿ ;

g -a
Ë'Q

8 1 "iû ¡1\Q

-о о -о I ш U Ш 00 *5 60 -S d .S
111

¡111iû ”|Q
E

§ïï .X Я 2 'G
§ §u 5 9 ;
11 M,û
E

1 sis

8 1 M|Û

3
Я .Em M
|j
i 3 5,5
E

CQ Я 2 oo
#3E -^5S.5

яCQ U
li
>,Q

s
u!
iS <¿3 .s-a
>,0

•3 »I »

d •-13
X “

о о о о O
3”

Ш 5

l'I
>,Q
E

S "5)3 3 3 3
d c d e = S Я c &Í

_ u 'G 5 "2 я \з o "5 *o h
SQ 8|S|.f |.f |Si tll

d
Ш

9511
>10
E

£ 2 *,Q
"S d *5 -E У -E У -E У^ *2 *,5 *,5

Q i I E

1.1331
•Il |ll*,0 *,Q Q
E E

3 з о ?dogo

*3 3 а Я в
"с 2 8 5 82 « S « «

5 о- ix ,

11111 • Я,0 O *,Q

1 !

mu U -.
l_- >1 >ч Ь-О CQ со о
d о 'S о d
Щ •= ¡1 '5 Щ.

в о

3 I
li

э » ■а 5
3 5

11
|а 23 2

1-5 2
Q Я .5

5 ”
5 2 Û
и .2 d

о о
d d
•1 CC

-•ä6 5
8 315

¡«III
:iDSD

О О О О О ó

>< d >: d n
Я "cS Я Я Я
•°,Q -°,Q *°|
E E E

P 8 .SP! M d
lii
i "0I û

•o -oш ш •60 r=O .E -S
! Я 2

ill
d "I "Iü,û û

O CQ

c <e
s j3 111

3Ü
Il =lil
S 2 »

le
E

d i 3 S g
■ïp-â
Q =,0

E

ili
D =,Q

E

ïSm y
"-i
-|Q

! = 3
Г E .8 « c

g-i

3 § S t-, S 300 -O 00 Я 00 ся 60
S .s .5 O .5 S, .S

gfl,Sl,SiSa
û d -E d -E d и d tí
Si Si 1 "я y1
—,Q —,Q — ,Q =,Q
E E E E E

-o —
Ш я 11

3|
E 3

3 я
11■S « "5 .2

1 i
Û °

d H d 8 d

S 3
II

5 5
Q o,

E

"2 o
5 I
Q °i

E

•G v
5 I
а o,

2 CQ CO o
d и § у
tu Я *5 я
с‘о 2 "в

31 £ 1
Û ^

E E

U
n 2? 5
5 ü 5 "О о

Hiili s'
S g S I S S ¡5 a sIa-?J S
ё ö ë S I ë O -S •ä i Ü J-I-ä § ■§>D-äD-änQ J "

u ™8.Уse и

¡1
o U
о щ'

Ш -Д
CQ 2

2Ï Æ й S>.SP-oc eu 5 û. S u оо .t: .t; .r J .ts о1 я i-£6-i|£ q D.Q a «a S
1 i g i

