
Miika Kornn

Application Programming
Interfaces for the Host Identity

Protocol

Helsinki University of Technology
Department of Computer Science and Engineering
Telecommunications Software and Multimedia Laboratory

HELSINKI UNIVERSITY
OF TECHNOLOGY

ABSTRACT OF THE
MASTER’S THESIS

Author: Miika Komu

Name of the thesis: Application Programming Interfaces for the Host Identity Protocol
Date: 9th September 2004 Number of pages: 86
Department: Department of Computer Science and Engineering
Professorship: T-110
Supervisor:
Instructors:

Ph.D. Kimmo Raatikainen
Ph.D. Pekka Nikander, M.Sc. Jukka Ylitalo

The goal of this thesis was to design and implement an application programming inter
face for Host Identity Protocol (HIP) aware network applications using the C language.
The results of the design are evaluated against the given requirements. Different design
alternatives are introduced and analyzed in order to rationalize the design. A reference
implementation was developed as a proof of concept. Few example applications were
ported to use the API.

The outcome of the design meets the requirements. The API follows the design of the
sockets API closely and extends it only when reuse of the design is not possible. The new
API increases the control over the HIP layer for advanced applications. Applications
can also specify their own endpoint identities. Typical applications can utilize the API
in a simple way that hides the details of the endpoint identifiers and locators. A HIP
enabled application can fall back to plain TCP/IP seamlessly if the peer host does not
support HIP.

The work brought up some future work items. The API may also be useful to other
protocols based on the identity-locator split. A Quality of Service and a mobility event
API need to be specified. FTP and other applications using “referrals” require also
further work.

Keywords: HIP, native, API, socket, legacy, user space, application

u

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ
Tekijä: Miika Komu

Työn nimi: Host Identity Protocol sovellusrajapinnat
Päivämäärä: 9. syyskuuta 2004 Sivuja: 86
Osasto: Tietotekniikan osasto
Professuuri: T-110
Työn valvoja:
Työn ohjaajat:

FT Kimmo Raatikainen
TkT Pekka Nikander, DI Jukka Ylitalo

Tämän diplomityön tavoitteena oli suunnitella ja toteuttaa sovellusrajapinta HIP-
tietoisille sovelluksille käyttäen C-ohjelmointikieltä. Rajapinta on arvioitu asetettuja
vaatimuksia vasten. Erilaisia toteutusmalleja on esitelty valitun toteutuksen perustele
miseksi. Mallitoteutus on kehitetty mallin realistisuuden toteamiseksi.

Rajapintamalli täyttää asetetut vaatimukset. Rajapinta on yhdenmukainen olemassao
levan ohjelmointirajapinnan kanssa ja laajentaa sitä ainoastaan silloin, kun muu ei ole
mahdollista. Sovellusrajapinta lisää edistyneempien verkkosovelluksien hallintamahdol
lisuuksia HIP-tasoon. Sovellukset voivat myös määritellä oman identiteettinsä. Taval
liset sovellukset voivat hyödyntää rajapintaa yksinkertaisin keinoin puuttumatta iden
titeettien ja IP-osoitteiden yksityiskohtiin. HIP:ia tukeva sovellus voi siirtyä saumatto
masti tavalliseen TCP/IP-kommunikointiin, jos vastapää ei tue HIP:ia.

Rajapinnan kehittäminen toi muutamia jatkokehitysideoita. Rajapinta voi olla hyödyl
linen myös muille protokollille, jotka perustuvat identiteetin ja lokaattorin erottamiseen
toisistaan. Quality of Service ja mobiliteettitapahtumarajapinta täytyy määrillä. FTP
ja muut sovellukset, jotka ovat sidottu lujasti IP-osoitteisiin, kaipaavat myös lisätutki
musta.

Avainsanat: HIP, native, API, rajapinta, socket, legacy, userspace, sovellus

Acknowledgements

I want to thank Jukka Ylitalo for his time and effort for the design brainstorming
sessions and excellent feedback. The credit for the endpoint descriptor concept
goes to Pekka Nikander as the idea originated from him, not me. Pekka gave also
many other insightful comments. Kristian Slavov gave me some corrections to the
implementation and analysis chapters. It was also fun to brainstorm with you! Julien
Laganier gave me some corrections to the design and analysis. He noticed that the
HIP_HI_ANY macro was missing from the design. Jaakko Kangasharju provided some
comments to the design and analysis chapters. He also gave me some corrections
to the spelling and outlook. Mika “Berner” Kousa corrected some spelling errors
too. Jan Melen gave some refinements to the design section and claimed that the
API is implementable with the Ericsson’s implementation too. Thomas Henderson
gave some comments on the structure of the thesis in general, and comments on the
design and future work chapters. I wish to thank Andrew McGregor for some fruitful
discussion sessions on the API. Sasu Tarkoma gave some comments on the structure
of the thesis. Antti Järvinen gave some typographical comments. Lars Eggert and
Joe Touch gave some comments on the source locators in the HIP research group
meeting at IETF60. Anthony Joseph corrected some spelling errors and gave some
feedback.

Helsinki, 9th September 2004

Miika Komu

Contents

Terms and Abbreviations viii

1 Introduction 1
1.1 Scope .. 2

2 Background 3
2.1 Mobility Related Terminology.. 3
2.2 Host Identity Protocol... 4

2.2.1 Restrictions in the Current TCP/IP ... 4
2.2.2 A New Namespace... 4
2.2.3 A New Layer.. 5
2.2.4 Mobility and Multihoming.. 6

2.3 Related APIs.. 7
2.3.1 Sockets API... 7
2.3.2 SCTP Socket API Extensions.. 14
2.3.3 Legacy HIP API.. 15

3 Requirements 17
3.1 Non-functional Requirements... 17

3.1.1 Usability... 17
3.1.2 Compatibility.. 18

3.2 Functional Requirements.. 19
3.2.1 Host Identities... 19
3.2.2 Addresses and Interfaces... 21
3.2.3 Mobility, Multihoming and Policies... 21
3.2.4 Security... 22

v

3.2.5 Error Handling... 22
3.2.6 Name Resolution.. 22

3.3 Evaluation.. 23

4 Design 24
4.1 Architecture... 24

4.1.1 Endpoint Descriptor... 24
4.1.2 Layering Model... 24
4.1.3 Namespace Model ... 25
4.1.4 Socket Bindings... 26
4.1.5 Endpoint Discovery .. 27

4.2 Interface Syntax and Description.. 27
4.2.1 Data Structures... 28
4.2.2 Functions.. 30

5 Implementation 36
5.1 Userspace Components... 36
5.2 Kernelspace Components.. 36
5.3 HIP Networking Stack Hooks.. 37
5.4 Data Structures... 38
5.5 Interaction between the Components.. 39

5.5.1 Setup on the Server .. 40
5.5.2 Connection Setup on the Client... 41
5.5.3 Sending Data.. 42
5.5.4 Receiving Data... 43

5.6 HIP Enabled Telnet .. 43

6 Analysis 45
6.1 Evaluation.. 45

6.1.1 Socket Family.. 45
6.1.2 Endpoint Descriptor... 46
6.1.3 Application Specified Identifiers... 47
6.1.4 Resolver... 47

6.2 Design Alternatives... 48

VI

6.2.1 An IP Address Policy Based Approach..................................... 48
6.2.2 Host Identifier Based Approach... 49
6.2.3 A Shared Data Structure for Identifiers and Locators.............. 49
6.2.4 An Endpoint Descriptor Based Binding Model 50
6.2.5 An Alternative Resolver Model... 51

7 Future Work 53
7.1 Design.. 53

7.1.1 Endpoint Descriptor.. 53
7.1.2 Host Identifiers... 54
7.1.3 Locators... 54
7.1.4 Referrals... 54
7.1.5 HIP Proxy, Rendezvous Server and NAT.................................. 55
7.1.6 Protocol Integration... 55
7.1.7 Events.. 56
7.1.8 Policy API ... 56
7.1.9 Standardized Interface to the HIP Module............................... 56

7.2 Implementation... 57

8 Conclusion 58

A Application Code Examples 65
A.l Connection Test Server.. 65
A.2 Connection Test Client.. 69
A.3 Connection Test Client with Application Specified Identifiers 72

vii

Abbreviations

AID Application Identifier

API Application Programming Interface

DSA Digital Signature Algorithm

DHT Distributed Hash Table

DNS Domain Name System

DoS Denial of Service

ED Endpoint Descriptor

FQDN Fully Qualified Domain Name

FTP File Transfer Protocol

GID Group ID

GSS Generic Security Service

HAA Host Assigning Authority

HIP Host Identity Protocol

HI Host Identifier

HIPL HIP for Linux

HIT Host Identity Tag

IETF Internet Engineering Task Force

IKE Internet Key Exchange

IP Internet Protocol

IPv4 Internet Protocol version 4

viii

IPv6 Internet Protocol version 6

IPsec Internet Protocol security

LING Location Independent Networking for IPv6

LSI Local Scope Identifier

PEM Privacy Enhanced Mail

PKI Public Key Infrastructure

POSIX Portable Operating System Interface

QoS Quality of Service

RR Resource Record

SA Security Association

SCTP Stream Control Transmission Protocol

SLP Service Location Protocol

SP Security Policy

SRV Service Record

SSH Secure Shell

TCP Transport Control Protocol

TLI Transport Layer Identifier

UDP User Datagram Protocol

UI User Interface

UID User ID

UMTS Universal Mobile Telecommunications Service

WLAN Wireless Local Area Network

XTI X/Open Transport Interface

IX

Chapter 1

Introduction

The TCP/IP protocol suite was originally designed for a relatively trusted network
environment that had a static structure. The nature of network has changed since
then, but the protocol suite has basically remained the same during the last years.
The network has become more insecure. The hosts are attached to the network in a
dynamic manner.
A host attached to a network can distinguish itself from the other hosts in the
network by its IP address and the IP addresses are used for routing packets to the
hosts. Unfortunately, the same IP address is also reused at the transport layer. The
drawback of this scheme is that the transport layer connections persist only as long
as the underlying network layer IP addresses remain the same. As an analogy to
everyday life, the situation would be similar if a person’s name and home address
were the same. When the person moved to a new appartment, also his name would
change.
Various proposals have been proposed to extend or redesign the TCP/IP protocol
suite to face new challenges in the current Internet. The Host Identity Protocol
(HIP) is one of these proposals. HIP introduces a new cryptographic namespace for
TCP/IP hosts. The cryptographic nature of the namespace allows security to be
embedded seamlessly into the overall architecture.
One objective of the new namespace is to decouple the transport layer identifiers
from the network layer identifiers. In the new design, the function of the transport
layer identifiers is to denote location independent connection endpoints. The network
layer identifiers, aka the locators, denote the location of a host instead of the identity
of an endpoint. They are used only in routing. The benefit of the decoupling is
that transport layer connections may persist between hosts while the network layer
locators change.
A new conceptual layer, the HIP layer, is required as a consequence of the separa
tion of the namespaces. The HIP layer handles namespace conversions between the
transport layer identifiers and the network layer locators. The HIP layer is located
between the transport and network layers, which is a convenient place to handle the

1

CHAPTER 1. INTRODUCTION 2

namespace conversions and to support persistent transport layer connections. The
HIP layer also handles authentication of the end-host identities and is the origin of
binding update messages.
Depending on the API, the new transport layer identifiers are typically also present
in the application layer. The identifiers can be presented to the application layer
with varying degrees of visibility. For example, the most transparent level of visibility
does not even allow the application to detect that it is using HIP. Consequently, it
prevents the applications to control the HIP-layer behavior.
The main goal of this thesis is to design an Application Programming Interface (API)
for HIP aware applications. The applications can utilize the HIP layer better using
the API. In general, requirements have to be surveyed and selected in order to
support the underlying basic functionality. In this thesis, a reference implementation
of the API is also constructed.

1.1 Scope

The scope of this thesis is limited to designing an API for HIP aware applications.
The focus is on the semantical issues of the API.
The reference implementation consists of a kernelspace socket handler, a userspace
resolver library, and a telnet application, that was ported to use the API.
An explicit goal for the defined API was to support decoupling of transport and
network layer namespaces by hiding the details of the network layer from the user of
the API. The API should support basic networking related issues, such as resolving
identities, binding sockets and network connections managing. The API is based on
the sockets API [8] [40].
The following issues were explicitly left out the scope: Quality of Service (QoS)
management, support for other types of APIs (e.g. X/Open Transport Interface
(XTI)), support for other directories than DNS and solving the reversal DNS query
problem (translating HITs to IP addresses).

Chapter 2

Background

In this section, we give a number of brief overviews of some of the background
topics. We assume that the reader understands the basic concepts of the TCP/IP
suite and has sufficient skills in C programming. The focus of this chapter will be
on the currently existing sockets API [40, 7] as the later chapters require detailed
knowledge about the sockets API.

2.1 Mobility Related Terminology

An endpoint is defined as one participant of an end-to-end communication context,
i.e. the fundamental agent of end-to-end communication. It is the entity which is
performing a reliable communication on an end-end basis. [3] The end-host is a
computational unit hosting a number of communicating processes [33].
End-host mobility refers to the phenomenon where an end-host changes its topologi
cal point of attachment while the communication context is kept alive [33]. End-host
multihoming is similar to the end-host mobility, but the difference is that the host
has multiple points of attachment to the network. The communication context can
be moved “alive” from one attachment point of the host to another.
A mobile node is an IP node capable of changing its point of attachment to the
network. Correspondent node is a peer with which a mobile node is communicating.
A correspondent node may be either mobile or stationary. A handover (handoff) is
the process by which an active mobile node changes its point of attachment to the
network, or when such a change is attempted. Horizontal handover involves mobile
nodes moving between access points of the same type (in terms of coverage, data
rate and mobility), such as, Universal Mobile Telecommunications Service (UMTS)
to UMTS, or Wireless Local Area Network (WLAN) to WLAN. Vertical handover
involves mobile nodes moving between access points of different type, such as, UMTS
to WLAN. [36, 22]

3

CHAPTER 2. BACKGROUND 4

2.2 Host Identity Protocol

In this section we give a brief overview of HIP based on the currently available
Internet drafts [27, 28, 32, 26, 4, 29, 43). A number of HIP related publications
[33, 31, 14, 2, 51, 18, 38] are also available.

2.2.1 Restrictions in the Current TCP/IP

The current Internet architecture is not very secure. Most of the network traffic
is not encrypted, which makes it prone to eavesdropping or even tampering. IP
addresses are relatively easy to steal [30].
In the current Internet model, the network layer IP addresses are reused at the
transport layer. A Transport Layer Identifier (TLI) in the current Internet model is
formed of a source IP address, a source port, a destination IP address, a destination
port and a protocol. The drawback of the reuse of IP addresses at the transport
layer is that the transport layer connections are still bound to the old IP addresses
even if the network layer addresses have changed. This causes the transport layer
connections to break. HIP addresses these shortcomings in the Internet architecture
by introducing a separate address space.

2.2.2 A New Namespace

HIP introduces a new namespace for the Internet. The namespace is disjoint from
the IPv4 and IPv6 namespaces, to provide for location independent identification of
upper-layer endpoints. Consequently, the decoupling of the network-layer identifiers
from the upper-layer identifiers provides a sound foundation to build mobility and
multihoming. The upper layers have stable endpoint identifiers, but the network-
layer addresses are allowed to change.
A Host Identifier (HI) represents an endpoint in the HIP architecture. The HI is the
public key from an asymmetric key pair. As the endpoint owns the private key of
the key pair, it is rather straightforward for the endpoint to prove that it owns the
HI. In other words, it is extremely difficult for other endpoints to claim ownership
of the HI.
HIP changes the transport layer TLI by replacing the IP addresses with His. The
locators, i.e., the IP addresses, are isolated to the network layer. The binding between
a HI and the corresponding locators can be made one-to-many to support mobility
and multihoming. The bindings are illustrated in Figure 2.1.
HIP architecture also includes fixed sized representations of the HI. A Host Identity
Tag (HIT) is an 128-bit long hash of the HI. A Local Scope Identifier (LSI) is a
32 bit representation of the HIT. In addition, two types of His are defined, public
and anonymous. Hosts are strongly encouraged to have at least one public and one
anonymous HI. The public His are usually stored in the Domain Name System (DNS)

CHAPTER 2. BACKGROUND 5

Process Socket

Endpoint

IP addressLocation

Process Socket

Endpoint Host Identity
Dynamic Binding

Location IP address

Figure 2.1: The current Internet binding model (left) and the HIP binding model
[33]

or distributed using some other mechanism, such as a Public Key Infrastructure
(PKI).
The Fully Qualified Domain Name (FQDN) is the search key for a host in the DNS.
It is associated with a set of locators. The HI of the host may also be stored in
the DNS in its various forms. The FQDN can be resolved both to the HI and the
locators. Reverse resolving a locator to an FQDN is also possible but currently it is
not possible to resolve a HI to a FQDN or a locator 1. The His that do not include
any information of the domain of the HI cannot be reverse resolved, because DNS
searches are based on hierarchical domain names. The namespace relationships are
illustrated in Figure 2.2.

FQDN

Locator

Figure 2.2: Namespace relationships

2.2.3 A New Layer

A HIP implementation requires modifications to the existing networking stacks. A
HIP layer must be inserted between the transport and network layers. The HIP layer
is responsible of the various HIP protocol mechanisms, such as the base exchange.

The base exchange resembles the IKE key exchange [12]. The base exchange im
plements an authenticated Diffie-Heilman key exchange. Two Security Associa
tions (SAs), one in each direction, are constructed from the key material created
by the base exchange. The SAs are then used for protecting the data traffic between 1

1 Reverse resolving would possible using, e.g., Distributed Hash Table (DHT) mechanism, but
such a mechanism is not globally deployed yet

CHAPTER 2. BACKGROUND 6

hosts using Internet Protocol security (IPsec).
The base exchange also includes a “cookie” mechanism that protects the responder
from certain types of Denial of Service (DoS) attacks. The initiator of the connection
is forced to sacrifice some CPU cycles in order to to find a solution for a puzzle sent
by the responder. The cookie mechanism allows the responder to delay the allocation
of resources for the initiator until the very last moment. This way, it is harder for
the initiator to succeed in a resource exhausting DoS attack against the responder.
The responder can also vary the difficulty level of the puzzles.
The base exchange can also be initiated without prior knowledge of the HI of the peer.
This operation mode is called “opportunistic HIP”. The operating mode is prone to
man-in-the-middle-attacks because the initiating host has no prior knowledge of the
identity of the responder and a malicious host could substitute the responder. The
benefit of the opportunistic mode is that it does not require any infrastructure for
distributing His.

2.2.4 Mobility and Multihoming

Existing transport layer connections break if the locators of a mobile node are up
dated. To avoid this, the HIP layer also implements a mechanism for end-host mo
bility and multihoming. The mobile node informs its correspondent nodes directly
when the locators of the mobile node are updated. The message used for informing
the correspondent node may be signed with the public key of the mobile node to
protect the integrity of the message. In addition, the correspondent node may also
request the mobile node to verify the validity of the new set of locators. This return
mutability test makes the protocol more robust against certain types of redirection
DoS attacks [32].
It is relatively straightforward for a mobile node to keep its correspondent node
updated with its current set of locators assuming that the initial contact with the
correspondent node has already been established. The mobile node usually estab
lishes the initial contact by resolving the locators of the correspondent node from
the DNS, along with the endpoint identifiers of the correspondent node. However,
the DNS is fairly static and it may not be always up-to-date with the changes in
the locators of the correspondent node because the correspondent node may also be
mobile. The Secure Domain Name System (DNS) Dynamic Update [48] is a better
alternative, but even it is hindered by DNS caching.
The HIP rendezvous server alleviates the problems related to the DNS. The ren
dezvous server is reachable by a set of stable locators. The DNS configuration for
a mobile node consists of the endpoint identifiers of the mobile node, but instead
of the ephemeral locators of the mobile node, it contains the stable locators of the
rendezvous server. Now, when a corresponding node initiates a connection to to
the mobile node using the information gathered from the DNS, the first HIP sig
naling message is routed to the rendezvous server instead of the mobile node. The
rendezvous server forwards the packet to the current location of the mobile node.

CHAPTER 2. BACKGROUND 7

The rest of the HIP signaling messages are carried directly between the end-nodes
to avoid triangular routing. The rendezvous server also solves the problem of double
jump, i.e., both nodes changing their location at the same time.
The problem of the initial contact is now solved using the rendezvous server, which
always knows the location of the mobile node. When the mobile node changes its
location, it informs the rendezvous server of the new locators using secured signaling
messages. As the rendezvous server does not change its location, both the mobile and
corresponding node always know how to contact it. The rendezvous server resembles
the home agent in the Mobile IP [35] architecture.

2.3 Related APIs

In this section, we give an overview the APIs that are most significantly related
to this work. For other related APIs not discussed here, please see e.g. LIN6
Multihoming API [23], Multihoming with Internet Protocol Version 6 [11], Generic
Security Service (GSS) API C-bindings [21], QoSockets: a New Extension to the
Sockets API for End-to-End Application QoS Management [5], A Layered Naming
Architecture for the Internet [1], PF_KEY [24], NETLINK [37], Service Location
Protocol (SLP) [10], and OpenSSL [47].

2.3.1 Sockets API

Sockets API is important from the view point of networking because it is used for
all network communication. This section provides a brief introduction to the sockets
API [8]. The discussion in this section is based on [40]. The emphasis is on the
topics that are related to the native HIP API design, such as sockets API address
structures, network interfaces, resolver and socket options.

Address Structures

The IP addresses are contained in the so called socket address structures before they
are passed to sockets API functions. IPv4 specific addresses are encapsulated in
sockaddr_in structures with the family set to AF_INET. Similarly, IPv6 addresses
are stored in sockaddr_in6 structures [7] with the family set to AF_INET6. The
structures are shown in Figure 2.3.
The port and address fields in the sockaddr_in and sockaddr_in6 structures are
stored in network byte order. The other fields are stored in host byte order.
The sockets API [8] provides two abstraction structures for representing any kind
of socket address. The first one is the sockaddr structure, which is usually passed
as a pointer to the sockets API functions2. The first two fields, the length and the

2In ANSI C, a void pointer could be used instead of a sockaddr pointer. However, the sockets

CHAPTER 2. BACKGROUND 8

/* IPv4 socket address structure for 4.4BSD based systems */
struct sockaddr_in {

uint8_t sin_len; /* length of structure (16) */
sa_family_t sin_family;
in_port_t sin_port;

}
struct in_addr sin_addr;

/* IPv6 socket address structure for 4.4BSD based systems */
struct sockaddr_in6 {

uint8_t sin6_len; /* length of this struct */
sa_family_t sin6„family; /* AF.INET6 */
in_port_t sin6_port; /* transport layer port # */
uint32_t sin6_flowinfo; /* IPv6 flow information */
struct in6_addr sin6_addr; /* IPv6 address */

>;
uint32_t sin6_scope_id; /* set of interfaces for scope */

Figure 2.3: The socket address structures used for passing IPv4 and IPv6 addresses
to the sockets functions in 4.4BSD format. It is worth noting that the length and
family fields are combined into a single field (sin_f amily or sin6_f amily) in 4.3BSD
API [7], used, for example, in Linux.

family are the same in all socket address structures, thus allowing the function to
determine the intended length of the structure. The generic socket address structure
is shown in Figure 2.4.

struct sockaddr {
uint8_t sa_len;
sa_family_t sa_family;
char

>;
sa_data[] ;

Figure 2.4: The generic socket address structure

The other abstraction structure, sockaddr_storage, is defined in [7]. The structure
is sufficiently large to represent an address structure of any family. It simplifies
writing of cross-platform and address independent applications.

API predates the ANSI C, and the void pointer is not used [40].

CHAPTER 2. BACKGROUND 9

Sockets

The socket [49] is a very central concept in the sockets API. A socket denotes a
Transport Layer Identifier (TLI) (half-association). A TLI is consists of an IP address
and a port number. A socket pair denotes a TLI pair (full connection association).
It consists of the source IP address, source port, destination IP address, destination
port and protocol.
The socket acts as the communication point between the application and the net
working stack. The application must create a socket before it can establish any net
work communications. The socket system function call is used for creating a socket
in the API. It takes three arguments for setting the attributes for the socket to be cre
ated. The first argument sets the communication domain, such as PF_INET for IPv4
or PF_INET6 for IPv6 enabled socket3. The second argument sets the communica
tion semantics. For example, SOCK_STREAM is used for creating a sequenced, reliable,
two-way, connection-based byte stream. A datagram oriented, connectionless and
unreliable socket is created using SOCK.DGRAH constant. In practice, SOCK.STREAM
means Transport Control Protocol (TCP) and SOCK.DGRAM means User Datagram
Protocol (UDP) based communication. The third argument is usually zero, but can
be set to e.g. IPPROTO.SCTP to create an SCTP enabled socket. The prototype of
the socket function is shown in Figure 2.5.

int socket(int domain, int type, int protocol);

Figure 2.5: The socket function

The socket function returns a positive socket descriptor value on success. The
socket descriptor represents the socket and it is used in the subsequent sockets API
function calls, such as bind, accept, etc.

Resolver

The resolver provides a name and address mapping service to the application. It
maps host names to the corresponding IP addresses and vice versa.
The getaddrinf o resolver function handles the nodename-to-address translation us
ing the addrinfo data structure. The getaddrinfo function and the addrinfo
data structure are shown in Figure 2.6. The reverse functionality is provided by the
getnameinf o interface.
The getaddrinfo function can be used for resolving both local and remote names.
The first argument, node, denotes the name to be resolved. A NULL argument denotes
the local host. The second argument, service, describes the name of the service

3The sockets API defines also the prefix AF_, such as in the AF.INET or AF_INET6 constants. In
practice, the PF_ prefix is an alias for the AF_ prefix. See [40] for the details.

CHAPTER 2. BACKGROUND 10

struct addrinfo
{

int ai_flags; /* Input flags */
int ai_family; /* E.g. PF_INET6, PF.UNSPEC »/
int ai.socktype; /» Socket type, e.g. S0CK_STREAM »/
int ai_protocol; /* Usually just zero */
socklen_t ai_addrlen; /» Length of socket address */
struct sockaddr *ai_addr; /» Socket address for socket */
char *ai_canonname; /* Canonical name */
struct addrinfo *ai_next;

>;
/* Pointer to the next addrinfo */

/* nodename-to- address translation */
int getaddrinfo(const char *node, const char »service,

const struct addrinfo »hints,
struct addrinfo **res);

void freeaddrinfo(struct addrinfo *res);

Figure 2.6: The getaddrinfo resolver and the associated data structure

port to be used for the endpoint. The service can be specified by name (e.g. "http")
or numerically (e.g. "80"). The third argument, hints, sets the attributes required
from the endpoint.
The function writes the result of the query to the last argument, res. The result
consists of a linked list of addrinfo structures. The ai.addr member in the struc
tures is a socket address structure and it can be directly used ib sockets API calls.
The result must be deallocated with the freeaddrinfo call when it is not needed
anymore. The description of the other resolver function, getnameinfo, as well a
compherensive reference to the getaddrinf o function, can be found in [8, 40].

Interface Identification

Three network interface related functions are defined in [7]. An interface name, such
as "ethO", can be converted with if_nametoindex function to the corresponding
integer index. The reverse operation can be done with if_indextoname function.
All interface names and indexes can be queried with if _name index function. The
function returns an array of if _nameindex structures as shown in Figure 2.7.
BSD based systems also include a function called getifaddrs. It is very similar to
the if _nametoindex function.

CHAPTER 2. BACKGROUND 11

struct if_nameindex {
unsigned int if„index; /* 1, 2, ... */
char *if„name; /* null terminated name: "leO", .. */

>

struct if„nameindex *if„nameindex(void);
void if„freenameindex(struct if„nameindex *ptr);

Figure 2.7: The if „nameindex function returns a dynamically allocated array of
if.nameindex structures, which must be deallocated with the if „freenameindex
function. The end of the array is indicated with an if „index of zero and a NULL
if„name.

Basic Usage

In this section, the rest of the basic functions in the sockets API are introduced using
an example scenario. In the scenario, a “client” application sends some data to a
“server” application using TCP or UDP. The server sends a response to the client.
The client successfully receives the data and closes the connection. For simplicity,
the sockets operate in blocking mode in the scenario.
The server application creates a socket with the socket call in the API. The ap
plication calls the bind function, which associates the socket with a given local IP
address and port. It should be noted that the application can call the bind function
only once for any given socket. The sockets are “disposable”, because a socket cannot
be reused to create another connection association. The bind interface is shown in
Figure 2.8.

int bind(int sockfd, struct sockaddr *my_addr, socklen.t addrlen);

Figure 2.8: The bind function takes a socket descriptor, a socket address structure
and the size of the structure in octets.

If the server application creates a socket of the SOCK_STREAM type, it needs to call
API function listen to indicate its willingness to accept incoming connections to
the port specified in the bind call. Later, the server application calls accept, which
blocks until the connection is established. The accept call also returns the address
of the client. The client initiates the handshake by calling the connect function,
which typically blocks until the handshake is successfully completed. The accept
function returns a new socket descriptor that the server application can use for
communication with the client. It is worth noting that another call to the accept
function would block the server application until another client is connected to the
server port. The connection oriented function prototypes, used for, e.g. TCP, are

CHAPTER 2. BACKGROUND 12

shown in Figure 2.9.

int listen(int s, int backlog);
int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

int connect(int sockfd, const struct sockaddr *serv_addr,
socklen_t addrlen);

Figure 2.9: TCP oriented sockets API functions

The client and server applications now begin to exchange data with each other.
Data is sent using send function and received using recv function. The function
prototypes are shown in Figure 2.10.

ssize_t send(int s, const void *buf, size_t len, int flags);
ssize_t recv(int s, void *buf, size_t len, int flags);

Figure 2.10: Connection oriented functions for sending and receiving data

The connection example, using TCP, is summarized in Figure 2.11. The server
creates a TCP socket, and calls optionally getaddrinf o if accepts connections only
from a specific server address. Otherwise, it can accept connections from a wildcard
IP address by specifying the constants IN_ADDR_ANY or IN6ADDR_ANY_INIT as the
address. The server calls bind, listen and accept. The accept call blocks until
the client side is ready. The client creates a socket, resolves the IP address of the
server from the DNS and calls connect. Finally, the TCP handshake has been
established and the applications can communicate with each other using the send
and recv functions.

socket!)

close!)listen! I accept!)

Figure 2.11: Typical client (above) and server (below) application interaction using
TCP

UDP based socket communication requires fewer API function calls than in TCP,
because UDP is not connection oriented and there is no need to establish a connec
tion. The listen, accept, connect, send and recv functions are not necessary in
UDP based sockets, but it is possible to use them to emulate the connection oriented
programming model. The use of the bind function is not mandatory, but it usually
makes sense to reserve a port, especially in server applications.

CHAPTER 2. BACKGROUND 13

A different set of functions, sendto, recvfrom, sendmsg and recvmsg, are used for
datagram oriented communication between the applications. The main difference to
the connection oriented functions is that the destination IP address must be explicitly
given each time when sending or receiving data. The datagram oriented functions
are shown in Figure 2.12.

ssize_t sendto(int s, const void *buf, size_t len, int flags,
const struct sockaddr *to, socklen_t tolen);

ssize_t recvfrom(int s, void *buf, size_t len, int flags,
struct sock_addr *from, socklen_t *fromlen);

ssize_t sendmsg(int s, const struct msghdr *msg, int flags);
ssize_t recvmsg(int s, struct msghdr *msg, int flags);

Figure 2.12: Datagram oriented functions for sending and receiving data

The example scenario, using UDP, is summarized in Figure 2.13. The client and
the server applications each create a socket. The server application calls bind to
reserve a local port on the server host. Now, the client and server applications can
communicate directly with each other using the sendto, recvfrom, sendmsg and
recvmsg API calls.

getaddrinfo() closedrecvfromO or
recvmsgOsocketO bind()

closedsocketO
recvfromO or

recvmsgO

Figure 2.13: Typical client (above) and server (below) application interaction using
UDP

It should be noticed that, both in the TCP and UDP examples, the client did not
explicitly call bind to associate a local port and IP address on client host. If the
client does not call explicitly bind, the networking stack takes care of automatically
assigning an ephemeral port and an appropriate local address for the client applica
tion. In the TCP case, the automatic assignment occurs during the connect call. It
is not common for a client to select its own port and IP address because the client
applications do not usually care about the ports on client host.

Socket Options

The socket options can be queried and set using the functions shown in Figure 2.14.
The first argument is the socket. The second argument defines the socket handler

CHAPTER 2. BACKGROUND 14

for which the socket option is targeted. For example, it can be set to IPPROTCLTCP
to access TCP related attributes for a socket. The third argument is the name of the
option. The fourth argument is a pointer to the socket option object. The object
can be a pointer to e.g. an integer or a data structure. The length of the object is
indicated by the fifth argument.

int getsockopt(int s, int level, int optname, void *optval,
socklen_t *optlen);

int setsockopt(int s, int level, int optname, const void *optval
socklen_t optlen);

Figure 2.14: Socket option functions

2.3.2 SCTP Socket API Extensions

Stream Control Transmission Protocol (SCTP) provides a reliable end-to-end mes
sage transportation service over IP-based networks [42], It provides many enhance
ments over TCP, such as support for multihomed hosts and multiple streams in a
single SCTP association [42]. These and many other enhancements make SCTP
superior to TCP for real-time multimedia and telephony applications.
The SCTP API [41] provides a TCP-style interface for enabling SCTP in applications
with just a single change in the application code. The only change that is needed is to
set the last argument of the socket function, protocol, to IPPR0T0_SCTP. However,
this does not allow applications to utilize the multi-streaming ability of SCTP socket.
Also, the TCP style interface is not the best way to use SCTP, because SCTP is
message oriented, not stream oriented like TCP.
Applications can benefit from the new SCTP features by using an UDP-style in
terface. The UDP-style interface can be utilized with the sendmsg and recvmsg
API calls, which were briefly shown in section 2.3.1. The functions provide a scat
ter/gather array in the msg_hdr argument, which the application can use to compose
(or receive) a message in a several non-contiguous buffers and yet have them all con
sidered as one message [41].
The datagram-oriented functions can be used to carry ancillary data, such as SCTP
stream identifiers, to and from the SCTP socket handler. The SCTP event notifica
tions are also carried in the ancillary data; a separate event notification interface is
unnecessary. To receive notifications, the application must first set the right socket
option for each specific event type. The application then sends or receives data by
calling the sendmsg and recvmsg functions, as normally. The event information can
be formed from the msg_hdr argument when the function call returns. The difference
between normal application data and event data is indicated with a special flag in
the msghdr argument.

CHAPTER 2. BACKGROUND 15

2.3.3 Legacy HIP API

The legacy HIP API refers to the initial implementation specific HIP APIs, such as
in [45] and especially [2], The main motivation for the legacy API was to enable
HIP transparently by minimizing the number of changes in the application code.
In this section, we will limit the discussion to the the legacy API used in [2], It
should be noted that this specific API supports only IPv6.
In the legacy API, the network applications can be ported with no changes in the
application code by modifying a component common to all applications, the resolver.
The getaddrinfo resolver function has a new compile time option that enables the
so called transparent HIP mode in the resolver. If the mode is enabled, the resolver
returns HITs before the IPv6 addresses when it is called to resolve the IP addresses of
a HIP enabled host 4. The client application is assumed to try the socket addresses
in the order received from the resolver. As the first socket address is actually a HIT,
HIP enabled connections are preferred over plain TCP/IP. If the resolver cannot find
any HITs matching to the peer host name, it returns just the IPv6 addresses of the
host. The fall back to the IPv6 addresses is useful during the transition phase to
HIP when all network hosts are not capable of supporting HIP.
The resolver also communicates the peer HIT-to-IPv6 address mapping directly to
the networking stack. The IPv6 address cannot be just forgotten, because the HIT
cannot be used for routing. Also, it would be very difficult to find the address
corresponding to the HIT in the networking stack code.
The transparent mode is not very flexible, because all applications in the host are
forced to use it. Another approach is to use HIP only when an application requires
it explicitly. The application can explicitly use HIP by passing the AI_HIP flag to
the resolver. The resolver returns HITs only if the flag is set. In fact, it returns only
HITs and no IP addresses at all, to emphasize that the application requires HIP. The
resolver sends the mappings from the peer HITs to the IP addresses in the same way
as in the transparent mode.
The transparent and explicit mode can be used in parallel. Table 2.1 summarizes
the different combinations.
The source code is not always included with all legacy applications. In such a case,
the transparent API may be the only choice to make the application use HIP. Still,
it is required that the resolver library is not statically compiled into the application
because otherwise the HIP enabled library cannot used at all.

4The legacy API does not return HITs when resolving local host addresses, because an unmod
ified bind function would normally reject it (unless a HIT is configured for the host with route
and ifconfig) utilities. The local socket addresses must be bound using the IN6ADDR_ANY_INIT
constant.

CHAPTER 2. BACKGROUND 16

Transparent mode AI.HIP Resolver output
off not set no HITs
off set only HITs
on set only HITs
on not set HITs before IPv6 addresses

Table 2.1: The output of getaddrinfo with different combinations of the transparent
mode flag and the AI_HIP flag.

Chapter 3

Requirements

In this chapter, we list and rationalize the requirements for the native HIP API
design. The requirements are influenced by the design considerations listed in [7]
and [39].
The requirements are organized into functional and non-functional groups. Func
tional requirements include topics related to the management of identities, locators,
interfaces, and directory services. Non-functional requirements include topics related
to the target user group, security, usability, and compatibility. We present also the
methods used for evaluating the requirements against the actual design choices.

3.1 Non-functional Requirements

Non-functional requirements state the high level goals for the design. They revolve
around the topics of usability and compatibility.

3.1.1 Usability

HIP proposes two radical changes to the networking stack design, namely a new
cryptographically based identity namespace and a new protocol layer. The changes
are reflected in the native HIP API design. Before the changes can be utilized in the
API, there are two problems to solve.
First, management of the HI namespace and the bindings between HI and locator
namespace cause additional complexity. This may render the API difficult to use.
Second, the native HIP API is targeted for UNIX network application developers,
especially those who are already familiar with the sockets API. The basic use of the
native HIP API should be as simple as, or even simpler than, the typical use of the
current sockets API. The usability of the advanced features of the native HIP API
is considered as a secondary goal.
Basically, the native HIP API must reuse the sockets API design as much as possible

17

CHAPTER 3. REQUIREMENTS 18

and extend it where reuse is not possible. This guarantees that the target user
group learns to develop applications using the native HIP API quickly and becomes
comfortable in using it with little effort.

3.1.2 Compatibility

Compatibility with related standards and APIs should be preserved as much as possi
ble. However, some of the presented compatibility requirements have only secondary
value in the scope of this thesis.

Backwards Compatibility

The early experimentation with the legacy HIP API gives some background for the
requirements. The legacy HIP API does not require any changes to the network
application code in the transport mode, or just one flag in the explicit mode. This
can be troublesome in those network applications that are very dependent of the
TCP/IP protocol suite. Introducing a new namespace, without applications being
aware of it, can result in unexpected behavior or render it unusable in the worst
case.
The lessons learned from the legacy API must be taken into consideration in the
native HIP API design. The use of the native HIP API must be clearly distinguished
from the sockets API use. Applications need to be modified to make them HIP aware.
This way, the developer receives a discreet hint that enabling HIP may also require
other changes in the application.
The legacy API resolver can fall back to IP addresses in the transparent mode if no
His were found for a host. In such a case, the connection can be established without
HIP. The same idea must be reused for the native HIP API.
The native HIP API introduces some changes to the underlying implementation
and can break the legacy API support. The implementation changes should be
compatible with the legacy HIP API.

Forward Compatibility

The HIP specifications have not been completely stabilized at the time of writing
this thesis. Neither has HIP been evaluated in a larger scale. For example, it may
turn out that the size of the HIT is too short. Therefore, the HITs should not be
exposed to typical applications to guarantee compatibility with the future changes
in the protocol identifiers.

CHAPTER 3. REQUIREMENTS 19

Other Compatibility Issues

Our kernel oriented HIP implementation, HIP for Linux (HIPL) [16], is used for the
evaluation of the native HIP API. Investigating of the scalability of the native HIP
API with other known (mostly userspace oriented) HIP implementations [15] [25]
[13] [19] is considered out of the scope. Portability to other UNIX based operating
systems is also considered out of the scope. Compatibility with Portable Operating
System Interface (POSIX) [8], conformance to GSS API [20, 21) and supporting
Service Location Protocol (SLP) will not be evaluated. Some multi-homing protocols
like SCTP [17] and Location Independent Networking for IPv6 (LIN6) [44] define
their own userspace APIs [41, 23]. Compatibility with those APIs falls beyond the
scope of this thesis.

3.2 Functional Requirements

Functional requirements are more concrete than their non-functional counterparts.
They include topics concerning the attributes of the identities and the type of sup
ported name resolution mechanisms. Mobility, multihoming and security control
requirements are also discussed.

3.2.1 Host Identities

Most network applications do not need to have access to the actual binary the
representation of the HI. Basically, a reference to the actual HI should be enough.
However, there might be some specialized applications that have to deal directly
with the identities. We have to find a balance between the typical and advanced
network applications. Also, the requirements for the “ownership” of the His need to
be clarified, as well as the operations on His.

Representation

The representation of His, such as format and size issues, should be as transparent
as possible to the applications. We can reach this goal by requiring abstraction and
indirection in the native HIP API. The actual sizes and formats of the His can be later
changed easier if the representation issues are hidden from the typical applications.
This transparency may also turn out to be useful in other network protocols based
on the identity-locator split; evaluating the usefulness is out of scope.
Conversely, we assume that there are applications that must be able to access the
actual representation of the His. A complete design would be required to have
a standard representation format for the His, but that falls out the scope. Both
variable sized and fixed sized representations of HI should be supported in the API.
The API must support both anonymous and public His.

CHAPTER 3. REQUIREMENTS 20

Application Specified Identities

“Host Identity Protocol”, as a name, easily gives the wrong impression of the own
ership of identities. As the name implies, one could imagine that only the host has
some preassigned His. According to the specifications [28], the host must have at
least one public and one anonymous HI but it is not prohibited from having other
sources of identities than just the ones preassigned to the host. The applications
should be able to provide their own Host Identities and delegate the rights to use
those identities to the host [50].
At first glance, there is not necessarily any need for application specified identifiers
because the identities supplied by the host should suffice for most the purposes.
Perhaps a practical, albeit futuristic, use scenario motivates the need for application
specific identities. Consider a corporation with an internal network secured from the
rest of the Internet with a HIP enabled firewall. The firewall has been configured to
accept all network traffic originating from any HI that is owned by an employee of
the company. Now, if an employee of the company is telecommuting and needs to
access the internal network of the company, he can do it using his private HI. The
identity can be conveniently stored in a smart card and dynamically assigned to the
device the employee happens to be using at the moment.
The application specified identifiers are essentially public-private key pairs which
tend to be relatively long. This bring an additional concern of resource consump
tion. It is probable that a process wants to share its identifier among a set of other
processes, such as all the processes sharing the same Group ID (GID). In such a
case, the underlying system should be intelligent enough to avoid replicating the
shared identifier for each process. Instead, some form of referencing mechanism is
encouraged.

Operations on Host Identities

So far, only the actual identities themselves have been assigned some requirements
and almost no focus has been put on how the identities can be utilized in the pro
gramming interface. The requirements of the operations that are supported by the
interface need to be defined.
At the very least, a one-way communication mechanism to transfer Host Identities
from the application to the host is required. Otherwise it would not be possible to
select between multiple host supplied His or input application specified His to the
host. Correspondingly, the other way of communication, querying of identities from
the host, should also be supported for the benefit of those applications that need to
know the details of the identities.
Some auxiliary interfaces should be introduced for the convenience of the developer.
An interface for creating an application specified HI has to be defines. Also, interfaces
need to be defined for loading a HI from a file and saving a HI to a file.

CHAPTER 3. REQUIREMENTS 21

3.2.2 Addresses and Interfaces

The network interfaces, and especially the IP addresses, are considered ephemeral
from the HIP point of view. It is error prone to handle them explicitly in the API as
they can change undeterministically. The details of the network layer entities should
not be exposed to a typical application. On the other hand, access to the network
layer should not be completely prohibited for applications that need to access the
network layer details. Thus, one goal is to define a separate API for accessing the
network layer details.
A typical application does not care about the details of the network layer and trusts
the HIP implementation to make any networking layer related choices on its behalf.
The HIP implementation transparently selects the interfaces and addresses used for
a connection.
The requirements for explicit locator selection are mostly related to the manual
selection of addresses and interfaces. First, the API should allow entering initial peer
addresses manually as the network environment may not have a directory service.
Second, it should be possible to select which of the local network interfaces are to
be used for network communication. The number of manually selectable addresses
and interfaces should not be restricted. Limiting the scope of addresses within the
selected interfaces should also be possible.
Basically, it is insignificant to a HIP enabled application whether an address belongs
to a HIP rendezvous server or to the host. However, the difference should be explicitly
visible through the native HIP API. Advanced network applications may need to
differentiate between these two address types, e.g., for diagnostic purposes.
The API should support HIP in opportunistic mode, i.e., without prior knowledge of
the peer’s His. In this case, the API should make it possible for the host to trigger
the base exchange by just relying on the locator information of the peer.

3.2.3 Mobility, Multihoming and Policies

In this thesis, we assume that the hosts dynamically updates the locators transpar
ently from applications. However, the applications should be able to configure the
initial locators manually. After the locators are configured, a typical application can
not observe anymore the handovers. The API could contain an interface for tracking
locator updates; designing one is out of the scope of this work.
QoS, load balancing, and other similar complex policy issues are also out of scope.
On the other hand, the high level design should still be simple and modular enough so
that those features can later be added into the API without completely redesigning
it.

CHAPTER 3. REQUIREMENTS 22

3.2.4 Security

Advanced HIP aware applications utilize the new features of the HIP layer in the
networking stack. The security attributes of HIP are an example of such new fea
tures. The native API should allow inspecting and modifying of some of the HIP
related security attributes to suit specific application needs. The applications should
be allowed to negotiate HIP related security attributes, such as the encryption level,
crypto algorithms being used for network connections, and the selection of the puz
zle difficulty level. Enabling of the opportunistic mode and falling back to plain
TCP/IP should also be supported.
As the applications are given more control over the HIP related attributes in the
networking stack, some security constraints must be introduced in order to avoid
introducing security flaws into the design:

1. Confidentiality: what the processes or objects are not allowed to see.

2. Integrity: what any given process and other processes are not allowed to
change.

3. Capability: the process should not be able to consume all the limited resources
of the underlying host.

The private keys of the host provide us an example of the confidentiality constraint:
applications running on normal user privileges are not allowed to see the private
keys of the host. An example of the integrity constraint is that processes should
not be allowed to modify the puzzle difficulty of the other processes. An example
of the capability constraint is an application that is denied when it tries to set the
Diffie-Hellman group to a substantially large value, because it would exhaust the
CPU resources of the host.

3.2.5 Error Handling

The native HIP API should be strongly based on the sockets API. As a consequence,
there is no need to introduce a new error management interface. A few HIP specific
error values might be needed.

3.2.6 Name Resolution

The native HIP API resolves the peer identities and locators from a DNS directory.
The native HIP API design is required to support only DNS and the UNIX /etc/
hosts file. Supporting other kind of name resolution services, such as those based
on DHTs, are out of scope. Supporting DNS Service Record (SRV) [9] is also out of
the scope.

CHAPTER 3. REQUIREMENTS 23

3.3 Evaluation

The main objective of the implementation is to prove that the basic design can be
made to work in practice. The performance, reliability, and actual implementation
level of security are secondary evaluation criteria.
The native HIP API is evaluated by matching and comparing the requirements
presented this chapter against the design outcome. Chapter 5 provides a discussion
of the proof-of-concept implementation and the ported example applications. The
results of the evaluation are discussed and analyzed in chapter 6.

Chapter 4

Design

The architectural discussion in this chapter describes the semantics of the native API
in a semi-formal way. We continue with the syntax of the API after the architectural
discussion.

4.1 Architecture

In this section, the native HIP API design is described from an architectural point of
view. We introduce the Endpoint Descriptor (ED) concept, which is a central idea
in the API. We describe the layering and namespace models along with the socket
bindings. We conclude the discussion with a description of the endpoint identifier
resolution mechanism.

4.1.1 Endpoint Descriptor

The representation of endpoints is hidden from the applications, as required in section
3.2.1. The Endpoint Descriptor (ED) is a “handle” to a HI. A given ED serves as a
pointer to the corresponding HI entry in the HI database of the host. The ED is the
Application Identifier (AID) [34) in the native HIP API model.

4.1.2 Layering Model

The application layer accesses the transport layer via the socket interface. The ap
plication layer uses the traditional TCP/IP IPv4 or IPv6 interface, or the new native
HIP API interface provided by the socket layer. The layering model is illustrated in
Figure 4.1. For simplicity, the IPsec layer has been excluded from the figure.
The HIP layer is as a shim/wedge layer between the transport and network layers.
The datagrams delivered between the transport and network layers are intercepted in
the HIP layer to see if the datagrams are HIP related and require HIP intervention.

24

CHAPTER 4. DESIGN 25

Application
Layer

Socket
Layer

Application

IPv4 API IPv6 API HIP API

Transport
Layer TCP UDP

HIP
Layer HIP

Network
Layer IPv4 IPv6

Link
Layer Ethernet

Figure 4.1: The layering model

4.1.3 Namespace Model

The used namespace model is shown in Figure 4.2. The namespace identifiers are
described in this section.

FQDN

ED. port and proto

HI. port

HI

IP address

User Interface

Application Layer

Transport Layer

HIP Layer

Network Layer

Figure 4.2: The ED centric namespace model

People prefer human-readable names when referring to network entities. The most
commonly used identifier in the User Interface (UI) is the FQDN, but there are also
other ways to name network entities. The FQDN format is still the preferred UI
level identifier in the context of the native HIP API.
In the current API, connection associations in the application layer are uniquely
distinguished by the source IP address, destination IP address, source port, desti
nation port, and protocol. HIP changes this model by using HITs in the place of
IP addresses. The HIP model is further expanded in the native HIP API model by
using Endpoint Descriptors (EDs) instead of HITs. Now, the application layer uses
source ED, destination ED, source port, destination port, and transport protocol

CHAPTER 4. DESIGN 26

type, to distinguish between the different connection associations1.
Basically, the difference between the application and transport layer identifiers is that
the transport layer uses His instead of EDs. The Transport Layer Identifier (TLI)
is named with source HI, destination HI, source port, and destination port at the
transport layer.
Correspondingly, the HIP layer uses His as identifiers. The HIP security associations
are based on source HI and destination HI pairs.
The network layer uses IP addresses, i.e., locators, for routing purposes. The network
layer interacts with the HIP layer to exchange information about changes in the local
interfaces addresses and peer addresses.

4.1.4 Socket Bindings

A HIP socket is associated with one source and one destination ED, along with
their port numbers and protocol type. The relationslup between a socket and ED
is a many-to-one one. Multiple EDs can be associated with a single HI. Further,
the source HI is associated with a set of network interfaces at the local host. The
destination HI, in turn, is associated with a set of destination addresses of the peer.
The socket bindings are visualized in Figure 4.3.

Dst ED

Src ED

Dst Addr

Src IfaceSrc HI

Dst HI

HIP
socket

Dynamic Binding

Figure 4.3: Socket bindings

The relationship between a source ED and a source HI is always a many-to-one
one. However, there are two refinements to the relationship. First, a listening
socket is allowed to accept connections from all local His of the host. Second,
the opportunistic mode allows the base exchange to be initiated to an unknown
destination HI. In a way, the relationship between the local ED and local HI is a
many-to-undefined relationship for a moment in both of the cases, but once the
connection is established, the ED will be permanently associated with a certain HI. *

'See section 6.2.4 for restrictions in the binding to EDs

CHAPTER 4. DESIGN 27

The ED concept can only be used in HIP protocol family sockets. Other types of
sockets are left intact to avoid breaking the backwards compatibility requirements
of section 3.1.2.

4.1.5 Endpoint Discovery

The DNS based endpoint discovery mechanism is illustrated in Figure 4.4. The
application calls the resolver (step a.) to resolve an FQDN (step b.). The DNS
server responds with a HI and a set of IP addresses (step c.). The resolver does not
directly pass the HI and the locators to the application, but sends them to the HIP
module (step d.). Finally, the resolver receives an ED from the HIP module (step
e.) and passes the ED to the application (step f.).

e. <ED> d. <111, addresses>

Socket Layer ; v
Transport

HIP

IPsec

Network

Figure 4.4: The path of resolving of an FQDN to an ED

The application can also receive multiple EDs from the resolver if the FQDN is
associated with multiple His. The endpoint discovery mechanism is still almost the
same. The difference is that the DNS returns a set of His (along with their locators)
to the resolver. The resolver sends all of them to the HIP module and receives a set
of EDs in return, each ED corresponding to a single HI. Finally, the EDs are sent to
the application.

4.2 Interface Syntax and Description

In this section, we describe the native HIP API using the syntax of the C program
ming language and present only the “external” interfaces and data structures that
are visible to the applications. We limit the description to those interfaces and data
structures that are either modified or completely new, because the native HIP API

CHAPTER 4. DESIGN 28

is otherwise identical to the sockets API [8, 40].

4.2.1 Data Structures

We introduce a new protocol family, PF_HIP, for the sockets API. The AF_HIP con
stant is an alias for it. The use of the PF_HIP constant is mandatory with the socket
function if the native HIP API is to be used in the application. The PF_HIP constant
is given as the first argument (domain) to the socket function.
The ED abstraction is realized in the sockaddr_ed structure, which is shown in
figure Figure 4.5. The family of the socket, ed_f amily, is set to PF_HIP. The port
number ed.port is two octets and the ED value ed_val is four octets. The ED
value is just an opaque number to the application. The application should not try to
associate it directly to a HI or even compare it to other ED values, because there are
separate functions for those purposes. The ED family is stored in host byte order.
The port and the ED value are stored in network byte order.

struct sockaddr_ed {
unsigned short int ed_family;
in_port_t ed_port;
sa_ed_t ed_val;

}

Figure 4.5: The ED is contained in a sockaddr_ed structure. The structure is shown
in 4.3BSD format [7],

The ed_val field is usually set by special native HIP API functions, which are de
scribed in the following section. However, three special macros can be used to directly
set a value into the ed_val field. The macros are HIP_HI_ANY, HIP_HI_ANY_PUB and
HIP_HI_ANY_ANON. They denote an ED value associated with a wildcard HI of any,
public, or anonymous type. This is useful to a “server” application that is willing
to accept connections to all of the His of the host. The macros correspond to the
sockets API macros INADDR_ANY and IN6ADDR_ANY_INIT, but they are applicable on
the HIP layer. It should be noted that only one process at a time can bind with the
HIP_HI_*ANY macro on a certain port to avoid ambiguous bindings.
The native HIP API has a new resolver function which is used for querying both
endpoint identifiers and locators. The resolver introduces a new data structure,
which is used both as the input and output argument for the resolver. The new
structure, endpointinf o, is shown in Figure 4.6.

The members of the endpointinf o structure are similar to addrinf o structure, but
the member names have a different prefix. The socket address structure used for
sockets API calls has been renamed to ei_endpoint to emphasize the difference
with the getaddrinfo resolver. The family, ei_family, is set to PF_HIP when the

CHAPTER 4. DESIGN 29

struct endpointinfo {
int ei_flags;
int ei_family;
int ei_socktype;
int ei_protocol;
size_t ei_endpoint_len;
struct sockaddr *ei_endpoint;
char *ei_canonname;
struct endpointinfo *ei_next;

/* flags, e.g. EI_FALLBACK */
/* e.g. PF_HIP */
/* e.g. SOCK_STREAM */
/* usually just zero */
/* length of the endpoint */
/* endpoint socket address */
/* canonical name of the host */
/* next endpoint */

>;

Figure 4.6: The resolver data structure

socket address structure contains an ED that refers to a Host Identifier (HI).
The flags in the endpoint info structure control the behavior of the resolver and
describe the attributes of the endpoints and locators. The EI_AN0N flag forces the
resolver to query only for local anonymous identifiers. The default action is first to
resolve the public endpoints and then the anonymous endpoints.
Some applications may prefer configuring the locators manually and can set the
EI_N0L0CAT0RS to prohibit the resolver from resolving any locators. If the applica
tion wants to configure locators manually, the EI_N0L0CAT0RS flag forces the resolver
to discard the resolving of locators. The EI_FALLBACK flag suggests the resolver to
return locators if no His are found. The ei.endpoint members in the resolver out
put are then filled with IPv4 or IPv6 addresses and the application can resort to
plain TCP/IP connections using the IP addresses returned. The fallback flag must
be explicitly enabled in the flags, because the resolver returns only His by default.
The EI_HI_ANY, EI_HI_ANY_PUB and EI_HI_ANY_ANON flags cause the resolver to
output only a single socket address containing an ED that would be received using
the corresponding HIP_HI_*ANY macro.
Application specified endpoint identifiers are essentially private keys. To support
application specified identifiers in the API, we need new data structures for storing
the private keys. The private keys need an uniform format so that they can be easily
used in API calls. The keys are stored in the endpoint structures shown in figure
Figure 4.7.
The structure endpoint represents a generic endpoint and the endpoint_hip is the
HIP specific endpoint. The HIP endpoint is public by default unless
HIP_ENDPOINT_FLAG_ANON flag is set in the structure to anonymize the endpoint.
The id union contains the HI in the host_id member in the format specified in the
HIP draft [28]. The draft does not specify the format for the private key, so private
key material is just appended to the host_id and the length is adjusted accordingly.
The flag HIP_ENDPOINT_FLAG_PRIVATE is also set. The hit member of the union is

CHAPTER 4. DESIGN 30

used only when the HIP_ENDPOINT_FLAG_HIT flag is set.

struct endpoint {
se_length_t length;
se_family_t family;

>;

struct endpoint_hip {
se_length_t length;
se_family_t family; /* EF_HI */
se_hip_flags_t flags;
union {

struct hip_host_id host_id;
hit_t hit;

> id;
>;

Figure 4.7: The endpoint data structures

An optional extension to the getaddrinfo interface is introduced too. A new flag,
AI_HIP_RVS, is used both in the input and output of the resolver. By default, the
getaddrinfo resolver does not return IP addresses belonging to a HIP rendezvous
server. The resolver returns rendezvous server addresses only when the AI_HIP_RVS
flag is set in the resolver hints. This way, legacy applications can never receive any
addresses belonging to a rendezvous server. The flag is also set in the getaddrinf o
resolver output to denote that the resolved address belongs to a HIP rendezvous
server.

4.2.2 Functions

The new functions introduced to the sockets API are described in this section.

Resolver Interface

The native HIP API does not introduce changes to the interface syntax of the
fundamental sockets API functions bind, connect, send, sendto, sendmsg, recv,
recvf rom, and recvmsg. The application usually calls the functions with sockaddr_ed
structures instead of sockaddr_in or sockaddr_in6 structures. The source of the
sockaddr_ed structures in the native HIP API is the resolver function getendpointinf o
which is shown in figure 4.8.

The getendpointinfo function takes the nodename, servname, and hints as its
input arguments. It places the result of the query into the res argument. The
return value is zero on success, or a non-zero error value on error. The nodename

CHAPTER 4. DESIGN 31

int getendpointinfo(const char *nodename,
const char *servname,
const struct endpointinfo *hints,
struct endpointinfo **res)

void free_endpointinfo(struct endpointinfo *res)

Figure 4.8: The endpoint resolver function prototype

argument specifies the host name to be resolved; a NULL argument denotes the local
host. The servname parameter sets the port number to be set in the socket addresses
in the res output argument. Both the nodename and servname cannot be NULL.

The output argument res is dynamically allocated by the resolver. The applica
tion must free it with the free_endpointinf o function. It contains a linked list
of the resolved endpoints. The input argument hints acts like a filter that defines
the attributes required from the resolved endpoints. For example, setting the flag
HIP_ENDPOINT_FLAG_ANON in the hints forces the resolver to return only anonymous
endpoints in the output argument res. If the hints argument is zero, any kind of
endpoints are acceptable.

Application Specified Identities

Application specified local and peer endpoints can be retrieved from files using the
function shown in Figure 4.9. The function hip_endpoint_load_pem is used for
retrieving a private or public key from a given file filename. The file must be
in PEM encoded format [47]. The result is allocated dynamically and stored into
the endpoint argument. The return value of the function is zero on success, or a
non-zero error value on failure. The result is deallocated with the free system call.

int hip_endpoint_pem_load(const char ^filename,
struct endpoint **endpoint)

Figure 4.9: The interface for retrieving an application specified identifier from a file

The endpoint structure cannot be used directly in the sockets API function calls.
The application must convert the endpoint into an ED first. Local endpoints are
converted with the getlocaled function and peer endpoints with getpeered func
tion. The functions are illustrated in Figure 4.10. Both of functions are used in a
similar way.
The result of the conversion, an ED socket address, is returned by the functions. A
failure in the conversion causes a NULL return value to be returned and the errno to

CHAPTER 4. DESIGN 32

struct sockaddr_ed *getlocaled(const struct endpoint *endpoint,
const char *servname,
const struct addrinfo *addrs,
const struct if_nameindex *ifaces,
int flags)

struct sockaddr_ed *getpeered(const struct endpoint *endpoint,
const char *servname,
const struct addrinfo *addrs,
int flags)

Figure 4.10: The functions for converting application defined endpoints to ED struc
tures.

be set accordingly. The caller of the functions is responsible of freeing the returned
socket address structure.
The endpoint argument is retrieved e.g. with the hip_endpoint_load_pem function.
If the endpoint is NULL, an arbitrary HI of the host is selected and associated with
the ED value of the third argument.
The servname argument is the service string. The function converts it to a numeric
port number and fills the port number into the returned ED socket structure for the
convenience of the application.
The addrs argument defines the initial IP addresses of the local host or peer host.
The argument is a pointer to a linked list of addrinfo structures containing the
initial addresses of the peer. The list pointer can be obtained with a get addrinfo [7]
function call. A NULL pointer indicates that the application trusts the host to already
know the locators of the peer. We recommend that a NULL pointer is not given to
the getpeered function to ensure reachability with the peer.
The getlocaled function accepts also a list of network interface indexes in the
if aces argument. The list can be obtained with the if _nameindex [7] function
call. A NULL list pointer indicates all the interfaces of the local host. Both the IP
addresses and interfaces can be combined to select a specific address from a specific
interface.
The last argument is the flags. The following flags are valid only for the getlocaled
function:

• HIP_ED_*ANY correspond to the use of the HIP_HI_*ANY macros.

• Flags HIP_HI_REUSE_UID, HIP_HI_REUSE_GID and HIP_HI_REUSE_ANY allow
the HI binding to be reused for processes with the same User ID (UID), GID
or any UID as the calling process.

• Flags HIP_ED_IP and HIP_ED_IPV6 are used for limiting the address family

CHAPTER 4. DESIGN 33

scope of the interfaces.

It should noticed that the HIP_HI_ANY, HIP_HI_ANY_PUB and HIP_HI_ANY_ANON macros
can be defined as calls to the getlocaled call with a NULL endpoint, NULL inter
face, NULL address argument and the flag corresponding to the macro name set.

Querying Endpoint Related Information

The getlocaled and getpeered functions have also their reverse counterparts.
Given an ED, the getlocaledinfo and getpeeredinfo functions search for the
HI and the current set of locators associated with the ED. The first argument is the
ED to be searched for. The functions write the results of the search, the His and lo
cators, to the rest of the function arguments. The function interfaces are depicted in
figure Figure 4.11. The caller of the functions is responsible for freeing the memory
reserved for the search results.

int getlocaledinfo(const struct sockaddr_ed *my_ed,
struct endpoint **endpoint,
struct addrinfo **addrs,
struct if_nameindex **ifaces)

int getpeeredinfo(const struct sockaddr_ed *peer_ed,
struct endpoint **endpoint,
struct addrinfo **addrs)

Figure 4.11: The functions for querying ED information

The getlocaledinfo and getpeeredinf o functions are especially useful for an ad
vanced application that receives multiple EDs from the resolver. The advanced appli
cation can query the properties of the EDs using getlocaledinfo and getpeeredinf o
functions and select the ED that matches the desired properties.

Socket Options

As usually, getting and setting of HIP socket options is done using getsockopt and
setsockopt functions. To set HIP layer specific socket options, the first argument
must be a socket descriptor that was instantiated with PF_HIP as the domain, and
the second argument must be specified as IPPROTCLHIP 2.
Some HIP socket option names are listed in Table 4.1. The length of the option must
be natural word size of the underlying processor, typically 32 or 64 bits. The purpose
of the option value must be interpreted in context of the protocol specifications [28,
32).

2 Naturally, the HIP enabled socket does not constrain access to the socket options of other
layers. The second argument can be, e.g., IPPROTCLIP or IPPROTCLTCP

CHAPTER 4. DESIGN 34

Socket option Purpose
SO_HIP_CHALLENGE_SIZE
SO_HIP_HIP_TRANSFORMS

Puzzle challenge size
Integer array of the preferred HIP
transforms

SO_HIP_ESP_TRANSFORMS Integer array of the preferred ESP
transforms

SO_HIP_DH_GROUP_IDS Integer array of the preferred Diffie-
Hellman group IDs

SO_HIP_SA_LIFETIME
SO_HIP_RETRANS_INIT_TIMEOUT
SO_HIP_RETRANS_INTERVAL

Socket association lifetime in seconds
HIP initial retransmission timeout
HIP retransmission interval in sec
onds

S 0 _ HIP _ RETRANS _ ATTEMPTS
SO_HIP_AF_FAMILY

Number of retransmission attempts
The preferred IP address family. The
default family is AF_ANY.

SO_HIP_PIGGYPACK If set to one, HIP piggy-packing is
preferred. Zero if piggy-packing must
not be used.

S0_HIP_0PP0RTUNISTIC Try HIP in opportunistic mode if
only the locators of the peer are
known.

SO_HIP_OPP_FALLBACK The same as above, but fall back to

SO_HIP_BEX_FALLBACK
plain TCP/IP if base exchange failed
Try normal base exchange, but fall
back to plain TCP/IP if the base ex
change fails.

Table 4.1: HIP socket options

CHAPTER 4. DESIGN 35

The socket options must be set before the hosts have established HIP Security As
sociations (SAs). The implementation may refuse to set the socket options if there
is already an existing SA associated with the given socket.

Chapter 5

Implementation

In this chapter, we describe the implementation of the native HIP API. The emphasis
is on the kernel components, because the userspace components are quite trivial. To
give the reader a more complete view of the overall implementation architecture and
the interaction between the components, the HIP protocol module implementation
is also briefly introduced.

5.1 Userspace Components

The userspace component of the native HIP API, i.e., the resolver library, is linked
either statically or dynamically to applications. The implementation of the resolver
is based on the libinet6 library [46].
The userspace library has two purposes. First, it maps His and locators to EDs
transparently from the typical applications. Second, it provides the functions that
are needed for explicit handling of HIs and locators in advanced applications.
The getendpointinf o resolver internally uses the endpoint.hip data structure that
was presented in section 4.2.1. The data structure contains an union of a HI and
HIT. In the resolver implementation, the HIT member is used when resolving peer
identifiers. The HI member is used when resolving the HIs of the local host.

5.2 Kernelspace Components

The kernelspace components were originally implemented on the Linux 2.4 series
kernel, but they were also ported with minimal effort to the 2.6 series. The discussion
in this section is based on the 2.6 series implementation. It should also be noted
that the implementation supports only IPv6.
The kernelspace component, the kernel module, is divided into two conceptual sub
components. The HIP module is the protocol implementation. It handles the base

36

CHAPTER 5. IMPLEMENTATION 37

exchange, update, and other HIP protocol mechanisms. HIP socket handler refers to
the HIP socket layer implementation. In practice, the HIP socket handler is a part of
the HIP module implementation, but it is conceptually separated in the discussion
to keep the focus on the native HIP API.
The socket handler is registered as a PF_HIP family socket handler into the network
ing stack. The bind, connect, send and other sockets API function calls arrive at
the HIP socket handler if they are associated with the PF_HIP socket family. The
socket handler is a “wrapper” to the IPv6 socket handler because its main purpose
is to translate EDs to HITs.
The rest of the Linux networking stack cannot be easily divided into subcomponents,
because there are no clear boundaries in the code. The transport/network module
refers to the TCPvG, IPv6 packet handling, and routing code. IPsec module contains
the ESP handling functions in the kernel.

5.3 HIP Networking Stack Hooks

Figure 5.1 illustrates the networking stack and HIP related hooks. The interfaces
for output packet flow are illustrated on the left side and, respectively, for the input
packet flow on the right side. The networking stack code is equipped with “hooks”
both in the output and input side. When the endpoints are His, the hooks bypass
normal networking stack control flow and transfer the control to the HIP module.
In the output interfaces, the application communicates with the HIP socket handler
using EDs. The socket handler uses the HITs to communicate with the transport
layer.
The layer below the transport layer involves both routing and IPsec handling. At this
layer, the hooks are responsible of the conversion of the source and destination HITs
into IPv6 addresses (hip_handle_output, hip_get_saddr and hip_get_addr). The
base exchange is triggered by the hip_trigger_bex hook. A global Security Policy
(SP) forces all packets with a HIT as the destination addresses to be encapsulated
into an ESP envelope.
The input flow is similar to the output flow, but fewer hooks are required. The
hip_handle_esp replaces the IPv6 addresses with HITs before IPsec processing.
The hip_unknown_spi function sends an Rl as a response to an unknown SPI.
Initially, it would be appealing to convert the EDs directly to the IPv6 addresses
and vice versa without the intermediate HIT form. However, that is not possible for
at least three reasons. The first reason is that the HIP SAs are bound to HITs in
the IPsec layer. Second, the transport layer needs the HITs for the pseudo header
checksum calculation. Third, we want to reuse the same hooks both for the legacy
and native HIP API. If the socket handler were to map the EDs straight to IPv6
addresses, we would need separate hooks for the native HIP API.

CHAPTER 5. IMPLEMENTATION 38

hip_unknown_spi()

hip_handle_output()

Transport layer

Application

Transport layer

Network layer

Application

Network layer

HIP socket handlerHIP socket handler

HIP layerRouting and IPsec Routing & IPsec

Figure 5.1: The output and input interfaces of the networking stack

5.4 Data Structures

The HIP module has four data structures that are related to the HIP socket handler.
Two of them are used for storing local and peer identities, and one is for storing HIP
state information related data. The fourth structure is the BSD socket structure,
which is commonly used by the various socket handlers in the kernel.
The HIP socket handler has two data structures that are used for storing local
and peer ED values. The ED value is associated with the ownership information
of the ED entry. It guarantees the confidentiality and integrity of the ED related
information. The ownership information consists of the UID and GID of the owner
process. The data structures are illustrated in Figure 5.2.
The HIP module can be used without the HIP socket handler, i.e., using the legacy
HIP API. Backwards compatibility with the legacy HIP API has a strong influence
on the data structure organization in the kernel. The legacy HIP API does not
use the HIP socket handler in any form. It is the responsibility of the HIP module
to handle the HIP legacy applications and the HIP module must therefore have
access to the most important data structures in the kernel. The HIP module can
access the host association data structure as well as the local and peer host id data
structures, which is the minimum requirement to establish HIP connections. The

CHAPTER 5. IMPLEMENTATION 39

llll’socket handler UH* module

III!’ local host id entry

Mil* peer host id entry

Destination ED entry

Ownership

Source H IT

Destination HIT

Local HIT

Peer HIT

List of peer addresses

State machine’s state

Host Association entry

Inbound/out bound SPI

Figure 5.2: HIP kernel module data structures and their relationships

socket handler ED data structures were built on top of the other data structures
to ensure the backwards compatibility with the legacy HIP API. The host identifier
and ED data structures could have been merged into one structure if the legacy API
compatibility restriction was not present.

5.5 Interaction between the Components

The interaction between the components is illustrated using sequence diagrams. The
sequence diagrams show the control flow through different function calls from the
userspace to kernelspace. We do not show the full execution trace but instead focus
on the most relevant functions. The reader should not become confused by the
naming of the functions, because the IPv6 module reuses some of the IPv4 functions
(e.g. inet_create). However, some functions are IPv6 specific (e.g. inet6_bind).

The diagrams are based on a use scenario where we have two simple network ap
plications with host specified identities. The server application binds to a port on
the server host, listens for connections, and accepts the connections. The client ap
plication on the client host calls the resolver to get the ED of the server host. The
client application then connects to the server port and sends some data to the server,
which is successfully received by the server application. The applications use TCP
for data transmission and, for simplicity, the sockets are assumed to be blocking.

CHAPTER 5. IMPLEMENTATION 40

5.5.1 Setup on the Server

The socket initialization of the server application is visualized in Figure 5.3. The
server application creates a socket with the socket call, which eventually calls
the hip_create_socket function in the HIP socket handler. The socket handler
wraps the call to the transport/network module, which calls inet_create to cre
ate a socket structure. The control returns to the server application and it calls
getendpointinfo resolver. The resolver queries the necessary His and locators and
calls setlocaled to return a local ED corresponding to the HI and locator infor
mation. The setlocaled call sends the information to the HIP module. The HIP
module generates a local ED, stores it to the local ED data structure described in
the HIP module and returns the ED to the resolver. The resolver returns the ED to
the application.

Application Resolver HIP socket handler Transport & network module HIP module

h i p_create_socket()

getendpointinfo!)

hip bind()

hipJistenQ

hip_accept()

inet create()

setlocaled!)

hip db get lhi by ed()

inet6 bind()

inet listen()

inet_accept()

Figure 5.3: Bind sequence diagram

The server application is now ready to bind to the socket using the ED and the port
number. The bind call eventually translates to a hip.bind call in the HIP socket
hander. The socket handler maps the ED to a local HIT using hip_db_get_lhi_by_ed

CHAPTER 5. IMPLEMENTATION 41

and stores the HIT into the socket structure. It binds to the HIT by calling
inet6_bind in the transport/network module. The bind call returns and the ap
plication execution is resumed.
The server application is now almost ready to receive data from the socket. The
server application calls listen, which calls hip_listen and inet.listen in a row.
The application resumes its control and calls accept to receive a new socket descrip
tor, which the server application needs in order to communicate with the client. The
accept call translates first, to a hip_accept and then to a inet_accept call. The
accept call blocks until the client connects to the server.

5.5.2 Connection Setup on the Client

The connection setup on the client is depicted in Figure 5.4. Initially, the setup is
very similar to the server. A socket structure is created with hip_create_socket.
The application calls getendpointinfo to resolve the peer endpoint. The call also
sends the peer HI and locators to the HIP module. The HIP module generates an
ED for the peer, stores it into the peer ED data structure, and returns the ED.

Application

getendpointinfoi)

r HIP socket handler Transport & network module IPsec module

hip_create_socket()

hip_connect< I

inet_crcate(>

sctpcercdt)

hip_hadb_get_dlii_by_eid<)

inct_stream_connect()
xfnnjookupt)

hip_trigger_bexi I

Figure 5.4: Connect sequence diagram

The client initiates the TCP connection using connect, which eventually calls
hip.connect in the HIP socket handler. The socket handler maps the peer ED
value to the peer HIT with hip_hadb_get_lhi_by_ed. The handler stores the HIT

CHAPTER 5. IMPLEMENTATION 42

into the socket structure. The socket handler calls the inet_stream_connect in
the transport/network module to initiate TCP handshake. The transport/network
module generates the first SYN packet, and the global HIT based SP triggers IPsec
processing. If the IPsec module cannot find a valid SA, it triggers a base exchange
and the application sleeps until the SA is established. If a valid SA exists, the
client sends the SYN packet encapsulated in an ESP packet. Finally, the application
resumes its control.
There is one thing that is not illustrated in the figure, but is worth mentioning. The
inet_stream_connect call also triggers inet.autobind, because the client appli
cation does not make an explicit bind. The call assigns an ephemeral port for the
socket. The source ED is bound to a default HI of the host and the corresponding
locator set is assigned to any interface available on the host.
The server application was being blocked by the accept call. It continues execution
and it can now receive data from the client application.

5.5.3 Sending Data

Now it is time for the client application to send some data to the server application.
The execution path is illustrated in Figure 5.5. The application makes a send call,
which is translated into hip_send call in the HIP socket handler. There is no need
for a ED to HIT conversion here as the corresponding socket structure has already
been configured to use the peer HIT as the destination IPv6 address.

Application HIP socket handler Transport & network module IPsec module HIP module

hip_send()

inet.sendmsgO

hip_handle_output()

esp6_output()

Figure 5.5: Send diagram

The socket handler calls inet_sendmsg in the transport/network module to transmit
the data into the network. The global SP takes care of encapsulating the data into
ESP envelopes. Before the the packet to the network, hip_handle_output hook
intercepts the packet and notices that the destination address is a HIT, instead of

CHAPTER 5. IMPLEMENTATION 43

an IPv6 address. The hook replaces the HIT with an IPv6 addresses. Finally, the
hook returns control of the flow to the transport/network module that transmits the
ESP encapsulated packet to the network 1.

5.5.4 Receiving Data

The data retrieval is illustrated in Figure 5.6. The server application calls recv
to receive the data from the client application. The recv is translated into a
inet_recvmsg call, which blocks until some data is received. The data packet arrives
from the network and eventually enters the xfrm6_rcv function, which handles the
ESP processing in the packet. The function is hooked with the hip_handle_esp to
replace the IPv6 addresses with HITs so that the proper SA can be found in the
IPsec module. Finally, the IPsec module wakes up the application to read the data
from the socket.

Application HIP socket handler Transport & network module IPsec module HIP module

hip_recv()

inet_recvmsg()

xfrm6_rcv()

hip_handle_esp()

Figure 5.6: Recv diagram

5.6 HIP Enabled Telnet

An IPv6 enabled telnet client and a telnet daemon from [46] were ported to use the
native HIP API. The native HIP API was configured as a compile time option into
the code.

1 There is a minor caveat related to the global SP that matches to any HIT. The hip_handle_-
output is called first to replace the source and destination HITs with IPv6 addresses. The esp_-
output is called after that to check for a match on the global SP based on HITs. It works because
the decision to use ESP is made before calling the hip_handle_output function

CHAPTER 5. IMPLEMENTATION 44

The porting process was quite straightforward. It was merely enough to convert the
getaddrinfo and struct addrinf o strings in the source code to the HIP correspon
dents, getendpointinfo and struct endpointinfo. The prefixes of the member
names in the addrinfo and endpointinfo structures were different and had to be
converted too.
Two native HIP API based test applications can be found from Appendix A. They
are similar to the client and server applications used in the example scenario in this
chapter.

Chapter 6

Analysis

In this section, we analyze the design of the native HIP API on a conceptual level.
The analysis includes evaluation of the requirements against the design and descrip
tions of the most important design alternatives.

6.1 Evaluation

The requirements are evaluated against the design in this section. The evaluation
is organized around the new concepts that were introduced to the existing sockets
API.

6.1.1 Socket Family

The legacy HIP API may sound attractive for application developers, because it
requires none or just a few modifications in the application code. In a way, it is
also deceptive at the same time, because some applications are tightly integrated
to the TCP/IP protocol suite (e.g. ping, tcpdump and other diagnostic tools) and
enabling HIP too hastily may break them or result in unexpected behavior. This
was recorded as a backwards compatibility requirement in section 3.1.2 to avoid
repeating the legacy HIP API behavior in the native HIP API.
The new socket family, PF_HIP, helps to meet this requirement by making the appli
cation more HIP aware. The developer must use the HIP family both for the socket
and getendpointinfo calls before HIP connection can be established. It reminds
the developer that the application may need also other modifications to make it work
properly.

Besides making the application HIP aware, the family can be used for detecting
the capabilities of the hosts. The HIP capability of the local host is detected when
trying to create a HIP socket or when resolving local host His. Basically, the HIP
capability of the peer is detected when the resolver is called, unless the peer does

45

CHAPTER 6. ANALYSIS 46

not have its His in the DNS for some reason. For example, it is important that a
HIP aware application can detect that it is running on a non-HIP host. This way,
the application can make a clear exit or fall back to plain TCP/IP.
The AF_HIP constant is an alias for the PF_HIP. There could have some benefit from
making a difference between the two, but we did not consider it necessary. Besides,
the distinction between the AF and PF prefixes has already been blurred in the sockets
API [40] and it may be difficult to repair the damage.
The new socket family helps to isolate the HIP code from the other networking stack
code in the implementation. The HIP socket handler was registered as a separate
socket handler into the networking stack to avoid modifying the existing socket
handlers. The socket handler was also successfully integrated into the existing HIP
module without breaking the legacy HIP API capability of the module.

6.1.2 Endpoint Descriptor

The ED represents the endpoint for an application. The ED can be associated with
both fixed sized identifiers (HITs) and variable sized identifiers (His), as stated in the
representation requirements in section 3.2.1. Further, the identifiers are dynamically
associated with the locators. This approach integrates seamlessly to the mobility
and multihoming architecture of HIP. It also makes the transition to the IPv6 more
transparent.
The relationship between an ED and a socket is many-to-one. This way, it is possible
to reuse the same ED for multiple sockets. For example, consider a web browser that
opens multiple sockets and lets the user specify his own HI. The getlocaled call
needs to be called only once because the same ED can reused for multiple sockets.
The need for different representations of His, such as the HIT, is diminished in the
application layer because the ED replaces them in most cases. Consequently, the
current need for the upper bits in the HIT to distinguish it from an IPv6 address
becomes almost superfluous. The most significant need for the upper bits of the HIT
in the application layer is to support the legacy HIP API.
The ED value is stored in the sockaddr_ed structure, because the sockets API
functions depend on the socket address structures. The other reason for the existence
of the structure is to avoid confusion. As the ED value is an integer similar to the
socket descriptor, there is a chance for the novice application developer to mistake
it for a socket descriptor. It is safer to keep the ED value inside the socket address
structure.
One might argue that an ED socket address structure is purely related to HIP layer
and therefore should not contain a port number. However, the structure contains
the port number for a two reasons. The first reason is to maintain the compatibility
with the sockets API as the port number is also contained in the sockaddr_in
and sockaddr_in6 structures. Second, it makes the determination of the source
and destination port number easier in the HIP socket handler. Otherwise the port

CHAPTER 6. ANALYSIS 47

number should be passed using the getlocaled or getpeered function to the HIP
module. The problem is that the HIP module cannot unambiguously associate the
port number along with the associated ED value to the corresponding socket. This
problem could be solved by adding the socket descriptor to the arguments of the
ED setting function. This would require the socket descriptor argument to be added
also to the resolver, because the resolver uses the same ED setting functions. The
descriptor is not included in the arguments of the resolver function, because it would
reduce the similarity with the sockets API resolver.
The HIP_HI_ANY, HIP_HI_ANY_PUB and HIP_HI_ANY_ANON macros can be set directly
into the ed_val field in the sockaddr_ed structure, thus requiring no getlocaled
call. If the macros were defined as constant integers, it would increase the complexity
of the HIP socket handler, because it would have to handle ED values that are global
to all applications. The complexity was avoided by defining the macros as calls to
the getlocaled call with NULL arguments and with the appropriate flag set. In
this way, the special handling for the constant ED value is not needed at the kernel
side.
It should be noted that there is a minor benefit from the exclusion of the socket
descriptor in the declarations of the getlocaled and getpeered functions. The
developer has more freedom in the calling order of the functions, because now the
socket does not need to be instantiated with the socket function before setting the
ED. As consequence, the resolver call is also independent of the socket instantion
even though the resolver uses the getlocaled and getpeered functions internally.

6.1.3 Application Specified Identifiers

The requirement for the application specified identifiers is met both in the design
and implementation. The hip_endpoint_load_pem function can be used to create
an application specified endpoint with the help of the getlocaled or getpeered
functions. The application specified identifier scheme was tested with the test appli
cation described in Appendix A.

6.1.4 Resolver

The resolver simplifies the task of mapping His to locators by doing it transparently
on the behalf of the application. The resolver returns a set of EDs, which the
application can pass directly to the socket functions, such as bind and connect.
Still, the real representation of the His and locators behind the ED can be revealed
with the getlocaledinfo or getpeeredinfo functions, when needed.
The interfaces are preferred for the local host case instead of IP addresses, because
they are more stable than addresses. Relying on the interfaces instead of protocol
dependent IP addresses supports also the idea of a seamless transition to IPv6.
Nevertheless, IP addresses must be supported too in the local host case. Otherwise
unambiguous selection of a specific IP address on a specific interface is not possible.

CHAPTER 6. ANALYSIS 48

The interface of the native HIP API resolver function along with its companion data
structure, get endpoint inf o and endpointinf o, closely resemble their sockets API
counterparts, getaddrinf o and addrinf o. In fact, the get endpoint info function
ality could have been integrated into the getaddrinfo function because the syntax
is almost identical. The deployment of the native HIP API would have been more
transparent with this approach. However, the names of the sockets API counterpart
function and data structure are a bit misleading from the HIP point of view. We
chose to emphasize the semantical differences between the current and the native
HIP API resolvers, and separated them from each other. This also leaves us more
freedom to modify the native HIP API resolver to suit future needs that may even
be syntactically incompatible with the current resolver API.

6.2 Design Alternatives

The design alternatives have played an important role in the outcome of the native
HIP API. Many different alternatives have been considered and discarded. It is
therefore important to analyze also the “invisible” part of the design.

6.2.1 An IP Address Policy Based Approach

One design approach is to keep the sockets API unmodified and use HIP transpar
ently from the application. In this approach, the application uses IP addresses as
endpoint identifiers. The use of HIP is controlled in the HIP layer with a policy that
is based on the IP address of the peer. The policy asserts that HIP will be used
for a certain set of destination IP addresses. The application initiates connections
to the peer using IP addresses as normally in the sockets API, but the HIP layer
intercepts the connections matching to the policy and uses HIP for the connection
transparently from the application.
Such transparency would be both an advantage and a drawback. The major advan
tage is the low deployment cost. The applications do not need any changes. The
connections are prone to man-in-the-middle attacks if the policies are configured to
use HIP in opportunistic mode. On the other hand, configuring the peer His manu
ally to the policies results an administrative chaos if the policies are applied on each
end-host. Another drawback is also that the application is “fooled” into using an
IP address even though it will actually be using a HI. This may have some impact
on QoS sensitive or TCP/IP dependent applications. To guarantee that even those
applications work too, they need to be changed, which brings us one step closer to
the native HIP API model.

CHAPTER 6. ANALYSIS 49

6.2.2 Host Identifier Based Approach

Another approach is that the application uses directly a HIT or even full HI as
an endpoint identifier. In the native HIP API, the HIT based approach was not
preferred to avoid breaking forward compatibility. The HIP specifications have not
been completely stabilized yet and it is even possible for sizes of the HITs to change.
The full HI does not have this limitation, because it represents the whole HI and
it is variable sized by its nature. The problem with the HI approach is that the
sockets API supports only socket addresses with very limited size. Not even the
s o ckaddr _ st or age is sufficiently large for storing His.
The ED approach has a few cons when compared to the HIT and HI approaches. The
ED approach does preserve forward compatibility as opposed to the HIT approach.
ED is 100 % collision free, but HIT is not. The size of an ED is constant and small,
so it can be used more effectively than a full HI in the sockets API.
The HIT based approach has at least one advantage over the ED based approach.
The HIP socket handler does not have to map between the EDs and the HITs in
the HIT based approach. As a consequence, the purpose of the getlocaled and
getpeered functions is slightly different. The ED argument is no longer needed for
them and their purpose is just to associate the His to a set of locators.

6.2.3 A Shared Data Structure for Identifiers and Locators

The ED socket address structure is not semantically identical to the other socket
addresses structures, such as sockaddr_in and sockaddr_in6. The reason for the
semantical difference is that the ED is an opaque handle to the HI and associated
locators. The ED value cannot be used as a “referral”, i.e., passed from an application
to another as it is.
Let us consider an alternative model to the ED base model where there is no need
for the ED concept. In this model, the information referenced by the ED, the HI and
the locators, are stored directly in a socket address structure as shown in Figure 6.1.
The model is similar to [23].

struct sockaddr.hip {
struct endpoint hip_endpoint; /* Union of HI and HIT */
union {

struct sockaddr_storage ai_addr[HIP_MAX_L0CAT0RS];
struct if_nameindex ai_iface[HIP_MAX_L0CAT0RS];

> hip_locators;
>

Figure 6.1: An alternative ED socket address structure

CHAPTER 6. ANALYSIS 50

The most significant benefit of this scheme is that the socket structure could be
used as it is for sockets API calls. The structure already contains a HI and the
corresponding locators. There is no need to call any mapping function, such as the
getlocaled or getpeered, before the socket structure can be used. The resolver just
returns sockaddr_hip structures but it does not need to call any mapping function.
Only when the application specifies its own identifier, does it needs to call a separate
function for communicating the identifier to the HIP module.
This model has several problems. Most importantly, the endpoint structure may be
too large to fit directly into the socket address. In practice, only HITs could be used
in the socket address structure.
The locators may also change after the connection has been initiated and the change
cannot be easily reflected to the application. The locators are not necessary valid as
they will be never updated. The locator union may also be more difficult to handle
from a usability point of view. Having a variable, albeit limited, number of locators
is unnatural for a socket address structure in the sockets API, as there no other
socket address structures of such kind. It was also specified in the requirements that
the number of locators the API can handle should not be constrained.

6.2.4 An Endpoint Descriptor Based Binding Model

The TLI pair consists of source HI, source port, destination HI and destination
port. Consider an extension to this model where the His would be replaced with
EDs. The TLI pair would then consists of source ED, source port, destination ED
and destination port. This extension would allow a more elaborate kind of binding
model, which is illustrated in the example connection association below:

1 : {ED%c,PORTXrc,EDdBst,PORTÉst}
2 : {EDscrc, PORT%c, £<, PORTdBst}

The associations are within a single host. The source EDs, EDSJ[C and ED^C, are
distinct EDs, but are associated with the same host identity HI^C. The destination
ED, EDd^\ is associated with the host identity HI'jf1 and it is used in both of the
connection associations. This setup is possible only because the associations are
based on EDs rather than His.

Although this association model may seem appealing, it is incompatible with the
HIP architecture. The host receives a packet from the network destined for the HI
of the host, but cannot determine the mapping from the HI to the ED unambiguously
because the HI can be mapped to multiple EDs.

CHAPTER 6. ANALYSIS 51

6.2.5 An Alternative Resolver Model

It is the responsibility of the resolver to map identifiers and locators to EDs in the
the native HIP API. An alternative to this is to delegate the responsibility to the
application, as shown in Figure 6.2.

Chosen resolver model Alternative resolver model

1 gelendpoinlinfo

5. selmyeid or sctpecreid4. selmyeid or seipeereid

Resolver Resolver

Figure 6.2: The resolver is responsible for the mapping the HI and locators to an ED
in the chosen resolver model. In the alternative model, the responsibility is delegated
to the application.

In this alternative model, the application must always call the getlocaled and
getpeered functions. To achieve this, the resolver always explicitly returns the His
and locators to the application. The application selects a HI and the associated
locators and passes them to the getlocaled or getpeered function to receive the
corresponding ED. The interfaces to the functions remain syntactically the same as
in the native HIP API, but the endpoint info structure is altered as depicted in
Figure 6.3.
This endpoint info structure has two differences compared to the original. The
endpoint is the public key of the endpoint instead of the ED. The structure also has
a new union for the locators.
The usability and representation requirements of the native HIP API state that the
application should not be exposed to the His and locators unless the application
explicitly requires that. The alternative model fails meet this requirement as it
always exposes the His and locators to the application. In addition, it does not
follow the design of the sockets API strictly enough, because it always requires the
getlocaled or getpeered, to be called in all network applications.

CHAPTER 6. ANALYSIS 52

struct endpointinfo {
int ei_flags;
int ei_family;
int ei_socktype;
int ei_protocol;
size_t ei_endpoint_len;
struct endpoint *ei_endpoint;
union {

struct addrinfo *ai_addr;
struct if_nameindex *ai_iface;

> ei_locators;
char *ei_canonname;
struct endpointinfo *ei_next;

Figure 6.3: The alternative resolver data structure

Chapter 7

Future Work

The design and implementation efforts spent on the native HIP API have brought
up some future research and development ideas that are described in this chapter.

7.1 Design

The design related research ideas are discussed in this section.

7.1.1 Endpoint Descriptor

A couple of ED related functions are needed to make the API more complete. Com
parison of ED values needs a new system function, because the design does not give
any guarantees about the numerical properties of the ED values. Passing an ED to
another process requires a new system function, as well the duplication of an ED
within the same process. If the ED was a real file descriptor, the duplication could
be implemented with the existing dup [40] system function.
The endpoint identifiers in the HIP model are stable and the locators are ephemeral.
In the future, even the identifiers could be allowed to change while providing per
sistent transport layer connections. In this model, the binding between the ED and
HI is dynamic instead of static, i.e., the relationship between ED and HI becomes
many-to-many over time. The application has a stable ED but the identifier asso
ciated with the ED is allowed to change transparently from the application. The
benefit of such a HI mobility feature is questionable, but the ED concept would ease
the development such as a feature as it adds a layer of indirection.
The ED concept could also be useful to other mobility related protocols, especially
to those based on the identity-locator split. There seems to be so many mobility
related proposals that either do not have an API yet or deploy their own protocol
specific APIs. The ED concept might be generic enough to be used in other protocols
too, but this requires further analysis and experimentation.

53

CHAPTER 7. FUTURE WORK 54

7.1.2 Host Identifiers

The definitions of the endpoint_hip structure and hip_endpoint_load_pem func
tion in section 4.2 were mostly designed to be compatible with the existing HIP
implementation. As such, they may need revising before they can be deployed in
other HIP implementations. The format of the endpoint_hip is suitable at least for
Digital Signature Algorithm (DSA) keys, but other types of keys were not considered
because the implementation supports only DSA. Loading of public or private keys
could be supported in other formats than Privacy Enhanced Mail (PEM), such as
“SSH Public Key File Format” [6].

7.1.3 Locators

A FQDN of a host is associated with a set of His and locators. Within the set of His
and locators, it is not possible to associate an individual HI to a specific locator as
illustrated in Figure 7.1. If a host has only one HI stored in the DNS, the relationship
between the HI and the locators is obvious. However, the situation is different when
the host has multiple His. It is not possible exclude a locator from belonging to a
specific HI, because of the design of the resource records. This is the reason why the
resolver just associates all of the peer locators redundantly with each HI.

IP 1 IP 2 IP 3

Figure 7.1: In the current DNS RR model (left), the FQDN is associated with a set
of His and locators, and it is not possible attach a certain HI to specific locators.
The right side of the figure illustrates the case where this restraint would not exist.

7.1.4 Referrals

Some applications use the IP addresses as referrals, meaning that they pass addresses
from one endpoint to another within the protocol. For example, File Transfer Pro
tocol (FTP) applications require referrals. The ED cannot be used directly as a
referral, and it is not suitable for passing to an FTP application. If an FTP ap
plication were to use the native HIP API, it would have to query the host for the
His and locators corresponding to the ED, and use them for a referral. This area of
applications still needs further work.

CHAPTER 7. FUTURE WORK 55

7.1.5 HIP Proxy, Rendezvous Server and NAT

[4] specifies a proxy model for communication between HIP-hosts and non-HIP hosts.
In some scenarios, it is better to use this kind of proxy server. In other scenarios,
the option of falling back to plain TCP/IP networking is more appealing.
The fall back option may also be desirable during the transition period to HIP.
During that time, all NAT boxes may not be HIP aware. A host may end up behind
such an NAT box, and falling back to plain TCP/IP is necessary in order to contact
other nodes outside the NAT.
It may benefit the applications and HIP implementations if the resolver differentiates
between HIP enabled hosts and the addresses belonging to a HIP rendezvous server,
especially in the HIP-to-HIP rendezvous server case.

7.1.6 Protocol Integration

The HIP specifications do not give an explicit statement on the function that should
ultimately trigger the base exchange from the userspace. Implicitly, it should be
triggered by the function that causes the first packet to be sent to the peer. This
function is usually the connect function for in the case of TCP and the sendto
function in the case of UDP. However, the base exchange could also be triggered e.g.
with the setsockopt function, or in the getpeered function. The analysis of this
scheme is not complete, but some thoughts are given below.
If the base exchange would be triggered from the getpeered function, it would be
desirable to disable the triggering by default. There may be some applications that
use the getendpointinfo resolver function with no intention of sending or receiving
any data to or from the network. There may be only a few applications of this kind.
Still, they generate unnecessary load on the hosts and waste bandwidth because
calling getendpointinfo calls also getpeered when resolving peer His.
There may be some benefit from triggering the base exchange before the application
sends any data to the network. For example, the application could trigger base
exchange the before it is going to send data to the peer application. This would
save some round trips when the application is ready to send data to the peer. This
feature could be, however, implemented by the application itself by sending dummy
data to the peer host.
Evaluation of the compatibility with other APIs, such as LING [23] and SCTP [41],
was not in the scope, but we still represent a few observations. The first argument,
the domain, is used both in the native HIP and LING APIs. The domain is set to
PF_HIP in the native HIP API and to AF_LIN6 in the LING API. The SCTP API [41]
sets the third argument, the protocol, to IPPR0T0_SCTP to create an SCTP based
socket. There is an obvious conflict between native HIP and LING APIs, because
they use the same argument to enable the protocol. It strongly implies that a socket
cannot support both LING and HIP at the same time. However, the same conflict

CHAPTER 7. FUTURE WORK 56

does not occur with SCTP, as the argument for the selection of HIP and LIN6 is not
the same. A further analysis of the interoperability with the other API functions,
as well as a protocol level interoperability analysis, remains to be a future research
item.

7.1.7 Events

SCTP has an API for receiving information on SCTP events [41]. The application
indicates its willingness to listen for a specific SCTP event type by setting a socket
option. The events are received “using a normal data channel” [42] via recvmsg call.
The output of the function call includes an indication on whether the output is data
from the peer endpoint or an SCTP notification message.
A similar event notification interface should be defined for HIP, too. It would benefit,
at least, some diagnostic applications and real time applications sensitive to changes
in the network QoS parameters. This kind of applications could register for listening
to UPDATE events. As another example, the application could be registered for
listening to opportunistic base exchanges. The application could then prompt the
user to accept the key of the peer, similar to Secure Shell (SSH).

7.1.8 Policy API

The native HIP API could be extended with an interface for setting application speci
fied QoS related parameters. The setsockopt interface is probably the most straight
forward way to implement the policy API. The second argument of the setsockopt,
the level, is set to IPPR0T0_HIP and a policy structure is given as the last fourth
argument. The policy structure must have a standardized format, but defining one
is out of the scope. The task of setting local and peer policies may become simpler
because of the notion of the source and destination EDs.

7.1.9 Standardized Interface to the HIP Module

A standardized interface for communicating host identifiers and other related infor
mation between the application and the HIP module could be useful in the future.
Consider a Linux based system that has several independent HIP module imple
mentations but the native HIP API functionality is implemented within a single
libc library. The library needs either to understand each implementation specific
communication interface or it needs to understand a single communication interface
shared by all implementations. We find the latter alternative more appealing. The
interface could based on e.g. PF KEY [24] or NETLINK [37]. Alternatively, each
implementation could have a separate native HIP API library that needs to linked
explicitly into the application. This approach may not be very convenient and it
also wastes implementation effort on many redundant library implementations.

CHAPTER 7. FUTURE WORK 57

7.2 Implementation

Some data structures could have been stored in the process context, such as the
ED data structures described in section 5.4. Some functionality could have been
implemented in an easier way, if the related data structures were store in the process
context. For example, if the key material passed to the getlocaled function is
probably easier to deallocate in the HIP module when a process exits. However, as
much as possible, we tried to avoid modifying the existing networking stack, and all
of the data structures were implemented in the HIP module.
Some requirements were not implemented. The ownership permission checking of
EDs was implemented only partially. The HIP module discards the interfaces for
local EDs. The use of interfaces should be integrated better into the UPDATE
support. The HIP_HI_ANY constant along with its variants were not supported in
the implementation. HIP specific socket options were not implemented. Fall back
to IPv6 was not implemented.
The resolver library did not support DNS; it supported just the /etc/hosts file. It
did not make a difference between rendezvous servers and endhosts, because denoting
the rendezvous server in the /etc/hosts file breaks the existing resolver library. The
resolver supported only public/private keys for local host resolving and HITs for peer
resolving. Interface selection by specifying the address family was not implemented
as the implementation supported only IPv6 addresses. The getlocaledinfo and
getpeeredinf o functions were not implemented either.

Chapter 8

Conclusion

The presented design of the native HIP API meets the given requirements. The
API follows the design of the sockets API closely and extends it only when reuse is
not possible. The API increases the application’s control over the HIP SAs. The
advanced applications can control also HI and locator bindings explicitly. Typical
applications just use the new endpoint resolver to hide the details of His and locators.
The ED concept provides the means to conceal details of the Hiss and ephemeral
locators. An ED is an opaque handle to a HI and it can be used directly in the
sockets API function calls. The ED needs support in the networking stack.
The API allows the application to fall back to plain TCP/IP networking if the peer
host does not support HIP. It is also possible to explicitly request for “opportunistic
HIP mode” if the application is willing to establish a connection without a prior
knowledge of the HI of the peer. The application can also specify its own HI and
delegate the right to use the key to the host.
The most important kernelspace component of the implementation is the HIP socket
handler, which was built on top of an existing kernel based HIP implementation. The
socket handler is isolated from the rest of the networking stack by introducing the
HIP specific protocol family, PF_HIP. The isolation is necessary to avoid breaking
the backwards compatibility with the existing sockets API.
The userspace functionality is implemented in the resolver library. It provides a new
endpoint resolver. For ease of use, the resolver is syntactically almost identical to
the sockets API resolver. The implementation was experimented by porting a telnet
client and server to use the API. The porting process was quite straightforward. The
telnet client opened a TCP connection to the telnet server using HIP and opened a
login terminal successfully to the server.
The length of the HIT may be inadequate some day but the ED approach guarantees
forward compatibility with HIP. Also, the transition to IPv6 is more transparent as
the ED hides the details of IP addresses. The binding model used for the ED is quite
flexible, because it allows the reuse of an ED for multiple sockets.

58

CHAPTER 8. CONCLUSION 59

There seems to be an abundance of different mobility related protocol proposals.
Some of them lack an API altogether and the others have their own protocol specific
APIs. It would be beneficial to provide an API generic enough that could be used
in most of them. The ED approach is quite generic and could be worth analyz
ing with other related protocols, or at least with protocols based on the endpoint
identifier/locator split. This requires further research and evaluation.

Bibliography

[1] Hari Balakrishnan, Karthik Lakshminarayanan, Sylvia Ratnasamy, Scott
Shenker, Ion Stoica, and Michael Walfish. A layered naming architecture for
the internet. In ACM SIGCOMM 200f, Portland, OR, September 2004.

[2] Catharina Candolin, Miika Ko mu, Mika Kousa, and Janne Lundberg. An
implementation of HIP for linux. In Proceedings of the Linux Symposium
2003, Ottawa, Ontario Canada, 23-26 July 2003 pp. 97-105, July 2003.
http://archive.linuxsymposium.org/ols2003/Proceedings/.

[3] J. Noel Chiappa. Endpoints and Endpoint Names: A
Proposed Enhancement to the Internet Architecture, 1999.
http://users.exis.net/~jnc/tech/endpoints.txt.

[4] Lars Eggert and Julien Laganier. Host Identity Protocol (HIP)
Rendezvous Mechanisms. IETF, February 2004. [Internet Draft]
http://www.ietf.org/internet-drafts/draft-eggert-hip-rendezvous-00.txt.

[5] P. Florissi, Y. Yemini, and D. Florissi. QoSockets: a New Extension to the
Sockets API for End-to-End Application QoS Management, May 1999.

[6] J. Galbraith and R. Thayer. SSH Public Key File Format. In
ternet Engineering Task Force, August 2003. [Internet Draft]
http://www.Vandyke.com/technology/draft -ietf-secsh-publickeyfile.txt.

[7] R. Gilligan, S. Thomson, J. Bound, J. McCann, and W. Stevens. RFC 3f93:
Basic Socket Interface Extensions for IPv6. Internet Engineering Task Force,
February 2003. http://www.ietf.org/rfc/rfc3493.txt.

[8] Open Group. IEEE Std. 1003.1-2001 Standard for Information Technology -
Portable Operating System Interface (POSIX). Open Group, December 2001.
http://www.opengroup.org/austin.

[9] A. Gulbrandsen, P. Vixie, and L. Esibov. RFC 2782: A DNS R.R for specifying
the location of services (DNS SRV). Internet Engineering Task Force, February
2000. http://www.ietf.org/rfc/rfc2782.txt.

60

BIBLIOGRAPHY 61

[10] E. Guttman, C. Perkins, J. Veizades, and M. Day. RFC 2608: Service
Location Protocol, Version 2. Internet Engineering Task Force, June 1999.
http://www.ietf.org/rfc/rfc2608.txt.

[11] Troels Walsted Hansen. Multihoming with In
ternet Protocol Version 6, December 1999.
http://www.vermicelli.pasta.cs.uit.no/ipv6/students/troels/thesis.pdf.

[12] Dan Harkins and Dave Carrel. RFC 2409: The Internet Key Ex
change (IKE). Internet Engineering Task Force, November 1998.
http://www.ietf.org/rf c/rf c2409.txt.

[13] Thomas Henderson, Jeff Ahrenholz, and et al. Boeing’s unpublished hip imple
mentation.

[14] Thomas R. Henderson. Host mobility for IP networks: A comparison. IEEE
Network Magazine, 17(6):18-26, November 2003.

[15] Hip for bsd implementation, http://www.hip4inter.net/.

[16] The HIPL Group. Host Identity Protocol for Linux.
http://www.gaijin.iki/hipl/.

[17] Malleswar Kalla, Ken Morneault, Vern Paxson, Ian Rytinä, Haims Jurgen
Schwarzbauer, Chip Sharp, Randall Stewart, Tom Taylor, Qiaobing Xie, and
Lixia Zhang. RFC 2960: Stream Control Transmission Protocol. Internet Engi
neering Task Force, October 2000. http://www.ietf.org/rfc/rfc2960.txt.

[18| Miika Kontu. Host identity payload in home networks. Seminar paper, Helsinki
University of Technology, Espoo, Finland, April 2002.

[19] Julien Laganier. Julien laganier’s unpublished hip implementation.

[20] J. Linn. RFC 2743: Generic Security Service Application Program Inter
face Version 2, Update 1. Internet Engineering Task Force, January 2000.
http://www.ietf.org/rfc/rfc2743.txt.

[21] J. Linn. RFC 2744: Generic Security Service API Version
2: C-bindings. Internet Engineering Task Force, January 2000.
http://www.ietf.org/rfc/rfc2744.txt.

[22] Jukka Manner and Markku Kojo. RFC 3753: Mobility Re
lated Terminology. Internet Engineering Task Force, June 2004.
http://www.ietf.org/rfc/rfc3753.txt.

[23] Arifumi Matsumoto. LIN6 Multihoming API. Internet Engineering Task Force,
January 2004. [Expired Internet Draft],

BIBLIOGRAPHIC 62

[24] D. McDonald, C. Metz, and B. Phan. RFC 2361: PF_KEY Key Man
agement API, Version 2. Internet Engineering Task Force, July 1998.
http://www.ietf.org/rfc/rfc2367.txt.

[25] A. McGregor. Pvhip release 18 march 2003.
http://www.sharemation.com/admOlbass/pyhip-2003-03-18.tar.bz2.

[26] Robert Moskowitz. Host Identity Payload Implementation. In
ternet Engineering Task Force, February 2001. [Internet Draft]
http://homebase.htt-consult.com/~hip/draft-moskowitz-hip-impl-01.txt.

[27] Robert Moskowitz and Pekka Nikander. Host Identity Payload Archi
tecture. Internet Engineering Task Force, September 2003. [Internet Draft]
http://www.ietf.org/internet-drafts/draft-moskowitz-hip-arch-05.txt.

[28] Robert Moskowitz, Pekka Nikander, Petri Jokela, and
Thomas Henderson. Host Identity Protocol. Internet En
gineering Task Force, February 2004. [Internet Draft]
http://www.ietf.org/internet-drafts/draft-ietf-hip-base-00.txt.

[29] P. Nikander and J. Laganier. Using the Domain Name System (DNS)
with the Host Identity Protocol. IETF, May 2004. [Internet Draft]
http://julien.laganier.free.fr/pub/draft-nikander-hip-dns-00prel.txt.

[30] Pekka Nikander. An Address Ownership Problem in IPv6. Inter
net Engineering Task Force, February 2001. [Expired Internet Draft]
http://www.tml.hut.fi/~pnr/publications/draft-nikander-ipng-address-ownership-00.

[31] Pekka Nikander. A case for host identity payload: An architecture for multi
homed mobile hosts, February 2002. unpublished manuscript.

[32] Pekka Nikander and Jari Arkko. End-Host Mobility and
Midti-Homing with Host Identity Protocol. Internet En
gineering Task Force, December 2003. [Internet Draft]
ftp://ftp.funet.fi/internet-drafts/draft-nikander-hip-mm-02.txt.

[33] Pekka Nikander, Jorma Wall, and Jukka Ylitalo. Integrating se
curity, mobility, and multi-homing in a HIP way,. In Proceed
ings of Network and Distributed Systems Security Symposium, pages
87-99, San Diego, California, February 2003. Internet Society,
http://www.tcm.hut.fi/~pnr/publications/NDSS03-Nikander-et-al.pdf.

[34] Erik Nordmark. Multihoming without IP Identifiers. IETF, October 2003. [Ex
pired Internet Draft].

[35] C. Perkins. RFC 3344: IP Mobility Support for IPv4. Internet Engineering
Task Force, August 2002. http://www.ietf.org/rfc/rfc3344.txt.

BIBLIOGRAPHY 63

[36] Charles Perkins. RFC 2002: IP Mobility Support. Internet Engineering Task
Force, October 1996. http://www.ietf.org/rfc/rfc2002.txt.

[37] Netlink S.a.s. Netlink - communication between kernel and user,
//www.netlink.it/.

[38] Kristian Slavov. Implementing HIP Algorithms in Linux Kernel. Helsinki Uni
versity of Technology, January 2004.

[39] W. Stevens, M. Thomas, E. Nordmark, and T. Jinmei. RFC 3678: Advanced
Sockets Application Program Interface (API) for IPv6. Internet Engineering
Task Force, May 2003. http://www.ietf.org/rfc/rfc3678.txt.

[40] W. Richard Stevens. UNIX Network Programming, Volume 1: Networking
APIs: Sockets and XTI. Prentice Hall, Upper Saddle River, New Jersey, 2nd
edition, 1997.

[41] R. Stewart, L. Yarroll, J. Wood, K. Poon, K. Fujita, and M. Tuexen.
Sockets API Extensions for Stream Control Transmission Protocol
(SCTP). Internet Engineering Task Force, April 2004. [Internet Draft]
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-sctpsocket-08.txt.

[42] Randall R. Stewart and Xiaobing Xie. Stream Control Transmission Protocol
(SCTP). Addison-Wesley, November 2001.

[43] Martin Stiemerling and Juergen Quittek. Problem State
ment: HIP operation over Network Address Translators. In
ternet Engineering Task Force, July 2004. [Internet Draft]
http://www.ietf.org/internet-drafts/draft-stiemerling-hip-nat-01.txt.

[44] Fumio Teraoka, Masahiro Ishiyama, and Mitsunobu Kunishi.
LIN6: A Solution to Multihoming and Mobility in IPv6. In
ternet Engineering Task Force, December 2003. [Internet Draft]
http://www.ietf.org/internet-drafts/draft-teraoka-multi6-lin6-00.txt.

[45] Jae H. Kim Thomas R. Henderson, Jeffrey M. Ahrenholz. Experience with
the host identity protocol for secure host mobility and multihoming. In IEEE
Wireless Communications and Networking Conference, March 2003.

[46] USAGI project - linux IPv6 development project,
http://www.linux-ipv6.org/.

[47] John Viega, Matt Messier, and Pravir Chandra. Networking Security with
OpenSSL. O’Reilly, jun 2002.

[48] Brian Wellington. RFC 3007: Secure Domain Name System (DNS)
Dynamic Update. Internet Engineering Task Force, November 2000.
http://www.ietf.org/rfc/rfc3007.txt.

BIBLIOGRAPHY 64

[49] Joel M. Winett. RFC 0147: The Definition of a Socket. Internet Engineering
Task Force, May 1971. http://www.ietf.org/rfc/rfc0147.txt.

[50] J. Ylitalo, P. Jokela, J. Wall, and P. Nikander. End-point
identifiers in Secure Multihomed Mobility, December 2002.
http://www.tml.hut.fi/~pnr/publications/0podis02-Ylitalo-et-al.pdf.

[51] Jukka Ylitalo and Pekka Nikander. Blind: A complete identity protection frame
work for end-points. In Twelfth International Workshop on Security Protocols,
Cambridge, England, April 2004.

Appendix A

Application Code Examples

A.l Connection Test Server

/*
* Echo server: get data from client and send it back. Use this with
* conntest-client-native.
*/

#if HAVE_CONFIG_H
#include <config.h>
#endif

»include <stdio.h>
»include <stdlib.h>
»include <string.h>
»include <sys/types.h>
»include <sys/socket.h>
»include <arpa/inet.h>
»include <netinet/in.h>
»include <netinet/ip.h>
»include Cunistd.h>
»include <netdb.h>
»include <net/if.h>
/* Workaround for some compilation problems on Debian */
»ifndef _user
» define _user
»endif
»include <signal.h>

»include "tools/debug.h"

static void sig_handler(int signo) {

65

APPENDIX A. APPLICATION CODE EXAMPLES 66

if (signo == SIGTERM) {
// close socket
printf("Sigterm\n");
exit(-l);

} else {
printf("Signal %d\n", signo);
exit(-l);

>

}

int main(int argc,char *argv []) {
struct endpointinfo hints, *res = NULL;
struct sockaddr_ed peer_ed;
char *port_name;
char mylovemostdata[IP_MAXPACKET];
int recvnum, sendnum;
int serversock = 0, sockfd = 0;
int err = 0;
int socktype;
socklen_t peer_ed_len;
int endpoint„family = PF_HIP;

if (signal(SIGTERM, sig_handler) == SIG_ERR) {
err = 1;
goto out;

>

if (argc != 3) {
printf("Usage: %s tcpludp port\n", argv[0]);
err = 1;
goto out;

>

if (strcmp(argv[l], "tcp") == 0) {
socktype = S0CK_STREAM;

> else if (strcmp(argv[l], "udp") == 0) {
socktype = SOCK_DGRAM;

} else {
printf("error: uknown socket type\n");
err = 1;
goto out;

>

port_name = argv [2];

APPENDIX A. APPLICATION CODE EXAMPLES 67

serversock = socket(endpoint„family, socktype, 0);
if (serversock < 0) {

perror("socket");
err = 1;
goto out;

>

memset(fehints, 0, sizeof(struct endpointinfo));
hints.ei_family = endpoint_family;
hints.ei_socktype = socktype;

err = getendpointinfo(NULL, port„name, &hints, feres);
if (err) {

printf("Resolving of peer identifiers failed (Xd)\n", err);
goto out;

}

if (bind(serversock, res->ei_endpoint, res->ei_endpointlen) < 0) {
perror("bind");
err = 1;
goto out;

}

if (socktype == S0CK_STREAM && listen(serversock, 1) < 0) {
perror("listen");
err = 1;
goto out;

>

while(l) {
if (socktype == SOCK.STREAM) {

sockfd = accept(serversock, (struct sockaddr *) &peer_ed,
&peer_ed_len);
if (sockfd < 0) {

perror("accept");
err = 1;
goto out;

>

while((recvnum = recv(sockfd, mylovemostdata,
sizeof(mylovemostdata), 0)) > 0) {

mylovemostdata[recvnum] = ’\0’;
if (recvnum == 0) {

APPENDIX A. APPLICATION CODE EXAMPLES 68

break;
>

/* send reply */
sendnum = send(sockfd, mylovemostdata, recvnum, 0);
if (sendnum < 0) {

perror("send");
err = 1;
goto out;

>

}
} else { /* UDP */

sockfd = serversock;
while(recvnum = recvfrom(sockfd, mylovemostdata,

sizeof(mylovemostdata), 0,
(struct sockaddr *)& peer_ed,
&peer_ed_len) > 0) {

mylovemostdata[recvnum] = ’\0’;
printf("%s", mylovemostdata);
if (recvnum == 0) {

break;
>

/* send reply */
sendnum = sendto(sockfd, mylovemostdata, recvnum, 0,

(struct sockaddr *) &peer_ed, peer_ed_len);
if (sendnum < 0) {

perror("send");
err = 1;
goto out;

>

>

>

>

out:

if (res)
free_endpointinfo(res);

if (sockfd)
close(sockfd); // discard errors

if (serversock)
close(serversock); // discard errors

APPENDIX A. APPLICATION CODE EXAMPLES 69

return err;
}

A.2 Connection Test Client

/*
* Echo STDIN to a selected server which should echo it back.
* Use this application with conntest-server-xx.
*

* usage: ./conntest-client-native host tcpludp port
* (reads stdin)
*/

#if HAVE_CONFIG_H
#include <config.h>
#endif

#include
#include
#include
#include
#include
»include
»include
»include
»include
»include
»include
»include
»include
»include
»include

<stdio,h>
<stdlib.h>
<string.h>
<sys/types.h>
<sys/socket.h>
<arpa/inet.h>
<netinet/in.h>
<netinet/ip.h>
cunistd.h>
<netdb.h>
<sys/time.h>
<time.h>
<arpa/inet.h>
<net/if.h>
"tools/debug.h"

int main(int argc,char *argv[]) {
struct endpointinfo hints, *epinfo, *res = NULL;
struct timeval stats_before, stats.after;
unsigned long stats_diff_sec, stats_diff_usec;
char mylovemostdata[IP_MAXPACKET];
char receiveddata[IP_MAXPACKET];
char *proto_name, *peer_port_name, *peer_name;
int recvnum, sendnum;
int datalen = 0;
int proto;

APPENDIX A. APPLICATION CODE EXAMPLES 70

int datasent = 0;
int datareceived = 0;
int ch;
int err = 0;
int sockfd = -1, socktype;
se_family_t endpoint_family;

if (argc != 4) {
printf ("Usage : */,s host tcpludp port\n" , argv[0]);
err = 1;
goto out;

}

peer_name = argv [1] ;
proto_name = argv [2];
peer_port_name = argv [3];
endpoint_family = PF_HIP;

/* Set transport protocol */
if (strcmp(proto_name, "tcp") == 0) {

proto = IPPR0TCLTCP;
socktype = SOCK.STREAM;

} else if (strcmp(proto_name, "udp") == 0) {
proto = IPPR0T0_UDP;
socktype = S0CK_DGRAM;

} else {
printf("Error: only TCP and UDP supported.\n");
err = 1;
goto out;

>

sockfd = socket(endpoint_family, socktype, 0);
if (sockfd == -1) {

printf("creation of socket failed\n");
err = 1;
goto out;

>

/* set up host lookup information */
memset(fchints, 0, sizeof(hints));
hints.ei_socktype = socktype;
hints.ei_family = endpoint_family;

/* lookup host */

APPENDIX A. APPLICATION CODE EXAMPLES 71

err = getendpointinfo(peer_name, peer_port_name, fehints, feres);
if (err) {

printf("getaddrinfo failed (%d): Xs\n", err, gepi.strerror(err));
goto out;

>

printf ("f amily=%d value=%d\n" , res->ei_f amily,
ntohs(((struct sockaddr_ed *) res->ei_endpoint)->ed_val));

// data from stdin to buffer
bzero(receiveddata, IP_MAXPACKET);
bzero(mylovemostdata, IP_MAXPACKET);

printf("Input some text, press enter and ctrl+d\n");

while ((ch = fgetc(stdin)) != EOF && (datalen < IP.MAXPACKET)) {
mylovemostdata[datalen] = (unsigned char) ch;
datalen++;

>

epinfo = res;
while(epinfo) {

err = connect(sockfd, (struct sockaddr *) epinfo->ei_endpoint,
epinfo->ei_endpointlen);

if (err) <
perror("conne ct");
goto out;

>

epinfo = epinfo->ei_next;
>

/* Send the data read from stdin to the server and read the response.
The server should echo all the data received back to here. */

while((datasent < datalen) || (datareceived < datalen)) {

if (datasent < datalen) {
sendnum = send(sockfd, mylovemostdata + datasent, datalen - datasent, 0);

if (sendnum < 0) {
perror("send");
err = 1;
goto out;

>

datasent += sendnum;

APPENDIX A. APPLICATION CODE EXAMPLES 72

}

if (datareceived < datalen) {
recvnum = recv(sockfd, receiveddata + datareceived,

datalen-datareceived, 0);
if (recvnum <= 0) {

perrorC'recv");
err = 1;
goto out;

>

datareceived += recvnum;
}

}

if (memcmpCmylovemostdata, receiveddata, IP_MAXPACKET)) {
printf("Sent and received data did not match\n");
err = 1;
goto out;

>

out:

if (sockfd != -1)
close(sockfd); // discard errors

if (res)
free_endpointinfo(res);

printf("Result of data transfer: %s.\n", (err ? "FAIL" : "OK"));

return err;
}

A.3 Connection Test Client with Application Specified
Identifiers

/*
* Echo STDIN to a selected server which should echo it back.
* Use this application with conntest-server-xx.
*

* usage: ./conntest-client-native-user-key host tcpludp port
* (reads stdin)
*/

#if HAVE_C0NFIG_H

APPENDIX A. APPLICATION CODE EXAMPLES 73

#include Cconfig.h>
#endif

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
»include
»include
»include
»include

<stdio.h>
<stdlib.h>
<string.h>
<sys/types.h>
<sys/socket.h>
<arpa/inet.h>
<netinet/in.h>
<netinet/ip.h>
<unistd.h>
<netdb.h>
<sys/time.h>
<time.h>
<arpa/inet.h>
<net/if.h>
"tools/debug.h"

int main(int argc.char *argv[]) {
struct endpointinfo hints, *epinfo, *res = NULL;
struct sockaddr_ed *my_ed = NULL;
struct timeval stats_before, stats_after;
unsigned long stats_diff_sec, stats_diff_usec;
char mylovemostdata[IP_MAXPACKET] ;
char receiveddata[IP_MAXPACKET];
char *proto_name, *peer_port_name, *peer_name;
int recvnum, sendnum;
int datalen = 0;
int proto;
int datasent = 0;
int datareceived = 0;
int ch;
int err = 0;
int sockfd = 0, socktype;
se_family_t endpoint_family;
char *user_key_base = "/etc/hip/hip_host_dsa_key";
struct endpoint *endpoint;

if (argc != 4) {
printf("Usage: 7,s host tcpludp port\n", argv[0]);
err = 1;
goto out;

}

APPENDIX A. APPLICATION CODE EXAMPLES 74

peer_name = argv [1];
proto„name = argv [2];
peer_port_name = argv[3];
endpoint„family = PF_HIP;

/* Set transport protocol */
if (strcmp(proto_name, "tcp") == 0) {

proto = IPPR0T0_TCP;
socktype = S0CK_STREAM;

} else if (strcmp(proto_name, "udp") == 0) {
proto = IPPR0T0_UDP;
socktype = S0CK_DGRAM;

> else {
printf("Error: only TCP and UDP supportedAn");
err = 1;
goto out;

}

sockfd = socket(endpoint„family, socktype, 0);
if (sockfd == -1) {

printf("creation of socket failedXn");
err = 1;
goto out;

>

err = load_hip_endpoint_pem(user_key_base, &endpoint);
if (err) {

printf("Failed to load user HIP key %s\n", user_key_base);
goto out;

>

my_ed = getlocaled(endpoint, NULL, NULL, NULL);
if (!my_ed) {

printf("Failed to set up my ED (Xd)\n");
err = 1;
goto out;

>

/* We have to bind to the ED to use it. */
err = bind(sockfd, (struct sockaddr *) &my_ed, sizeof(struct sockaddr_ed));
if (err) {

perror("bind failed");
goto out;

APPENDIX A. APPLICATION CODE EXAMPLES 75

>

/* set up endpoint lookup information */
memset(fehints, 0, sizeof(struct endpointinfo));
hints.ei_socktype = socktype;
hints.ei_family = endpoint_family;

/* Lookup endpoint. We do not need to call getpeered because
getendpointinfo does it automatically. */

err = getendpointinfo(peer_name, peer_port_name, &hints, &res);
if (err) {

printf("getendpointinfo failed (%d): %s\n", err, gepi.strerror(err));
goto out;

>

printf("family=%d value=%d\n", res->ei_family,
ntohs(((struct sockaddr_ed *) res->ei_endpoint)->ed_val));

// data from stdin to buffer
bzero(receiveddata, IP_MAXPACKET);
bzero(mylovemostdata, IP_MAXPACKET);

printf("Input some text, press enter and ctrl+d\n");

// horrible code
while ((ch = fgetc(stdin)) != EOF && (datalen < IP_MAXPACKET)) {

mylovemostdata[datalen] = (unsigned char) ch;
datalen++;

>

gettimeofday(&stats_before, NULL);

epinfo = res;
while(epinfo) {

err = connect(sockfd, res->ei_endpoint, res->ei_endpointlen);
if (err) {

perror("connect");
goto out;

>

epinfo = epinfo->ei_next;
>

gettimeofday(&stats_after, NULL);
stats_diff_sec = (stats.after,tv_sec - stats_before,tv_sec) * 1000000;

APPENDIX A. APPLICATION CODE EXAMPLES 76

stats_diff_usec = stats_after,tv_usec - stats_before.tv_usec;

printf("connect took %.lOf sec\n",
(stats_diff_sec + stats_diff_usec) / 1000000.0);

/* Send the data read from stdin to the server and read the response.
The server should echo all the data received back to here. */

while((datasent < datalen) || (datareceived < datalen)) {

if (datasent < datalen) {
sendnum = send(sockfd, mylovemostdata + datasent, datalen - datasent, 0);

if (sendnum < 0) {
perror("send");
err = 1;
goto out;

>

datasent += sendnum;
>

if (datareceived < datalen) {
recvnum = recv(sockfd, receiveddata + datareceived,

datalen-datareceived, 0);
if (recvnum <= 0) {

perror("recv");
err = 1;
goto out;

}
datareceived += recvnum;

>

>

if (memcmp(mylovemostdata, receiveddata, IP_MAXPACKET)) {
printf("Sent and received data did not match\n");
err = 1;
goto out;

out:

if (sockfd)
close(sockfd); // discard errors

if (res)
free_endpointinfo(res);

APPENDIX A. APPLICATION CODE EXAMPLES 77

if (my_ed)
free(my_ed);

printf("Result of data transfer: Xs.\n", (err ? "FAIL" : "OK"));

return err;

rv> r-' ru ,.ro'
. CHIIX:.:......... i
OdA-v, .-1.K NO'IV.L NWUXMUr-1 i
n'LlOM . X_L-, U '■[■Xik. V

