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1. Introduction

Theory of operators and their spectra can be seen as the fruitful axioma-

tization of the study of integral and differential operators and equations.

In its past and present advances, this theory interacts with a variety of

scientific fields ranging from technological improvements in computing to

the theoretical description of nature. In the totality of this dissertation,

real linear operators and their various properties have been studied. This

is, somewhat loosely, called real linear operator theory. Here it means in-

vestigating real linear operators on complex linear spaces. The purpose

of this overview is to expose some connections to existing operator theory

and provide a few examples of applications.

From a historical viewpoint, real linear operator theory falls into a gap

in the axiomatization process of linear operators on linear spaces. As

can be seen, for example, from Banach’s seminal work [5], in early opera-

tor theory continuous and additive mappings between vector and normed

spaces over the real number field were studied. By continuity, additivity

is then synonymous to real linearity. The subsequent operator theoretical

development consisted of replacing the real number field with the complex

number field throughout the axiomatization. In other words, complex lin-

ear operators on complex linear spaces became the focus of studies. This,

of course, led to all the beautiful, fruitful, and effective theory of opera-

tors and their spectra. However, in doing so, the theoretically intermit-

tent study of continuous additive mappings on complex linear spaces, i.e,

of real linear operator theory, is leaped over.

Naturally, real linear operator theory has a bottomless source of prob-

lems in the gargantuous complex linear theory, and from this source the

questions of this dissertation have emerged. Any property for complex

linear operators entails the question whether, or possibly in what form,

the similar statement holds for real linear operators. The arising real lin-
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Introduction

ear problems may be subjected to the following trivial trichotomy. Some

concepts and theorems carry through with hardly any change, if at all. An

example of this class is provided by compactness of the spectrum. Some

require slight modification but finally can be transformed into the real lin-

ear domain. This happens for example in proving some of the properties

of antilinear operators. Some, however, remain surprisingly elusive. An

example of this could be merely determining the nonemptiness of the spec-

trum in the case of a real linear operator on a finite dimensional space.

From the viewpoint of applicability, real linear operators arise in vari-

ous contexts in a more or less highlighted fashion. Let us mention in a

deeply selective way some historical and some modern apparitions. In his

lessons on projective complex geometry [8], Cartan writes about ’trans-

formations antiprojectives’. A classical example from physics is the anti-

linear operator of time-reversal in quantum mechanics. More generally in

quantum mechanics, Wigner studied antiunitary operators as symmetries

of the Hilbert space [41, 42]. Partly inspired by this, antilinear operators

have been used to study the variational objects of the so-called Hartree–

Bogoliubov self-consistent theory in nuclear physics [20, 19].

More presently, antilinear operators arise in questions related to planar

elasticity in the form of the Friedrichs operator [11, 33, 34, 27, 35, 30].

The general Beltrami equation in the plane entails a spectral question for

real linear operators [3]. For example, in solving Calderón’s inverse con-

ductivity problem in the plane invertibility and compactness properties of

a real linear operator are utilized [4]. Real linear operators are embedded

in related studies of inverse scattering and non-linear evolution equations

that involve solving the so-called ∂-equation in the plane.

The present dissertation is a continuation of the work of Eirola, Huh-

tanen, Nevanlinna, and von Pfaler done in real linear matrix analysis

[9], [23], [24], [22], [25]. In this sense it follows naturally that operators

dealt with here are mainly on separable complex Hilbert spaces, though

some results could be stated for real linear operators on complex Banach

spaces.

The focal points of this dissertation can be depicted as follows. In Pub-

lication I, the general theory of real linear operators and their spectra is

studied. Motivated by the Beurling transform and its use in solving the

Beltrami equation, real linear multiplication operators are investigated.

Their unitary approximation is discussed. In Publication II, the main goal

is to prove a Weyl–von Neumann -type theorem for antilinear self-adjoint

10
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operators. Related properties of antilinear operators are studied. In Pub-

lication III, the main focus is on compact real linear operators including,

naturally, finite rank operators. Related to invariant subspaces, an ana-

logue of Lomonosov’s theorem is proved for compact antilinear operators.

The eigenvalue problem for real linear operators of finite rank is discussed

in terms of the characteristic polynomial. In Publication IV, a factoriza-

tion for symplectic matrices is presented. Using the so-called metaplectic

representation, it is then seen as a factorization for metaplectic operators

with applicability to optics.

Chapter 2 constitutes the main body of this overview. In Section 2.1, ba-

sic notions of real linear operators are discussed. Section 2.2 concentrates

on features of real linear and antilinear self-adjointness. In Section 2.3,

compact operators and the characteristic polynomial of finite rank oper-

ators are the objects of interest. In Section 2.4, symplectic matrices and

metaplectic operators are introduced. Sections 2.5 and 2.6 briefly outline

some examples of real linear methods used in studying the Friedrichs op-

erator and the Beltrami equation, respectively. Chapter 3 summarizes

the main results of the included articles.

11
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2. Real linear operators

2.1 General notions

Let H be a separable Hilbert space over C. A real linear operator A on H
satisfies

A(x+ y) = Ax+Ay, A(rx) = rAx, ∀x, y ∈ H, r ∈ R.

A real linear operator A is called complex linear, if Ai = iA, or antilinear,

if Ai = −iA. A real linear operator A can be split uniquely as the sum

of its complex linear part AC = 1
2(A − iAi) and its antilinear part AA =

1
2(A+ iAi):

A = AC +AA. (2.1)

Related to this, the complexification of A with respect to the unitary con-

jugation κ is the complex linear operator

AC =

⎛
⎝ AC AAκ

κAA κACκ

⎞
⎠ (2.2)

on H ⊕ H. A unitary conjugation κ is an antilinear isometric involution,

i.e., ‖κx‖ = ‖x‖ for all x ∈ H and κ2 = I. Any unitary conjugation κ

is naturally connected with an orthonormal basis {ej}j∈N of H such that

κej = ej for all j ∈ N.

Spectral sets are defined exactly as for complex linear operators. The

spectrum σ(A) of a real linear operator A consists of those λ ∈ C for which

A − λ has no bounded inverse. The approximate point spectrum σa(A)

consists of those λ ∈ C for which there exists a sequence of vectors {ej}∞j=1

of unit length for which ‖(A − λ)ej‖ → 0 as j → ∞. The point spectrum

σp(A) consists of eigenvalues of A. The residual spectrum σr(A) consists of

those λ ∈ C for which the range of A−λ is not dense in H. What is crucial

13



Real linear operators

about the definition of the spectral sets is that, firstly, they are defined as

subsets of the complex plane, and secondly, they are not defined through

the complexification. However, a key feature of the different spectral sets

is the identity of real spectra

σX(A) ∩ R = σX(AC) ∩ R, (2.3)

where σX(A) may stand for σ(A), σa(A), σp(A), or σr(A). An often uti-

lized property of the spectrum of a purely antilinear operator is that it is

circularly symmetric with respect to the origin.

2.2 Self-adjointness

A real linear operator A is self-adjoint if A = A∗. The adjoint is defined

through (2.1) as

A∗ = A∗
C +A∗

A,

where (A∗
C
x, y) = (x,ACy) and (A∗

A
x, y) = (AAy, x) for all x, y ∈ H. This

definition is equivalent with the condition Re(A∗x, y) = Re(x,Ay) for all

x, y ∈ H taken in [9], [23], [24], [22], [25]. It seems the most natural for

operators on Hilbert spaces. Similar and alternative definitions for addi-

tive continuous operators on complex Banach spaces have been studied in

[32, 31].

Unlike for self-adjoint complex linear operators, the spectrum of a self-

adjoint real linear operator is not necessarily contained in R. However,

it is symmetric with respect to the real line. Using the complexification

(2.2) and the identity of real spectra (2.3), the spectrum of a self-adjoint

real linear operator is seen to be nonempty.

Antilinear self-adjointness is equivalent with complex symmetry in the

following sense. Let {ej}j∈N be an orthonormal basis of H. Then for the

antilinear self-adjoint operator A on H, it holds

(Aej , ei) = (Aei, ej) for all i, j ∈ N.

Defining Sij = (Aej , ei), the antilinear self-adjoint operator can be rep-

resented as A = Sκ, where κ is the unitary conjugation on H for which

κej = ej for all j ∈ N. The complex linear operator S is symmetric in

the sense that the, possibly infinite, matrix of S with respect to the basis

{ej}j∈N is symmetric.

In view of this equivalence with complex symmetry, the Takagi factor-

ization (cf. [36], [21, Section 4.4]) solves the eigenvalue problem for a

14



Real linear operators

purely antilinear self-adjoint operator A on C
n. Namely A splits to the

composition A = Sτ , where S = ST ∈ C
n×n and τ denotes the componen-

twise complex conjugation τx = x on C
n. For the symmetric matrix S,

the Takagi factorization provides a unitary matrix U and a diagonal ma-

trix D with non-negative diagonal entries such that S = UDUT . For the

antilinear operator A it holds then that A = UDτU∗.

For complex linear operators, unitary diagonalization is one of the many

properties equivalent with normality. For antilinear operators this equiv-

alence no longer holds. As it was seen above through the Takagi factor-

ization, self-adjointness is the concept equivalent with unitary diagonal-

ization. However, other type of canonical forms have been studied. In

[40], the authors define a conjugate normal matrix N by the condition

NN∗ = N∗N and show that it is unitary congruent, N0 = UNUT , to a

2-by-2 block diagonal matrix N0. In the antilinear setting, this is trans-

lated to unitary similarity of the antilinear operator M = Nτ with the

antilinear operator M0 = N0τ . Namely, N0τ = UNτU∗, where M is star-

commuting, MM∗ = M∗M .

For a general complex linear self-adjoint operator on an infinite dimen-

sional Hilbert space it would be too much to ask for a diagonalization

with respect to some orthonormal basis. However, it has been seen that

any such operator is not too far from one. In [39], Weyl proved that a self-

adjoint operator A can be perturbed by an arbitrarily small compact oper-

ator K, with ‖K‖ < ε, for the operator A+K to have only pure point spec-

trum. This was generalized in [38] by von Neumann to cover unbounded

operators and to make K small in Hilbert–Schmidt norm, ‖K‖2 < ε.

Kuroda [26] noted that the use of Hilbert–Schmidt norm was not essen-

tial. This led to the following form of the Weyl–von Neumann theorem.

For any self-adjoint operator A on a Hilbert space and any ε > 0 there is a

compact operator K such that ‖K‖p < ε and A+K is diagonalizable. Here

by diagonalizability it is meant that there exists an orthonormal basis of

H consisting of eigenvectors of A+K.

The analogous theorem for antilinear self-adjoint operators on a sepa-

rable complex Hilbert space is studied in Publication II. The method of

proof is appropriately translated from the complex linear case with suit-

able care for antilinearity. Similarly, the polar decomposition of the anti-

linear self-adjoint operator A reads A = |A|κ = κ|A|. Here |A| = (A∗A)1/2

is complex linear but the polar factor κ is now antiunitary. However, what

is crucial is that κ can be chosen to be at the same time self-adjoint. Self-

15
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adjointness and antiunitarity imply that κ is a unitary conjugation on H.

A lemma similar to von Neumann’s in [38] provides a finite-rank orthog-

onal projection and an arbitrarily small compact self-adjoint antilinear

operator such that the projection reduces the perturbed operator. This

lemma is suitably iterated with respect to the particular basis {ej} of H
for which κej = ej . In this manner, a block diagonalization with finite

dimensional blocks of the iteratively perturbated operator is attained. In

addition, the desired smallness condition on the Schatten p-norm of the

perturbed self-adjoint operator is gained. Finally, on each finite dimen-

sional block the Takagi factorization ensures the existence of an orthonor-

mal basis of eigenvectors.

Complex symmetric operators are by definition connected to antilin-

ear self-adjoint operators. A complex linear operator AC on H is called

complex symmetric if there is a unitary conjugation κ on H such that

AC = κA∗
C
κ. This is equivalent with the antilinear operator ACκ being

self-adjoint. Conversely, every antilinear self-adjoint operator AA defines

a complex symmetric operator AAκ with any unitary conjugation κ. Com-

plex symmetric operators have been under recent investigations and they

have been shown to include a variety of interesting complex linear oper-

ators [13, 14, 15] such as normal and Hankel operators. The antilinear

viewpoint is advantageous in some cases. For example, it is known that

the class of complex symmetric operators is not closed in operator norm

[43], whereas the set of antilinear self-adjoint operators clearly is. More-

over, the basis independence of self-adjointness makes it appealing.

2.3 Compact and finite rank operators

The compactness of a real linear operator A is defined through the com-

pactness of its complex linear part AC and its antilinear part AA. A com-

pact real linear operator is clearly a norm limit of finite rank operators.

A real linear operator is of finite rank n if the complex dimension n of

the closed complex linear span of AH is finite. In [23] this is called the

left-rank dim((AH)⊥)⊥ of A.

The spectral theory of the two extremes are rather well understood. The

eigenvalue theory of compact complex linear operators is classical. The

eigenvalue problem for a compact antilinear operator A = AA reduces to

the complex linear case. The spectrum of AA consists of circles centered

at the origin with radius ri, i = 1, 2, . . ., where ri is the square root of

16



Real linear operators

a non-negative eigenvalue of A2
A

. The genuinely real linear case, where

AC 	= 0 	= AA, is more challenging.

Some of the facts for compact complex linear operators have easily ac-

cessible counterparts for real linear operators. Consider the intersection

L∩σ(A) of any straight line through the origin L and the spectrum σ(A) of

a compact real linear operator A. Using a suitable rotation and the iden-

tity of real spectra (2.3), the intersection can be seen to consist of isolated

points that accumulate at most to the origin, cf. Publication I, Theorem

2.21. Likewise, every point in the spectrum outside the origin is an eigen-

value. When H is infinite dimensional, the origin is in the spectrum, i.e.,

the spectrum is nonempty.

Investigations into the existence of nontrivial invariant subspaces are

classical. In the complex linear case, von Neumann proved in appar-

ently unpublished form that a compact operator has such a subspace. The

subsequent developments leading to the current textbook form and proof

of Lomonosov’s theorem can be summarized as the papers [1], [6], [17],

[28], and [29]. In Publication III, an analogue of Lomonosov’s theorem is

proven for compact antilinear operators. Instead of the commutant, it is

stated for the norm closure of complex polynomials in a compact antilin-

ear operator. This enables to prove the theorem by using a modification of

Hilden’s proof of the complex linear case [29].

The spectrum of a real linear operator of finite rank is the zero set of

a characteristic polynomial p(λ, λ) = det(A − λ)C defined as the 2n-by-2n

determinant of the complexification of A − λ. Polynomials of this type

were introduced and studied in [25], [9], and [23]. In [25], for example, it

is shown that there is an abundance of operators with an empty spectrum.

Namely, let T = 1
2(AA−A∗

A
) be the antilinear skew-adjoint part of A. Then

if ‖T−1‖‖A−T‖ < 1, the spectrum of A is empty. On the other hand, if σ(A)

is nonempty, it is the union of algebraic plane curves, i.e., not necessarily

a discrete set of points.

The second focal point in Publication III is on the study of the charac-

teristic polynomial p of finite rank real linear operator. Represent p as

p(λ, λ) = v∗Hv, where v = [λj ]nj=0 ∈ C
n+1 and H = [hij ]

n
i,j=0 ∈ C

(n+1)×(n+1).

The simple observation that p is real valued leads then to the coefficient

matrix H being Hermitian. Using the unitary diagonalization of H, p can

be cast as

p(λ, λ) =
n∑

i=0

di|pi(λ)|2, (2.4)

where each di is an eigenvalue of H and pi is a complex polynomial. The
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representation (2.4) is attractive as it implies a possibility of using studies

of sums of squares in connection with the finite dimensional eigenvalue

problem for real linear operators. For such studies, [18] is a thorough

exposition.

2.4 Symplectic matrices, the metaplectic representation and optics

A matrix S ∈ R
2n×2n is called symplectic if

STJS = J, where J =

⎡
⎣ 0 I

−I 0

⎤
⎦ . (2.5)

Symplectic matrices form a group which is denoted by Sp(2n,R). A unitary

operator U on L2(Rn) is called metaplectic if there is a symplectic matrix

S ∈ R
2n×2n such that

W [Uf ] = W [f ]S (2.6)

for all f ∈ L2(Rn). Here W [f ] denotes the Wigner distribution of f defined

by

W [f ](x, ξ) = (2π)−n

∫
Rn

e−iy·ξf(x+ 1
2y)f(x− 1

2y) dy, (x, ξ) ∈ R
2n (2.7)

with the notation y · ξ =
∑n

i=1 yiξi. Metaplectic operators on L2(Rn) form a

group denoted by Mp(2n,R) which is connected to the group of symplectic

matrices on R
2n through the so-called metaplectic representation. It is a

one-to-two map μ : Sp(2n,R) → Mp(2n,R) such that

μ(ST ) = ±μ(S)μ(T ) (2.8)

for all S, T ∈ Sp(2n,R), cf. [10, Chapter 4]. The representation μ maps

matrices of the form

SP =

⎡
⎣ I 0

P I

⎤
⎦ with P = P T ∈ R

n×n (2.9)

to metaplectic operators of the form

μ(SP )f(x) = cKe−
i
2
Px·xf(x), (2.10)

and the matrix J to

μ(J) = cJF−1. (2.11)

Here cK and cJ are constants such that |cK | = |cK | = 1. In general, meta-

plectic operators can be cast as constant multiples of integral operators of

the form [37]

f 
→ e−
i
2
ATCx·x

∫
R(ST

12)
e−

i
2
ST
12S22y·y−iST

12S21x·yf(S11x+ S12y) dy, (2.12)
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where R(ST
12) stands for the row-space of the matrix S12

The symplectic and metaplectic groups are related to optics in different

approximations; cf. [16, Chapter I]. Linear optics is equivalent to Sp(4,R).

Symplectic matrices of the form (2.9) correspond to refractions at the sur-

face between two regions of constant index of refraction. Symplectic ma-

trices of the form

Ld =

⎡
⎣I dI

0 I

⎤
⎦ with d > 0 (2.13)

correspond to motion in a medium of constant index of refraction of dis-

tance d along the optical axis. On the other hand, Fresnel optics is equiva-

lent to the study of Mp(4,R) with the key operators being μ(SP ) and μ(Ld).

In Publication IV, the metaplectic representation and a factorization of

symplectic matrices are used to factor a general metaplectic operator of

the form (2.12) into consecutive applications of the inverse Fourier trans-

form (2.11) and the multiplication operator (2.10). The number of factors

is not dependent on the dimension n. The factorization of a symplectic ma-

trix is based on an improvement of methods in [16, Chapter I] using the

fact that any real matrix can be split into a product of two real symmetric

matrices [12, 7].

Symplectic matrices can be represented by real linear operators on C
n

as follows. With the identification R
2n ←→ C

n, (u1, u2) ←→ u1 + iu2, a

symplectic matrix S can be restated as

C1 + C2τ (2.14)

on C
n with

C1 =
1
2(S11 + S22 + iS21 − iS12),

C2 =
1
2(S11 − S22 + iS21 + iS12),

S =

⎡
⎣S11 S12

S21 S22

⎤
⎦ .

Again, τ denotes the componentwise complex conjugation on C
n. Then J

corresponds to the real linear operator of multiplication by −i and ma-

trices of the form (2.9) correspond to real linear operators of the form

I + i
2P + i

2Pτ .

2.5 The Friedrichs operator

The so-called Friedrichs operator of a planar domain is an example of a

much studied antilinear operator [11, 33, 34, 27, 35]. Let Ω be a con-
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nected open subset of the complex plane C. Denote by AL2(Ω) the Hilbert

space of analytic square-integrable functions on Ω with the inner prod-

uct (f, g) =
∫
Ω fg dA, where dA denotes the area measure. Then the

Friedrichs operator FΩ of the planar domain Ω is the antilinear operator

on AL2(Ω) defined by

FΩf = PΩf (2.15)

for all f ∈ AL2(Ω). Here PΩ is the orthogonal projection from L2(Ω) onto

AL2(Ω) which can be cast in the form

PΩf(z) =

∫
Ω
KΩ(z, w)f(w) dA(w) (2.16)

using the Bergman kernel KΩ(z, w) of Ω.

From the vantage point of real linear operator theory the Friedrichs

operator is interesting in two ways. Firstly, it is always self-adjoint. This

follows from the identity (f, FΩg) =
∫
Ω fg dA entailing

(f, FΩg) = (g, FΩf) (2.17)

for all f, g ∈ AL2(Ω) [35]. Secondly, the nature of the Friedrichs operator

with respect to compactness depends on the geometry of the domain Ω, or

more precisely on the boundary of Ω. In [33], it is shown that, when the

boundary of Ω consists of finitely many continua, the Friedrichs operator

is of finite rank if and only if Ω is a quadrature domain. A domain Ω

is a quadrature domain if there exist non-negative integers rj , complex

numbers cij and points zj ∈ Ω such that

∫
Ω
f dA =

n∑
j=1

rj∑
i=0

cijf
(i)(zj) (2.18)

for all h ∈ AL2(Ω).

A Jordan curve Γ is of class Cn,α where n is a natural number and

0 < α < 1 if it has a parametrization w : [0, 2π] → C which is n times

continuously differentiable, w′(t) 	= 0, and |w(n)(t1)−w(n)(t2)| ≤ C|t1− t2|α
for some C. In [11], Friedrichs shows that if Ω is a bounded domain with

C1,α boundary, FΩ is compact. In [27], Lin and Rochberg prove that as-

suming Ω is a bounded simply connected domain, if the boundary is C2,α,

FΩ is in every Schatten p-class for 1 < p < ∞, or if the boundary is in C3,α,

then FΩ is in trace-class.

The applicability of the Friedrichs operator to problems in planar elas-

ticity is discussed already in [11]. A more thorough exposition of the for-

mulation in terms of the Friedrichs operator is given in [30]. Let Ω be now
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a simply connected domain the boundary of which is a rectifiable Jordan

curve. Then the two main problems in planar elasticity can be formulated

as follows. First, find u ∈ AL2(Ω) such that

(I + FΩ)u = f (2.19)

for given f ∈ AL2(Ω) containing information about the tractions on the

boundary ∂Ω. Second, find v ∈ AL2(Ω) such that

(k − FΩ)v = g (2.20)

for given g ∈ AL2(Ω) containing information about the displacements on

the boundary ∂Ω. Here k is the so-called Muskhelishvili constant for

which it is proved in the theory of elasticity that k > 1.

2.6 The Beltrami equation and the two dimensional Caldéron
problem

Real linear operators can be exemplified by the study of the general Bel-

trami equation in the complex plane C

∂f − (μ+ ντ)∂f = 0. (2.21)

Here the differential operators are defined as ∂ = 1
2(∂x + i∂y) and ∂ =

1
2(∂x − i∂y) for z = x+ iy ∈ C. The coefficients are functions μ, ν ∈ L∞(C).

The operator τ denotes the pointwise complex conjugation f 
→ f . The

Beurling transform is the singular integral operator

Sf(z) = − 1
π lim

ε→0

∫
|w−z|>ε

f(w)

(z − w)2
dA(w) (2.22)

and the Cauchy transform is

Pf(z) = 1
π

∫
C

f(w)

z − w
dA(w), (2.23)

where A is the Lebesgue measure on C. These satisfy Sf = ∂Pf and

S∂f = ∂f for f ∈ Lp(C) in the sense of weak derivatives. For a recent

comprehensive exposition, see [2].

Using the Cauchy transform the solvability of the nonhomogenous equa-

tion ∂f − (μ + ντ)∂f = h, for given h ∈ Lp(C), is transformed into invert-

ibility of the real linear operator I − (μ+ ντ)S on Lp(C), or evidently, into

a spectral question for (μ + ντ)S. In [3] for example, this line of thought

is followed to prove that I − (μ + ντ)S is invertible on Lp(C) precisely for

all p ∈ (1 + k, 1 + k−1) with k = ‖μ+ ντ‖ < 1.
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Motivated by the richness of real linear operators of the form (μ+ ντ)S,

real linear multiplication operators were studied in Publication I. For ex-

ample, the condition of uniform ellipticity of (2.21) can be cast as a condi-

tion on the operator norm of the real linear multiplication operator μ+ντ ,

‖μ+ ντ‖ = ess sup
z∈C

|μ(z)|+ |ν(z)| ≤ k < 1. (2.24)

The special case of (2.21) with μ = 0 is central to the Caldéron’s in-

verse conductivity problem in the plane. The inverse conductivity prob-

lem arises naturally in geophysical prospecting. In medical imaging it is

known for its usefulness in electrical impedance tomography. In mathe-

matical terms it is given as solving for u ∈ H1(Ω) in the so-called conduc-

tivity equation

∇ · σ∇u = 0 in Ω (2.25)

u|∂Ω = φ ∈ H1/2(Ω). (2.26)

Here, let Ω be the unit disk D ⊂ C, for simplicity. The measurable func-

tion σ : Ω → (0,∞) is bounded away from zero and infinity. The Sobolev

space W k,p(Ω) consists of functions that have distributional derivatives

up to order k in Lp(Ω), and Hk(Ω) denotes W k,2(Ω). The space H1/2(∂Ω) is

defined as the quotient W 1,2(Ω)/W 1,2
0 (Ω), where W 1,2

0 (Ω) is the closure in

W k,p(Ω) of the space of compactly supported smooth functions on Ω.

In [4], the observation is made that a function f = u + iv, with u, v ∈
H1(Ω), satisfies

(∂ + ντ∂)f = 0 (2.27)

with ν = (1− σ)/(1 + σ) if and only if

∇ · σ∇u = 0 and ∇ · σ−1∇v = 0. (2.28)

Furthermore, the authors utilize the real linear operator

K = P (I − ντS)−1ατ (2.29)

on Lp(C) to construct complex geometric optics solutions to the Beltrami

equation. Here α ∈ L∞(C) with support in the unit disk D, ν ∈ L∞(C)

with |ν(z)| ≤ kχD(z) for almost all z ∈ C, and 0 < k < 1 is a constant.
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3. Summary of findings

The main findings of this thesis can be summarized as follows.

I In this article general theory of real linear operators on a complex sep-

arable Hilbert space is studied. The identity of real spectra of a real

linear operator and its complexification is proven. Spectral issues are

addressed for antilinear, self-adjoint, compact, and unitary real linear

operators. Basic properties of real linear multiplication operators on

self-conjugate function spaces are investigated. The best unitary ap-

proximation of a real linear multiplication operator is obtained.

II In this artice an analogue of the Weyl–von Neumann theorem for an-

tilinear self-adjoint operators is proved. Properties of unitary conjuga-

tions are presented. Using the polar decomposition, a representation of

an antilinear self-adjoint operator as a spectral integral is introduced.

The connection between self-adjoint antilinear operators and complex

symmetric operators is explained. Unitary diagonalization of genuinely

real linear finite rank operators is discussed.

III In this article compact and finite rank real linear operators are stud-

ied. Invariant subspaces of compact real linear operators are discussed.

An analogue of Lomonosov’s theorem for antilinear compact operators

is proved. The characteristic polynomial of a finite rank real linear op-

erators is represented as a weighted sum of squared moduli of complex

polynomials. The so-called numerical function related to the character-

istic polynomial is introduced and its relation to the coefficient matrix

of the characteristic polynomial is studied.

IV In this article a factorization of symplectic matrices is presented in

23



Summary of findings

such a form that in the product a unique symplectic matrix and matri-

ces from a subgroup alternate. The number of factors is independent

of the dimension. Through the metaplectic representation, this factor-

ization can be seen as one for metaplectic operators. The approach is

constructive and numerically stable.
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