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Negatiivisessa potentiaalissa olevalla hidastavalla kollektorilla voidaan parantaa merkit­
tävästi gyrotronin hyötysuhdetta sekä vähentää lämmöntuottoa ja röntgensäteilyä kollek­
torilla. Tällöin tulee tuntea elektronisuihkun jäännösenergiat ja valita niiden suhteen riit­
tävän vähän hidastava potentiaali. Liian voimakkaan potentiaalin heijastamat elektronit 
loukkuuntuisivat kollektorin ja elektronitykin potentiaalien väliin.
Elektronien jäännösenergiat saadaan gyrotroniteoriasta, jos elektronien liikeyhtälön 
ratkaisut eivät ole kaoottisia. Tässä työssä tutkittiin kaaoksen mahdollisuutta käytet­
täessä gyrotronia korkealla hyötysuhteella. Tätä varten gyrotroniyhtälö ratkaistiin useil­
la eri ohjausparametrien arvoilla. Erityisesti määritellystä jäännösenergiaspektrin siley- 
destä voidaan päätellä mahdollinen elektronien liikkeen stokastisuus. Ilmeni, että ohjaus- 
parametriavaruus voidaan jakaa kolmeen erilaiseen alueeseen hyötysuhteen ja jäännös- 
energiaspektrin sileyden perusteella. Kaaoksen riski hyvän hyötysuhteen alueilla osoittau­
tui vähäiseksi. Sama tulos saatiin käyttämällä resonaattorissa paikan suhteen muuttuvaa 
magneettikenttää. Laskuissa käytetty “kylmän resonaattorin approksimaatio" todettiin 
toimivaksi.
Elektronien liikeyhtälön ratkaisuille johdettiin hidastavan potentiaalin avulla ilmais­
tava loukkuuntumisehto, ja gyrotronin hyötysuhteen laskenta laajennettiin ottamaan 
huomioon mahdollinen loukkuuntuminen. Saadut tulokset esitetään yleisinä hyötysuh­
teen tasa-arvokäyrinä ohjausparametritasossa. Havaittiin, että loukkuuntuminen heiken­
tää hyötysuhdetta huomattavasti. Valituilla ohjausparametrien arvoilla saatava elektroni- 
hyötysuhde laskettiin hidastavan potentiaalin funktiona ottaen huomioon elektronien 
nopeushajonta. Useimmissa tapauksissa loukkuuntuminen heikentää hyötysuhdetta sil­
loin, kun hidastava potentiaali on suurempi kuin 30-40 kV katodijännitteen ollessa 90 kV.
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Chapter 1 

Introduction

Fast population growth and economic development are rapidly increasing 
the world energy demand. The future needs can not be covered in a sus­
tainable way by the present main energy sources. Fossil fuels suffer from 
pollution problems and limited resources. Conventional nuclear energy is 
not fully accepted due to waste problems and the risk of reactor accidents. 
The renewable energy sources (e. g. solar, wind, and biomass) have a low 
energy density, which makes them rather unsuitable for large-scale base load 
electricity production. Fusion energy, however, does not suffer from these 
limitations [1]:

• The fusion reaction takes place between the two heavy isotopes of hy­
drogen. Deuterium can be extracted from water, tritium can be pro­
duced from lithium, which is abundant. The reaction product, pure 
helium, is harmless.

• Fusion power plants will be inherently safe.

• The energy content of the fuel is huge. Even though one liter of ordinary 
water contains only about 0.02 g deuterium, it is enough to yield the 
energy equal to that obtained from a barrel of oil.

The advantages of fusion are so obvious that worldwide research is car­
ried out on several alternative concepts aiming at the same ultimate goal. In 
the field of magnetic confinement fusion (Fig. 1.1 explains the basics of mag­
netic fusion), researchers have reported plasma conditions close to breakeven. 
Breakeven means that the fusion power equals the power needed for heating 
and confinement. The next breakthrough is expected to be achieved with 
the International Thermonuclear Experimental Reactor (ITER). It should 
be able to create a “burning” plasma, that is, a plasma which sustains the 
fusion reaction without external power input.
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Conditions for nuclear fusion:

T, = 100 000 000 К 
n = 1014particles/cm3 

T£ = several seconds

Triple product T,nxEsufficiently large. 
(T,nxE > 8 xl022K s / cm3 for ignition) 
Fuel fully ionized (in plasma state).

Coils generate a toroidal magnetic field. Total (helical) magnetic field confines the plasma.

Figure 1.1: (a) The most promising fusion reaction is that occurring between the 
two heavy isotopes of hydrogen, deuterium and tritium. The nuclei can collide 
releasing energy and forming an a-particle (helium nucleus) and a neutron, (b) 
The reaction between deuterium and tritium requires an extremely high temperature 
T\ at which the fuel is fully ionized—it becomes a plasma that must be confined at 
density n for a sufficiently long time те [2]. (c) The plasma consists of charged 
particles and can therefore be confined using magnetic fields (see also Fig. 2.1 on 
page 17). In a tokamak these fields are produced by coils and a current in the 
plasma, (d) The coils and the plasma current together generate a helical magnetic 
field that is suitable for confinement. The charged ions and electrons follow the 
field lines gyrating about them. [If

Despite the continuous progress, enormous technological difficulties re­
main to be solved. In the magnetic fusion, with a plasma confinement device 
called tokamak, there are two important technological questions: First, how 
to heat the fuel plasma to a temperature of 100 million degrees? Second, how 
to produce the plasma current that is necessary for confinement? An answer 
to both problems can possibly be provided by high-power microwaves, which 
are electromagnetic radiation with frequencies between 1 GHz and 300 GHz 
[3]. The corresponding wavelengths range from 300 mm to 1mm, and mi­
crowaves are also called millimeter waves. In this context high power means 
an average power from 10 kW to several MW for a continuous wave, and
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peak powers from a few MW up to GW range for shorter pulses.
A fusion plasma can be heated to the desired temperature by irradiat­

ing it with microwaves or by injecting energetic neutral particle beams into 
the reactor. Microwave heating technologies utilize resonances: the wave 
frequency is chosen to correspond to some characteristic frequency of the 
plasma. Since fusion plasmas are not uniform, the resonance (which implies 
very strong interaction with the plasma particles) occurs only at certain po­
sitions; elsewhere the wave propagates almost freely. The wave energy is 
therefore delivered to the plasma particles with a high efficiency and a good 
spatial accuracy. Neutral beam particles travel into the reactor across the 
confining magnetic field until they are ionized in collisions with the high 
temperature plasma. Ionization makes the particles charged, they become 
trapped by the magnetic field, and give their energy to the plasma through 
collisions with the plasma particles.

Compared to neutral beams, the microwaves have many advantages in 
heating a fusion plasma. First, microwave heating provides various interac­
tion mechanisms at different frequencies: the ion cyclotron frequency regime 
(10-100 MHz), the lower hybrid frequency regime (1-10 GHz), and the elec­
tron cyclotron frequency regime (100-300 GHz). Thus there is a lot of free­
dom to optimize the heating; it can e. g. be targeted to electrons or ions 
after desire. Secondly, wave power can easily be delivered from sources lo­
cated round a corner and thus shielded from neutrons escaping from the 
reactor. [4] In many respects the most advantageous microwave devices are 
electron cyclotron wave (ECW) sources. They can be used remotely, whereas 
lower hybrid and ion cyclotron waves require an intimate contact with the 
hot plasma edge. Also, the ECW power is transmitted through a small area 
in comparison to large and expensive lower hybrid and ion cyclotron wave 
antennas. Furthermore, the interaction between the ECW’s and the edge 
plasma is only weak, so that both remain practically undisturbed when the 
wave travels towards the center of the plasma across the edge. [5, 6]

In addition to heating, microwaves have been established as the stan­
dard means to drive current inside the plasma. Microwaves also have a wide 
range of applications in plasma diagnostics, although the measurements are 
technically very demanding [7]. Furthermore, intense microwaves are being 
developed to be applied to controlling the radial profile of the plasma current. 
Finally, the possibility of manipulating the “fusion ash” is currently under in­
vestigation: the helium nuclei could be cooled down using microwaves before 
extracting them from the plasma. [4]

Besides fusion research, intense microwave sources find applications in 
particle physics, radar technology, and various industrial processes. High- 
power microwave sources are needed as drivers to achieve 1 TeY energy in
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an electron-positron collider [8]. Atmospheric sensing takes advantage of 
high-power microwave technology [9]. In this field the applications include 
observing the structure of clouds and turbulence of clear air, as well as rapid 
humidity and impurity measurements. Many tasks in material processing 
(e. g. sintering and brazing of advanced structural and functional ceramics, 
surface hardening or dielectric coating of metals and alloys, polymerization 
and burning of pastes in semiconductor thick-film technologies) and plasma 
chemistry are also carried out using microwave sources [10].

In the high-power range, only vacuum electronics can provide competitive 
sources for microwave generation. Today there exist many different electron 
tube constructions for this purpose. The differences between various tubes 
are briefly discussed in the next chapter. A gyrotron, also called electron 
cyclotron maser (ECM), is one of these tubes. The typical frequency range 
of gyrotrons is 20-200 GHz.

All the applications mentioned above are particularly well-suited for gy­
rotrons. In the frequency range of interest, their output power is superior 
to other sources [11]. Nevertheless, fusion technology is continuously driving 
the development of gyrotrons further [12]. The present gyrotrons are capable 
of producing up to 1 MW power at 110-170 GHz in long pulse or continuous 
wave operation. For future electron cyclotron heating systems to be cost- 
effective, more power per tube will be needed [13]. For example, the heating 
system designed for ITER requires at least 25 MW of continuous-wave radio­
frequency power at frequencies close to 170 GHz [14]. One way to raise the 
output power is to improve the overall efficiency of the tube.

The most serious power loss in a gyrotron is the residual energy of elec­
trons. They hit the collector at a high velocity and heat it. A significant 
increase in efficiency can be achieved by using a depressed potential collector, 
which decelerates the electrons before the impact. For multi-megawatt sys­
tems this can mean remarkable savings in investments as well as in operation 
costs. Also technological benefits arise due to the reduced heat load and 
x-ray generation at the collector surface. There are still some problems to 
be solved in order to improve the efficiency of depressed collectors. In this 
work the answers to the following questions are sought:

• For a depressed collector to work efficiently, the electron residual ener­
gies must be known. Is there a risk that this knowledge is lost due to 
chaotic electron trajectories in the resonator? In particular, can elec­
trons behave chaotically during high-efficiency operation of a gyrotron?

• The depressed collector may reflect some incoming electrons. What is 
the influence of the reflected electrons to the efficiency, and how high 
retarding potentials can be safely applied?
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The questions are investigated by computer modeling, supplemented by the­
oretical calculations.

This thesis is organized as follows. In Chapter 2 the reader is given an 
introduction to gyrotrons. To provide enough background for the later work, 
some areas of the existing theory are discussed in detail. Because depressed 
collectors play a central role, they are introduced separately in Chapter 3. In 
Chapter 4, the results related to chaos studies are reported, while the effects 
of electron trapping are investigated in Chapter 5. Conclusions are drawn 
and recommendations given in Chapter 6.

14



Chapter 2 

Gyrotrons

2.1 Operating principle
Gyrotron is a microwave tube designed to produce coherent radio-frequency 
waves of high power and high intensity. The waves are created by elec­
trons which execute helical motion (see Fig. 2.1) in a strong magnetic field. 
Because the electrons are bunched in phase due to relativistic effects (see 
Section 2.3.2), the radiation is coherent. The wave energy is extracted from 
electrons which have been accelerated with a magnetron injection gun (MIG). 
The wave is generated in a specially designed interaction cavity (resonator) 
which can sustain oscillations on the desired frequency. In modern gyrotrons 
the specific mode generated in the resonator is converted by a mode converter 
into a Gaussian beam which is directed by means of special mirrors out of 
the gyrotron through a diamond window. The decelerated electron beam, 
instead, is separated from the wave and dumped onto a collector where its 
residual energy is dissipated. For a schematic picture of a gyrotron, see 
Fig. 3.1 on page 25.

This chapter is devoted to introducing the physics of wave generation and 
suitable models for it. Major emphasis is given to the subjects that are most 
essential for the work reported in Chapters 4 and 5.

2.2 Electron gun
The operation of electron guns used in gyrotrons is based on thermionic 
emission of electrons from a cathode material [15]. The current is limited 
by the cathode temperature; a fact that provides a possibility to control the 
current and guarantees operating conditions for which a mature theory exists 
today [16]. The resonator acts as an anode and attracts the beam towards
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it. The path of electrons is, however, limited by the magnetic field such 
that they will not hit the cavity surface. Additional control over the beam 
properties can be achieved by adjusting the accelerating electric field in the 
vicinity of the cathode with a modulating anode.

Gyrotrons typically exhibit cylindrical symmetry which immediately re­
quires the electron beam also to be circular. Since the electric field varies 
radially in the resonator, and since a strong field is preferable to enhance 
the interaction, there is an optimal radius at which the electrons should be 
emitted. The cathode therefore has only a ring that emits electrons as an 
annular beam. [16]

For most of our purposes, it is sufficient to know the accelerating voltage 
Ucath of the MIG and the pitch factor ct, the ratio between perpendicular and 
parallel velocity of the electron beam. In practice, however, there may be 
significant spread in the electron velocities—a fact that strongly reduces the 
gy rot ron efficiency [17]. This aspect will be touched in the present study, too 
(see Section 5.4.2).

2.3 Interaction between electrons and the HF 
field

2.3.1 Electron motion in an electromagnetic field
The motion of an electron in an electromagnetic field is governed by the 
equation

^ = -e(E + vxB), (2.1)

where —e is the charge of electron, p its momentum and v velocity, E and В 
the electric and magnetic field, respectively. It is often convenient to divide 
the velocity into two components, one of which (уц = ß\\c) is parallel to 
the magnetic field and the other one (uj_ = ß±c) perpendicular to it. In 
the guiding center approximation valid for sufficiently homogenous fields the 
particle motion consists of the motion of the guiding center along a magnetic 
field line and the gyration around the guiding center at the electron cyclotron 
frequency

eB
wh =------- •

Treize
(2.2)
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Here me is the electron rest mass and 7rei = (1 — — /З^)-1/2 the relativistic
mass factor, which can also be expressed in terms of the accelerating potential 
difference t/caub

Trel — 1 T
ct^cath 

mec2 1 +
U,cath

511 kV
(2.3)

The radius of the gyro-motion is called the Larmor radius and is given by

mvx V± 
~eB = ~eB' (2.4)

where V±_ is the momentum component perpendicular to the magnetic field. 
Fig. 2.1 illustrates electron orbits in a uniform field.

Figure 2.1: Electron orbits in a uniform magnetic field B.

2.3.2 Bunching mechanism in gyrotrons
We can find the rate of change of the energy of an electron by taking the 
scalar product of (2.1) with v:

dW
dt

— • v = -eE ■ v, (2.5)

since (v x B) _L v. We conclude that those electrons which have a velocity 
component in the direction of E are decelerated (W < 0), and those with a 
velocity component opposite to E are accelerated (W > 0).

Essential for the operation of a gyrotron is the energy dependence of 
the cyclotron frequency, see Eq. (2.2). The gyration slows down due to the 
relativistic mass increase with energy. It is also worth noting that the Larmor 
radius tl increases with energy.
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Figure 2.2: Illustration of the azimuthal bunching mechanism in a gyrotron. Due to 
the different phases with respect to the rotating electric field, the gyrating electrons 
may gain energy or transfer it to the field. In the situation shown in (a), electron 1 
loses energy and electron 3 gains it, while the field does no work on electron 2 which 
moves perpendicularly to the field. In (b), the resulting bunching (exaggerated) after 
one field period is shown. The effect is due to the relativistic dependence of cyclotron 
frequency on electron energy.

The behavior of a beamlet of electrons can be explained using the follow­
ing simplified model illustrated in Fig. 2.2. Let us consider three electrons 
(labeled 1, 2 and 3) having an equal initial energy (|vi| = |v2| = |v3|) and 
gyrating about a common guiding center in a uniform static magnetic field. 
Fig. 2.2 (a) shows the phases of rotation and the electron velocities when we 
start following them. The Larmor radii of the electrons with same energy 
are equal. The RF field present in the interaction cavity is described by a 
rotating electric field which we assume to be uniform over the region of in­
terest. Furthermore, let the angular frequency of rotation (w) be equal to 
the electron cyclotron frequency шн-

Due to the different angles between velocity and electric field vector the 
electron energies do not change similarly. We can summarize the effects of 
Eqs. (2.2), (2.4) and (2.5) as follows:

1. For electron 1 the scalar product E • v > 0, consequently, it is de­
celerated. This leads to an increase in the cyclotron frequency and a 
decrease in the Larmor radius.

2. Electron 2 is moving perpendicularly to the electric field and does there­
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fore not experience any change in energy. Its cyclotron frequency and 
Larmor radius remain constant, and it stays in phase with the rotating 
field.

3. Opposite to the first electron, the third one is accelerated. This slows 
down the gyration and increases the Larmor radius.

After one field period [see Fig. 2.2 (b)] the electric field again points as in 
(a), but the electrons have been bunched around the positive y-axis. [18]

2.3.3 Energy exchange between electrons and the HE 
field

In the simple model of the previous section we found that one electron was 
accelerated while another was decelerated. The net energy exchange between 
electrons and the high-frequency field turned out to be zero. To make the gy- 
rotron work as an amplifier of the wave, most electrons should be decelerated 
by the electric field. This situation can be achieved by setting the frequency 
w slightly larger than шн- Then the electron bunch will slip behind the wave 
and end up in the decelerating phase of rotation. [19]

2.3.4 Dispersion diagram of a gyrotron
The operation of different microwave tubes can be compactly presented using 
their dispersion diagrams. They show the dispersion relation of the waveguide 
mode

uj2 = fcjjc2 + к\с2 (2.6)

together with the beam-wave resonance line

uj — fc||U|| ~ ivh- (2.7)

Here uj is the frequency of the wave, wh the cyclotron frequency, and k\\ and 
k± are the wave numbers in the axial and radial direction, respectively. The 
axial velocity of the beam is иц. The gyrotron resonance occurs where the two 
frequencies of Eqs. (2.6) and (2.7) are equal. In fast-wave devices such as the 
gyrotron, the Doppler-shift term Ь|Уц is small, and the resonance condition 
reads:

UJ « CJh- (2.8)
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Figure 2.3: The dispersion diagram of a gyrotron operating at the fundamental 
frequency [20]. Gyrotron is a forward-wave oscillator, that is, the resonance takes 
place at a positive value of k\\. Moreover, the gyrotron is classified as a fast-wave 
device, since the phase velocity uph of the electromagnetic wave exceeds c. The 
dashed line corresponds to the velocity of light, w = knc.

The dispersion diagram for the gyrotron is shown in Fig. 2.3. [20] Other 
microwave tubes—klystrons, traveling-wave tubes (TWT), backward-wave 
oscillators (BWO), etc.—have different dispersion diagrams. A major theo­
retical difference between the gyrotron and slow-wave devices (e. g. TWT, 
BWO) is in the phase velocity vph of the electromagnetic wave. In fast-wave 
devices uph > c, whereas slow-wave devices utilize a wave with uph < c [21].

2.3.5 Gyrotron equations
Self-consistent equations

In this work the evolution of electron energies during the interaction is of 
major interest, and equations describing it are needed. A suitable model 
has been presented in [22]. The model is based on the solution of the com­
plete three-dimensional wave equation in a cylindrical cavity, the effect of the 
electron current having been taken into account. The high-frequency field is 
supposed to oscillate in time as exp (—iuit), and its amplitude is a function of 
all three coordinates. The field can be expressed as a product of three factors, 
each of which is a function of only one coordinate. We are interested in the
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dependence on the axial coordinate, given by a function /. The information 
about the shape of the field in other directions is included in the parameter 
I introduced below.

The two transverse components of the physical momentum V are denoted 
by a normalized complex quantity p, for which |p| = V±/V±o- The axial coor­
dinate z is normalized according to £ = (ß±0uj-n/2ß\\oc)z, where ß±0 = v±0/c 
and /Зцо = U||o/c are the normalized transverse and parallel velocities of the 
electron at the entrance to the cavity, respectively. Using this notation and 
restricting ourselves to operation at the fundamental frequency, the motion 
of a electrons and the electromagnetic field in the resonator can be described 
by the equations

-jz = ~гр(А + |p|2 - 1) + if, 
dÇ

= -7 2f + Ix^~[ o-
dÇ 2тг J о

(2.9)

(2.10)

We use an initial condition p(0) = ехр(м90)> where d0 E [0, 2тг], and bound­
ary conditions /'(0) = ¿7/(0), /'(Cout) = -¿7/((out)- The normalized wave 
number 7 can be written as

_ Щс _ x(C)2 
7 R{ О2’

the functions у and R being the eigenvalue of the resonating mode and the 
radius of the interaction cavity, respectively. The frequency mismatch A = 
2(iv —wh)//3Í0w brings about the effect of the magnetic field via the cyclotron 
frequency wh- / is the normalized current; for its explicit expression, see, e. g., 
|22|.

The boundary conditions for (2.10) have been written for a plane wave. At 
the input (C = 0) the wave is evanescent (y2 < 0), whereas it is propagating 
(72 > 0) at the output (Ç = Cout)- [23]

The system (2.9)-(2.10) is an initial value problem for p, but also an 
eigenvalue problem in w, since both boundary conditions for / cannot be 
satisfied simultaneously for arbitrary u>. The method chosen for the numerical 
solution will be presented in Section 4.5.1.
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Cold-cavity approximation

In the so-called cold-cavity approximation it is assumed that only the ge­
ometry of the interaction cavity—not the electrons in it—affects the high- 
frequency field profile. This assumption decouples the equations:

—ip(A + \p\2 — 1) + iFf, (2.11)

-72/- (2.12)

The frequency is treated as a complex quantity и = 27rFw(l + i/Q)1^, where 
Fu is the eigenfrequency and Q is called the quality factor of the cavity. The 
imaginary part of the frequency accounts for wave damping due to radiation 
out of the cavity. The expression for the coupling factor F between the 
electron beam and the high-frequency field is given, e. g., in [24].

Even after finding the values of Fw and Q to match the complex boundary 
conditions for the high-frequency field, the solution /(C) of Eq. (2.12) can 
be multiplied by an arbitrary non-zero complex constant. This degree of 
freedom is used to normalize / so that

dp
<

d¿
d(

max
<e[o,Cout]

1/(01 = i

and

/(0) a ei7(c=0).

Within the cold-cavity model a Gaussian field profile

ДО = exp (2.13)

is often used, which is a reasonable approximation for high-Q resonators. 
Here p — 7rßj_L/ß\\\ is the dimensionless length of the interaction cavity 
whose physical length is L. In this approximation the axial field profile is 
taken to be symmetric about the center of the cavity, which yields Cout = х/Зд.

When calculated self-consistently, the field amplitude is fully determined 
by Eqs. (2.9)-(2.10). In some contexts, however, also this field is normalized 
as stated above. For example, the quality factor Q can be calculated using
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the normalized self-consistent solution according to the formula

Q =
1 Щ 

IVL ßi
(2.14)

Another useful relation between the quantities of the self-consistent model 
and the cold-cavity approximation can be written for I and F with the help 
of perpendicular efficiency introduced in Section 2.3.6:

F2 = %J.I, (2.15)
07Г

Eq. (2.15) is, in fact, a representation of the energy balance of the gyrotron. 
[25]

2.3.6 Efficiency of a gyrotron
The perpendicular efficiency r¡_i is calculated by averaging the squared orbital 
momentum at the cavity output over all electrons:

1 r27rV± = l - IT \ |p(Cout)|2dtV (2-16)
27Г 70

However, the electrons give only their transverse energy to the wave; the lon­
gitudinal momentum remains unchanged during the interaction. To obtain 
the total electron efficiency r]e\, the perpendicular efficiency must be multi­
plied by the fraction of perpendicular energy in the total kinetic energy:

Ve\ = 1 + a2 V±,

where a = ß±/ß\\ is the pitch factor of the electrons.

(2.17)
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Chapter 3

Depressed Collectors

3.1 General about collectors in gyrotrons
Depressed collectors seem to be an attractive way to achieve a major improve­
ment in gyrotron overall efficiency. In experiments, efficiency enhancements 
such as 30% -> 50% [26], 31% -4 51% [27] and 40% -> 65% [28] using a 
single-stage depressed collector have been reported. The advantages include 
not only the lower power consumption using less costly power supplies, but 
also the reduced heating and x-ray generation on the collector surface [27, 29]. 
In gyrotrons with axial output, the collector also acts as a waveguide, which 
sets certain requirements for its shape and surface quality. These require­
ments combined with the high heat load make the design of a collector for 
a high-power gyrotron complicated, and it is often seen desirable to sepa­
rate the wave from the electron beam. [30] Here the potential depression 
provides an alternative solution. For a large RF power system, the use of 
depressed collectors could result in savings of hundreds of millions of dollars 
in investments as well as in operating costs, see [31, 32].

In this chapter, the principle and main design issues for depressed col­
lectors are presented. A specific problem related to the subject—electron 
reflection and trapping due to the retarding potential—is studied in more 
detail in Chapter 5.

3.2 Effect of a depressed collector on efficiency
Gyrotron interaction is based on the fact that the high-frequency field gains 
energy from the rotational motion of electrons. The axial energy of the 
electrons, on the other hand, remains unchanged during the interaction; all 
electrons in the spent beam therefore have at least the amount of energy cor-
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responding to the initial longitudinal motion. In a gyrotron without collector 
potential depression, all residual energy is deposited on the collector surface, 
causing a demand for efficient cooling. A depressed collector, instead, pro­
duces an electric field which decelerates the incoming electrons before they 
hit the collector. A part of the kinetic energy of the spent beam is in this way 
transformed back into electric energy. For a schematic picture of a gyrotron 
with a .depressed collector, see Fig. 3.1.

A

WindowInsulator
CollectorCavity Converter

Electron beam

To
collector

To
cathode

To
anode

Figure 3.1: A schematic picture of a gyrotron with a single-stage depressed collec­
tor.

A depressed collector may have several collector stages (multi-stage de­
pressed collector, MDC) or only one (single-stage depressed collector, SDC). 
The collector stages are insulated from the grounded body of the device and 
from each other so that a voltage between them can be applied. The inter­
action cavity (anode) is taken to be at zero potential whereas the absolute 
values of the cathode and the n collector potentials are denoted by f/cath and 
f/coiij (j = 1 ,...,n), respectively. Using these, the total efficiency r] can 
be written as the ratio of RF output power PRF = r?o/o£4ath and the power 
consumption P = i Ij(Ucath — Ucoiij) to obtain

7] =
1

____ Vo________
П 1
X) ÇjUcoll j/Ucath 

3=1

(3.1)

where r¡0 is the total efficiency without a depressed collector and (j = 
1,..., n) are the relative fractions of the total current Iq on each collector
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stage, including possible body current. In particular, for a gyrotron with a 
SDC (n = 1) in the potential —Uco\\ we find

V =
f^cath

u<cath Uq oil ^0- (3.2)

Let us still define another related concept. The quality of a depressed collec­
tor is described by the collector efficiency [27]

VcoW —

Pcol.

Рь-Prf’
(3.3)

where Рсоц is the power recovered into the circuit by the collector, and P\> = 
I0UCath is the initial beam power. Equivalently [32],

Vo
1 - 77coii(l - Vo)'

3.3 Design issues

3.3.1 Conversion from rotational to axial energy
The retarding electric field in the depressed collector is predominantly axial 
and cannot therefore be used to recover energy associated with the rotational 
motion. Since typically 70-80 % of the beam energy is rotational, a conver­
sion mechanism is needed. An obvious choice is to let the guiding magnetic 
field diverge between the resonator and the collector, thus making the rota­
tion slow down and the corresponding kinetic energy turn into axial motion 
within adiabatic approximation. Any desired level of energy conversion in 
this way seems possible. [32]

In practice, the adiabaticity cannot always be sustained to large decom­
pression factors without making the spatial dimensions available for the pro­
cess impractically large. The Larmor period zl = V\\/eB increases during 
the decompression so that the magnetic field strength is allowed to decrease 
slower and slower. On the other hand, the Larmor radius = V\_/eB in­
creases (known that ос B1/2); thus more space is needed in the radial 
direction also. The axial and rotational momentum components were here 
denoted by V\\ and V±, respectively. [32]

When one is forced to apply a non-adiabatic change of the magnetic field, 
it is preferable to implement in the following way: adiabatic decompression 
is continued to a prescribed value of B, and then a step-like non-adiabatic
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Figure 3.2: An example of multi-stage depressed collector geometry [36].

transition to zero field is applied. The remaining transverse momentum can 
in this fashion be limited to an acceptable value. [32] In fact, an advantage 
of a controlled non-adiabatic step is its ability to spread the electrons more 
evenly at the collector surface and thus prevent undesired hot spots from 
occurring [33].

3.3.2 Collector geometry
In a multi-stage depressed collector, the shape of the collector plates at dif­
ferent potentials is a key issue: the beam electrons must be separated into 
energy groups using the combination of the prevailing magnetic field and 
the electric field created by the collector. An inhomogeneity of the magnetic 
field can be used in separation: the degree of adiabaticity of an electron’s 
motion depends on its energy and, consequently, electrons of different en­
ergy gain different amounts of transverse motion. [34, 35] In some studies 
[29, 33] the electron trajectories are calculated using an effective potential, 
which simultaneously takes into account both the electric and magnetic field.

In addition to the true primary electrons approaching the collector after 
the interaction, the effective potential model can be used to follow backscat- 
tered primary and secondary electrons, that is, electrons emitted by the 
surface atoms as a result of the impact. These electrons should be made re­
turn back to the emitting surface, which in practice means that the primary 
electrons should hit the back side of the plate. Their axial motion must there­
fore be reversed before the impact. [31] An example of a suggested collector 
geometry is shown in Fig. 3.2.
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3.3.3 Surface materials
The above-mentioned generation of secondary electrons is strongly depen­
dent on the surface material. In a traveling-wave-tube operated with a MDC, 
an improvement factor of 1.10-1.15 for overall and collector efficiencies has 
been reported when copper electrodes were replaced by isotropic graphite 
electrodes [37]. This improvement is due to the difference in the overall 
backscatter coefficients of these materials. For example, the value of this 
coefficient over the energy range 100-300 keV of the impinging electrons is 
0.3 for copper while it is 0.05 for graphite. Instead of making a solid graphite 
electrode, it is possible to coat a copper electrode with graphite. [31] Re­
gardless of the choice of surface material, the need for optimal shaping of the 
collector plates is evident.

3.4 Current status of development and future 
prospects

The experiments reported in [26] were the first long-pulse tests on a gyrotron 
with a depressed collector [38]. The usage of single-stage depressed collec­
tors in gyrotrons has proved to be relatively unproblematic [27]. As far as we 
know, gyrotrons have not been operated with multi-stage depressed collec­
tors. However, MDC’s have been established in use in other microwave tubes, 
and it seems probable that they will also be used to improve the gyrotron 
efficiency in the future. Theoretical work towards their implementation is 
well on the way.
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Chapter 4

Electron Residual Energies in 
Gyrotrons

4.1 General
During the past few years, several authors have been concerned by chaotic 
electron trajectories developing in gyrotrons [39, 40, 41]. Indeed, knowledge 
about electron residual energies is vital when designing depressed collectors 
to improve the overall efficiency of a gyrotron. Chaos, when present in the 
interaction cavity, would make the energies of outcoming electrons unpre­
dictable and, consequently, an efficient depressed collector would be impos­
sible to construct. In this chapter the risk of chaos in the most favorable 
operating regimes of a gyrotron is studied.

4.2 Definition of chaos
A dynamical system can be described as a system of N first-order differential 
equations

= gj(xx,...,xN,r), j = (4.1)

where t is the independent variable (often time) and the Xj (t) are dynamical 
quantities whose evolution is governed by (4.1), starting from specified initial 
conditions Xj(0), j = 1,..., N. The functions gj are nonlinear, and they can 
be characterized by one or more parameters r. [42] A system of the above 
type is called autonomous—not explicitly dependent on t [43].

Chaos can be defined in many different ways, some of which are more 
strict than others. For our purposes the most suitable concept is determin-
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istic chaos, which means irregular behavior of dynamical systems having 
a strictly deterministic evolution in time and no sources of noise or exter­
nal stochasticity. This irregularity manifests itself as an extremely sensitive 
dependence on the initial conditions—a fundamental feature that has been 
taken as a part of the mathematical definition of chaos also; see, e. g. [44].

4.3 Possibility of chaotic electron trajectories 
in gyrotrons

The gyrotron equation (2.11) can be written as an autonomous system of 
three ordinary differential equations. The three unknown functions will then 
be the real and imaginary part of the transverse momentum p and the inde­
pendent variable £ (whose derivative is identically 1). It is known from the 
theory of differential equations that an autonomous dynamical system of at 
least three equations may have chaotic solutions [45]. On the other hand, 
there is no guarantee for this kind of behavior to occur.

In [39] it was suggested that the relativistic increase of electron mass 
would tend to prevent chaos from developing in gyrotrons. On the other 
hand, it was shown in [40] that permanently chaotic electron trajectories 
cannot exist in a resonator with a high quality factor, while the problem for 
low-quality resonators remains open.

4.4 Numerical evidence about chaos
Electron energy spectra after gyrotron interaction are studied in detail in 
Section 4.5. However, a specific example is presented here as a motivation 
for the calculations that will follow.

In Fig. 4.1 are shown the numerically calculated absolute values of the 
transverse momenta of electrons at the interaction cavity end for different ini­
tial phases of rotation. We see that for certain initial conditions the solution 
is very sensitive to small changes in them. A closer look on the sharp peak at 
about 30 degrees (see Fig. 4.2) reveals that there is even more sensitivity than 
can be seen at a first glance. The shape seen in Fig. 4.1 repeats in a small 
scale. There is an obvious analogy to fractals, that is, sets which exhibit 
self-similarity under magnification [44]. Even though the self-similarity in 
this example does not continue if we look at the spectrum still closer, it can 
be regarded as a trace of transient chaos prevailing in the resonator. Be the 
chaos permanent or transient, due to it the quality of energy spectrum will 
anyway deteriorate, and any sign about chaos must therefore taken seriously.
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$0 in degrees

Figure 4.1: The final electron momenta as a function of the initial phase (A = 
0.50, F = 0.125;.

¿5 1.2

fi0 in degrees

Figure 4.2: The same spectrum as in Fig. 4-1 but restricted to a narrow range 
around the single peak.
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4.5 Dependence of electron residual energy on 
initial conditions

4.5.1 Numerical codes
General about the codes

To solve Eqs. (2.9)-(2.12) numerically, three computer programs were writ­
ten. The cold-cavity approximation has been used in most computations—it 
is not only simpler to program but also significantly cheaper to run on com­
puters. For this, separate routines are used for finding the high-frequency 
field profile and the electron trajectories under the influence of this field. 
In the self-consistent calculation both tasks are to be solved simultaneously, 
which was also done as a demonstration and an important check for the 
results obtained in the cold-cavity approximation.

Solution of the field profile in the cold-cavity approximation

The second-order differential equation (2.12) for the high-frequency field can 
not be in the usual manner discretized and represented as a linear system 
of equations for function values at nodes. This complication arises from the 
form of boundary conditions in which both the value of the function and 
its derivative are involved. An iterative method of solution (see the flow 
chart, Fig. A.2 in Appendix A) has therefore been used. The differential 
equation is treated as an initial value problem with Ç representing time and 
integrated using fourth-order Runge-Kutta method. The function value and 
its derivative at the right boundary are then compared to the correspond­
ing boundary condition. A simple minimization routine was written, which 
changes the frequency Гш and the quality factor Q to find the minimum of

Ä=|/(Cout) + *7/'(Cout)|. (4.2)

A feasible initial guess for and Q is needed to make the iteration converge. 
Some authors [7, 46] who have dealt with the same problem reformulated the 
minimization task for numerical calculations, which has not be done in this 
work. Previously obtained results can still be reproduced. Fig. 4.3 shows the 
functions that characterize the cavity and Fig. 4.4 the resulting field profile.

Solution of electron motion in the cold-cavity approximation

The evolution of electron momenta during the gyrotron interaction is straight­
forward to solve when the field profile is known. The same integration routine
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29 99.95

Figure 4.3: The functions R(Ç) (solid) and x(C) (dashed) which describe the in­
teraction cavity. Note the scales: R{Ç) and x(C) change only little. In other words, 
the gyrotron is operated very close to the cut-off of the wave.

Figure 4.4: The field profile in the cold-cavity approximation.
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as in calculation of the field, fourth order Runge-Kutta, was used. After as­
signing the electrons their initial momenta p0 = exp(id0), the trajectories 
were obtained independently from each other, and the absolute values of the 
final transverse momenta were recorded. Fig. 4.7 on page 37 shows these 
results for some parameter combinations. The flow chart for the routine per­
forming the integration for one electron is shown in Fig. A.l in Appendix A. 
For the purposes of later work, the routine was made capable of integrating 
the equation backwards also.

To check the validity of the cold-cavity approximation, some cases were 
solved in parallel with the self-consistent method. The electron energy spec­
tra obtained for a single combination of parameter values (A = 0.52 and 
F = 0.098 or, equivalently, I = 0.004) are shown in Fig. 4.5. The striking 
phase shift between the solutions is not serious—in practice the input phases 
are outside control in any case. More important is the fact that the correct 
shape of the spectrum can be found using the cold-cavity approximation. 
This, of course, also yields the correct perpendicular efficiency. Later we can 
see that this particular case is not an exception but the spectra in general 
coincide very well.

Cold-cavity Self-consistent.

d0 in degrees

Figure 4.5: Electron momenta at the cavity end as a function of the input phase 
calculated in the cold-cavity approximation and self-consistently. Here A = 0.52. 
The self-consistent solution is for I = 0.004, for which rj± = 0.734; consequently, 
F = 0.098 in the cold-cavity calculation according to (2.15).
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Self-consistent solution

Simultaneous solution of (2.9) and (2.10) was programmed as follows: The 
quantities uj and /'(0) are given an initial guess. At C = Co = 0 the electron 
momenta p are known on the basis of their initial conditions, and they can be 
immediately averaged. The average value is used to perform one integration 
step (Co -t Ci) for the field profile starting with the boundary condition for it. 
After this, the resulting field at Ci can be used for advancing the electrons one 
step from Co- At this point one complete integration step has been performed 
and it can be repeated over the whole resonator length.

At C = Cout the boundary condition must be checked. To fulfill it, one 
changes the values given for w and /'(0) in analogy with the solution of the 
source-free field equation (2.12). Because the program spends most of its 
running time to solve the electron momenta, the number of different initial 
conditions was taken to be relatively small (rq ~ 30) during the iteration, 
and only finally it was increased (n2 = 360) to achieve the desired resolution. 
It was found that even 10 electrons suffice to very accurately produce the 
same field profile that was obtained by taking several hundreds of electrons.

Fig. A.5 in Appendix A shows the flow chart the solution routine for one 
combination of control parameters I and A. A feasible initial guess for ш 
and /'(0) is supposed to be given by the calling program.

4.5.2 Smoothness of the energy spectrum
To measure the complexity of the energy spectra of electrons exiting the 
resonator, we define a quantity

(4.3)

which measures (twice) “the total amount of uphill and downhill” on the curve 
that shows the absolute value of final electron momenta as a function of the 
input phase. For a truly chaotic spectrum we would expect S to be infinite, a 
value which can not be found numerically. With a limited resolution on the 
^o-axis we only can transform the qualitative nature of the spectrum into 
an approximate number. However, used with the perpendicular efficiency 
(which also is purely a function of the spectrum) the quantity S can be 
effectively exploited to classify the operating regions of a gyrotron.
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4.5.3 Efficiency—smoothness plots

Cold-cavity approximation

The routines described above give the field profile and the electron momen­
tum spectrum for a single combination of control parameters (F, Д, p). We 
have a fixed cavity geometry described by the functions R(Ç) and x(£) shown 
in Fig. 4.3. For this particular cavity p = 12.8. The other two parameters 
were varied over the range of interest. The field /(£) is independent of A 
and F, so it needs not be recalculated every time. For each combination of 
A and F, the momentum spectrum is solved and the quantities r¡± and S 
calculated from it. The results are then presented as contours of r/± and S 
in the (A, F)-plane, see Fig. 4.6. In Appendix A, Fig. A.3 shows the flow 
chart for this code.

-----n±
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Figure 4.6: The contours of perpendicular efficiency p±_ and smoothness S in the 
(A, FJ-plane. The cold-cavity approximation has been used in the calculation.

Fig. 4.6 shows that the very smoothest energy spectra are obtained in 
the regions where the interaction is generally weak—which of course leads 
to low efficiency also. An example of this is the parameter combination 
(A = 0.6, F = 0.05). On the other hand, the efficiency is low in the vicinity 
of the upper left corner of the same plot. Here one can see traces of chaos: 
strong interaction and widely varying residual energies which explain the 
poor efficiency. Between these areas one finds the “normal” operating regime.
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Inside it S increases (the spectrum becomes less smooth) with efficiency, but 
it has a reasonably low value throughout. Extreme sensitivity for initial 
conditions is seen in few cases only. To illustrate the electron energy spectra 
at different parts of the (A, F)-plane three representative points in it were 
chosen and the corresponding spectra plotted in Fig. 4.7.

$o in degrees

Figure 4.7: Transverse momentum of electrons at the resonator end as a function 
of the initial angle. Solid: A = 0.55, F — 0.11, r/j_ = 0.78, S — 2.1. Dash-dot: 
A - 0.60, F — 0.05, T]± ~ 0, S = 1.0. Dotted: A = 0.35, F -- 0.10, rj± « 0, 
5 = 4.6.

Self-consistently calculated efficiency and smoothness

To self-consistently find the values of r]± and S corresponding to those pre­
sented in Fig. 4.6, more complicated computations than above are needed. 
For each point in the (A, /)-plane, one must solve both the field equation 
and the final momenta of electrons. As mentioned before, a feasible initial 
guess for the quantities со and /'(0) is needed in order to make the solver 
routine converge to the correct solution.

The fact that the eigenvalues со and /'(0) should depend on the control 
parameters A and / in a continuous manner was used. Once the solution 
in one point had been found, the values of со and /'(0) provided a good 
starting point for the next iteration with A and I sufficiently close to the 
previous values. Therefore the (A, 7)-plane was scanned through along a
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zigzag path, never jumping from one edge to the opposite one. A flow chart 
of this procedure is given in Fig. A.4 in Appendix A. Despite this approach, 
the program occasionally started following a false minimum of R [recall the 
definition (4.2) valid for the self-consistent calculation as well] and produced 
incorrect results. Therefore, the whole region of interest in the (Д, /)-plane 
had to be divided into several rectangular areas. The routine was then run 
using a small number of electrons to manually find a promising initial guess 
for the first point in each box. Next, the boxes were scanned through one by 
one using a sufficient resolution in initial conditions (more electrons than at 
the first stage). Combining all data computed in this way, we obtain Fig. 4.8.

Figure 4.8: The contours of perpendicular efficiency 77j_ and smoothness S in (A, 
I)-plane. The calculation has been carried out self-consistently. Hatching indicates 
that a solution satisfying the boundary conditions for the field has not been found.

It seems that there are combinations of A and I for which no solution of 
the desired type exists. This suggestion is supported by the fact that in some 
cases a zero of R in (cu, /'(0))-plane ceases to have a zero in its neighborhood 
when A or I is slightly modified. Due to the complicated nature of the 
equations we are considering, this kind of bifurcations are impossible to study 
analytically. It has previously [47] been found, however, that a bifurcation of 
another type is shown by these equations. There are two distinct solutions— 
only one of which is physical—for sufficiently large values of I. The current 
study is restricted to these comments; the regions of the above-mentioned 
nature are indicated by hatching in Fig. 4.8.
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Figure 4.9: The contours of the cold-cavity calculation presented in the (A, I)- 
plane for comparison with the self-consistent ones. Note the different scales on the 
axes.

To compare the cold-cavity calculations with the self-consistent ones, the 
data shown in Fig. 4.6 was converted into another form using (2.15). The 
resulting plot is shown in Fig. 4.9. Note that only a small portion of the 
region included in Fig. 4.8 is covered.

Tapering of magnetic field

In [48] detailed studies of the influence of tapering of magnetic field on gy- 
rotron efficiency and mode competition have been performed, but now the 
question arises what is the relation between this higher efficiency and the 
complexity of the corresponding electron energy spectrum. In principle the 
gyrotron equations (2.11)-(2.12) become a “less autonomous” system when 
dependence on £ is allowed for A. We therefore expect it to be more inclined 
to behave chaotically.

We repeated the calculations which were carried out to produce Fig. 4.6 
but used a non-uniform magnetic field:

• Linearly growing field with different slopes

• Parabolic field profile with a maximum in the middle of the resonator
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No significant difference in the behavior of the gyrotron was found. As an 
example of these calculations, the contours of rj± and S calculated with a 
parabolic field are presented in Fig. 4.10.

Ul

0.12

0.09

0.06

0.03

F

Figure 4.10: The contours of perpendicular efficiency r]± and smoothness S in the 
(A, F)-plane when the magnetic field has a parabolic profile with a \% tapering at 
both ends. The cold-cavity approximation has been used in the calculation. Compare 
to Fig. f.6.
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Chapter 5

Electron Trapping in a Gyrotron 
with a Depressed Collector

5.1 General
In a gyrotron with a depressed collector there is a risk for electrons to be re­
flected back towards the resonator by the retarding potential. This reflection 
takes place whenever the height of the potential barrier exceeds the longitu­
dinal kinetic energy of an electron in the collector region. In [26] it was found 
via simulation that the electrons are eventually swept out to the collector by 
the high-frequency field, and no significant charge accumulation would thus 
result. However, how the reflected electrons affect the gyrotron efficiency has 
not been reported. The present work concentrates on this question.

5.2 Adiabatic and non-adiabatic trapping
Electron reflection by the retarding electrostatic potential can be regarded as 
an adiabatic process, if it takes place over a short distance compared to the 
Larmor period of the electron, that is, if Azret <C zl [27]. Here Azret is the 
spatial extension of the retarding region, and Zl = V\\/eBco\\ is the Larmor 
period of an electron with a momentum component V\\ in the direction of 
the magnetic field (Всоц) in the collector region. In this adiabatic case the 
reflected electron is expected to pass the resonator backwards, to reflect 
from the negative potential of the gun and to interact with the RF field 
again, following closely to the magnetic field lines on its way. This process 
continues until the electron’s energy at the cavity end suffices to carry it to 
the collector.

Possible non-adiabaticity in the reflection tends to increase the transverse
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momentum of the electron and, as a consequence, a reflection by the mag­
netic mirror of the increasing field before reaching the interaction cavity will 
result. As time goes on, diffusion across the magnetic field lines carries these 
electrons to the grounded body of the device [27]. This case will not be 
discussed further here.

5.3 Condition for electron trapping
To connect the retarding potential with the dimensionless momentum p(£out) 
obtained from the numerical computations, recall the normalization of the 
physical momenta given in Section 2.3: |p| = 'Pl/'Pj.o and рц = V\\/V±o- For 
the sake of consistency, the notation p for the transverse momentum is used 
also in this context, even though the longitudinal momentum рц also appears 
in the calculations.

Using the relation between the total energy of an electron and the accel­
erating voltage [/Cath,

(Plo + P||0)c2 + (mec2)2 = W2ot = (mec2 + e[7cath)2,

and equations for the momentum components as a function of the normalized 
velocities ß±o and /Зц0,

Plo = ß±o'Yre\mec and V\\0 = /?цо7г eimec,

together with 7rei = (1 — /Зм0 — /320)-1/2 and the definition of the pitch factor 
a = /3_lo//9||o we find that

rry /20cath T 02ath /г i\
P-10 = amec у---- ------------ (5л)

and

zi-, /20cath T Øcath /г 0\P||0 = meCV------ГТ02------ • (5-2)

Here øcath = eUсахъ /mec2.
Between the cavity end and the retarding potential hill the electron ex­

periences a diverging magnetic field but no electric field. Its total kinetic 
energy is therefore conserved,

V±(z)2 + V\\(z)2 = const, (5.3)
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but the transverse motion slows down along with the weakening of the mag­
netic field [27]:

?iM2
B(z)

— const. (5.4)

In the vicinity of the collector the magnetic field Всоц is weak and practically 
constant. Applying these conservation laws at the cavity end (z = zout, 
В = Bcav) and at the collector (B = BcoU), we obtain for the axial kinetic 
energy at the collector

kk] i (zcou) Pii(z„-,)2 + (i-|^)Pi(z„„,)2 c2 + (mec2)2 — mec2,

which is available for surpassing the retarding potential Uco\\- Those electrons 
for which

fk]|(z^coii) cUC0n,

reach the collector. For the absolute value of the (complex) dimensionless 
transverse momentum, |p(Cout)| = 'P±(zout)/V±o, this condition reads

|p(Cout) I >
mec 2<Acoll + øcoll - V\]o/ml6
V±o\ 1 - Bcoll/Bc

since B||(zout) = B||0. Substituting Eqs. (5.1) and (5.2), as well as фсо\\ = 
eUcoii/mec2 and øcath = eBcath/mec2, this critical value can be expressed as a 
function of the physical voltages, magnetic fields and the pitch factor:

b(Cout)| >
2eBcoiimec2 + (eBcoii)2 

OL\J\— Bcoii/Bcav) ^ 2e[/cathmec2 + (eBcath)
:(l + ct2) - 1

— Pcut-off • (5.5)

We call the right-hand side pcut-0ff since all electrons with |p(£out)| < Pcut-off 
are “cut off” from the spectrum by reflection. In the case 2фсоц + ф2соХХ < 
'Pf\o/mec2 the initial longitudinal momentum alone suffices to bring the elec­
tron to the collector and we state that pcut-off = 0. Since Bcoii/Bcav <C 1 in 
real gyrotrons, that term is neglected in the first square root, and pcut-off is 
calculated from the voltages and the pitch factor.
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5.4 Effects of electron trapping on perpendicu­
lar efficiency

5.4.1 General efficiency plots with inclusion of trapping
Adiabatically reflected electrons follow the magnetic field lines through the 
resonator and reflect from the gun potential again. Interaction with the 
high-frequency field takes place during the passage through the cavity in 
both directions. It is possible that the electrons gain energy from the field so 
that they are capable of reaching the collector. If not, the process continues 
until the energy finally is sufficiently large.

It is worth noting that Eq. (2.11) is symmetric with respect to reversal of 
the direction of Ç. Indeed, if pi(C) is the unique solution of (2.11) correspond­
ing to the initial value pi(0) = p0, and Pi(Cout) = Pout, then pi(C) = pi(C) 
(where / = /out — /) will satisfy the initial value problem

5 = -ip(A + |p|2 - 1) + %Ff(C), p(C = 0) = Pout 
“C

and yield Pi(Cout) = Po again. Here /(C) = /(C). We used this property to 
test the integration routine and were able to reproduce most initial conditions 
to high accuracy. Only very close to the points of suspected chaotic nature 
there was significant deviation, which fits well in the picture. If the true 
solution is sensitively dependent on initial conditions, no numerical routine 
can be expected to solve it to arbitrary accuracy.

We model the process of successive interactions and reflections by inte­
grating numerically the gyrotron equation in the cold-cavity approximation, 
starting as in Section 4.5 and repeating the integration as many times as 
needed. To make the results general, a Gaussian field profile (2.13) is used. 
The motion of an electron traveling backwards in the resonator can be most 
conveniently found by performing the integration with the standard routine 
from / = /out to / = /о = 0 with a negative step size (see Fig. A.l in 
Appendix A).

The time that the electrons spend outside the resonator between two 
successive interactions is long compared to their Larmor period. We therefore 
completely lose the information about the phase of rotation. The energy, 
instead, is conserved due to the assumption of adiabaticity. These facts are 
taken into account by keeping the absolute value of the momentum fixed and 
randomizing the phase angle each time before starting a new integration.

The results are presented as contour plots of perpendicular efficiency r]± 
in the (/i, F)-plane, see Figs. 5.1-5.3. The first of these figures is just the
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standard plot with pCut-off = 0. The parameter A is set in each point to the 
optimum value with respect to perpendicular efficiency when no trapping is 
taken into consideration. These values of A are then used for all different 
Pcut-off- A complete flow chart for the whole procedure is shown in Fig. A.6 
in Appendix A.

When studying Figs. 5.1-5.3, the region close to the upper right corner 
of the grid should be neglected. The gyrotron parameter space defined by 
F and /i has more than one high-efficiency region. Around the efficiency 
maximum at the center of Fig. 5.1 the technological constraints are most 
easily satisfied, and it is unclear whether a device operating at the other 
(even higher) maxima could be designed. For example, at {¡л « 25, F « 0.30) 
there is a second high-efficiency region which is more susceptible to velocity 
spread and space charge effects. [49]

5 10 15 20 25 30

M-

Figure 5.1: The contours of perpendicular efficiency r¡± with pcut-ofF = 0.
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Figure 5.2: The contours of perpendicular efficiency r¡± with pcut.0g = 0.2. The 
dashed line is the boundary between the regions with and without trapping.

F

5 10 15 20 25 30

M-

Figure 5.3: The contours of perpendicular efficiency r?j_ with pCut-off = 0.4. The 
dashed line is the boundary between the regions with (above) and without trapping 
(below).
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5.4.2 Dependence of efficiency on collector potential
General

It is evident from Figs. 5.1-5.3 that the favorable effect of a depressed col­
lector on total efficiency will be limited by too high values of pcut-off, that is, 
too high retarding voltages. Due to the general nature of the plots 5.1-5.3, 
they are not the most handy way of finding out the maximum reasonable 
retarding voltage for a specific gy rot ron. The formalism developed in this 
chapter, however, allows this to be done, and it will be illustrated by choos­
ing three representative points in the (//, F)-plane and calculating explicitly 
the overall efficiency as a function of the retarding voltage. To do this, the 
values of t/cath and a were fixed to 90 kV and 1.5, respectively, which are 
typical for modern high-power gyrotrons.

In the following, a spread in the transverse velocity of the electrons is 
introduced. The results of this section are presented with inclusion of the 
spread. However, in each of Figs. 5.4-5.9 the dependence obtained for an 
ideal beam is also included. A reader who is only interested in seeing the 
effect of trapping in its most reduced form may skip this discussion and 
concentrate on studying the curves with öß± = 0 %.

Inclusion of electron velocity spread

In practice it is impossible to produce an electron beam in which all electrons 
would have the same transverse and axial velocities when they are emitted 
from the cathode. In this context this is also taken into account. We handle 
the transverse velocity spread of electrons in line with [17]—utilizing the 
fact that the control parameters of the gyrotron change with the transverse 
velocity. This means that in reality the gyrotron always operates with several 
combinations of /r, F, and A simultaneously, and its efficiency is the average 
of all resulting efficiencies.

The quantities //, F, and A can be expressed as

(5.6)

(5.7)

(5.8)
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where Cfr, Cp, and Сд do not depend on ß±. The longitudinal velocity ß\\ 
can be written using the perpendicular velocity ß± and the relativistic factor 
7rei of the electrons as ß\\ = (1 — 1/7^1 — /32)1/2. Introducing the error e of 
the transverse velocity we find that the operating parameters /if, Ff, Af, 
and the pitch factor ctf corresponding to e are

в _ fß ß±o(l + e)2
М\/1-1/7ге1-^1о(1 + е)2’

(5.9)

Fß _ CF
e /31о(1 + е)3’

(5.10)

Aß =
£ /3!o(l + e)2’

(5.11)

/3±o(l + <0
‘ V1 - V-& - &(i+=)2

(5.12)

These can be written as

,„fl Ml + 02
Vl — 2cr26 — о?2б2 ’

(5.13)

F»= F 
£ (1+6)3’

(5.14)

— A 
£ (1 + e)2’

(5.15)

nß _ a(1 + 6)
Vl — 2ct26 — a2e2

(5.16)

We computed the electron efficiency as a function of the retarding voltage 
for the chosen combinations of /i and F [(/i = 10, F = 0.10), (/i = 17,
F = 0.125), (/i = 25, F = 0.075)], simultaneously introducing a spread
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in the electron transverse velocity. This was done by applying (5.5) with 
(5.13)-(5.16). A Gaussian

fe(ß±)
1 (Al- Alo)2
^eXP[-----2^ (5.17)

is a suitable approximation for the velocity distribution [50]. The relation 
between the RMS deviation a and the velocity spread Sß± can be written as

Sß± = I.Sv'Act, (5.18)

where Sß±_ is defined as

6ß± = I (ß±’™x ß±’min) . (5.19)
2 \ PJ_,center /

In addition to an ideal beam with zero spread we used öß± = 10% and 
20%. The corresponding values of a are 0.0393 and 0.0786. From (5.13) it 
follows that |t| must be smaller than emax = (14- l/ct2)1/2, which is related 
to the fact that the physical boundaries of ßx_ are 0 < ß± < (1 —
In practice the efficiency was calculated by varying e between —0.95 emax 
and +0.95 emax and averaging the corresponding efficiencies with a properly 
normalized weight function of the form (5.17). This method is an equivalent 
alternative for the Monte Carlo approach used in [17]. However, it suffers 
less from random fluctuations with equal computational effort.

As in [17], the quantities /xf, F/, and Af were treated as statistically 
independent variables assigning a different e to each of them. This indepen­
dence of errors for the three quantities /x, F, and A simulates the fact that in 
real gyrotrons a change of ß± always influences other operating parameters. 
For example, the field profile (the effective length of the cavity), the quality 
factor of the cavity, and the operation frequency depend on the properties of 
the electron beam, which means that the parameters /x, F, and A in fact are 
complicated functions of ß±. Quantitatively this could be taken into account 
only in self-consistent calculations, which is beyond the scope of this theory. 
The results of the present calculations are shown in Figs. 5.4-5.6.

However, if we make the most conservative but a less realistic assump­
tion that the variation of ß± does not affect any other quantity, we should 
use one and the same e in calculating /xf, F/, Af, and af according to 
Eqs. (5.13)-(5.16). In this approach, which we call statistically dependent, 
we also calculated pcut-0ff from (5.5) for each ß±_ using the corrected a of 
Eq. (5.16). The results of such calculations are presented in Figs. 5.7-5.9.
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It is obvious that here the efficiency deterioration due to velocity spread is 
much smaller than in the former case.

Figure 5.4: The total electron efficiency as a function of retarding potential at 
/i = 10.0 and F = 0.10, calculated with statistically independent variables.

0.7 -

Figure 5.5: The total electron efficiency as a function of retarding potential at

p, = 17.0 and F = 0.125, calculated with statistically independent variables.

50



Figure 5.6: The total electron efficiency as a function of retarding potential at 
¡i = 25.0 and F = 0.075, calculated with statistically independent variables.

Figure 5.7: Same as Fig. 5.7, but with statistically dependent variables.
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20%

Figure 5.8: Same as Fig. 5.8, but with statistically dependent variables.

Figure 5.9: Same as Fig. 5.9, but with statistically dependent variables.
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5.4.3 Space charge effects
One should be concerned about additional space charge in the resonator if 
there is a large fraction of electrons bouncing through it several times. In 
the computations of Section 5.4.1 the average number of interactions at each 
point in (/x, F)-plane was also recorded, and the results for pCut-off = 0.2 are 
shown in Fig. 5.10. If we take Uco,ц = 90 kV and a. = 1.5 as in Sec. 5.4.2, this 
value of Pcut-off corresponds to t/cath = 39 kV.

It is seen from Fig. 5.10 that the amount of electrons in the resonator does 
not increase very much due to the trapping effect, even though a relatively 
high retarding voltage has been applied.

Figure 5.10: The number of interactions averaged over all electrons at different 
values of Ц and F with Pcut-off = 0.2.

53



Chapter 6 

Conclusions

6.1 Chaotic electron trajectories
Electron residual energy spectra were computed numerically using the cold- 
cavity approximation in Chapter 4. The validity of this approximation was 
checked by solving a sample problem in parallel with a self-consistent model. 
The good agreement between the two models showed the cold-cavity ap­
proximation to be a feasible one, and, therefore, a natural choice due to its 
practical benefits. The self-consistent computations are more complicated 
to perform and computationally considerably more expensive than the ones 
needed within the cold-cavity approximation.

Using the results, we can classify the operating regimes of a gyrotron as 
follows. The operation parameter plane (A, F) is divided into three different 
parts using the concepts of perpendicular efficiency r/j_ and smoothness S :

• The region of a high rj± and a relatively low S. The value of S increases 
(the spectrum becomes less smooth) with efficiency, but it has a rea­
sonably low value throughout. Strong sensitivity for initial conditions 
is seen in few cases only.

• The region of weak interaction that makes both 77and S remain low. 
The dependence of electron residual energies on their initial conditions 
is also weak everywhere.

• The region of strong interaction with a low r¡± and a high S. Extreme 
dependence on initial conditions is common. Residual energies have a 
strong variation, which explains the poor efficiency.

The three regions are separated by rather sharp boundaries. It makes sense 
to operate the gyrotron only in the first region, which is located between
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the two other ones in the (A, F)-plane. The region of weak interaction can 
not provide an efficiency good enough, even though it might seem attractive 
from the viewpoint of the use of depressed collectors. The high-interaction 
regime, on the other hand, is inferior to the “normal” one with respect to 
both rj± and S. All these findings remain valid when the guiding magnetic 
field is allowed to vary over the interaction cavity.

6.2 Electron trapping
In Chapter 5 the electrostatic trapping of electrons in the presence of a 
depressed collector was studied. A formalism was developed for inclusion of 
the trapping into gyrotron efficiency calculations. Several representative sets 
of gyrotron parameters were chosen as examples.

It is evident from Figs. 5.2 and 5.3 that the trapping effect is more prob­
able and pronounced in the operating regimes with a high perpendicular 
efficiency. Indeed, here many electrons have very low residual energies at 
the exit from the cavity. They make largest contributions to efficiency. At 
the same time these “good” electrons have the strongest tendency to be­
come trapped. For example, at the point of the highest efficiency (// = 17, 
F = 0.125) with [/coil = 33 kV some of the “best” electrons pass the cavity 
six times before they acquire the energy from the RF field which is needed 
for leaving the trap. It is also seen (Figs. 5.5 and 5.8) that just for these ц 
and F values the increase of the efficiency due to the retarding potential as 
breath/([4ath — Uco\\) breaks down already at ~ 30 kV because of the onset of 
trapping, while in two other cases trapping begins to manifest itself at higher 
collector voltages. It is also observed that generally the velocity spread tends 
to smooth the transition to the trapping region.

In gyrotrons whose cavities have a low quality factor the dependences 
shown in Figs. 5.4-5.6 should be observed, while in the case of high quality 
factors weaker dependence on the velocity spread such as shown in Figs. 5.7- 
5.9 should be expected.

The space charge effects resulting from trapped electrons in the resonator 
were found to be of minor importance. Whenever the cold-cavity approxima­
tion is valid for the regular solution of the gyrotron equations, it will also be 
applicable in the trapping computations, since the magnitude of space charge 
in the resonator remains essentially the same. On the other hand, reflected 
electrons traveling backwards in the beam tunnel might slightly increase the 
velocity spread of electrons. This effect could be described within the kinetic 
approach, which is beyond the scope of the present investigations.
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6.3 Recommendations
When applying a single-stage depressed collector to a gyrotron, the collector 
potential should be chosen such that even the least energetic electrons of 
the spent beam can reach the collector. Typically, the maximum applicable 
voltage is between 30 and 40 kV. To find out the exact value of the maximum 
voltage for a specific gyrotron, the methods introduced in this thesis can be 
used. The next step in future work is to create a collection of “efficiency vs. 
retarding voltage” graphs for existing gyrotrons.

Required that extensive electron trapping has been avoided by a suit­
able choice of the retarding potential, the gyrotron achieves its maximum 
efficiency using the same operating parameters as without the collector po­
tential depression.

Parts of the present work will be published in [41] and [51].
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Appendix A

Flow Charts of the Numerical Codes

F, Д, p0 given

Field profile given

backwardforward

Direction?

End of routine

Back p to ÇAdvance p to Ç

Return p

Set Ç = ç,,,,; = n,t-1

Set j -j ± 1

Figure A.l: Flow chart for the routine solving the gyrotron equation (2.11) in 
the cold-cavity approximation for a single initial condition p{0) = po and a single 
combination of control parameters A and F. The high-frequency field profile is 
obtained from a separate routine, whose flow chart is presented in Fig. A.2.
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Figure A.2: Flow chart for the routine solving the high-frequency field profile /(£) 
in the cold-cavity approximation from Eq. (2.12).
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\ Begin \

^ i ~~
( Read input data J

------^---------

Figure A.3: Flow chart for the program performing the solution of the gyrotron 
equation in the cold-cavity approximation and calculating r]±_ and S for Aiow < 
Д < Ahigh, Fiow < F < Fhigh • The routine for the solution itself is written out 
separately in Fig. A.l.
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Read input data ^

Write Г|А and S to file

End of program

Increase / one step

[Keep to and /'(0)]

Decrease Д one step

Increase Д one step

Set Д = Д,

Compute r^and S

Increase/one step

Compute r^and S

Solve with / and Д

Solve with I and Д

Figure A.4: Flow chart for the program solving the self-consistent gyrotron equa­
tions and calculating 77j_ and S for Aiow < A < Ahigb /low < / < /high • The 
routine for the solution itself is written out separately in Fig. A. 5.
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Figure A.5: Flow chart for the routine solving the self-consistent gyrotron equations 
for a single combination of control parameters A and I.
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Figure A.6: Flow chart for the program solving the gyrotron equations and calcu­
lating 77j_ for Fiow < F < Fhigh, /-¿low < /7. < /-¿high when electron trapping due to 
a depressed collector is allowed. The routine for the solution itself is written out 
separately in Fig. A.l.
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