
HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Computer Sciece

Laboratory of Information Processing Science

Virpi Kaltio

Implementing a University Course based
the Personal Software Process (PSP)

Master's Thesis

’ TT K NTI I ‘ 41 ’ ■ N.
I TIL. J l > 11

КОМ
Ü2! M) 1-ii л А.

К(Л V О! JLU
К.._Л.'| ruv

Supervisor: Professor Reijo Sulonen

Instructor: M. Sc. Kari Alho

HELSINKI UNIVERSITY OF ABSTRACT OF THE

TECHNOLOGY MASTER’S THESIS

Author: Virpi Hannele Kaltio

Title: Implementing a University Course based on the Personal

Software Process (PSP)

Date: 14.08.1998 Number of pages: 98

Department: Department of Civil and Environment Engineering.

Professorship: Tik-76 Information Processing Science

Supervisor: Professor Reijo Sulonen, Helsinki University of Technology

Instructor: M. Sc. Kari Alho, Helsinki University of Technology

This thesis has two goals. The first goal is to implement a Personal Software Process

(PSP) course, and evaluate the suitability of the PSP for the Helsinki University of

Technology Computer Science (CS) curriculum. The second goal is to gather

improvement ideas for future PSP courses. This study is based on a pilot PSP course

during semester 1997-1998.

The theoretical part of thesis covers the architecture of the Personal Software Process

(PSP), most used software process improvement approaches (SW-CMM, IDEAL

Model, Quality Improvement Paradigm (QIP), and Experience Factory), and the PSP

experiences and results from different universities and industry.

The applied part of the thesis deals with the pilot PSP course at Helsinki University

of Technology, and its experiences and critical improvement ideas for future PSP

courses.

Keywords: personal software process, process development, process definition,
process improvement, software engineering education, software process training

i

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN

TIIVISTELMÄ

Tekijä: Virpi Hannele Kaltio

Työn nimi: Personal Software Process (PSP) menetelmään perustuvan

korkeakoulukurssin toteuttaminen

Päivämäärä: 14.08.1998 Sivumäärä: 98

Osasto: Rakennus- ja yhdyskuntatekniikan osasto.

Professuuri : Tik-76 Tietojenkäsittelyoppi

Työn valvoja: Professori Reijo Sulonen, Teknillinen korkeakoulu

Työn ohjaaja: DI Kari Alho, Teknillinen korkeakoulu

Tällä diplomityöllä on kaksi tavoitetta. Ensimmäinen tavoite on toteuttaa Personal

Software Process (PSP)-kurssi, ja arvioida sen soveltuvuutta osaksi Helsingin

teknillisen korkeakoulun tietotekniikan koulutusohjelmaa. Toinen tavoite on kerätä

parannusehdotuksia tulevien PSP-kurssien kehittämiseksi. Diplomityö perustuu

lukuvuonna 1997-1998 järjestettyyn pilotti PSP-kurssiin.

Diplomityön teoreettisessa osassa esitetään Personal Software Process (PSP)

arkkitehtuuri, tunnetuimmat ohjelmistoprosessin kehittämismallit (SW-CMM,

IDEAL-malli, Quality Improvement Paradigm (QIP) ja Experience Factory) sekä eri

yliopistojen ja teollisuuden kokemuksia ja tutkimustuloksia PSP:n käytöstä.

Diplomityön soveltava osa käsittelee Teknillisessä korkeakoulussa järjestettyä PSP-

kurssia, siitä saatuja kokemuksia sekä kriittisiä parannusehdotuksia tulevien PSP-

kurssien kehittämiseksi.

Avainsanat: henkilökohtainen ohjelmistoprosessi, prosessin kehittäminen, prosessin
määrittely, prosessin parannus, ohjelmistotuotannon opetus, ohjelmistoprosessi
koulutus

n

ACKNOWLEDGEMENTS

This thesis was written at Helsinki University of Technology at the Laboratory of

Information Processing Science during the semester 1997-1998.

I would like to thank my supervisior Professor Reijo Sulonen and my instructor Kari

Alho for their comments on the thesis.

I would like to thank all these students, who have participated at the pilot PSP

course. Your experiences and comments have been very valuable for me and my

thesis.

Special thanks to my sweetheart husband and my best friend Timo Kaltio for

encouraging me to finish my studies and this thesis. You have been extremely helpful

in the definition of both structure and the contents of the thesis.

Otaniemi, 14.08.1998

Virpi Kaltio

iti

TXble of Contents

TERMINOLOGY

1. INTRODUCTION..1

1.1 Background of the Thesis... 2

1.2 Objectives of the Thesis..2

1.3 Structure of the Thesis..2

2. THE PERSONAL SOFTWARE PROCESS (PSP).. 4

2.1 Overview of the Personal Software Process (PSP)... 4

2.2 The Personal Software Process (PSP) Principles... 4

2.3 The Personal Software Process (PSP) Strategy.. 5

2.4 The Personal Software Process (PSP) Evolution... 7

2.4.1 PSPO - The Baseline Personal Process... 8

2.4.2 PSP1 - The Personal Planning Process... 8

2.4.3 PSP2 - The Personal Quality Management...10

2.4.4 PSP3 - A Cyclic Personal Process...10

2.4.5 TSP - The Team Software Process... 12

2.5 The Personal Software Process (PSP) and the Team Software Process versus

SW-CMM... 13

2.6 The PSP Course Structure and Assignments... 14

3. THE PERSONAL SOFTWARE PROCESS VERSUS ORGANIZATIONAL

SOFTWARE PROCESS IMPROVEMENT...16

3.1 Overview of Software Process Improvement Approaches............................... 16

3.1.1 The SW Capability Maturity Model (SW-CMM)................................... 16

3.1.2 The IDEAL Model..20

3.1.3 The Quality Improvement Paradigm (QIP)... 22

3.1.4 The Experience Factory... 24

iv

3.2 Problems in Organizational Software Process Improvement and

How PSP Can Help?...27

4. REPORTED EXPERIENCES AND RESULTS OF TEACHING AND USING

THE PERSONAL SOFTWARE PROCESS (PSP)...29

4.1 An Empirical Study of the Impact of PSP on Individual Engineer......................29

4.2 Academic Experiences using the PSP.. 31

4.3 Industrial Result with the PSP... 33

5. THE PILOT PSP COURSE AT HELSINKI UNIVERSITY OF TECHNOLOGY

(HUT)... 40

5.1 The Pilot PSP Course Overview.. 40

5.2 The Pilot PSP Course Elements... 41

5.2.1 The Time Recording Log.. 42

5.2.2 The Weekly Activity Summary.. 44

5.2.3 The Job Number Log...46

5.2.4 The Project Plan Summary..47

5.2.5 The Defect Recording Log.. 49

6. EXPERIENCES OF THE PILOT PSP COURSE AT HELSINKI UNIVERSITY

OF TECHNOLOGY.. 52

6.1 The Survey of the Pilot PSP Course Experiences...52

6.2 Questions Related to Time Management...53

6.2.1 The Time Recording Log.. 53

6.2.2 The Weekly Activity Summary...56

6.2.3 The Job Number Log... 59

6.2.4 The Whole Time Management Section..61

6.3 Questions Related to Quality...64

6.3.1 The PSP Project Plan Summary.. 64

6.3.2 The Defect Recording Log...66

6.3.3 The Personal Checklist.. 69

v

6.3.4 The Whole Quality Section.. 71

6.4 Questions Related to Course Overall... 74

6.5 Summary of the Feedback from the Pilot PSP Course at Helsinki University of

Technology..80

8. CONCLUSIONS.. 82

9. REFERENCES..83

APPENDIX 1 The Graduate PSP Course..87

APPENDIX 2 The Undergraduate PSP Course..88

APPENDIX 3 The Planned TSP Undergraduate or Graduate Team-working Course...89

APPENDIX 4 The PSP Project Plan Summary Instructions.. 90

APPENDIX 5 Feedback Questionnaire: Tik-76.161 Individual Studies -

Personal Software Process (3 cr) P... 93

vi

Terminology

In this section the principal process terms are presented according to IEEE standards

610.12-1990 Standard Glossary of Software Engineering Terminology [IEEE90],

Software Process Development and Enactment: Concepts and Definitions [FeHu93],

The Capability Maturity Model - Guidelines for Improving the Software Process

[Paul94], and Personal Software Process (PSP) - Process Terms [Proc98].

Activity Any step taken of or function performed, both mental and

physical toward achieving some objective. Activities include

all the work the managers and technical staff do to perform

the tasks of the project and organization. [Paul94]

A/FR A/FR refers to the ratio of the appraisal COQ to the failure

COQ. [Proc98]

Checklist A checklist is a list of steps engineers use to ensure that all

parts of a process are followed. The Personal Software

Process (PSP) uses design review and code review checklists.

[Proc98]

COQ The cost of quality is the percentage of development time

spent on quality related activities. Appraisal COQ refers to

the time appraising product quality. In the PSP, appraisal

COQ includes on the design and code review times. Failure

COQ refers to the time spent repairing defects. In the PSP,

failure COQ includes only the compile and test times.

[Proc98]

vu

смм The Capability Maturity Model is a framework for

describing and evaluating the capability of software

organizations. [Proc98]

CMU Carnegie Mellon University

cs Computer Science

Defect A defect is anything that is wrong with the program that

must be fixed before the program can be developed, tested,

enhanced, or used. The PSP counts all defects found in

reviews, compiling, or testing. [Proc98]

Defect Type Defects are classified by types according to their

characteristics. An analysis of defect types helps engineers

determine which defect categories cause them the most

trouble and how to better find or prevent them. [Proc98]

ERAU Embry Riddle Aeronautical University

Estimating Error The percentage error of an estimate is 100*(actual-

estimate)/(estimate). [Proc98]

Fix Time The fix time is the elapsed working time from when an

engineer first determined there was a defect until the defect

was fixed and the fix verified. [Proc98]

HUT Helsinki University of Technology

IDEALIDEAL The SEI approach to the cycle of software process

improvement, based on intiating an improvement effort,

diagnosing the software process, establishing mechanisms for

improving the process, acting to implement the

improvements, and leveraging them across the organization.

[Paul94]

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

Injected Defect An engineer’s mistake often produces an incorrect element of

the design or an incorrect program statement. This is called

injecting a defect. The phase injected refers to the process

phase in which the engineer was working when the defect

was injected. [Proc98]

Key practice (KP) The infrastructure and activities that contribute most to the

effective implementation and institutionalization of a key

process area. [Paul94]

Keyprocess area A cluster of related activities that, when performed

(KPA) collectively, achieve a set of goals considered to be important

for establishing process capability. The key process areas

have been defined to reside at a single maturity level. They

are the areas identified by the SEI to be the principal building

blocks to help determine the software process capability or

an organization and understand the improvements needed to

advance to higher maturity levels. [Paul94]

к

KLOC Thousands of LOC. [Proc98]

Maturity level A well-defined evolutionary plateau toward achieving a

mature software process. The five maturity levels in the

SETs Capability Maturity Model are initial, repeatable,

defined, managed and optimizing. [Paul94]

LOC LOC stands for lines of code. This is a measure of program

size that counts every text line that contains a programming

instruction. [Proc98]

Module A relatively small element of a programming project that is

implemented by an individual engineer. Module sizes

typically range from 50 to 5,000 LOC. [Proc98]

Phase A process phase is a defined part of the process, such as

design or test. [Proc98]

PIP Process Improvement Paradigm

PROBE PROBE stands for PROxy Based Estimating, a size and

development time estimating method used in the PSP.

[Proc98]

Process A set of partially ordered steps intended to reach a goal.

[FeHu93]

Process capability The range of expected results that can be achieved by

following a process. [Paul94]

X

Process definiton An implementation of a process design in the form of a

partially ordered set of process steps that is enactable.

[FeHu93]

Process development The act of creating enactable processes. It may include

planning, architecture, design, instantiation, and validation.

[FeHu93]

Product See software product and software work product.

Productivity While there are many measures of programming

productivity, the PSP uses the number of LOC developed

per hour. [Proc98]

Project An undertaking requiring concerted effort that is focused on

developing and/or maintaining a specific product. The

product may include hardware, software, and other

components. Typically a project has its own funding, cost

accounting, and delivery schedule. [Paul94]

Proxy A proxy is a substitute. In the PSP, proxies are used to help

engineers visualize the sizes of their products when they

make size estimates. The principal proxies used in PSP are

objects and procedures. Some of the other possible proxies

are function points, screen, and document chapters. [Proc98]

PSP The Personal Software Process is a family of defined

processes that guide engineers in measuring, evaluating, and

improving the way they do their software engineering tasks.

[Proc98]

Xl

Removed Defect All defects that are found and fixed are counted as removed

defects by the PSP. The phase when the defect was repaired

is the phase removed. [Proc98]

Review A review is a personal check of the program made by the

engineer who developed it. Design and code reviews are used

in the PSP to find and fix defects as early in the process as

possible. [Proc98]

SEI Software Engineering Institute

SW Software

Quality (1) The degree to which a system, component, or process

meets specified requirements. (2) The degree to which a

system, component, or process meets customer or user

needs or expectations. [IEEE-STD-610]

Size In the PSP, the size of software products is measured in

LOC. [Proc98]

Software process A set of activities, methods, practices, and transformations

to develop and maintain software and the associated

products (i.e., project plans, design documents, code, test

cases, and user manuals). [Paul94]

Software product The complete set, or any of the individual items of the set, of

computer programs, procedure, and associated

documentation and data designated for delivery to customer

or end user. [IEEE-STD-610]

XU

Software project An undertaking requiring concerted effort and focusing on

analyzing, specifying, designing, developing, testing, and/or

maintaining the software components and associated

documentation of a system. A software project may be part

of a project building a hardware/software system. [Paul94]

Software work
product.

Any artifact created as part of defining, maintaining, or using

a software process. They can include process descriptions,

plans, procedures, computer programs, and associated

documentation, which may or may not be intended for

delivery to a customer or end user. [Paul94]

Task (1) A sequence of instructors treated as a basic unit of work.

[IEEE-STD-610] (2) A well-defined unit of work in the

software process that provides management with a visible

checkpoint into the status of the project. Tasks have

readiness criteria (preconditions) and completion criteria

(postconditions). [Paul94]

TAME Tailoring A Measurement Environment

TSP Team Software Process

TSPe Team Software Process for Education

Template A template is a variable length form. Templates are needed

when the kinds of data to be entered are well known but the

amount of data is variable. [Proc98]

Xlll

Yield Yield is the percentage of defects removed from a software

product during a given process phase. Process yield is the

percentage of defects injected in the product before the first

compile that are removed before the first compile. [Proc98]

SEI Capability Maturity Model is a service mark of Carnegie Mellon University and
CMM is registered in the U.S. Patent and Trademark Office.

PSP and Personal Software Process are service marks of Carnegie Mellon University.

XIV

1. Introduction

1.1 Background of The Thesis

The work presented in this thesi was performed during the semester 1997-1998, on a

pilot Personal Software Process (PSP) course at Helsinki University of Technology

(HUT). The idea of implementing the PSP standard course, and evaluating its

suitability for HUT Computer Science curriculum originated from Professor Reijo

Sulonen 's at Laboratory ofinformation Processing Science, HUT. 16-19th June 1997

I took part in European Software Engineering Process Group Conference Amsterdam

where Mr. Watts S. Humphrey gave very interesting the PSP tutorial. Both professor

Reijo Sulonen and I were interested in the same professional topic, and August 1997

we decided to start the pilot project.

The pilot PSP course was carried out with co-operation with the graduate level Tik-

76.115 Software Project course. The pilot PSP group began with an initial enrollment

of twelve students, nine of which took the course final. The course was taught using

Introduction to the Personal Software Process as the text book. We had problems to

obtain these study books and Humphrey's Instructors Guide and Assignment Kits

from Addison-Wesley, and we had not much time to study the PSP method. Because

of these problems we had to find an effective way to teach the PSP method. The

students were separeted into two PSP seminar groups. Each seminar group met

regularly two or three hours once a week during October. At the beginning of each

seminar session each student gives a summary of a text book chapter, after which we

discuss the topic. This way the students took in the PSP principles very easy, and

they had the ability to start using the PSP methods and forms from the beginning of

their software project work. Most student seminar lectures were done very well, and

it helped to commit to PSP.

1

All students had to do their own PSP work, but they did not have to work alone.

Students had to make their own estimates, do their own designs, code their own

programs, and compile and test their own work. After their software project work I

gathered information with feedback questionnaire from their subjective PSP course

experiences, and collected ideas for the future improvement of the PSP course.

1.2 Objectives of the Thesis

This thesis had two goals. The first goal was to implement the Personal Software

Process (PSP) course, and to evaluate the suitability of PSP for the Computer Science

(CS) curriculum at Helsinki University of Technology. The second goal was to gather

improvement ideas for future PSP courses. The purpose of this thesis was not study

any PSP data, for example, defects per KLOC, Yields, A/FR. These measurements

will be described shortly, but the main purpose of this thesis is to gather relevant

information from student’s subjective PSP experiences. Software Engineering

Institute (SEI) has published a lot of metrics data.

1.3 Structure of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2, The Personal Software Process (PSP), describes the architecture of the

Personal Software Process (PSP). First, a general overview is given. Then, each

component of the architecture is discussed in greater detail.

Chapter 3, The Organizational Software Process Improvement Approaches,

discusses most commonly used software process improvement approaches, that have

been published in the software management and engineering literature.

2

Chapter 4, Reported Experiences and Results of Teaching and Using the Personal

Software Process (PSP), contains PSP experiences and results from different

universities and industry.

Chapter 5, The Pilot PSP Course at Helsinki University of Technology, describes

how the pilot PSP course was organized at Helsinki University of Technology

(HUT).

Chapter 6, Analysis of the Results from the Pilot PSP course, reports on student’s

experiences of the pilot PSP course at Helsinki University of Technology, and

introduces some critical improvement ideas for the future PSP courses.

Chapter 7, Conclusions, presents the main findings of the thesis.

3

2. The personal software process

2.1 Overview of the Personal Software Process (PSP)

The Personal Software Process (PSP) is a promising approach to help individual

software developers improve the predictability, quality, and productivity of their

work. The PSP is a defined and measured software process designed to be used by

individual software engineers. The PSP was developed by Watts Humphrey of the

US Software Engineering Institute (SEI) and is described in his book A Discipline for

Software Engineering [Hump95a]. The PSP has been developed to address the need

for process improvement in small organizations and small project teams. It aims to

show individuals how to define and apply personal working methods incorporating

best practice, and then to adjust them in the light of analysis to optimize their

performance. The research work on the PSP started in 1989.

The original impetus for developing the PSP came from questions about the Software

Engineering Institute’s (SEI) Capability Maturity Model (CMM) [Hump94d]. Like

the CMM, the PSP is based on process improvement principles. Many viewed the

CMM as designed for large organizations and did not see how it could be applied to

individual work or to small project teams [Hump94b], While the CMM is focused on

improving organizational capability, the focus of the PSP is the individual engineer.

To foster improvement at the personal level, PSP extends process management and

control to the software engineer. With PSP, engineers develop software using a

disciplined, structured approach.

2.2 The Personal Software Process (PSP) Principles

Many software engineers spend the bulk of their time solving problems that are just

like those they have solved many times before. In fact software organizations have

been solving these same or similar problems for many years. After software engineers

spend years solving old and familiar problems, many of them feel that they have

4

wasted their time. However many engineers worry that the use of a disciplined

process will constrain their creativity and productivity. The initial PSP data show

that very few engineers use such proven practices as disciplined design methods,

design or code reviews, or defined testing procedures [Hump94b],

The PSP approach is based on the following principles: [Hump94c]

• “By defining, measuring, and tracking their work, software professionals will

better understand what they do.

• This understanding will enable the engineers to better recognize what methods

work best for them and see how they can more consistently apply them.

• The engineers will then have a defined process structure and measurable criteria for

evaluating and learning from their own and others' experiences.

• With this knowledge, the engineers can select those methods and practices that

best suit their particular tasks and abilities.

• By using a customized set of orderly, consistently practiced, and high quality

personal practices, the engineers will be more effective members of their

development teams and projects.”

2.3 The Personal Software Process (PSP) Strategy

The Capability Maturity Model for Software (SW-CMM) is an organizational-

focused process improvement framework [Hump89, Paul94], The SW-CMM will be

described in chapter 3.1.1. While the CMM enables and facilitates good work, it does

not guarantee it. The engineers must also use effective personal practices. The CMM

provides a body of software engineering practices that have been found effective for

large-scale software development [PaulCC93], Starting with the CMM, Watts

Humphrey selected and defined a subset of the CMM key process areas for use by

individual software practitioners [Hump94c].

5

Some CMM items are not included in the PSP because their effectiveness cannot be

demonstrated at the individual level, for example software subcontract management

and intergroup coordination. Some items, for example requirements management and

software configuration management, these can be usefully practiced by individuals

but their implications are better demonstrated in a small-team environment

[Hump95a]. The CMM key process areas (KPAs) are shown in Figure 2.1 and those

that are at least partially addressed by the PSP are shown in italics and noted with an

asterisk.

The PSP demonstrates the goal of 12 of the 18 CMM key process areas. The figure

below shows which of the KP As of the CMM are demonstrated by PSP.

Level 5 - Optimizing
Process change management*

Technology change management*
Defect preventation*

Level 4 - Managed
Quality Management*

Qualitative process management*

Level 3 - Defined
Peer rewies*

Intergroup coordination
Software product engineering*

Intergrated software management*
Training program

Software process definition *
Software process focus*

Level 2 - Repeatable
Software configuration management

Software quality assurance
Software subcontract management

Software project tracking and oversight*
Software project planning*
Requirements management

Level 1 - Initial

Figure 2.1. The CMM and the PSP [Hump95a].

6

2.4 The Personal Software Process (PSP) Evolution

The PSP has a maturity structure much like the CMM. The PSP is introduced using

seven progressive process steps. Each PSP step, shown in Figure 2.2, includes all the

elements of prior steps together with one or two additions. This minimizes the

impact of process change on the engineer, who needs only to adapt the new

techniques into an existing baseline of practices [HaOv97].

Cyclic
Personal
Process

Cyclic development

шёшяшшщяя

PSP2.1
Design templatesPSP2Personal

Quality
Management

Code reviews
Design reviews

PSP1.1
Task planning

Schedule planningPersonal
Planning
Process

Size estimating
Test report

PSP0.1
Coding standard

Size measurement
Process Improvement

Proposal

PSPOBaseline
Personal
Process

Current process
Time recording
Defect recording

Defect type standard

Figure 2.2. The PSP Evolution [Hump95a],

The PSP takes the practitioners through a set of evolutionary stages called the

Baseline Process (PSPO), the Personal Planning Process (PSP1), the Personal Quality

Management (PSP2), the Cyclic Personal Process (PSP3) and the Team Software

Process (TSP). The PSP progression is described in the following paragraphs.

7

2.4.1 PSPO - The Baseline Personal Process

In the PSP, the first step is to establish a baseline that includes measurements and a

reporting format. In this step, engineers use their current design and development

methods. With PSPO, they learn to how to apply the PSP forms and scripts to their

personal work. They do this by measuring the time spent by phase and the defects

found in compile and test. This lets engineers gather real, practical data on their

personal processes and gives them benchmarks against which they measure progress

while learning and practicing the PSP.

PSP is enhanced to PSPO. 1 by adding a coding standard, size measurement, and the

Process Improvement Proposal (PIP) form. The PIP is a form that provides a

structured way to record process problems, experiences and improvement

suggestions [Hump95a],

2.4.2 PSP1 - The Personal Planning Process

PSP1 adds planning steps to PSPO. The initial step adds size and resource estimation

and a test report. In PSP1, the Proxy Based Estimation (PROBE) method is

introduced. With PSP1, engineers used PROBE to estimate the sizes and

development times of the products they produce. They use their historical data to

improve their estimate. The PROBE estimating method is shown in Figure 2.3.

8

Start

i
Conseptual

Design

ï
I

Identify Objects
1 Number of methods »Relative Size
1 Object Type »Reuse Categorieslories

~ ■ I

Calculate Added and
Modified LOG

Estimate
Program Size

Calculate
Prediction Interval
—

Estimate

Figure 2.3 The PROBE Estimating Method [Hump97c],

PROBE is a PROxy-Based Estimating method in which engineers use data on their

previously developed programs to estimate the size and development time for a new

program. PROBE uses statistical techniques to calculate the most likely size and time

estimates and the likely range of these estimates [Hump96b],

9

Schedule and task planning are added in PSP 1.1. Engineers want or need to make

explicit, documented plans for their work for the following reasons: [Hump95a]

• “Understand the relation between the size of the programs they develop and the

times they take to develop them,

• Learn how to make commitment that they can meet,

• Prepare an orderly plan for doing their work, and

• Establish a basis for tracking their work.”

2.4.3 PSP2 - The Personal Quality Management

One PSP goal is to help engineers manage defects they inject. PSP2 adds personal

design and code reviews to PSP 1. These help the engineers to find defects earlier in

their processes and to appreciate the benefits of finding defects early.

PSP2.1 introduces design specification and analysis techniques. The intent is not to

tell engineers how to do design but to address the criteria for design completion.

PSP2.1 establishes design completeness criteria and examines various design

verification and consistency techniques [Hump95a].

2.4.4 PSP3 - A Cyclic Personal Process

PSP3 is the final PSP step. The earlier PSP processes concentrate on the linear

process for building small programs. In the PSP3, engineers scale up PSP methods to

larger projects. With PSP3, engineers see how to use the PSP for large scale work

such as cyclic development and issue tracking log. They learn how to adjust their

personal processes for different types of work. The Figure 2.4 illustrates how

engineers can couple multiple PSP2.1 processes in a cyclic fashion to scale up to

developing modules with as many as several thousands LOC.

10

Spesifications

Requirements
and

Planning
Specify
Cycle

High-level
Design Detailed Design and

Design Reviews

High Level
Design Review Test Development

and Reviews

Cyclic
Development Implementation

and Code Reviews

Post
mortem Compile

Integration
System Test

Use

Reassess and
Recycle

Product

Figure 2.4 The PSP3 Process - The Cyclic Development Process [Hump94c].

“The first build is a base module or kernel that is enhanced in iterative cycles. In each

iteration, a complete PSP2 is used, including design, code, compile, and test. Since

each builds on the previously completed increments, the PSP3 process is suitable for

programs of up to several KLOC.” [Hump94c]

11

2.4.5 TSP - The Team Software Process

Most software is developed by groups. Software development is generally thought

as a solo activity but when engineers go into industry, most of them work on teams.

The Team Software Process’s (TSP) principal objective is to show PSP-trained

engineers how to run a team-based project.

The Team Software Process has five objectives: [Hump98c]

• “Build self-directed teams that plan and track their work, establish goals, and own

their processes and plans. These can be pure software teams or integrated

products teams (IPT) of three to about 20 engineers.

• Show managers how to coach and motivate their teams and how to help them

sustain peak performance.

• Accelerate software process improvement by making CMM Level 5 behavior

normal and expected.

• Provide improvement guidance to high-maturity organizations.

• Facilitate university teaching of industrial-grade team skills.”

Team Software Process (TSP) is still in development and is not generally available,

except through SEI-supported PSP transition collaborations. The SEI is working with

a few universities and a number of industrial organizations on introduction the TSP

and the early results are encouraging [Hump98d]. Several organizations are currently

using the PSP, such as Adtranz, В aan, Boeing, Embry-Riddle Aeronautical

University, and Teradyne [Hump98e].

12

2.5 The Personal Software Process (PSP) and The Team Software

Process versus SW-CMM

The Capability Maturity Model (CMM) for software, the Personal Software

Process (PSP), and the Team Software Process (TSP) are methods of software

process improvement that were developed at the Software Engineering Institute

(SEI). "The CMM provides an overall framework to describe the activities software

organizations need to consistently produce effective results; the PSP helps engineers

use process principles in their personal work and the TSP shows integrated product

teams how to use these processes to consistently produce quality products on

aggressive schedules and for their planned costs” [Hump98d].

The CMM, PSP and TSP provide an integrated three-dimension framework for

process improvement. The Table 2.1 below shows which of the KP As of the CMM

are demonstrated by PSP and TSP. The CMM has 18 key process areas, and the PSP

(12 KPAs) and the TSP (16 KPAs) guide engineers in addressing almost all of them.

Level Focus Key Process Areas PSP TSP
5 Optimizing Continuous Defect Prevention X X

Process Technology Change Management X X
Improvement Process Change Management X X

4 Managed Product and Quantitative Process Management X X
Process Quality Software Quality Management X X

3 Defined Engineering Organization Process Focus X X
Process Organization Process Definition

Training Program
X X

Integrated Software Management X X
Software Product Engineering X X
Intergroup Coordination X
Peer Reviews X X

2 Repeatable Project Requirements Management X
Management Software Project Planning X X

Software Project Tracking X X
Software Quality Assurance X
Software Configuration Management
Software Subcontract Management

X

Table 2.1. PSP and TSP coverage of CMM key process areas [Hump98c],

13

2.6 The PSP Course Structure and Assignments

The SEI has developed two university-level PSP courses: an intensive one-semester

graduate or senior-level undergraduate course, and a course for freshmen [Hump95a,

Hump97b]. The objectives, prerequisites, structure, and support for these courses

are shown in Appendix 1 and 2. The SEI has designed a Team Software Process for

Education (TSPe) course based on early experiences with TSP teams. This course is

planned for either one- or two-semester dedicated courses or for shorter projects in

other courses. The TSPe course objective, prerequisites, structure, and support are

summarized in Appendix 3.

The PSP textbook, A Discipline for Software Engineering [Hump95a], describes a

standard PSP course structure. It describes a one-semester curriculum for advanced

undergraduates or graduate students in computer science that teaches concepts in

empirically guided software process improvement. The PSP is structured as courses

where the software engineer must follow the proposed sequence of exercises, fill in

tables, and identify their critical points through statistical calculations on data

collected during the development of the programming exercises. The PSP course

structure, shown in Table 2.2, includes the course topics covered in the lecture and

assigned reading, the associated programming exercise, its description, and the PSP

process level used for the assignment. The PSP contains 19 exercise programs (1A to

10A and IB to 9B) and five report assignments (Rl to R5). The ten A series of

programs and the five report assignment form the basic set used while learning the

PSP.

14

Course Topic Exercise Exercise Description PSP Level

The Personal Software Process
Strategy and the Baseline PSP

1A Calculate the mean and standard
deviation of N real numbers stored in a
linked list

PSPO

The Planning Process 2A

R1

R2

Count the LOC in a program source
file
Produce a LOC counting standard:
Count logical LOC in the language
you use to develop the PSP exercises
Produce a coding standard

PSP0.1

Measuring Software Size ЗА Enhance program 2A to count object or
fimction/procedure LOC

PSP0.1

R3 Defect analysis report: Analyze the
defects for programs 1A to ЗА

Estimating Software Size 4A Calculate the linear regression
parameters for N pairs of real numbers
stored in a linked list

PSP1

Resource and Schedule
Estimating

5A Numerical integration using Simpson's
rule

PSP1.1

Measurements in the Personal
Software Process

6A Enhance program 4A to calculate a
90% and
70% prediction interval

PSP1.1

Design and Code Reviews R4 Midterm process analysis report

Software Quality Management 7A Calculate the correlation of N pairs of
real numbers stored in a linked list

PSP2

Software Design 8A Sort a linked list PSP2 or
PSP2.1

Software Design Verification 9A Chi-square test for normality PSP2.1

Scaling-up the PSP 10A Calculate the multiple linear regression
parameters for N sets of four real
numbers stored in a linked list

PSP3

Defining the Software Processes
and Using the PSP

R5 Final process analysis report: The
report of process progress, quality, and
lessons learned

Table 2.2. Standard PSP course structure [Hump95a, Hump96a, HaOv97],

15

3. THE PERSONAL SOFTWARE PROCESS VERSUS

ORGANIZATIONAL SOFTWARE PROCESS IMPROVEMENT

3.1 Overview of Software Process Improvement Approaches

3.1.1 The SW Capability Maturity Model (SW-CMM)

The Capability Maturity Model for Software (CMM or SW-CMM) developed by

the Software Engineering Institute (SEI) has had a major influence on software

process and quality improvement around the world [Paul94], Continuous process

improvement is based on many small, evolutionary steps rather than revolutionary

innovations [Paul96]. The Capability Maturity Model for Software is a framework

that describes the key elements of an effective software process. The SW-CMM

defines an evolutionary path that is to followed by all organizations seeking software

process improvement.

There are five possible levels of maturity for a software process in the CMM model.

Each level has a number of key process areas (KPAs) that represent the primary

issues the organization needs to address in order to mature its process [HeGo96],

The five levels, and the 18 key process areas that describe them in detail, are

summarized in Figure 3.1.

The five levels can be briefly described as: [PaulCC93]

1. Initial The software process is characterized as ad hoc, and

occasionally even chaotic. Few processes are defined, and

success depends on individual effort and heroics.

2. Repeatable Basic project management processes are established to track

cost, schedule, and functionality. The necessary process

discipline is in place to repeat earlier successes on projects

with similar applications.

16

3. Defined

4. Managed

5. Optimizing

The software process for both management and engineering

activities is documented, standardized, and integrated into a

standard software process for the organization. All projects use

an approved, tailored version of the organization’s standard

software process for developing and maintaining software.

Detailed measures of the software process and product quality

are collected. Both the software process and products are

quantitatively understood and controlled.

Continuous process improvement is enabled by quantitative

feedback from the process and from piloting innovative ideas and

technologies.

3. Defined

4. Managed

5. Optimizing

Standard,
consistent

process

Level 3 - Defined

■

Disciplined
process

Level 1 - Initial

Figure 3.1. The Five Levels of Software Process Maturity [Paul94],

17

Except for Level 1, each maturity level is decomposed into several key process areas

that indicate the areas an organization should focus on to improve its software

process [Paul95]. The structure of the CMM is illustrated below in Figure 3.2 and

Figure 3.3 lists the key process areas for each maturity level in the CMM. Each

maturity level is composed of a set of key process areas (KPAs), and each KPA

consists of numerous key practices that accomplish the goal of the process area

[PaulCC93], The key practices describe the activities and infrastructure that

contribute most to the effective implementation and institutionalization of the key

process area. The key practices describe "what" is to be done, but they should not be

interpreted as mandating "how" the process should be implemented.

Key practices are organized by common features. The common features are attributes

that indicate whether the implementation and institutionalization of a key process

area are effective, repeatable, and lasting [PaulCC93].

The five common features are listed briefly:

• Commitment to Perform,

• Ability to Perform,

• Activities Performed,

• Measurement and Analysis, and

• Verifying Implementation.

18

Maturity Levels

indidate

Process
Capability

Key Process Areas

Goals

Common Features

Implementation or
Institutionalization

Key Practices

desmbe

Infrastructure of
Activities

Figure 3.2. The Structure of the Capability Maturity Model [PaulCC93].

Level 5 - Optimizing
Process change management

Technology change management
Defect prevention

Level 4 - Managed
Software quality management

Qualitative process management

jj
Level 2 - Repeatable

Software configuration management
Software quality assurance

Software subcontract management
Software project tracking and oversight

Software project planning
Requirements management

Level 1 - Initial
к

Level 3 - Defined
Peer rewies

Intergroup coordination
Software product engineering

Intergrated software management -
Training program

Organization process definition
Organization process focus

Figure 3.3. The Key Process Areas in the SW-CMM [PaulCC93],

3.1.2 The IDEAL Model

The SEI has developed an organizational and strategic level model for software

process improvement (SPI) initiatives, called IDEAL [McFe96]. The IDEAL model

is illustrated in Figure 3.4. The name IDEAL is an acronym for it's five phases,

illustrated in the figure: Initiating, Diagnosing, Establishing, Acting, and Leveraging.

These are briefly described in the figure, and are discussed in detail in IDEAL: A

User ’s Guide for Software Process Improvement.

20

The IDEAL's key steps can be briefly described as: [Paul94]

1. Initiating The first phase, when sponsorship and the software process

improvement infrastructure are defined and established.

2. Diagnosing The second phase, when appraisals are conducted to establish

the software process maturity baseline of the organization and

a set of recommendations for improvement are communicated

to the organization.

3. Establishing The third phase, when a software process improvement

infrastructure is built, including the formation of process action

teams and the definition of software process improvement

strategic and tactical plans.

4. Acting The fourth phase, when the improvements are implemented.

5. Leveraging The final phase, when lessons learned from the software

process improvement effort are analyzed, resulting in updates

to the software process improvement process. Sponsorship is

renewed and new goals are set for the next improvement cycle.

21

Leveraging

Document
& Analyze
Lessons

Revise
Organizational
Approach

ActingDefine
Processes '
& Measures

Plan &
Execute
Pilots

Set Context
& Establish
Sponsorship

Establish
Improvement
Infrastructure

Stimulus for
improvement

Plan, Execute
& Track
Installation

Appraise &
Characterize
Current

I Practice ^

Initiating

Establish Process
Action Teams ,
.Plan Actions J

Develop
Recommendations
L & Document
^^Phase Results

Set Strategy
& PrioritiesDiagnosing

Establishing

Figure 3.4. The IDEAL Model [McFe96].

3.1.3 The Quality Improvement Paradigm (QIP)

Quality Improvement Paradigm developed by Victor R. Basili, et al., is the result of

the application of the scientific method to the problem of software quality

improvement. The QIP is a consept for learning and improvement.

The QIP is articulated into following six steps: [BaRo88, BaMc95]

1. Characterize Characterize the current project and its environment with

respect to models and metrics.

2. Set Goals Set quantifiable goals for successful project performance and

improvement.

22

3. Choose Process On the basic of the characterization of the environment and of

the goals that have been set, choose the appropriate process

model and supporting methods and tools for this project.

4. Execute Execute the processes, construct the products, collect and

validate the prescribed data. Perform the processes constructing

the products and providing project feedback based upon the

data on goal achievement that are being collected.

5. Analyze At the end of each specific project, analyze the data to evaluate

the current practices, determine problems, record findings, and

recommend future project improvements.

6. Package Package the experience in the form of models and other forms

of structured knowledge, and store it in an experience base to be

reused on future projects.

Figure 3.5. The Steps of the Quality Improvement Paradigm (QIP) [BaCR94].

23

3.1.4 The Experience Factory

The Experience Factory is a logical, organizational and operational model for

continuous process improvement in a project-oriented organization. It was developed

by professor Victor Basili at NASA/Goddar Flight Center SFC and Software

Engineering Laboratory (SEL) at University of Maryland. “The Experience Factory

packages experience by building informal, formal or schematized, and productized

models and measures of various software process, products, and other forms of

knowledge via people, documents, and automated support [BaCR94b].”

The aim of the Experience Factory model is to form a continuously learning

organization by systematically collecting, assessing and distributing project

experiences by using measurements to validate process improvement efforts.

The focus and priority of the Experience Factory is to support project development:

[BaMc95]

• Analyzing experience drawn from people, documents, and automated tools.

• Synthesizing that experience into process models and measures both informal and

formal.

• Store these models and schematics in a repository.

• Supply the experience to various projects as needed.

The Figures 3.6 and 3.7 below describe the interaction between the Experience

Factory and the project organization.

24

project/environment characteristics

tailorable goals, process, tools, products,
resource models, defect models

from similar projects

data, lessons learned

project analysis, process modification

Characterize
Set Goals

Choose Process

Execute Process

Experience Factory
executi in plans

Project
Organization

Figure 3.6. Role of the Project Organization [BaMc95],

Projects choose and tailor project specific process, based on project goals and

characteristics, using process assets from the Experience Factory. Results of the

tailoring activity are documented to execution plans, for example, project plan.

During the project life time results of process execution are reported to Experience

Factory, for example, as metrics. Project specific process can be modified during the

project life cycle, if it seems necessary based on the analyzed project data.

25

project data, lessons learned

direct project feedback

product, lessons learned, models...

project characteristics

models, baselines, tools, consulting
Project
Support

Analyze

Experience
Base

Package
•generalize
•tailor
•formalize

Project
Organization

Experience Factory

Figure 3.7. Role of the Experience Factory [BaMc95],

Experience Factory gets data and lessons learned from project. Experience Factory

organization analyzes the data and provides direct feedback to the project. Feedback

can include also process modification suggestions.

Project experiences are packaged to experience base trough generalization, tailoring

and formalization. The experience base contains an accessible and integrated set of

analyzed, synthesized, and packaged experience models that capture past experiences

[BaCR94b],

Experience Factory organization provides support for projects in the definition of

project specific process using the packaged project experiences.

26

3.2 Problems in Organizational Software Process Improvement

and How PSP Can Help?

One of the key challenges in software process improvement is to make it reach the

individuals, especially to software engineers doing their daily software development

work. Often software process improvement (SPI) programs and methods to

implement them, are represented by the organization point of view, having strong

management emphasis, and considering the implementation as one massive effort in

the whole organization. Software engineers see lots of confusion and adding of

bureaucracy into their lives without any visible benefit to them personally. As a

consequence they often half-heartedly contribute to the program and with this kind

of motivation the quality of collected data is not very high, let alone it would improve

over time.

PSP is aimed at software engineers. It deals with the topics in organizational process

improvement, but does it purely individual point of view. It brings in and implements

on individual level those management practices which the organization management

can built onto. In addition it does it in such a way that there is immediate benefit to

individuals themselves, this giving motivation to do it well. The data is reliable. And

when the personal experience grow the reliability of data will also grow.

PSP is build into a shape of the training program. It serves well the training of

newcomers into process issues, doing it in terms that make sense to them. In many

software organizations with more experienced people, PSP could be the means to

bring in process improvement terms and practices for them, too. It might take some

adjustment to basic PSP training process, like making it more adjusted to the daily

work and technology environment of the organization, but the concept is still valid

Obviously, PSP practices do not integrate automatically into the organization

management process. On the contrary, it takes significant effort to align all elements

in individual and different organization levels to serve the consistent daily

management of software development. Partly for this purpose, SEI (Software

Engineering Institute) is developing also TSP (Team Software Process). Serving

27

higher management levels will also require different tools to collect and combine

results for organization use, compared to that what might serve individuals. Also, the

organization level must produce feedback to individuals, in addition to that what

individuals collect for themselves. Management must show the results and show the

decisions that were made based on those results, that is, show the value of individual

work in the whole organization.

On the other hand, individual level is a vital part of getting the whole management

structure work. The software business management needs the basic data from

software engineers. So needs the process improvement too, in order to be able to

show clearly how successful it has been.

In short one could say that PSP is excellent training program to lead new and even

more experienced software engineers into the world of continuous software process

improvement, but even more importantly it is a means to implement the individual

level of software management structure. But like every other model, when used in

any organization, also PSP must always adjusted to the specific needs of that

organization.

28

4. Reported experiences and results of teaching and

USING THE PERSONAL SOFTWARE PROCESS (PSP)

4.1 An Empirical Study of the Impact of PSP on Individual

Engineer

The SEI technical report, The Personal Software Process: An Empirical Study of the

Impact of PSP on Individual Engineers [HaOv97], presents the results of a study on

how the PSP affects the work of software engineers [HavOv97]. The data analyzed

in this report are derived from 23 offerings of the PSP training course. The course is

aimed at software engineering practitioners. The report describes the effect of PSP on

key performance dimension of 298 software engineers. In this study five personal

process improvements dimensions of the PSP, i.e., size and effort estimation

accuracy, product quality, process quality, and personal productivity, were

examined. The study results are briefly summarized below: [HavOv97]

• Effort estimates improved by a factor of 1.75 (median improvement). See Table

4.1.

• Size estimates improved by a factor of 2.5 (median improvement). See Table 4.2.

• The tendency to underestimate size and effort was reduced. The number of

overestimates and underestimates were more evenly balanced.

• Defects found in the product at unit test, improved 2.5 times (median

improvement). The quality improvements are illustrated in the table 4.3 below

with data from a single engineer.

• Process quality, the percentage of defects found before compile, increased by 50

% (median improvement).

• Personal productivity, lines of code produced per hour, did not change

significantly. However, the improvement in product quality resulting from the

PSP is expected to improve productivity and cycle time as measured at the project

level (i.e., when integration and system test phase effort are included in

productivity and cycle time).

29

Trend in Effort Estimation Accuracy

Assigment

1

Estimated
Effort

240

Actual
Effort

314

Effort
Estimation
Accuracy

-31%
2 180 205 -14%
3 160 312 -95%

4 252 282 -12%
5 300 378 -20%

6 600 419 30%
7 290 313 -8%

8 180 192 -7%

9 510 535 -5%

PSPO agg-egite effort estimation accuracy = -43.38 %
PSP2 agjegite effort estimation accuracy = -6.12 %
Effort estimation accuracy improvement factor = 7.1

Assigment Number

Table 4.1. Sample Data for Effort Estimation [HaOv97].

Assigment

1

Estimated
Effort

240

Actual
Effort

314

Effort
Estimation
Accuracy

-31%
2 180 205 -14%
3 160 312 -95%

4 252 282 -12%
5 300 378 -20%

6 600 419 30%
7 290 313 -8%

8 180 192 -7%

9 510 535 -5%

PSPO agrega te effort estimation accuracy = -43.38 %
PSP2 agj-ej^te effort estimation accuracy = -6.12 %
Effort estimation accuracy improvement factor = 7.1

Trend in Effort Estimation Accuracy

Assigment Number

Table 4.2. Sample Data for Size Estimation [HaOv97].

30

Assi gment Tot al
Defects
perKLOC

Defects
per KLOC
Re moved

in Compile

Defects
perKLOC
Removed in

Test
1 108.43 6024 48.19
2 101.27 3 7.97 63.29
3 85.11 47.87 37.23
4 58.82 3922 19.61
5 100.00 63.64 36.36
6 45.45 39.77 5.68
7 53.57 8.93 0.00
8 27.03 0.00 9.01
9 15.34 6.13 3.07

PSP0
Defect
Density

Total Defect 9429
Compile 4857
Test 45.71
Phase

PSP2 Impro varient
Defect Factor
Density
2550 3.7
5.46 8.9
3.64 12.6

Trend in Defect Densitity Reduction
120,00

100,00
—•—Total
—■ - - Compile

—A—Test

2 6o,ooit

g 40,00

Assigment Number

Table 4.3. Sample Data for Defect Density [HaOv97],

4.2 Academic Experiences Using the PSP

Most of the data on the PSP methodology’s successes are based on academic

classroom experiences at Carnegie Mellon University, but a growing number of

universities have started to teach the PSP, such as Embry-Riddle Aeronautical

University [ToHi97], University of Utah [WÍ1197], Lawrence Livermore National

Laboratory (LLNL), California [Roy96], and University of Galgary [Smith97],

Embry-Riddle Aeronautical University started to introduce software process

concepts and activities into their two first year computer science courses (CS1 and

CS2) during academic year 1995-96. They used an early draft version of Watts

Humphrey's Introduction to the Personal Software Process [Hump97b] as a training

material. They started the project called "Doing Quality Work" (DQW/PSP). The

project goal was to emphasize to the students, from very beginning, how important

quality was in their work.

31

The following list summarizes the conclusions of the DQW/PSP project: [ToHi97]

• Humphrey’s introductory text Introduction to the Personal Software Process

[Hump97b] provides an excellent foundation and motivation for teaching

DQW/PSP concepts.

• There is a need for simplification and automation of forms, logs and records

keeping.

• DQW/PSP concept need to be integrated throughout the computer science

curriculum.

• DQW/PSP data provides valuable information to teachers for analyzing student

effectiveness in completing course work, especially programming projects.

During the fall semester 1995 (from September to December) Margaret A. Ramsey

taught the PSP at New Jersey University. The course was taught using A Discipline

for Software Engineering [Hump95a] as the text book. The course was open to

Computer Science seniors and graduate students. The class began with enrollment of

fifteen students, the major of whom were seniors who had not worked extensively in

the computer field.

The following list summarizes the conclusions of their academic course experiences:

[Rams96]

• The software engineering work experience of the studendts was limited, so it was

very difficult to get them to participate in any classroom discussion and

interaction. It also made class motivation more difficult.

• Students were concerned about how the PSP grading would be done and how to

know the “right” answer because of non-traditional course structure. The course

was very different from any other computer course they had taken earlier.

• Students either did very well (eight students) or did not finish during semester.

Four students took incomplete grades and three dropped the course. Those that

32

attended regularly and completed the work expressed a feeling of accomplishment

and the desire to continue to use the tools and ideas they had learned.

• The PSP course focus and level are well suited to the Computer Science senior and

graduate student level.

• The PSP course instructor and teaching assistant may need to have side lectures

focusing on the statistical behind the course. The lecture time was not for adequate

remedial statistics.

Based on University of Galgary PSP course experiences during winter term 1996,

they learned that data gathering for the PSP was tedious. It is possible that time

spent in phases as the postmortem could be saved through automating all or some of

the parts of the PSP data gathering. It may not be viable to automate the entire PSP,

but most important things to automate are the data entry, calculation, and analyses.

At minimum, the Project Plan Summary, time recording, defect recording, and the PIP

should be automated. [Smith97]

Humphrey claims [Hump98d], that the best evidence of how well the PSP course

works is in how it changes the way students spend their time. As shown in Figure

4.1, at the beginning of the PSP course students spend less time on design than on

any other activity. At the end of the course, they typically spend more time on

design than on coding, compiling, or testing. This is what Humphrey, and the SEI

have been trying to get software engineers to do for years.

33

Time Invested Per
(New and Changed) Line of Code

Program Number

—♦—Design
------ Code

Compile
■ и Test

Figure 4.1. Effort distribution results [Hump98d],

4.3 Industrial Result with the PSP

While there is extensive data on PSP in the classroom, there is less on how PSP helps

the industry. A number of industrial groups are experimenting with the PSP methods,

however statistics on its benefits are limited. The article "Result of Applying the

Personal Software Process" [FeHu97] reports the experience of three industrial

software groups that have used PSP and collected data to show its effectiveness.

These groups are Advanced Information Services (AIS) Inc., Motorola Paging

Products Group, and Union Switch & Signal Inc.. Each has trained several groups of

engineering and measured the results of several projects that used PSP methods. In all

cases, the projects were part of the companies' normal operations.

Advanced Information Services (AIS) is located in Peoria, Illinois. The company

offers software development, process training, Internet services, and consulting

services. The company has trained its engineers in the PSP. AIS first introduced PSP

34

with a pilot course in the spring of 1994. Figure 4.2 shows the estimated and actual

times AIS engineers took to development nine components of a moderate-sized

product. It shows the estimating error for each of these components. Each

component had about 1000 lines of code. The three bars on the left of the chart show

the engineer’s time estimates for the weeks it would take to develop the first three

components. The average estimating error for these first three components was 394

%. After PSP training these same engineers completed the remaining six components.

The average estimating error for the last six components was -10.6 % [Hump98b],

For example the original estimate for component 8 was 14 weeks and the work was

completed in 14 weeks. Figure 4.3 shows the estimated and actual weeks to develop

nine components of a product.

Before PSP Training

500

400

w 300

1
2 200 -(—

Mf
Ë loo 4—

-100

Lfter PSP Training

И
Component Number

Figure 4.2. AIS Error in Estimated Weeks of Work [FeHu97],

35

Figure 4.3. AIS Estimated Weeks of Work [FeHu97].

Table 4.1 shows data on six projects at Advanced Information Service (AIS) (an early

PSP user). Here, program size is measured in lines of code (LOC) or the requirements

count (Req.). Three of these projects used PSP-trained engineers and three used either

engineers untrained in the PSP or a mix of trained and untrained engineers. Of the

projects that used only PSP trained engineers, all were delivered on or ahead of

schedule, and only one defect was found in acceptance testing. None exhibited any

defects during several months of customer use.

Project Staffing
PSP

Staffing
Non-PSP

Product
Size

Delivery
Months

Plan/Actual

Acceptance
Test

Defects

Usage
Defects

A 3 - 24 Req. 7/5 1 0
В - 3 19 Req. 2/5 11 1
C - 3 30 Req. 10/19 6 14
D 1 - 2233 LOC 6/6 0 0
E 1 - 1400 LOC 2/2 0 0
F 2 1 6196 LOC 2/2 0 3

Table 4.1. Summary of AIS Project Data [FeHu97],

36

“All engineers and managers at the AIS subsidiary in India have completed PSP

training 1997. In the USA, 58 percent of engineers and managers have completed

training during 1997. AIS now trains all new engineers in PSP before they are

assigned a project.” [FeHu97]

The Figures 4.4 and 4.5 below shows, what the engineers from Motorola Paging

Group think about the PSP, and how their work habits are changed after PSP

education five months later.

Management recognition
and support

Improved estimation
accuracy

PSP use on non-software
tasks

Data use to manage
defects

Conduct personal code
review

"will do it again"

Л- w

-4 jШЯШМ W
-4- .. —

F
-0—----------------------------- ,

2--------------------------------- --- -л0=7
0 10 20 30 40 50 60 70 80 90 100

% favorable

Figure 4.4. What do the Engineers from Motorola Paging Products Group think

about PSP after education [MaKN96]?

37

Defect management
practices

Planning

Time management

Personal code review

Use of data for
estimation

0 10 20 30 40 50 60 70 80 90 100

% favorable

Figure 4.5. The Engineers Work Habits from Motorola Paging Products Group

A study of the implementation of some PSP concepts in a commercial organization is

reported in the paper, Implementing Concepts from the Personal Software Process in

an Industrial Setting [EmSM96]. It describes the general lessons learned during the

implementation of PSP.

Some of the lessons from this paper are summarized below: [EmSM96]

• Lectures should cover all the typical personal life cycles that are in effect in the

organization, not only the one presented in the PSP manuscript. This makes the

classroom teaching more relevant to the participants' real programming tasks.

• It is important to customize the PSP data collection forms to the personal

processes of individual participants. They found, for example, that personal

processes varied depending on which product line the programmers were working

on.

• All forms must be piloted with the participants in their real work environment.

Even if forms were designed to fit their personal processes, actual use in realistic

programming tasks may reveal deficiencies in the design of the forms.

38

• It would be better to give the supervisors of the participants at least a formal short

overview of PSP so they understand it and see its benefits. This would help gain

stronger commitment for PSP.

• It is important to have automated tools that support the participants' data

collection and also data analysis. Furthermore, it would be preferable if the data

collection forms are available in editable format for the participants so that they

can customize the forms themselves as they gain a better understanding of their

processes.

39

5. The pilot psp course at Helsinki university of

TECHNOLOGY (HUT)

5.1 The Pilot PSP Course Overview

The goal of the PSP is to make students aware of the process they use to do their

work and of their performance of those processes. Individual students are trained to

set personal goals, define the methods to be used, measure their work, analyze the

result, and adjust their methods to meet their goals. The concepts, structure, and

activities of the PSP, what we used at HUT, are described in detail in the textbook,

“Introduction to the Personal Software Process” [Hump97b]. The material was

presented as lectures, discussions and workshop exercises. The textbook contents are

designed to be covered in two semesters. In the first part, Personal Time

Management, students learn to collect fundamental data, estimate software size and

effort, follow plans and track progress. In the second part, Personal Quality

Management, students leam to practice quality management techniques, use design

and code reviews and use yield management to improve quality.

Most software is developed by groups. One or more teams are given responsibility

for carrying out the activities of the software process. The Personal Software Process

by Watts Humphrey focuses on individual software process. One foundation for

productive participation in a software development team is a refined personal

process.

At Helsinki University of Technology we decided to test the PSP methods and forms

on the graduate Tik-76.115 Software Project course. “During this two-term, five

credit course, students work through major software projects in groups of five to

seven persons. Each project comprises all typical software design and

implementation phases, such as requirements analysis, conceptual and detailed

design, coding, testing, documentation, and delivery to the customer. The course

40

emphasizes well-planned and implemented software engineering methods, project

management, team management and system documentation [AlVa98].”

The PSP course introduced students to disciplined methods for managing and

planning their work, and to demonstrate, with their own data, the value of these

practices. All students had to do their own work, but they did not have to work

alone. Students had to make their own estimates, do their own designs, code their

own programs, and compile and test their own work.

Quality methods take time to leam and practice, so the principal focus in our PSP

course was to test how the students can use some PSP methods on their own

software project and what were their experiences of the PSP.

5.2 The Pilot PSP Course Elements

This chapter provides an overview of the basic PSP forms and elements that were

required on the pilot PSP course. This information is provided to give the reader

some context for data that was analyzed for this thesis. The following basic PSP

elements were required:

• Time Recording Log

• Defect Recording Log

• Weekly Activity Summary

• Job Number Log

• Project Plan Summary

• Personal Checklist

41

5.2.1 The Time Recording Log

There are three basic measures in the PSP: development time, program size and

defects. All other PSP measures are derived from these three basic measures.

The goal of the PSP time measures are to determine how much time students spend in

each PSP phase and help them to make better time estimates. Minutes are the unit for

development time measure. A form, the Time Recording Log, is used to record

development time. Students track the number of minutes they spend in each PSP

phase. They also follow how much time goes to interruptions such as phone calls,

people wanting to chat, coffee breaks etc.. The interruptions are recorded in the Time

Recording Log column Interruption time.

An example of how the Time Recording Log is completed is shown in Table 5.1. In

the example, the student Y started the Class activity of his project on November 11

at 16:00 and finished the class at 16:40. His first activity was to attend a PSP lecture.

In this time the elapsed time and Delta Time were same, 40 minutes, because he had

not any interruptions. The remaining activities, Project Management, Meeting,

Planning etc., are recorded in similarly.

42

Student: Y

Instructor: Ms. Virpi Kaltio

Date: 7/12/97

Class: The Pilot PSP Group

Date Start Stop Interruption
Time (min)

Delta Time Activity Comments

5.11.97 16:00 16:40 00:40 CLASS PSP lecture

20:50 21:35 00:45 PROJECT
MANAGEMENT

Review preparation

6.11.97 09:20 10:05 00:45 MEETING Review
12.11.97 21:13 21:48 00:35 PLANNING Technical spesification

13.11.97 15:10 16:30 01:20 MEETING Team meeting
17.11.97 21:35 23:04 01:29 PLANNING Technical spesification

18.11.97 18:15 20:00 01:45 PLANNING Technical spesification

22:26 00:08 01:42 DOCUMENT Technical spesification
19.11.97 15:00 17:20 02:20 PLANNING Technical spesification

24.11.97 12:15 12:45 00:30 CLASS Proto lecture
13:00 13:30 00:30 MEETING Team meeting

20:26 21:41 01:15 DOCUMENT Technical spesification
21:51 22:15 00:24 ADP

25.11.97 15:00 16:40 01:40 MEETING Customer meeting
21:01 22:41 01:40 DOCUMENT Technical spesification

22:41 23:12 00:31 ADP Documents' outlook
improvement

26.11.97 22:32 23:28 00:56 DOCUMENT Technical spesification
27.11.97 15:05 16:10 01:05 MEETING Team meeting

16:10 17:05 00:55 PLANNING Technical spesification
30.11.97 16:11 18:45 30 02:04 DOCUMENT Technical spesification

21:06 22:15 01:09 DOCUMENT Technical spesification
1.12.97 13:17 15:40 02:23 PLANNING Technical spesification

19:25 20:17 00:52 MEETING Team meeting
22:02 23:55 01:53 DOCUMENT Technical spesification

4.12.97 11:17 11:54 5 00:32 ADP
11:55 12:02 00:07 DOCUMENT Test plan
12:29 12:50 00:21 DOCUMENT Test plan

5.12.97 15:05 16:00 00:55 MEETING Test plan
7.12.97 16:42 20:42 04:00 DOCUMENT Technical spesification

23:10 23:31 00:21 CLASS Filling of PSP forms
23:31 00:07 00:36 PROJECT

MANAGEMENT
Status report

Cumulative Total! 36:00:00

Table 5.1 Student Y's Time Recording Log Example.

43

5.2.2 The Weekly Activity Summary

The Weekly Activity Summary form was used for tracking and analyzing the time

spent on the PSP course. This data is summarized from the Time Recording Log. In

the beginning the students track their time using the Time Recording Log. After

gathering a week or two of time data, students summarized the data in a more useful

form. An example of a partially completed Weekly Activity Summary is shown in

Table 5.2.

This example shows a record of the time student Y spent on each principal activity

during each day of the previous week. Previous Week's Time shows the average,

maximum, and minimum times he spent on each task category during the earlier

weeks of the semester. Current Weeks Times shows the total, average, maximum, and

minimum times he spent in each work category for the entire semester so far,

including the latest week.

The purpose of the Weekly Time Summary is to help students to understand how

they spend time, and plan the time they will spend in the future.

44

Name: Student Y Date: 16/2/98

Instructor: Ms. Virpi Kaltio Class: The Pilot PSP Group

Task Class Study Meeting Project
Manag.

Plan Code Test Doc. ADP Total

Date
M 9.2 107 151 258
T 10.2 90 90
w 11.2 0
T 12.2 18 38 136 192
F 13.2 63 69 132
s 14.2 19 195 214
s 15.2 16 241 257

Total 124 19 208 551 241 1143

Period Times and Rates Number of
Weeks (prior 19
number +1) ______

Previous Week's
Time

Total 229 478 1422 290 1263 1813 1829 752 8076
Avg. 13 27 79 16 70 101 102 42 449
Max. 129 151 263 68 319 1349 780 262 1664
Min. 30 20 45 22 35 29 84 32 115

Current Week's
Time

Total 229 602 1422 309 1471 2364 2070 752 9219
Avg. 12 32 74 16 77 124 109 40 485
Max. 129 151 263 68 319 1349 780 262 1664
Min. 30 20 45 19 35 29 84 32 115

Table 5.2. Student Y's Weekly Activity Summary.

45

5.2.3 The Job Number Log

The Job Number log form is used to track the job numbers for each project, and also

records key information on each project. This form is designed to record estimated

and actual time data. This log is a product planning document since it deals with

product data. “A product plan is a plan for producing a product. This could be a

program, a report, or even something simple like reading a textbook chapter. The key

point is that some tangible result is produced [Hump97d].” The Time Recording Log

and Weekly Activity Summary contain data on weekly periods. They are thus period

planning documents. “A period plan is a plan for how you will spend your time for

some period of time. Example periods would be a day, week, or semester

[Hump97d].”

An example of student Z's Job Number Log is shown in Table 5.3. He tracked only

one project activity: writing text. In the example, student Z wrote the project plan of

his project on October 8. His time estimate for this task was 360 minutes. At the end

of writing, he entered the actual time 245 minutes, and the actual units seven pages.

The Actual Rate is the Actual Time divided by Actual Units. For job one the Actual

Rate is 245/7 = 35 minutes per page. At the end of the job the student calculated and

entered the To Date Time for all the tasks done to date of the same process type. In

this case 655 minutes Actual Time for job 5, the To Date Time for jobs 1 through 4

as 1355, and the To Date Time for writing text 5 is 1355 + 655 = 2010 minutes.

Student Z entered the To Date Units for all the tasks completed. In this case 16

pages Actual Units for job 5, To Date Units for jobs 1 through 4 as 28, and the To

Date Units for writing text 5 is 28 + 16 = 44 pages. The To Date Rate is the To Date

Time divided by To Date Units, i.e., 2010/44 = 46 minutes/page.

The purpose of the Job Number Log is to help students to understand how much

time each of their jobs has taken, and plan how much time they will spend on similar

tasks in the future.

46

Name: Student Z Date: 25/05/98

Instructor: Ms. Virpi Kaltio Class: The Pilot PSP Group

Job # Date Pro
cess Estimated Actual To Date

Time Units Time Units Rate Time Units Rate Max Min

1 Description: Project (unit = pages)
Planning

08.10 text 360 1 245 7 35 245 7 35 35 35
2 Description: Test Planning (unit = pages)

08.12 text 600 1 435 10 44 680 17 40 44 35
3 Description: Manuscript (unit = pages)

14.02. text 1200 1 485 8 61 1165 25 47 61 35
4 Description: Reporting (unit = pages)

25.03. text 600 1 190 3 63 1355 28 48 63 35
5 Description: Demo (unit = pages)

23.04. text 600 1 655 16 41 2010 44 46 63 35

Table 5.3 Student Z's Job Number Log.

5.2.4 The Project Plan Summary

Project summary data is recorded on the Project Plan Summary form. The Project

Plan Summary form contains spaces for planning the job in advance, recording the

size of the finished job, and recording the time spent by project phase. Table 5.4

shows the five sections of project plan summary that were used: Summary, Program

Size, Time in Phase, Defects Injected, and Defects Removed. This form is very

complicated and difficult to explain shortly. More complete information on the

contents of the PSP Project Plan Summary form is provided in The Appendix C: The

PSP Project Plan Summary Instructions.

47

Student: Student Q Date: 15.3.1998
Program name: Program #: 2
Instructor: Ms. Virpi Kaltio Language: C

Summary Plan Actual To Date
Minutes/LOC 9,33 0,00i 3,86
LOC/Hour 6,43 0,00i 15,56
Defects/KLOC 333,33 181,82 214,29
Yield 0,00 0,001 0,00
A/FR. 1,00 5,001 3,00

Program Size
(LOC)

Plan Actual To Date

Total New arid Changed 6 11 14
Maximum Size 165
Minimum Size 180

Time in Phase (min.) Plan Actual To Date To Date%
Planning 8,00 2 6 11,11
Design 4,00 5 7 12,96
Code 40,00 13 33 61,11
Code Review 2,00 5 6 11,11
Compile 2,00 1 2 3,70
Test 0,00 0 0,00
Postmortem 0,00 0 0,00
Total 56 54 100,00
Maximum Time 1540
Minimum Time 1680

To Date
Defects Injected Plan Actual To Date To Date% Def./

Hour
Planning 0 0 0,00
Design 0 1 1 33,33 8,57
Code 2 1 2 66,67 3,64
Code Review 0 0 0,00
Compile 0 0 0,00
Test 0 0 0,00
Total 2 2 3 100,00

To Date
Defects Removed Plan Actual To Date To Date% Def./Hou

r
Planning 0 0 0,00
Design 0 0 0,00
Code 0 0 0,00
Code Review 0 0 0,00 0,00
Compile 2 2 3 100,00 90,00
Test 0 0 0,00 0,00
Total 2 2 3 100,00

Table 5.4 The Student's PSP Project Plan Summary Example.

48

5.2.5 The Defect Recording Log

The goals of the PSP defect measures are to provide a historical baseline of defect

data and understand the numbers and types of defects injected. “The term defect

refers to something that is wrong with a program, such as a syntax error, a

misspelling, a punctuation mistake, or an incorrect program statement. Defects can

occur in programs, in designs, or even in the requirements, specifications, or other

documentation. A defect is thus an objective thing. It is something you can identify,

describe, and count [Hump97b].” Defects are recorded on the Defect Recording Log

as they are found and fixed. The example Defect Recording Log illustrates how this

form is used in Table 5.2. It shows the information that is recorded for each defect:

the date, sequence number, defect type, phase in which the defect was injected, phase

in which it was removed, fix time, and the a description of the problem and fix. The

fix time is the time, in minutes, spent finding and fixing the defects.

In analyzing defects, it is helpful to divide them into categories. Each defect is

classified according to a defect type standard. “Introduction to the Personal Software

Process” [Hump97b] classifies defects into ten general types. This standard was

modeled on the work of Chillarege at IBM Research, and it should be sufficiently

general to cover most needs [Hump95a]. The defect types from the Defect Type

Standard are presented in Table 5.5.

In the example Defect Recording Log (Table 5.2), student X found the first defect on

January 17. The defect was of type 50 (interface) that was injected during the code

phase and removed during compile. Student X spent one minute finding and fixing the

defect. The second error was of type 10 (documentation) that was injected during the

code phase and removed during review, and took 17 minutes to find and fix it.

49

Name: Student X Date: 7/12/97

Instructor: Ms. Virpi Kaltio Class: The Pilot PSP Group

Date Number Type Inject Remove Fix
Time

Fix Defect

17.1.98 1 50 code compile 1
Descr. Wrong

FillUsers.
number of prameters for the function

Date Number Type Inject Remove Fix
Time

Fix Defect

21.1.98 2 10 code review 17
Descr. Incorrect format of JavaDoc comments.

Date Number Type Inject Remove Fix
Time

Fix Defect

21.1.98 3 Eo code review 1 1
Descr. Missing half-point

Date Number Type Inject Remove Fix
Time

Fix Defect

23.1.98 ~R~ 20 code compile 1
Descr. Incorrect function name (typo).

Date Number Type Inject Remove Fix
Time

Fix Defect

23.1.98 J5____ |20 code compile
Descr. Missing half-point

Date Number Type Inject Remove Fix
Time

Fix Defect

23.1.98 6 40 code compile 2
Descr. Same variable declarated two times in a function.

Date Number Type Inject Remove Fix
Time

Fix Defect

25.1.98 7 20 code Icompile 1
Descr. Missing half-point

Date Number Type Inject Remove Fix
Time

Fix Defect

11.3.98 11 20 code review 1
Descr. The bracket is missing at the end

of function.

Table 5.2. Student X's Defect Recording Log Example.

50

Defect
Type Number

Defect
Type Name

Description

10 Documentation comments, messages
20 Syntax spelling, punctuation, typos, instruction formats
30 Build, package change management, library, version control
40 Assignment declaration, duplicate names, scope, limits
50 Interface procedure calls and references, I/O, user formats
60 Checking error message, inadequate checks
70 Data structure, content
80 Function logic, pointers, loops, recursion, computation,

function defects
90 System configuration, timing, memory
100 Environment design, compile, test, other support system

problems

Table 5.3. Defect Type Standard [Hump95a].

51

6. Experiences of the pilot psp course at Helsinki

UNIVERSITY OF TECHNOLOGY (HUT)

6.1 The Survey of the Pilot PSP Course Experiences

This chapter presents the results of the pilot PSP course feedback questionnaire for 9

students who took the PSP pilot course at Helsinki University of Technology during

fall 1997 and spring 1998. The purpose of the questionnaire was to gather relevant

information from the students' subjective PSP course experiences and to collect ideas

for future improvement of the PSP course. The Feedback Questionnaire - Tik-76.161

Individual Project (3 cr.) P form is shown in Appendix 5. Several questions in this

questionnaire ask about usefulness using a four level scale. In each question the

students considered following two aspects:

• How well it teaches the purpose and practices of the subject matter?

• How beneficial is it for the actual SW development?

In the last section of the questionnaire students were asked to answer more general

questions about the pilot PSP course.

The results of the survey are presented in the following chapters 6.2 - 6.4.

52

6.2 Questions Related to Time Management

6.2.1 The Time Recording Log

Question 1: How useful the Time Recording Log was in planning and tracking your

work in the team?

Number of
s wers

8

./

z

1

z

z z

Average=2.6

Total Number of
Answers = 9

Z^
2 4 Value

Question 2: What were the main benefits in the use of Time Recording Log for you

and the project team?

Actual answers:

1. I found the Time Recording Log not that useful. The benefits were merely in

tracking the time for the reports, not in planning the use of time in advance. I also

should have more discipline in using the system. Still logging showed clearly how

each individual used time and for what. I cannot state if this system was better

than some other. The main benefit was that everybody used the same system.

53

Some reason why Time Recording Log was not used in its full potential: (1) Our

project did not go well so for example I spent less time for the project than

anticipated (reasons for this were various). (2) When not doing the project full

time, there were no needs to plan in advance. Point is: to get the full benefits of the

system it should be applied in cases when one is working in the project more or

less full time thus using it in time planning (3) One should have more categories of

different work tasks. {Role or roles in the project team: Testing, coding and

planning)

2. Maybe it was a little bit easier to predict the amount of work for the next phase of

the project. {Role or roles in the project team: Documentation)

3. Better understanding of how much time things take. {Role or roles in the project

team: Project manager)

4. I got exact data about the time I spend to different parts of work. {Role or roles in

the project team: Project manager and programmer)

5. It was good to see how much time it took to create documents and coding etc..

When I started to do things I preferred to do more because I have to make notes

how much I work so I try to gather all jobs that could be done and do them all at

the same time. This helps also to concentrate on the project by trying to minimize

the interruptions. {Role or roles in the project team: Project manager)

6. Personally I think it was most beneficial, because it gave me some idea of what I

was spending most of my time. Therefore planning the use of time for successive

weeks was easier. {Role or roles in the project team: Programmer)

7. Recording the actual working time quite accurately for the course reporting was

the main benefit of the Time Recording Log. {Role or roles in the project team:

Coding, customer relations, design)

8. It was needed in calculating accumulated time usage for each task. {Role or roles in

the project team: Documentation)

9. It was good way to see what is the real amount of the time that has been spent in

this project. {Role or roles in the project team: Project manager)

54

Question 3: How would you improve the Time Recording Log and it's use during the

course?

1. Firstly the team should think thoroughly what work categories to use. The rest is

up to each individual’s discipline in using the system. (Role or roles in the project

team: Testing, coding and planning)

2. The system must be automatic, or at least semi-automatic. One good solution

would be to have a Java applet with which people can actually record transactions

during the work day. (Role or roles in the project team: Documentation)

3. I used it only for tracking time I put into programming rather than all activities. On

the overall time management point of view it would be better to track all time of

course, but for the sake of this course concentrating on the SW development work

would suffice. (Role or roles in the project team: Project manager)

4. We had 8 work types and I found it was too much. Four or even less would have

been better. (Role or roles in the project team: Project manager and programmer)

5. Using Time Log only in one single separate course is very useless. I think the

benefits come when you can see your time usage from yours all studies. Time

Logging should be done so that it covers all your actions, related to studies and

possibly even related to other matters, too. Then it may become too tedious to do

that kind of logging, but it could be done for example so, that you only log time in

two phases of the project, prototype 1 and delivery for example. Then you can

see real fact how time is spent which helps to improve SW process. (Role or roles

in the project team: Project manager)

6. The gathering of time data must be made simple, so that the generation of the

reports would not take so much time. There was noticeable overhead of writing

the reports, which was discouraging at least for me. It was hard to be motivated.

The log itself is OK, although the gathering of time data could be automated at

least when you are sitting by the computer (some tool, easy to use form or Java

based application). (Role or roles in the project team: Programmer)

7. During the actual coding period, Time Recording Log was inconvenient because

testing, coding and design went hand in hand. So there is room for improvement,

55

but I dont’t know any solutions. Perhaps different categories should be combined.

(Role or roles in the project team: Coding, customer relations and design)

8. In my opinion, it serves little purpose when used like this. It is more useful when

tracking all time usage, i.e., during office hours. The method itself seems sound and

useful. (Role or roles in the project team: Documentation)

9. I would like to see it little bit more inaccurate (1 minute ->5...15 minutes). Also

some regular meetings/checkpoints to check that everybody has still the log

faithfully. (Role or roles in the project team: Project manager)

6.2.2 The Weekly Activity Summary

Question 1: How useful the Weekly Activity Summary was?

1 2 4 Value
bb

56

Question 2: What were the main benefits in the use of Weekly Activity Summary for

you and the project team?

Actual answers:

1. Weekly Activity Summary showed (sometimes painfully clear) what one had done

and what not. It was quite handy in showing the time spent on the project each

week. See also comments for the Time Recording Log. (Role or roles in the project

team: Testing, coding and planning)

2. Afterwards it was like a critic against your usage of time, so the biggest help was

for me. It was terrible to follow in what kind of issues your time actually goes. In

the end of the project I did not use it for anything else than for course purposes.

So, it did not give a good picture about usage of time. (Role or roles in the project

team: Documentation)

3. I did not use, because I used PSP for about one project per week. (Role or roles in

the project team: Project manager)

4. It did not give us any more information. It just helped us to count the time we

spend to different phases. (Role or roles in the project team: Project manager and

programmer)

5. I did not find it any good. The work depended from other people, so the work

could not be made so regularly, etc. So the weekly report was useless for me. (Role

or roles in the project team: Project manager)

6. It really helped on planning the use of time for individuals. The use of these was

not organized for the whole group. (Role or roles in the project team: Programmer)

7. I did not find any benefits, personally. (Role or roles in the project team: Coding,

customer relations and design)

8. It showed the accumulated time for each task. (Role or roles in the project team:

Project manager)

9. I noted quire clearly that there were weeks without any activities. (Role or roles in

the project team: Project manager)

57

Question 3: How would you improve the Weekly Activity Summary and its use during

the course?

Actual answers:

1. The team should think thoroughly what work categories to use. Also for avoiding

manual work all reports should be integrated and automated somehow. (Role or

roles in the project team: Testing, coding and planning)

2. Maybe it must be used for all tasks, not only for this specific project. This way it

gives a good picture from time usage overall. (Role or roles in the project team:

Documentation

3. I didn't use it. (Role or roles in the project team: Project manager)

4. Non comments. (Role or roles in the project team: Project manager and

programmer)

5. Well. Maybe summary could be used as summary for a whole phase. By then it

could be watch how time usage depends if the deadline is coming or not and how it

makes changes to time usage. (Role or roles in the project team: Project manager)

6. Generation of this report should be automated somehow, because all the needed

information can be found on the time log. Writing this report from scratch takes

some effort and unnecessarily wastes productive time. (Role or roles in the project

team: Programmer)

7. It could be useful if the tasks under observation were evenly distributed for each

week. Now the amount of work used for the course varied greatly in each week.

(Role or roles in the project team: Coding, customer relations and design)

8. No comments. (Role or roles in the project team:Documentation)

9. It should be used somehow to divide workload more equitable during course. Not

use it only as a note system but take it into the planning process. (Role or roles in

the project team: Project manager)

58

6.2.3 The Job Number Log

Question 1: How useful the Job Number was?

Number of

9J^wers

8./

7-/ r7

6-/

5-/

4-/

3-/

,/

Ш
o-¿-

- Kp. ^ x, .

Average=2.6

Answers = 9

1 2 4 Value

Question 2: What were the main benefits in the use of Job Number Log for you and

the project team?

Actual answers:

1. For me, no benefits since I did not code anything from scratch. I concentrated

fixing the bugs others had made. (Role or roles in the project team: Testing, coding

and planning)

2. I did not see any benefits using job number log, at least not in the way I used it

during the course. (Role or roles in the project team: Documentation)

3. I did not use, because I used PSP only for some very small, non-overlapping jobs.

(Role or roles in the project team: Project manager)

4. I did not help us at all but I did find it very usefully for planning how much time it

will take to read a book, for example to an exam. (Role or roles in the project team:

Project manager and programmer)

59

5. It helped to remember to do all jobs which have to be done and it helped to divide

all jobs to several people. It was then also easier to watch the progress of the

project. Unfortunately I started using logging too late. (Role or roles in the project

team: Project manager)

6. Job number log is nice in the way that it shows all kinds of statistics from a long

period of time. It is easier to plan the needed time for new jobs, when you have

old data to back you up. Also the LOC-rates proved to be quite interesting. (Role

or roles in the project team: Programmer)

7. I could see how much time I have to allocate for reading certain amount of pages or

coding couple of simple functions. (Role or roles in the project team: Coding,

customer relations and design)

8. It helped to plan quite accurately the time needed for similar tasks, in my case

documenting. I am certain it would have done the same in coding. (Role or roles in

the project team: Documentation)

9. I didn't found it very useful but I think that it was not the cause of the method but

my role in the project. (Role or roles in the project team: Project manager)

Question 3: How would you improve the Job Number Log and its use during the

course?

Actual answers:

1. Non comments. (Role or roles in the project team: Testing, coding and planning))

2. I never understand how do you do good estimations about the amount of work in

different tasks, e.g. how do you estimate the amount of lines of code. (Role or

roles in the project team: Documentation)

3. No comments. (Role or roles in the project team: Project manager)

4. No comments. (Role or roles in the project team: Project manager and

programmer)

5. Using log more would have helped me a lot at least (I find it out now). With Job

Log, it is the same thing as with the other logs. The logs should be simpler. Only

thing that should be in the logs is the real thing: for example in this case: the real

60

job description, maybe estimated time but nothing more. Then the time usage

should be in time log and copying between different logs just makes more errors,

etc.. The summaries and that kind of information should automatically be generate

from combining documents. Maybe one other improvement could be that the logs

consist not only both your jobs but also the jobs from other people. Then you

could also check if everything is taking care of, not only your things. (Role or roles

in the project team: Project manager)

6. Automation... Most of this data also can already be found on other reports. (Role

or roles in the project team: Programmer)

7. No comments. (Role or roles in the project team: Coding, customer relations and

design)

8. It should be defined what type of tasks is reasonable to write done to that log.

(Role or roles in the project team: Documentation)

9. I think it is fine. (Role or roles in the project team: Project manager)

6.2.4 The Whole Time Management Section

Question 1: How useful the whole time management section was?

Number of
wers

7-/

6-/

4-/

3-/ / A
2-/

w --------E---- ,------ T_S; / S

Average=2.4

Total Number of
Answers = 9

Value

61

Question 2: What were the main benefits of whole time management section for you

and the project team?

Actual answers:

1. I really can not say. Once you start using some time management system it should

apply for all you do. The whole project team had very little time since all was

working in real life projects at the same time. {Role or roles in the project team:

Testing, coding and planning)

2. It was useful for creating reports. {Role or roles in the project team:

Documentation)

3. See Time Recording Log above. {Role or roles in the project team: Project

manager)

4. We could better estimate the time we will spend to next phase. {Role or roles in

the project team: Project manager and programmer)

5. To see how much time it is spend on each category, and to help divide the tasks to

group’s members so that all things can be done in time. {Role or roles in the project

team: Project manager)

6. It helps to keep on top of things. Also it gives you an idea of what you spend

your productive time on and how (in) efficient you are (LOC-rates etc.). {Role or

roles in the project team: Project manager)

7. Recording the actual working time quite accurately for the course reporting was

the main benefit of the Time Record Log. {Role or roles in the project team:

Coding, customer relations and design)

8. Total time usage per task, and helped in planning similar tasks. {Role or roles in

the project team: Documentation)

9. To notice that it is really impossible to do something without breaks and the time

spent in breaks is quite big. {Role or roles in the project team: Project manager)

62

Question 3: How would you improve the whole management section and its use

during the course?

Actual answers:

1. No comments. {Role or roles in the project team: Testing, coding and planning)

2. As I said before, it must be done at least semi-automatic. It will not work if you

have to have a pad and pen with you all the time. Eventually, you forget to take a

pad and pen with you, and everything is just in your memory => not correct times

=> not correct reports. {Role or roles in the project team: Documentation)

3. No need to apply PSP minute tracking to all your daily activities, if your main job

is not programming or if you do not aim at overall improvement of your time

management skills. {Role or roles in the project team: Project manager)

4. Job Number Log could be presented as a tool for studying in generally. (Role or

roles in the project team: Project manager and programmer)

5. The checking time usage is very useful but the inefficient bureaucracy does no

well. The time management should be much simpler. The logs that are hand made

should contain no calculated, etc., information, only the real data. All summaries

should be automatically generated then by the data. (Role or roles in the project

team: Project manager)

6. Automation, automation. (Role or roles in the project team: Programmer)

7. It helps to keep on top of things. Also it gives you an idea of what you spend

your productive time on and how (in) efficient you are (LOC-rates, etc.). (Role or

roles in the project team: Coding, customer relations and design)

8. The section is fine. It only needs to be used differently (as it is supposed to be

used, during office hours). (Role or roles in the project team:Documentation)

9. It should be bound to the Software Project course. (Role or roles in the project

team: Project manager)

63

6.3 Questions Related to Quality?

6.3.1 The PSP Project Plan Summary?

Question 1: How usefiil the PSP Project Plan Summary was for your work in the

team?

Number of

1

wers

.z

./ 7^7
Z
Z
Z
Z
.z&Ú Дz И
z r, zz^

Average=2.6

Answers = 9

2 l 4 Value

Question 2: What were the main benefits in the use of PSP Plan Summary for you and

the project team?

Actual answers:

1. No benefits since the lack of the time. Everybody worked when they could and

use of PSP was minimal. (Role or roles in the project team: Testing, coding and

planning)

2. I did not use this. (Role or roles in the project team: Documentation)

64

3. Seeing the proportions of the time needed for different tasks. It also helped to

work more concentrated on the project at hand when you tracked the minutes all

the time. (Role or roles in the project team: Project manager)

4. We got some information about errors and time estimates for next phase. (Role or

roles in the project team: Project manager and programmer)

5. We did not have so much time making our quality very high. So we did not make

so much testing, etc., so there it was no very exact numbers how many bugs there

are, etc. So that kind of summary did not provide any useful information. (Role or

roles in the project team: Project manager)

6. The use of it was painfully time-consuming, and its benefits to our project

remained a mystery. I could not motivate myself for yet another piece of

paperwork. Role or roles in the project team: Programmer)

7. No comments. Role or roles in the project team: Coding, customer relations and

design)

8. It had no benefits in documenting. Role or roles in the project team:

Documentation)

9. I found it quite difficult to apply the LOC-type follow-up. Role or roles in the

project team: Project manager)

Question 3: How would you improve the PSP Project Plan Summary and its use

during the course?

Actual answers:

1. No comments. (Role or roles in the project team: Testing, coding and planning)

2. No comments. (Role or roles in the project team: Documentation)

3. LOC metrics can be misleading. PSP process model is a bit strict, suitable for small

projects. The big ones should be broken into small ones of course, but currently

there is no support for that in PSP. Better support for spiral development process

needed, so that time could be easily accounted for projects after they have been

closed, as you often need to make improvements and other maintenance work

later. Work needed to integrate software modules (individual PSP projects) not

65

taken into account. (Role or roles in the project team: Project manager and

programmer)

4. Fewer things to track, like Yield and A/FR. (Role or roles in the project team:

Project manager)

5. The summary should better fit the project model used in the course. (Role or roles

in the project team: Project manager)

6. Automation... Make it easier to fill out. (Role or roles in the project team:

Programmer)

7. No comments. (Role or roles in the project team: Coding, customer relations and

design)

8. No suggestion. (Role or roles in the project team'.Documentation)

9. Maybe module/function based follow-up would be easier to use. (Role or roles in

the project team: Project manager)

6.3.2 The Defect Recording Log

Question 1: How useful the Defect Recording Log was for your work in the team?

1 2 4 Value
Sb

66

Question 2: What were the main benefits in the use of Defect Recording for you and

the project team?

Actual answers:

1. No benefits for the project since nobody really used it. Defects and their

correcting were poor in our team: one person took care of the testing, implements

did't record defects, etc.. (Role or roles in the project team: Testing, coding and

planning)

2. No comments. (Role or roles in the project team: Documentation)

3. I did not really use due to small size of my projects. (Role or roles in the project

team: Project manager)

4. I could more easily track what kinds of errors are the most frequent and maybe

avoid them. (Role or roles in the project team: Project manager and programmer)

5. Logging errors is good, if every bug is logged then the probability to remember to

fix it is much higher. (Role or roles in the project team: Project manager)

6. We used a different kind of log only to report the defects, which remained after

compilation (and were thus found during system/user testing). Defect recording in

this way is of course beneficial to any software project. The data gathered in

previous projects gives you an indication what kinds of bugs are the most common

and when - and by whom - they are injected. It is a good indicator of software

quality, although I disagree with the author of the PSP process on the necessity of

reporting every missing semicolon. (Role or roles in the project team:

Programmer)

7. I could classify the errors I made and I was able to see in which area I had most

room for improvement. (Role or roles in the project team: coding, customer

relations and design)

8. It showed some of my weaknesses in coding. (Role or roles in the project team:

Documentation)

9. We did not use it as it should. I think that collecting defect data during hole project

time is useful and it would have helped our work in later phases of the project.

(Role or roles in the project team: Project manager)

67

Question 3: How would you improve the Defect Recording Log and its use during the

course?

Actual answers:

1. No comments. {Role or roles in the project team: Testing, coding and planning)

2. Can it be automatic too? {Role or roles in the project team: Documentation)

3. Just filling it in seemed a little pointless because you would need some kind of

summaries and a lot of data for it to be useful. {Role or roles in the project team:

Project manager)

4. The idea is good but I found it somehow too hard to keep. Maybe it could have

been better for normal C/C++ coding not for CGI-skripts. {Role or roles in the

project team: Project manager and programmer)

5. Well, I guess I have said all comments in previous part. {Role or roles in the

project team: Project manager)

6. With modem powerful compilers and syntax checkers I really cannot see the

points of reviewing the code before compile - at least on syntax level. Compilers

nowadays catch almost all the syntactic errors and by sensible coding those

complicated defects, which escape the compiler can be avoided. I think most

programmers do an initial ‘reviewing’ of the code before they compile, but locating

‘defects’ like mismatched parentheses (which most commonly are found by the

editor you use - say emacs) is unnecessary waste of programming time. {Role or

roles in the project team: Programmer)

7. No comments. {Role or roles in the project team: coding, customer relations and

design)

8. There is no point in recording all syntactic errors after you have realized that you

make typing errors. Take a course! {Role or roles in the project team:

Documentation)

9. No comments. {Role or roles in the project team: Project manager)

68

6.3.3 The Personal Checklist

Question 1: How useful the Personal Checklist was for your work in the team?

Number of

Average=2.6

Total Number of
' Answers = 9

4 Value

Question 2: What were the main benefits in the use of Personal Checklist for you and

the project team?

Actual answers:

1. I did not use Personal Checklist in the project since I tested functionality only. I

have found checklist useful at work where I have used it couple of times. The main

benefit is to check the code systematically rather than trying to blindly find out

what's wrong. It brings a systematic way for code checking even before you have

tried to compile. (Role or roles in the project team: Testing, coding and planning)

2. No comments. (Role or roles in the project team: Documentation)

3. I did not use. (Role or roles in the project team: Project manager)

4. The idea is good. The problem was that I got almost every time different kind of

error. (Role or roles in the project team: Project manager and programmer)

69

5. If there are some bugs, it is easy to first check the easy ones by checking with the

list. It surely speeds up the finding bugs. Normally the bugs are harder to find than

some typing errors in some line. The bugs are missing functionality or differences

between class methods and documentation. I mean bugs come from

misunderstandings between people. I cannot see if any checklist would help with

that. (Role or roles in the project team: Project manager

6. Unfortunately we did not spend much time reviewing the code, but the initial

checklist I made proved to be useful during the review. I think, that thorough

reviewing of the code requires this kind of list. It is by no means complete: the

checklist could be improved significantly by doing a number of code reviews and

simultaneously modifying the list to better meet the needs of the project. (Role or

roles in the project team: Programmer)

7. I didn't use it. I did not manipulate the project team to use it. Anyway some kind

of check list is needed to follow the status of the defects. Again, I used this very

little. In conjunction with the Defect Log it revealed my biggest weaknesses and

helped me to improve my methods and skills. (Role or roles in the project team:

Coding, customer relations and design)

8. Again, I used this very little. In conjunction with the Defect Log it revealed my

biggest weaknesses and helped me to improve my methods and skills. (Role or

roles in the project team: Documentation)

9. No comments. (Role or roles in the project team: Project manager)

Question 3: How would you improve the Personal Checklist and its use during the

course?

Actual answers:

1. No comments. (Role or roles in the project team: Testing, coding and planning)

2. No comments. (Role or roles in the project team: Documentation)

3. No comments. (Role or roles in the project team: Project manager)

4. No suggestions. (Role or roles in the project team: Project manager and

programmer)

70

5. Maybe checklists are good for people who are making their first programs. I guess

the main issue is the conversation skills between people. So the main concern

should be in defining the strict coding conventions and then working with people

so you know what people mean by saying something. (Role or roles in the project

team: Project manager and programmer)

6. I think it is as good as one makes it, so it is OK as it is. (Role or roles in the

project team: Programmer)

7. No comments. (Role or roles in the project team: Coding, customer relations and

design)

8. My checklist was quite small, but I guess that when used in several projects it also

becomes better. (Role or roles in the project team: Documentation)

9. I do not see what benefits I get when I use those numeric codes in the type

column, otherwise the table is OK. (Role or roles in the project team: Project

manager)

6.3.4 The Whole Quality Section

Question 1: How useful the whole quality section was?

Number of
Arris wers

z
z ж,z
z
z 1z
.z 1.z
z: W ymy r zzz

Answers = 9

Average=2.6

1 2 l 4 Value

71

Question 2: What were the main benefits of whole quality section for you and the

project team?

1. It is hard to say. It is more in the conceptual level to realize that quality means

many things and that there are several ways to make the quality level better. {Role

or roles in the project team: Testing, coding and planning)

2. No comments. (Role or roles in the project team: Documentation)

3. No comments. (Role or roles in the project team: Project manager)

4. It was very hard to track quality changes during work. We did most of the

developing work in the first coding phase in a two weeks period. We did not have

any time to use PSP then. We did not develop enough code so that the results

could be trusted. This kind of work would be better on a program course like TiTe

B. (Role or roles in the project team: Project manager and programmer)

5. It helped to remember the quality. It made me think about it, how to keep quality

in some level and how to improve it. (Role or roles in the project team: Project

manager)

6. It gave us an idea of how software quality can be maintained during the whole

project. Role or roles in the project team: Programmer)

7. No major benefits. Role or roles in the project team: Coding, customer relations

and design)

8. It helped me to find my weak areas and methods. Role or roles in the project team:

Documentation)

9. It is not very rousing to adapt it only from the project manager point of view. Role

or roles in the project team: Project manager)

Question 3: How would you improve the whole quality section and its use during the

course?

Actual answers:

1. No comments. (Role or roles in the project team: Testing, coding and planning)

2. No comments. (Role or roles in the project team: Documentation)

3. No comments. (Role or roles in the project team: Project manager)

72

4. Other courses where this could be used. (Role or roles in the project team: Project

manager and programmer)

5. The quality is more than just bugs in code. The quality is in the eye of the

customer. It should be calculated somehow. I do not know how. (Role or roles in

the project team: Project manager)

6. The role of the Project Plan Summary should be clarified. Also the senseless

recompile code reviewing should be changed to recompile code functionality

review and postcompile defect reporting. (Role or roles in the project team:

Programmer)

7. No comments. (Role or roles in the project team: Coding, customer relations and

design)

8. It might be even more useful if I had done more actual coding. (Role or roles in the

project team: Documentation)

9. It would be stated in the requirements of the first milestone that project should

have clear method to save and follow defects generated and removed during hole

project time. (Role or roles in the project team: Project manager)

73

6.4 Questions Related to PSP Course Overall

Question 1: How useful the whole course was, if considering your skills in SfV

development?

Number ofárfís wers
Z
.z
,z
z
z
.z
.zA4 af,z 1 Iz- ", zz, rzz zz

Average=2.6

Total Number of
Answers = 9

1 2<$
4 Value

Question 2: What were the main benefits of the course for you?

Actual answers:

1. The main benefit was in the way of thinking: Fast coding (not meaning on the fly)

and fewer mistakes by systematic and disciplined way of working. The course

introduced a systematic tool for developing software. There were also some good

facts available that made it clear why it is important the plan everything you do

and do everything in certain way. (Role or roles in the project team: Testing,

coding and planning)

2. You get a picture of time usage. (Role or roles in the project team: Documentation)

3. Made me think about these things, specially time management, even if I am critical

towards PSP in its current form. (Role or roles in the project team: Project

manager)

74

4. I realized the importance of planning code in advance and use the code review.

(Role or roles in the project team: Project manager and programmer)

5. The course did help to understand the different aspects of the software process. It

gave some very good ideas how to improve the process. It also reminds and the

software process is not just children’s play with computers. SW process is

complicated thing and if good quality is wanted, it needs some resources and very

good working methods. PSP can give some ideas to help to find the best working

methods for the team. (Role or roles in the project team: Project manager)

6. My time management improved significantly. Also I have noticed some

improvement in the quality of software I produce. (Role or roles in the project

team: Programmer)

7. Information about different aspects that should be considered during software

development. (Role or roles in the project team: Coding, customer relations and

desing)

8. I understood the methods how I can observe my methods and processes. I learned

to estimate the time that a given task takes based on earlier similar tasks. (Role or

roles in the project team: Documentation)

9. It is to see alternative way to do following of the project. (Role or roles in the

project team: Project manager)

75

Question 3: What were the main aspects that you would like to change in the course?

Actual answers:

1. The seminars were good. Things should be automated enough to avoid certain

frustration in filling up all the paperwork (templates, etc.). Some assignments like

Job Number Log did't fit in to this course. (Role or roles in the project team:

Testing, coding and planning)

2. No comments. (Role or roles in the project team: Documentation)

3. Made me think about these things, especially time management, even if I'm critical

towards PSP in its current form. (Role or roles in the project team: Project

manager)

4. PSP could be integrated to a different kind of course and results could be sent

every one or two weeks. (Role or roles in the project team: Project manager and

programmer

5. I guess the main problem with the course is the material in PSP book does not fit

very well in the process used by Software Project Course. Also the logging

procedure is made too complex and time consuming so it easily is forgotten. So

what I would like to see changed is the logs and summaries are developed further.

Logs should be easier to fill and summaries should be automatically generated. The

process model also should be the same as used in the Software Project course.

(Role or roles in the project team: Project manager)

6. The reporting should be less tedious. Overall it is good and well suited for multiple

small software projects. (Role or roles in the project team: Programmer)

7. It should be adapted better for the SW Development course or kept as totally

separate course. PSP could work better with for example TiTe В course. (Role or

roles in the project team: Coding, customer relations and desing)

8. The way it is used. Take a shorter period of time, say a month or so, and follow

the time usage every day for every task, not just for one course. Following just

one course gives data, but it is not that kind of data Humprey probably had in

mind. ..(Role or roles in the project team: Documentation)

76

9. This should be a part of the Software Project course so then everyone who works

for the project will commit to same rules. (Role or roles in the project team:

Project manager)

Question 4: How useful did you find presentations of the PSP topics by fellow

students? How would you improve introductions of the topics?

Actual answers:

1. The current way is good and useful. (Role or roles in the project team: Testing,

coding and planning)

2. I personally think that filling out the forms is waste of time. As I said before,

pretty much everything must be automated in some level. The updating of the log

must be so easy, that it does not cause any overhead to your work. (Not a answer

to the question itself ©). Basically, the seminar kind approach is pretty good. I

can’t figure out any better way to actually introduce the topics. (Role or roles in

the project team: Documentation)

3. Need an automatic tool for recording data and making reports! Doing it by hand is

tedious and obscures the real point. More flexible process model would be needed,

but is it PSP any more? (Role or roles in the project team: Project manager)

4. In generally, they were too kind of direct reading from a book. They should have

been shorter and maybe more discussion around the topic. (Role or roles in the

project team: Project manager and programmer)

5. I guess, I will use the time logging by somer way to see how my time really goes.

And that job logging too. I think they were the best ideas in PSP. The others are

also good things to remember but I do not know if this solution is the best. I think

they have to have more work to be done to develop them better. (Role or roles in

the project team: Project manager)

6. It was nice to listen to other students' presentations and opinions on the PSP

topics. I think it si good as it. (Role or roles in the project team: Programmer)

77

7. The reporting should be less hard. Overall it is good and well suited for multiple

small software projects. It was nice to listen to other students’ presentations and

opinions on the PSP topics. I think it is good as it is. I think I will keep using

those parts of the PSP. I liked mostly the time management and some quality

related things. It was nice.

The reporting could be improved a lot to make it more user friendly. {Role or roles

in the project team: Coding, customer relations and desing)

8. Mostly they were OK. Everybody can read the book, so people should try to

pick up the essential things and represent them. (Role or roles in the project team:

Documentation)

9. They were very useful! It helped to understand the material better with less actual

reading. I have no suggestions to our presentations. The presentations were top

class! (Role or roles in the project team: Project manager)

Question 5: How much you expect you will use the working practices, which you

applied during the PSP course, in the future? Select one of the following alternatives:

None /Some/Most/All.

Number of
wers

У MÍy
У
У
У
У
y
y
Z-E-

_____ry /X X /X

Answers = 9

None Some Most All Value

78

Question 6: Any other suggestions for improving the course?

1. No comments. (Role or roles in the project team: Testing, coding and planning)

2. It was good that the course was related to the specific course. It should be

integrated into the core of the course more tight. I think that I made myself clear

about the automation of the process, as much as possible. (Role or roles in the

project team: Documentation)

3. No comments. (Role or roles in the project team: Project manager)

4. No comments. (Role or roles in the project team: Project manager and

programmer)

5. I think this course is quite fine. (Role or roles in the project team: Project

manager)

6. It was nice. The reporting could be improved a lot to make it more user friendly.

(Role or roles in the project team: Programmer)

7. No comments. (Role or roles in the project team: Coding, customer relations and

design)

8. Probably continue tracking time of relatively small projects and wait for an

enlightenment of how to get real benefit out of it. (Role or roles in the project

team: Documentation)

9. This may even turn to Most if it helps to improve my methods at my work. No

comments. (Role or roles in the project team: Project manager)

79

6.5 Summary of the Feedback from the Pilot PSP Course at

Helsinki University of Technology

Students' comments about the pilot PSP course was very encouraging. It seems that

some critical goals of the PSP course were obtained. The students started to think of

the significance of time management, planning, and software development. “I

understood the methods how I can observe my methods and processes. I learned to

estimate the time that given task takes based on earlier similar tasks. ”

The time management seems to be relevant for student’s project work. The Time

Recording Log supplied for PSP provides an ideal template for recording time spent

in the project. The time data gives better understanding of how much time each task

takes, and how much non-development time (for example, meetings, reports,

interruptions, etc.) there really is. ‘‘It was terrible to follow in what kind of issues my

time actually goes. I notice that it is really impossible to do something without breaks

and the time spent in breaks is quite big. ”

Gathering defect data seems to be very difficult to students. Only some student used

the Defect Recording Log and the Personal Checklist. “We didn’t use it as it should. I

think that collection defect data during whole project time is useful, and it would have

helped our work in later phases of the project. The idea is good but I found it

somehow too hard to keep. Maybe it could have been better for normal C/C+ + coding

not for CGI-skripts. ” The students recommended to use the quality section forms,

The Defect Recording Log and Personal Checklist, at early freshman’s courses (for

example, Tik-76.020 Basic Course in Programming LI or Tik-76.021 Basic Course in

Programming L2)

80

The most critical improvement areas for future PSP courses seem to be:

1. Automatization of data collection and analysis: The collection of time and defect

data shall be simplified and automated. A limited number of tools are available via

www, but all of those have limitations. HUT should probably develop own tools

based on other universities' experiences. That could be for example be one topic

for SW Project Course.

2. Integration with other course or courses: The PSP methods should more tightly

integrate with another computer science course or courses. It might be even

reasonable to consider how the PSP principles could be integrated throughout the

CS curriculum, because learning good working practices take a lot of time. The full

PSP activities could be integrated to freshman course, for example, Tik-76.020

Basic Course in Programming. The time management activities could be integrated

to Tik-76.115 Software Project course.

81

8. Conclusions

The PSP is a very promising tool for the student and the engineer who is willing to

work with PSP tables, forms, and scripts. The text Introduction to Personal Software

Process [Hump97b] serves as an ideal companion text for the computer science first

year courses. Introduction of this new technology is not trivial and requires extensive

planning, data collection and monitoring. The textbook is self-contained, experienced

students could use the textbook to help them learn the PSP on their own, but most

students need the structure and support of a formal training course to complete the

training. Learning the PSP on your own is a major effort. Sharing lessons learned with

other students that are using the PSP on the project would certainly help.

PSP training requires a lot of student's time. The entire approach of collecting data,

making process changes based on that data, and then measuring the effects of those

changes takes considerable time. The student must invests this time to see the benefit

of discipline, and must be prepared for the hard work of changing the way she/he

works. Patience and commitment are required in using the PSP. However the PSP

concept needs to be integrated throughout the computer science curriculum.

Substantial, integrated automated support for both collection and analysis stages in

PSP are essential, if high data quality is desired. Automation of the analysis stage is

not a new idea to the PSP, and many spreadsheets and the database tools have

already been made. Automated and integrated support both collection and analysis

stages in the PSP is a challenging goal for future research on personal software

process improvement

The teacher of the PSP course shall have enough experience of using PSP. After you

have personally used the PSP, you have background to explain the PSP to the

students and support their studies.

82

References

[AlVa98] Alho, Kari and Vanhanen, Jari. Tik-76.115 Software Project (5
cr.) course. 1998 Helsinki University of Technology.
URL:http://www.mordor.cs.hut.fi/tik-76.115/oht.htm

[BaFu95] Bandinelli, Sergio, Fugetta, Alfonso , Lavazza, Luigi, Loi,
Maurizio, and Picco, Gian Pietro. Modeling and Improving an
Industrial Software Process. IEEE Transactions on Software
Engineering. Vol. 21, No. 5, May 1995. pp. 440-454

[BaRo88] Basili, Victor R. and Rombach, H. Dieter. The TAME Project:
Towards Improvement-Oriented Software Environments. IEEE
Transactions on Software Engineering. Vol. 14. No. 6. June,
1988.

[BaCR94] Basili, Victor R., Caldiera, Gianluigi and Rombach, H. Dieter.
The Experience Factory. Encyclopedia of Software Engineering.
Wiley 1994.

[BaMc95] Basili, Victor R. and Turner, A.J. Tutorial: The Experience
Factory: How to Build and Run One. 17th International
Conference on Software Engineering. USA: Seattle,
Washington. April 24, 1995.

[EmSM96] Emam, Khaled El, Shostak, Barry and Madjavji, Nazim.
Implementing Concepts from the Personal Software Process in
an Industrial Setting. Proceeding of the 4th International
Conference on the Software Process, pages 117-130, IEEE CS
Press, 1996.

[FeHu93] Feiler, P.H., and Humphrey, W. S.. Software Process
Development and Enactment: Consepts and Definitions. In
Proceedings of the second International Conference on the
Software Process, IEEE Computer Society Press, 1993,
pp. 28-40.

[FeHu97] Ferguson, Pat, Humphrey, Watts S., Khajenoori, Soheil,
Macke, Susan and Matvya, Annette. Result of Applying the
Personal Software Process. 0018-9162/97. 1997 IEEE.

[HaOv97] Hayes, Will and Over, James W. The Personal Software
Process (PSP): An Empirical Study of the Impact of PSP on
Individual Engineers. Technical Report. CMU/SEI-97-TR-001.
Pittsburgh, PA, USA: The Software Engineering Institute, 1997

83

[HeGo96] Herbsleb, James D. and Goldenson, Dennis R. A Systematic
Survey of CMM Experience and Results. CMU/SEI-0270-
5257/96. Pittsburgh, PA, USA: The Software Engineering
Institute, 1996 IEEE.

[Hump89] Humphrey, Watts S. Managing the Software Process. Reading,
USA: Addison Wesley, 1989. 494 p. ISBN 1-55937-067

[Hump94a] Humphrey, Watts S. The Personal Software Process. In
Software Process Newsletter, IEEE Computer Society TCSE,
No. 1, p. 1-3, September 1994.

[Hump94b] Humphrey, Watts S. The Personal Software Process Overview,
Practice, and Results. 6 p. S.P.I. Forum, 1994.

[Hump94c] Humphrey, Watts S. The Personal Process in Software
Engineering. The Third International Conference on the
Software Process, Reston, Virginia, October 10-11, 1994, pp.
69-77.

[Hump94d] Humphrey, Watts S. A Personal Commitment to Software
Quality. American Programmer, December 1994

[Hump95] Humphrey, Watts S. A Discipline for Software Engineering.
Reading, USA: Addison Wesley, 1995. 789 p. ISBN 0-201-
54610-8.

[Hump96a] Humphrey, Watts S. Using a Defined and Measured Personal
Software Process. In IEEE Software, pages 77-88, May 1996.

[Hump97a] Humphrey, Watts S. Managing Technical People: Innovation,
Teamwork, and the Software Process. Reading, USA:
Addison Wesley, 1997. 326 p. ISBN 0-201-54597-7.

[Hump97b] Humphrey, Watts S. Introduction to the Personal Software
Process. Reading, USA: Addison Wesley, 1997. 278 p. ISBN
0-201-54809-7.

[Hump97c] Humphrey, Watts S. The Personal Software Process (PSP)SM
Tutorial. The Second Annual: European Software Engineering
Process Group Conference 1997. Amsterdam. 16-19th June
1997.

[Hump97d] Humphrey, Watts S. Instructor's Guide and Assignment Kits
for Introduction to the Personal Software Process. Addison
Wesley, 1997. ISBN 0-201-17356-5.

84

[Hump98a] Humphrey, Watt S., Article: Three Dimensions of Process
Improvement. Part I: Process Maturity. Crosstalk - The
Journal of Defense Software Engineering. February 1998.

[Hump98b] Humphrey, Watt S., Article: Three Dimensions of Process
Improvement. Part II: The Personal Process. Crosstalk - The
Journal of Defense Software Engineering. February 1998

Hump98c] Humphrey, Watt S., Article: Three Dimensions of Process
Improvement. Part III: The Team Process. Crosstalk - The
Journal of Defense Software Engineering. April 1998

[Hump98d] Humphrey, Watt S., Why Don't They Practice What We
Preach? 1998 Carnegie Mellon University. URL:
http://www.sei.cmu.edu/publications/articles/sources/
practice.preach/index.html. Last Modifield: 29 May 1998

[Hump98e] Humphrey, Watt S., The Team Software Process (TSP). The
Second Annual: European Software Engineering Process Group
Conference 1998. London June 1998.

[IEEE90] IEEE Std 610.12-1990, Standard Glossary of Software
Engineering Terminology. IEEE, New York, USA 1990.

[Khaj94] Khajenoori, Soheil. Process-Oriented Software Education. IEEE
Software, pages 99-101, November 1994.

[KeBr96] Kellner, Marc I., Briand, Loic and Over, James W., A Method
for Designing, Defining and Evolving Software Processes. 0-
8186-7719-8/96. 1996 IEEE. PP. 37-48.

[MaKN96] Macke, Susan, Khajenoori, Soheil, New, Jeff, Coxon, Jed and
Rockwell, Ron. Personal Software Process At Motorola Paging
Products Group. In Proceedings of the Software Engineering
Process Group Conference, 1996.

[Matv96] Matvya, Annette. Industrial Strength PSP at Union switch and
Signal Inc. In Proceedings of the Software Engineering Process
Group Conference, 1996.

[McFe96] McFeeley, Bob. IDEAL SM: A User's Guide for Software
Process Improvement. Handbook CMU/SEI-96-HB-001.
Pittsburgh, PA, USA: Software Engineering Institute, 1996.

85

[PaulCC93] Paulk, M.C. et. al. Capability Maturity Model for Software,
Version 1.1. Technical Report CMU/SEI-93- TR-24.
Pittsburgh, PA, USA: Software Engineering Institute, 1993.

[Paul94] Paulk, Mark C., Weber, Charles V., Curtis, Bill and Chrissis,
Mary Beth. The Capability Maturity Model: Guidelines for
Improving the Software Process. ISBN 0-201-54664-7.
Addison-Wesley Publishing Company. Reading. MA 1994.

[PaKG95] Paulk, Mark C., Konrad, Michael D. and Garcia, Suzanne M..
CMM Versus SPICE Architectures. Published in Software
Process Newletter, IEEE Computer Society Technical Council
on Software Engineering, No. 3, Spring 1995, pp. 7-11.

[Paul96] Paulk, Mark C. Effektive CMM-Based Process Improvement.
Proceedings of the 6th Conference on Software Quality,
Ottawa, Canada. 28-31 October 1996, PP. 226-237.

[Proc98] Personal Software Process (PSP). Process Term.
URL: http://www.sei.cmu.edu/psp/ProcessTerms.htm
Last Modified: 30 April 1998.

[Rams96] Ramsey, Margaret A., Experience Teaching the PSP in
Academia and Industry. In proceedings of the Software
Engineering Process Group Conference, 1996.

[Roy96] Roy, Daniel M., The Personal Software Process: An "ego-
centered" improvement paradigm. In proceedings of the
Software Engineering Process Group Conference, 1996

[Smit98] Home Page for Smal Software Project Development Courses by
M.R.Smith.
URL:http.//www.enel.ucalcary.ca/People/Smith/619.94

[ToHi97] Towhidnejad, Massood and Hilbum, Thomas. Integrating the
Personal Software Process (PSP) across the Undergraduate
Curriculum. 1997 ASEE/IEEE Frontiers in Education
Conference.

[WÍ1197] Williams, Laurie A. Adjusting the Instruction of the Personal
Software Process to Improve Student Participation. In
proceedings of the Software Engineering Process Group
Conference, 1996.

86

APPENDIX 1: THE GRADUATE PSP COURSE [HUMP98d]

Objectives 1. To improve a software engineers performance.
2. To provide an understanding of what processes are, how

processes work, and how a personal process can help the
students do better work.

3. To help engineers measure the quality of their programs and
determine how to consistently produce high-quality
programs.

4. To provide engineers with measures of their personal
performance and benchmarks against which to judge their
improvement.

5. To show engineers how to make accurate plans.

Prerequisites 1. Fluency in at least one programming language.
2. A basic understanding of software design.
3. Familiarity with basic mathematics through calculus.
4. An appreciation of statistical principles is helpful not

essential.
5. An awareness of formal methods is also helpful but not

essential.

Course Structure 1. The basic PSP course has 15 lectures of 50 minutes each.
2. An additional laboratory per week is generally helpful in

assisting the students to complete their work properly and
on time.

3. There are 10 programming assignments that average about
100 LOC each, although program 10 is generally a little
larger.

4. Five report assignment require the students to analyze
personal data.

5. Students generally take 4 to 6 hours to complete each
programming exercise, on to two hours each for reports 1, 2,
and 3, and about 6 to 8 hours each for reports 4 and 5.

Course Support 1. The course is fully described in Humphrey's textbook: A
Discipline for Software Engineering, Addison Wesley, 1995.

2. An instructor's quide describes lecture objectives, suggests
grading criteria, comments on the assignments, and provides
lecture overheads.

3. An instructor’s diskette includes spreadsheets for analyzing
student data and lecture overheads.

4. A support diskette provides data analysis and calculation
support for the students.

87

APPENDIX 2. THE UNDERGRADUATE PSP COURSE STRUCTURE

[Hump98d]

Objectives 1. To provide beginning software engineering and computer
science students with an appreciation of personal software
engineering disciplines.

2. To expose students to planning and time management
methods.

3. To provide working knowledge of basic software quality
practices.

4. To provide a disciplined learning framework that will
counter the common hacker ethic that many new students
develop.

Prerequisites 1. The basic requirements for the CS1 and CS2 courses.

Course Structure 1. The freshman PSP course is a companion to any other
beginning two-semester pair of software or computer
science courses that include writing 8 or more small
programs.

2. The students do the regular course work, augmented with
the PSP materials.

3. The PSP materials specify how the students are to do their
regular work using disciplined methods.

4. The PSP material takes about 6 lecture hours spread over
the two semesters.

5. It is suggested that these added lectures be given at the
beginning of each of the two semesters.

Course Support 1. The course is fully described in Humphrey's textbook:
Introduction to the Personal Software Process, Addison
Wesley, 1997.

2. An instructor’s guide describes the lecture objectives,
suggests grading criteria, comments on the assignment,
provides a set of lecture overheads, and gives suggested
quizzes and quiz answers.

3. An instructor’s diskette includes spreadsheets for analyzing
student data, lecture overheads, and quizzes.

A support diskette provides student data analysis and
calculation_su££ort^

88

APPENDIX 3. THE PLANNED TSP UNDERGRADUATE OR

GRADUATE TEAM-WORKING COURSE STUCTURE [HUMP98d]

Objectives 1. To provide computer science or software engineering
students with practical experience working in a team
development environment.

2. To show such students how to plan and manage their own
work in team environment and under typical management
conditions.

3. To show students how to apply the knowledge they have
gained in a practical engineering setting.

4. To demonstrate the teamwork benefits of following
disciplined individual methods.

5. To learn how and when to ask for and give team support
and assistance.

Prerequisites 1. The course would be designed to support either a full one or
two-semester project course or a shorter team project in
another course.

2. The ability and an interest in working cooperatively with
other students on a demanding project.

3. Basic competency in designing and developing small to
moderate-sized programs.

Anticipated
Course Structure

1. The course would be designed to support either a full one or
two-semester project course or a shorter team project in
another course.

2. The students would typically work in 4 to 6-person teams.
3. The team process would start with an abbreviated launch

workshop where the team would plan their project.
4. The course materials will provide several predefined

optional project, each of which could be completed in either
the one- or two-semester course format.

Anticipated
Course Support

1. A textbook, including an academic version of the industrial-
scale TSP process and exercise specifications.

2. An instructor’s guide to show a PSP-qualified faculty
member or graduate student how to act as the team manager
and coach.

3. Faculty and student data gathering and analysis support.

89

APPENDIX 4: THE PSP PROJECT PLAN SUMMARY

INSTRUCTIONS [HUMP95A]

Purpose This form holds the estimated and actual project data in a
convenient and readily retrievable form.

Header Enter the following:
• Your name and today's date
• The program name and number
• The instructor’s name
• The language you will use to write the program

Minutes/LOC Prior to development
• Enter the Minutes/LOC planned for this project. Use the to

Date rate from the most recent program in the Job Number
Log or the most recent Project Plan Summary.

After development
• Divide the total development time by the actual program

size to get the actual and To Dates Minutes/LOC.
• For example, if the project took 196 minutes and you

produced 29 LOC, the Minutes/LOC would be 196/29=
6.76.

LOC/Hour Prior to development
• Calculate the LOC per hour planned for this program by

dividing 60 by the Plan Minutes/LOC
After development
• For Actual and To Date LOC/Hour, divide 60 by the Actual

To Date Minutes/LOC
• For Actual Minutes/LOC of 6.76, Actual LOC/Hour are

60/6.76= 8.88.
Defect/KLOC Prior to development

• Find the defects/KLOC To Date on the most recent
previous program.

• Use this as the Plan Defects/KLOC for this project.
After development
• Calculate the defects/KLOC actual and To Date for this

program.
• For Actual, multiply the total actual defects by 1000 and

divide by the Actual Total New & Changed LOC.
• Make a similar calculation for To Date.
• With 17 defects to date and 153 Total New & Changed

LOC, defects/KLOC To Date = 1000*17/153 = 111.1.

90

Yield Calculate the plan, actual, and to date yield.
Yield = 100*(defects removed before compile)/(defects injected
before compile), so with 5 injected and 4 found,
yield= 100*4/5=80.0 %.

A/FR Calculate the plan, actual, and To Date A/FR
• For actual, for example, take the ratio of the actual code

review time and divide by the sum of the actual compile and
test times.

• For review time of 29 minutes, compile time of 5 minutes,
and test time of 10 minutes, A/FR = 29/(5+10)=1.93.

Program Size -
(LOC)

Prior to development
• Enter under plan the estimated Total, Maximum, and

Minimum New & Changed LOC.
After development
• Count and enter the Actual New & Changed LOC.
• For To Date, add Actual New & Changed LOC to the To

Date New & Changed
Time in Phase -
Plan

For total development time, multiply Total New & Changed
LOC by Minutes/LOC:
For Maximum time, multiply the Maximum size by
Minutes/LOC.
For Minimum time, multiply the Minimum size by
Minutes/LOC.
From the Project Plan Summary for the most recent program,
find the to Date % values for each phase.
Using the To Date % from the previous program, calculate the
plan time for each phase.

Time in Phase -
Actual

At job completion, enter the actual time in minutes spent in
each development phase. Get these data from the time log.

Time in Phase -
To Date

For each phase, enter the sum of actual time and to To Date
time from the most recent previous program.

Time in Phase-
To Date %

For each phase, enter 100 times the To Date time for that
phase divided by the Total To Date time.

Defects Injected -
Plan

Before development, estimate the total number of defects to be
injected in the program.
The value is Plan Defects/KLOC times the Plan Total New &
Changed LOC for this program divided by 1000.
For example, with a Plan Defects/KLOC of 75.9 and a Plan
New & Changed LOC of 75, Plan Total defects =
75.9*75/1000=5.69, so use 6.
Before development, estimate the defects injected by phase
using the estimate total defects and the To Date % defect
injected distribution from the previous program.

Defects Injected -
Actual

After development, find and enter the actual number of defects
injected ineachjDhase^

91

Defects Injected -
To Date

For each phase, enter the sum of the actual defects and the To
Date defects from the most recent program.

Defects Injected -
To Date %

For each phase, enter 100 times the To Date defects for that
phase divided by the total To Date defects.

Defects Injected -
Defects/hour

Calculate the defects injected per hour for design and code.
For design, for example multiply 60 times the design defects
To Date and divide by the design time To Date = 60*5/195 =
1.54 defects/hour.

Defects Removed -
Plan

In the total row, enter the estimated total defects.
Using the To Date % values from the most recent program,
calculate the plan defects removed for each phase.

Defects Removed -
Actual

After development, find and enter the actual number of defects
removed in each phase.

Defects Removed -
To Date

For each phase, enter the sum of the actual defects and the To
Date defects from the most recent program.

Defects Removed -
To Date %

For each phase, enter 100 times the To Date defects for that
phase divided by the total To Date defects.

Defects Removed -
Defects/hour

Calculate the defects removed per hour for code review,
compile, and test.
For test, for example, multiply 60 times the test defects To
Date and divide by the test time To Date = 60*6/279 = 1.29
defects/hour.

92

APPENDIX 5: feedback questionnaire

Feedback Questionnaire - Tik-76.161 Individual Studies - Personal
Software Process (3 cr) P

Introduction

The purpose of the questionnaire is to get feedback for the improvement of this

course Tik-76.161 Individual Studies - Personal Software Process (PSP) (3 cr) P. The

course applying PSP was arranged first time in Helsinki University of Technology

during 97 - 98. Your feedback is vital for getting more out of PSP in the following

courses.

Several questions in this questionnaire ask about usefulness using a four level scale. In

each questions you should consider following two aspects:

• How well it teaches the purpose and practices of the subject matter?

• How beneficial is it for the actual SW development?

In the last section you are asked to answer more general questions about the course.

Identification

Name:

Role(-s) in the project team:

93

Questions related to Time Management

Time Recording Log:

How useful the Time Recording Log was in planning

and tracking your work in the team?

^ b bb

□ □ □ □

What were the main benefits in the use of Time Recording Log for you and the

project team?

How would you improve the Time Recording Log and its use during the course?

Weekly Activity Summary:

How useful the Weekly Activity Summary was? <|> <|>

D □ □ □

What were the main benefits in the use of Weekly Activity Summary for you and the

project team?

How would you improve the Weekly Activity Summary and its use during the

course?

94

Job Number Log:

How useful the Job Number Log was? ^ 4)4)

□ □ □ □

What were the main benefits in the use of Job Number Log for you and the project

team?

How would you improve the Job Number Log and its use during the course?

Whole time management section:

How useful the whole time management section was? ^

□ □ □ □

What were the main benefits of whole time management section for you and the

project team?

How would you improve the whole time management section and its use during the

course?

95

Questions related to Quality

PSP Project Plan Summary:

How useful the PSP Project Plan Summary was for ^è

your work in the team?

What were the main benefits in the use of PSP Project Plan Summary for you and the

project team?

How would you improve the PSP Project Plan Summary and its use during the

course?

□ □ □ □

Defect Recording Log:

How useful the Defect Recording Log was for your ^ £> b

work in the team?

What were the main benefits in the use of Defect Recording Log for you and the

project team?

How would you improve the Defect Recording Log and its use during the course?

D □ D □

96

Personal Checklist:

How useful the Personal Checklist was for your work in

the team?

b bb

□ D □ □

What were the main benefits in the use of Personal Checklist for you and the project

team?

How would you improve the Personal Checklist and its use during the course?

Whole quality section:

How useful the whole quality section was? c|> 4) 4) 4)

□ □ □ □

What were the main benefits of whole quality section for you and the project team?

How would you improve the quality section and its use during the course?

97

Questions related to Course Overall

How useful the whole course was, if considering your

skills in SW development?

What were the main benefits of the course for you?

What are the main aspects that you would like to change in the course?

How useful did you find presentations of the PSP topics by fellow students? How

would you improve introduction of the topics?

How much you expect you will use the working practices, which you applied during

PSP course, in the future? Select one of the following alternatives:

None / Some / Most / All

Comments:

Any other suggestions for improving the course?

Thank you! ©

D □ □ D

98

TTTF-TCNm :f r*T y/
\ KON -I!
(L^CÜIÓÜ.,

'I
г^тг-ЛИСФ ULU

\;.i.,; ,. lO'O

