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ABSTRACT: The label switching problem, the unidentifiability of the per-
mutation of clusters or more generally latent variables, makes interpretation
of results computed with MCMC sampling difficult. We introduce a fully
Bayesian treatment of the permutations which performs better than alterna-
tives. The method can be used to compute summaries of the posterior sam-
ples even for nonparametric Bayesian methods, for which no good solutions
exist so far. Although being approximative in this case, the results are very
promising. The summaries are intuitively appealing: A summarized cluster
is defined as a set of points for which the likelihood of being in the same
cluster is maximized.

KEYWORDS: Label Switching, Mixture Models
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Abstract

The label switching problem, the unidentifi-
ability of the permutation of clusters or more
generally latent variables, makes interpreta-
tion of results computed with MCMC sam-
pling difficult. We introduce a fully Bayesian
treatment of the permutations which per-
forms better than alternatives. The method
can be used to compute summaries of the
posterior samples even for nonparametric
Bayesian methods, for which no good solu-
tions exist so far. Although being approxima-
tive in this case, the results are very promis-
ing. The summaries are intuitively appeal-
ing: A summarized cluster is defined as a set
of points for which the likelihood of being in
the same cluster is maximized.

1 INTRODUCTION

In the recent years there has been a dramatic increase
in the use of sampling methods in computing with
probabilistic models. The main reason naturally is
that Markov Chain Monte Carlo (MCMC) methods
make it possible to use complex-structured models, for
which variational and other techniques are not feasi-
ble. MCMC methods are not without their problems,
however.

One of these problems is label switching of discrete
latent or hidden variables of the probabilistic model,
which makes interpretation of the results hard. The
problem arises if the prior and the likelihood func-
tion, and hence the posterior probability distribution,
are invariant under a permutation of the values, “la-
bels,” of the discrete latent variable. This leads to
non-identifiability of the labels of the latent discrete
variable.

As a simple example, consider a Gaussian mixture
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Figure 1: Demonstration of the label switching prob-
lem. Data: a simple toy data set containing two
groups denoted by A and B. Sample 1 and Sample
2: Two MCMC samples of a two-component mixture
model. Mean parameters of the mixture components
are marked with 1 and 2. Average: Averages of the
mean parameters over the MCMC samples.

model with two mixture components, and a data set
with two well separated groups A and B, shown in Fig-
ure 1. In one MCMC sample the groups A and B may
be represented by mixture components 1 and 2, and in
another sample by 2 and 1, respectively. It follows that
if we try to compute some mixture component-specific
quantities as averages over the posterior samples, as
we normally would in Bayesian data analysis, we get
meaningless results. For instance, the mean position
of data points in a given mixture component becomes
the mean of the whole data set.

More generally, the non-identifiability may be an issue
when we have to interpret label-specific aggregations
of multiple samples of the posterior probability dis-
tribution. There is no straightforward way to relate
the labeling of two independent samples of the proba-
bility distribution. The label switching is inherent to
sampling—there is no problem if we are content with a
point solution, such as a maximum likelihood or max-
imum a posteriori solution, or a variational approxi-
mation where we can choose an arbitrary labeling.



The non-identifiability poses no problems if the quan-
tities of interest are invariant under permutations of
the labels. Problems occur when the individual pa-
rameter values need to be compared across samples,
as in common measures of convergence of the MCMC
simulation, for instance. Another problematic area are
label-specific summaries, as demonstrated in Figure 1,
and interpretations. When interpreting a cluster in
terms of its typical parameter values, or with the list
of data samples mapped to it, switching changes the
cluster radically.

The label switching problem has been discussed ex-
tensively in the framework of mixture models. In mix-
ture models, if exchangeable priors are placed upon
the parameters of the mixture components, then the
posterior probability is invariant with respect to per-
mutations of the labeling of the mixture components.

There have been many suggestions as to how to deal
with the label switching problem. The most straight-
forward solution is to use a sampler that is inefficient
in the sense that the labels are very unlikely to switch.
Therefore, a reasonable assumption is that the mixture
labels are not permuted across the samples. Many of
the samplers, such as the Gibbs sampler for mixture
models (Diebolt & Robert, 1994), fall into this cate-
gory. It turns out that the sampler may perform oth-
erwise adequately even if it is unable to switch labels
(Geweke, 2007). This solves the label switching prob-
lem in practice, but in an arguably inelegant manner
that cannot be proven to always work.

Another solution is to use artificial identifiability con-
straints to break the symmetry in the likelihood
(McLachlan & Peel, 2000). For example, if the com-
ponent parameters are denoted by µj , a possible con-
straint is µj < µj+1, where j < k and k is the number
of components. Unfortunately, in the Bayesian con-
text these constraints do not however always perform
adequately (Jasra et al., 2005).

Stephens (1997); Celeux (1998); Stephens (2000) re-
labeled the mixture components in each sample by us-
ing a k-means-type approach. Celeux et al. (2000);
Hurn et al. (2003) relabeled the points in each sam-
ple using label-invariant loss functions, such as func-
tions that compare whether the cluster assignments of
the data points are equal in pairs of samples; see also
Gerber et al. (2007). See Jasra et al. (2005) for a re-
cent review of attempts to solve the label switching
problem in mixture models.

A drawback of the earlier approaches is that they as-
sociate a certain more or less heuristic labeling, or per-
mutation of labels, to each sample to make the sam-
ples comparable. As can be seen from the variety of
approaches, however, the labeling is not unique. Fur-

thermore, assigning a fixed labeling is slightly inele-
gant considering that the actual modeling follows the
Bayesian approach.

2 SUMMARY OF OUR
CONTRIBUTION

We propose a probabilistic relabeling that can be im-
plemented in a straightforward way for the MCMC
samples from any probability distribution that in-
cludes a discrete latent variable. We show that our ap-
proach gives a consistent probabilistic labeling. In our
examples the probabilistic models are mixture models,
but we want to emphasize that the results generalize
to all probabilistic models which suffer from the label
switching problem.

In a nutshell the idea is to build an additional Bernoulli
mixture model that can model the distribution of the
discrete latent variable in the original probabilistic
model. We will explain below why this is a good solu-
tion.

Our contributions in this paper are:

• Fully Bayesian treatment of the label switching
problem.

• A straightforward way to obtain mixing matri-
ces that are not affected by label switching (Al-
gorithm 1).

• A principled and probabilistic relabeling of sam-
ples in order to compute expectations (Sec-
tion 4.2).

• An approximation scheme having a polynomial
time complexity of (instead of the naive O(k!)),
where k is the number of discrete states in the
latent variable, to compute the expectations.

• Experimental proofs of concept, including appli-
cation of our method to Dirichlet Process Mixture
model with varying number of mixture compo-
nents.

The remainder of the paper is organized as follows. We
first give the necessary definitions in Section 3, present
the theoretical results in Section 4, experiments in Sec-
tion 5 and finally the conclusions in Section 6.

3 DEFINITIONS

We introduce the problem first in the general notation
and then discuss the case of mixture models in more
detail. We use the notation [n] = {1, . . . , n}, where
n ∈ N. We further use Sk to denote the set of all k!
permutation functions of items 1, . . . , k.



3.1 GENERAL DERIVATION

We denote the data by x = (x1, . . . , xn). We have a
probabilistic model that has n instances of a discrete-
valued latent variable z = (z1, . . . , zn) having labels
zi ∈ [k]. We can alternatively use binary indicator
variables zij such that zij = 1 if zi = j, zij = 0 other-
wise.

We denote by φ = (z, θ) all parameters of the model.
Here θ are all other parameters besides the latent vari-
able z. Denote by σ ∈ Sk a permutation function
of the labels [k]. We use σ(z) as a shorthand of the
application of σ to all the zi, and by σ(φ) the per-
mutation of labels in the parameters of the model by
σ. Invariance under the permutation means that for
all permutations σ ∈ Sk, the prior and the likelihood
satisfy p(φ) = p(σ(φ)) and p(x | φ) = p(x | σ(φ)),
respectively; hence the posterior probability distribu-
tion p(φ | x) is also invariant under the permutation
of the labels as p(φ | x) ∝ p(x | φ)p(φ). In the remain-
der we assume that the model is invariant under the
permutation of labels of zi.

Given the above definitions, we can make the following
trivial observation:

Observation 1. For a probabilistic model which con-
tains a hidden latent variable zi and for which the prior
probability density and likelihood are invariant under
the permutations of the labels of zi, then

p(zij = 1 | x) =
1
k

,

for any x and all i ∈ [n] and j ∈ [k].

Proof. Due to symmetry of the posterior with respect
to labellings of zi, the posterior probability of zi must
be equal for all labellings.

The central contribution of this work is to apply a
Bernoulli mixture model to the indicator variables zt

ij

as given by Algorithm 1. We discuss the motivation of
the algorithm in more detail in Section 4. Briefly put,
the idea is to apply a Bernoulli mixture model to the
rows of a matrix of indicator variables Z where the
rows correspond to mixture components in different
samples.

Algorithm 1 uses the Bernoulli mixture model having
the likelihood

p(Z | β̃) =
R∏

r=1

k∑
j=1

1
k

n∏
i=1

β̃(j, i)Z(r,i)
(
1− β̃(j, i)

)1−Z(r,i)

,

(1)
where the parameters are given as a mixture matrix
β̃ ∈ [0, 1]k×n. The data matrix is Z ∈ {0, 1}R×n,

Algorithm 1 Bernoulli Labeling
BernoulliLabeling({zt

ij}) {Input: {zt
ij}, the indica-

tor variables zt
ij for all t ∈ [T ], i ∈ [n] and j ∈ [k].

Output: β̃, a k×n parameter matrix of the Bernoulli
mixture model.}
Let Z(r, i) ← zt

ij , where r = k(t − 1) + j and Z ∈
{0, 1}Tk×n for all i ∈ [n], j ∈ [k], and t ∈ [T ].
Let β̃ ← BernoulliMixture(Z, k).
return β̃.

Algorithm 2 Generalized Bernoulli Labeling
Generalized BernoulliLabeling({zt

i}, k) {Input:
{zt

i}, the cluster indices zt
i for all t ∈ [T ] and i ∈ [n];

k, cluster of components in Bernoulli Labeling. Out-
put: β̃, a k × n parameter matrix of the Bernoulli
mixture model.}
Let Z be an empty matrix with n columns.
for t = 1 to T do

Let kt be the number of non-empty cluster in sam-
ple t, and let Yji be 1 if zt

i = j, 0 otherwise.
Append the rows of matrix Y to the rows of ma-
trix Z.

end for
Let β̃ ← BernoulliMixture(Z, k).
return β̃.

where R = Tk. We use Algorithm 3 to maximize the
likelihood of Equation (1); the algorithm is a stan-
dard EM algorithm (for details see, for example, Juan
& Vidal, 2002). Because EM is guaranteed to find a
local but not necessary a global optimum, in our ex-
periments we run Algorithm 3 10 times with different
random initializations and pick the solution with the
largest likelihood.

Another approach is to take explicitly into account the
fact that there is a unique permutation of labels for
each sample. The mixing matrix β̃ can then be found
by optimizing the cost function given by

T∏
t=1

∑
σ∈Sk

1
k!

n∏
i=1

β̃(σ(zt
i), i), (2)

by using EM algorithm, presented by Algorithm 4. We
call this model Bernoulli Mixture Permutation model.

3.2 MIXTURE MODELS

Mixture models are a common class of probabilistic
models where the label switching is a problem. We use
the mixture model as a prototpy probabilistic model
which suffers from the label switching problem.

In a mixture model with k mixture components, there
is a discrete-valued latent variable z = (z1, . . . , zn).



Algorithm 3 Bernoulli Mixture
BernoulliMixture(Z, k) {Input: Z, a R × n binary
matrix; k, the number of mixture components. Out-
put: β̃, a k× n maximum likelihood parameter ma-
trix of the Bernoulli Mixture model.}
Initialize β̃ ∈ [0, 1]k×n at random.
repeat
{E step:}

Let γ(r, j)←
∏n

i=1 β̃(j, i)Z(r,i)
(
1− β̃(j, i)

)1−Z(r,i)

for all r ∈ [R] and j ∈ [k].
Let Z(r)←

∑k
j=1 γ(r, j) for all r ∈ [R].

Let γ(r, j) ← γ(r, j)/Z(r) for all r ∈ [R] and j ∈
[k].
{M step:}
Let β̃(j, i)←

∑R
r=1 γ(r, j)Z(r, i)/

∑R
r=1 γ(r, j) for

all j ∈ [k] and i ∈ [n].
until convergence
return β̃.
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Figure 2: Graphical representation of mixture model
presented in Section 3.2 without (left) and with (right)
a permutation sampled from Sk; see the likelihoods of
Equations (3) and (4), respectively. The likelihoods
and therefore the generative processes of the two mod-
els are equivalent.

Here zi ∈ [k] tells which mixture component the data
point xi comes from. The other parameters θ consist
of the mixture probabilities π = (π(1), . . . , π(k)) that
satisfy

∑k
j=1 π(j) = 1, and the component-specific pa-

rameters β = (β(1), . . . , β(k)) that define the likeli-
hood of a data point xi given a mixture component
zi, according to any parametric likelihood function
p(xi | β(zi)) such as the multivariate Gaussian. In
summary, here θ = (π, β). The likelihood of the mix-
ture model, shown graphically in Figure 2 (left), is
given by

p(x | π, β) =
n∏

i=1

k∑
zi=1

π(zi)p(xi | β(zi)). (3)

The likelihood does not change if the labels are per-
muted by any permutation σ. A special case is where

Algorithm 4 Bernoulli Mixture Permutation
BernoulliMixturePerm({zt

i}) {Input: {zt
i}, the clus-

ter indices zt
i for all t ∈ [T ] and i ∈ [n]. Output: β̃,

k × n maximum likelihood parameter matrix of the
Bernoulli Mixture model.}
Initialize β̃ ∈ [0, 1]k×n in random.
repeat
{E step:}
Let γ(t, σ) ←

∏n
i=1 β̃(σ−1(zt

i), i) for all t ∈ [T ]
and σ ∈ Sk.
Let Z(t)←

∑
σ∈Sk

γ(t, σ) for all t ∈ [T ].
Let γ(t, σ) ← γ(t, σ)/Z(t) for all t ∈ [T ] and σ ∈
Sk.
{M step:}
Let β̃(j, i) ←

∑T
t=1

∑
σ∈Sk

γ(t, σ)zt
σ(i)/T for all

j ∈ [k] and i ∈ [n].
until convergence
return β̃.

the permutation σ is sampled from Sk uniformly at
random, see Figure 2 (right); the likelihood is then

p(x | π, β) =
1
k!

∑
σ∈Sk

n∏
i=1

k∑
zi=1

π(σ(zi))p(xi | β(σ(zi))).

(4)
See Jasra et al. (2005) for further discussion.

4 THEORETICAL PROPERTIES

Our idea is, intuitively, to find an assignment of the
data items into k mixture components such that if a
set of data items co-occurs in the same mixture compo-
nents in several samples then they should be assigned
into the same mixture component.

In this section, we show that the Bernoulli mixture cost
function optimized by Algorithm 1 is invariant under
the permutation of the labels of the original proba-
bilistic model. We further show that Algorithm 1 ex-
actly reproduces the mixture components of the mix-
ture model described in Section 3.2.

We also provide a principled probabilistic relabeling
algorithm of the samples in Section 4.2.

4.1 PROPERTIES OF THE BERNOULLI
LABELING

Observation 2. The cost function optimized by Al-
gorithm 1 is invariant under the permutation of labels
of the probabilistic model.

Proof. The Algorithm 1 finds the mixture matrix by
maximizing the likelihood given by Equation (1). Any



permutation of the labels in the original probabilis-
tic model (in which the discrete variables z are pa-
rameters) corresponds to a permutation of rows of the
matrix Z. The likelihood, Equation (1), remains un-
changed in any such permutation.

The following theorem shows that Algorithm 1 gives
consistent results for a mixture model with given fixed
parameters π and β.

Theorem 3. Given a mixture model, parametrized by
φ = (z, θ), and data as defined in Section 3.1, Algo-
rithm 1 finds the probability distribution p(zi = j |
x; θ) in the limit of infinitely many samples, T →∞.

Proof. A randomly picked row of matrix Z represents
a given component j ∈ [k] with probability 1/k. The
probability of ones in the ith dimension of component
j is given by the distribution p(zi = j | x; θ); this
distribution can be computed from the mixture model.
If we set β̃(j, i) = p(zi = j | x; θ), then the Z can be
thought of as having been sampled from the Bernoulli
mixture model (Equation 1), the probability of each
component being 1/k. Hence, at the limit of infinitely
many samples (T → ∞), the maximum of Equation
(1) is given by β̃(j, i) = p(zi = j | x; θ). Furthermore,
as the number of rows of Z approaches infinity, the
posterior probability density of the Bernoulli mixture
model is essentially a multimodal point estimate with
k! modes corresponding to different permutations of
the labels, one of the modes being at β̃.

The Theorem 3 is illustrated graphically for a mixture
model of Section 3.2 in Figure 3.

n

~
x

βzz~

β

π

Figure 3: Graphical representation of mixture model
presented in Section 3.2, with Bernoulli labeling of Sec-
tion 4.1. The distribution of the latent variables z can
be equivalently derived either from the mixture model
(solid lines), ignoring the dashed lines, or from the
Bernoulli mixture model (dashed lines), ignoring the
solid lines.

Observation 2 and Theorem 3 together imply that our
approach is completely insensitive to label switching.

That is, we can do an arbitrary permutation of labels
within each MCMC sample without affecting the re-
sults.

It follows that β̃ obtained by Algorithm 1 can be used
as a principled “point estimate” to summarize the mix-
ture components.

The previous work on relabeling of MCMC samples
has focused on finding a single permutation for each
sample such that the resulting samples, having per-
muted labels, can be aggregated. The previous work
has suffered from the fact that although there usually
exists one “most likely” permutation of labels for each
sample, the probabilities of all possible permutations
should be non-vanishing due to the probabilistic na-
ture of the model.

4.2 PROBABILISTIC BERNOULLI
RELABELING

In this section we consider the problem of computing
an expectation of some function f(z, θ) of the param-
eters of the probabilistic model, using the T indepen-
dently drawn samples at the limit of infinite (or very
large) T .

n

σ

x

βzz~

β~

π

Figure 4: Graphical representation of mixture model
presented in Section 3.2 using Probabilistic Bernoulli
Relabeling of Section 4.2: the distribution of the latent
variables z can be equivalently derived either from the
mixture model (solid lines), ignoring the dashed lines;
or the Bernoulli Mixture model with permutation σ
(dashed lines), ignoring parameters π and β.

One of the motivations for the model is that it is con-
sistent in the sense that if we had a probabilistic model
with a fixed set of parameters θ, but such that the la-
bels in the parameters z and θ have been relabeled
by a permutation function σ ∈ Sk, drawn uniformly
at random, then the algorithm would asymptotically
find correct values.

Now, our task is to compute the posterior distribution
for the probability of the permutation for each sample.
We can use Algorithm 1 to find the Bernoulli mixing
matrix β̃ because by Observation 2 the algorithm is



unaaffected by any permutation σ. Because the num-
ber of samples T is very large the posterior distribution
is a multimodal point distribution with one of the k!
peaks at β̃. Figure 4 shows the structure of the model
in the case of the mixture model defined in Section 3.2.

Given a fixed β̃ we can derive the probability of a
permutation for each sample p(σ | zt, β̃), and then
propose to compute an expectation using Probabilistic
Bernoulli Relabeling as follows:

EB [f(z, θ)] =
1
T

T∑
t=1

∑
σ∈Sk

p(σ | zt, β̃)f(σ(zt), σ(θt)),

(5)
where the posterior probability of a permutation σ for
a sample t is given by

p(σ | zt, β̃) ∝
k∑

j=1

1
k

n∏
i=1

β̃(j, i)zt
iσ(j)

(
1− β̃(j, i)

)1−zt
iσ(j)

,

(6)
with a normalization defined by

∑
σ∈Sk

p(σ | zt, β̃) =
1.

We first note that the expectation defined in Equation
(5) reduces to normal expectation in the absence of
any label switching.
Observation 4. If the expectation defined by f(z, θ)
is invariant under permutation of labels, that is,
f(z, θ) = f(σ(z), σ(θ)) for all σ ∈ Sk, then the expec-
tation of Equation (5) reduces to normal expectation
of E[f ] = 1

T

∑T
t=1 f(zt, θt).

The Probabilistic Bernoulli Relabeling of Equation (5)
requires the summation over all k! permutations in Sk.
The sum is computable for small enough values of k.
For larger values of k, however, the summation can be
approximated in polynomial time in k by first finding
the most likely permutation by using the Hungarian al-
gorithm (Munkres, 1957); the time complexity of the
Hungarian algorithm is O(k3). One can then apply
Equation (6) to all permutation functions σ that can
be reached by at most l swaps from the most likely
permutation found by the Hungarian algorithm; the
number of these permutation functions is O(k2l). All
permutations σ which are reachable with more than l
permutations can to a good accuracy be approximated
with p(σ | zt, β̃) ≈ 0. As a result, the sum of Equation
(5) has only O(k2l) non-vanishing terms and the ap-
proximate expectation can be therefore be computed
in O(k3 + k2l) time.

Finally, we note that although the Figures of Sections
4.1 and 4.2 were given for label switching in the con-
text of the mixture model defined in Section 3.2, the
derivations are otherwise general. The method can
be applied for any probabilistic model having a non-
identifiable discrete latent variable.

5 EXPERIMENTS

5.1 MIXTURE MODEL

We generate an artificial data set by drawing sam-
ples from three Gaussian distributions, n samples from
each. Each Gaussian has unit variance, and their
means are −x, 0 and x. We then run a Gibbs sampler
for a normal mixture model (Diebolt & Robert, 1994)
having k = 3 components and conjugate priors (with
variance of each component fixed to unity) with par-
allel tempering as described by Liu (2001). As a con-
sequence of parallel tempering, the sampler switches
labels. After 1000 burn-in samples we use the next
1000 samples in our analysis.

Our data analysis task is to use the samples to (i) esti-
mate the means of the mixture components (means),
and (ii) to estimate the cluster assignments of the data
points (assign). The error measure in the first task is
the difference between the estimated cluster centroids
and the “true” cluster centroids at −x, 0 and x. The
objective measure in the second task is the classifica-
tion accuracy (sum of probabilities of correct classes)
when the true classes (the index of the generating dis-
tribution) are known.

The problem is easy for large values x or n; then all
methods give equivalent results. For small or moderate
values of x and n the methods differ.

Our methods are the Bernoulli mixture model (bm)
and Bernoulli mixture model with permutations
(bmp). The baseline methods are the identity con-
straint model (ic), where the samples are permuted
such that the means of the mixture components are
ordered in an increasing order. The second baseline
method (Stephens, 2000), denoted by ste, finds per-
mutations using an EM-type approach. We include as
a baseline a dummy model dumb, in which all cluster
probabilities are 1

3 .

We chose n = 5 and x = 2 (tasks means and assign-
2 or x = 2

3 (task assign-2/3), and created 100 data
sets.

The performance of ic is generally worse than that
of the others (Table 1). In task means all algorithms
performed comparably. In task assign-2, bmp was the
best, although the differences are very small. In task
assign-2/3 the Bernoulli mixture model (bm) was su-
perior; the reason is that all clusters are very simi-
lar and in many samples one of the clusters remained
empty. The bm model will then assign one mixture
component to such an empty cluster. The other mod-
els suffer from the strong assumption that there must
be three clusters (although effectively the number of
clusters is smaller).



Table 1: Squared prediction errors for the task means (smaller is better); classification accuracy for tasks assign-
2 having x = 2 and assign-2/3 having x = 2

3 (larger is better), for a data set with n = 5. In task assign-2,
bmp outperforms all the other models (p < 0.05). The differences are small, however. In task assign-2/3, bm
outperforms all other models (p < 10−9). All tests were one-tailed Wilcoxon Signed Rank Tests.

bm bmp dumb ic ste
means 0.676 0.680 1.632 1.109 0.676

assign-2 0.598 0.5995 0.333 0.575 0.5990
assign-2/3 0.442 0.382 0.333 0.386 0.380
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Figure 5: The cluster means of the Dirichlet Process
Mixture on the galaxy data. Mixture component 2
is highlighted with a darker shade; label switching is
evident from the plot. The rug plot on the vertical
axis show the data, that is, the relative velocities of
the 82 galaxies. There are on average 7.21 non-empty
clusters in a sample, the average occupancy of each
cluster being 11.57.

5.2 DIRICHLET PROCESS MIXTURE

We studied the capability of the Bernoulli mixture to
handle varying number of clusters in nonparametric
Bayesian settings, by implementing a Dirichlet Process
Mixture Model according to Neal (2000); Dahl (2003),
with parallel tempering and the hyper-parameter α
fixed to one. The Gaussian mixture components had
a conjugate prior with unit variance. We applied the
model to the galaxy data set (Postman et al., 1986;
Roeder, 1990) consisting of zero-mean relative veloci-
ties in 1000 km/sec of 82 galaxies from 6 well-separated
conic sections of an unfilled survey of the Corona Bo-
realis region. Multimodality in such surveys is evi-

k=5 k=6 k=7

Figure 6: The mixing matrices β̃ for the galaxy data
simulated using the Dirichlet Process Mixture. The y
axis corresponds to the 82 galaxies, ordered according
to their velocity (lowest velocity at the bottom). The
x axis shows the cluster index of the Bernoulli mixture
model. Dark shades correspond to a matrix entry of
1, while light shades correspond to zero. Here k is
the number of clusters in the Bernoulli mixture model.
The mixture components have been ordered for visual
clarity.

dence for voids and superclusters in the far universe.
The means of the non-empty mixture components are
shown in Figure 5. Due to the parallel tempering, the
sampling mixes well and there is label switching.

Because the number of clusters varies, out of the intro-
duced algorithms only the generalized Bernoulli label-
ing (Algorithm 2) is applicable. We ran the algorithm
with three numbers of Mixture components, k = 5,
k = 6 and k = 7; the results are shown in Figure 6.
For k = 7 mixture components, one of the components
turned out to be essentially empty, indicating that the



data effectively exhibits six clusters. For k = 6 mixture
components the mixing matrix looks otherwise similar,
except that there is no empty component. For k = 5
mixture components, two of the smallest components
have been merged to one.

In summary, the Bernoulli Labeling algorithm was ca-
pable of extracting the structure of six clusters from
the complicated set of samples of the Dirichlet Process
Mixture model.

6 CONCLUSIONS

We introduced a Bernoulli mixture model for relabel-
ing cluster assignments in mixture models. The model
is better motivated than existing solutions to the la-
bel switching problem, and outperformed them. The
fully Bayesian version requires computation of poste-
riors for the permutation function which is manage-
able for models with a fixed number of clusters. For
nonparametric Bayesian methods where the number of
clusters varies in the MCMC samples, a fully Bayesian
method should take into account splits and merges as
well, which would be computationally prohibitive.

It turned out that using a Bernoulli mixture without
averaging over the posterior of permutations worked
very well in solving the label switching problem for
nonparametric Bayesian methods, and was rather in-
sensitive to the chosen number of clusters.

In this paper we focused on mixture models, where
there is one latent variable per data point, telling
which mixture component the point comes from.
Furthermore, the simulations were done on one-
dimensional data. Both restrictions can naturally be
easily removed.
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