
Graph Partitioning
for

Parallel Processing

Master’s Thesis

Petri Kallberg

Teknillinen korkeakoulu
Tietotekniikan osasto
Tietojenkäsittelyopin laboratorio

Espoo 1996

Helsinki University of Technology
Faculty of Information Technology
Department of Computer Science

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF THE MASTER’S THESIS

Author: Petri Kallberg

Name of the thesis: Graph partitioning for parallel processing

Date: May 29, 1996 Number of Pages: 6+67

Faculty: Information Science

Professorship: Tik-76 Computer Science

Supervisor: Professor Heikki Saikkonen

Instructor: MSc Harri Hakula

The efficient use of distributed memory parallel computers requires data distribution that
minimizes communication between processors and at the same time takes care of
load-balancing aspects. Communication and loadbalancing problems are equivalent to the
general graph partitioning problem.

Graph partitioning is a NP-complete problem, however, some quite successful heuristics
exist. Currently the most effective methods are based on the multilevel scheme and greedy
partitioning algorithms. However, direct methods, that are based on graphs Fiedler-vector,
are still very competitive. In this thesis the current state-of-the-art in graph partitioning
heuristics is reviewed. Also a partitioning software for graph partitioning is developed and
practical examples of partitioning 2D and 3D element meshes are presented.

Keywords: graph partitioning, parallel processing, unstructured meshes

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Petri Kallberg

Työn nimi: Verkon jakaminen rinnakkaislaskentaa silmälläpitäen

Päivämäärä: 29. toukokuuta 1996 Sivumäärä: 6+67

Osasto: Tietotekniikan osasto /'ji tr_ ^ (,c*_*_rV&-C

Professuuri: Tik-76 Ohjelmistojärjestelmät

Työn valvoja: Professori Heikki Saikkonen

Työn ohjaaja: DI Harri Hakula

Hajautetunmuistin moniprosessoritietokoneiden tehokas käyttö edellyttää laskentatyön
jakoa niin, että prosessorien välinen kommunikaatio tulee minimoitua ja samalla kunkin
prosessorin työmäärä on tasapainotettu. Yleinen verkonjakoongelma sisältää molemmat
em. vaatimukset.

Verkon jako on tunnetusti NP-täydellinen ongelma. Onneksi kuitenkin hyviä heuristiikoita
ongelman ratkaisemiseksi on olemassa. Tällähetkellä parhaimpiin tuloksiin päästään
monitasoisilla ahneilla jakoalgoritmeilla. Ns. suorat, verkon Fiedler-vektoriin perustuvat
menetelmät ovat kuitenkin hyvin kilpailukykyisiä. Tässä työssä luodaan kattava katsaus
tämän hetken verkon jako algoritmeihin. Lisäksi esitellään työn osana kehitetty
verkonjako-ohjelmisto ja käytännön esimerkkejä 2D ja 3D elementtiverkkojen jaosta.

Avainsanat: verkon jako, rinnakkaislaskenta, epäsäännölliset elementtiverkot

Acknowledgements

First I would like to thank my instructor Harri Hakula for directing me to
the interesting topic and for the valuable discussions and comments during
the work. Without his support this work wouldn’t be possible.

I would also like to thank my colleagues at the HUT Computing Centre
for their valuable advices and technical support.

The research for this thesis was done while working as systems analyst
working in Helsinki University of Technology (HUT) Computing Centre.
This work was also supported by Center for Scientific Computing (CSC).

Espoo, May 1996

Petri Hallberg

IV

Contents

1 Introduction 1

2 Problem 6

2.1 Definitions.. 6

2.2 Exact Solution .. 8

2.3 False Starts... 9

3 Iterative Methods 12
3.1 Definitions.. 13

3.2 Kernighan-Lin.. 14

3.2.1 Finding the best pair.. 15

3.2.2 Variations of Kernighan-Lin... 16

3.3 Graph Growing.. 18

4 Direct Methods 21

4.1 Definitions.. 21

4.2 Spectral Bisection.. 23

4.2.1 ‘Vibrating string’ -analogy.. 23

4.3 Estimating the Fiedler vector.. 25

4.3.1 Lanczos algorithm ... 27

v

4.3.2 Performance of Lanczos algorithm 29

5 Multilevel Partitioning 33
5.1 Graph Reduction.. 34

5.2 Graph Refinement ... 37

5.3 Aspects of Multilevel Partitioning.. 38

6 Results 41

6.1 Testing Environment.. 42

6.1.1 Hardware.. 42

6.1.2 Software... 42

6.1.3 Graphs.. 44

6.2 Performance... 46

6.2.1 Connection cost and CPU usage...46

6.2.2 Multilevel effects.. 52

6.3 Examples .. 54

7 Conclusions 56

A Examples of 2D and 3D meshes 58

VI

Chapter 1

Introduction

This thesis is a part of VIRKE-project whose goal is to develop a paral­
lel computational fluid dynamics program ELMER [1], based on the Finite
Element Method, which can be utilized in the industrial processes involv­
ing heat transfer due to conduction, convection or radiation, incompressible
flows, laminar or turbulent, and free boundaries.

The ELMER-package includes a preprocessor, finite element routines, a
matrix equations solver and a postprocessor. At the preprocessing phase the
element mesh is generated and distributed to the processors. After that a
system of equations is created and solved in parallel. The postprocessing
collects the numeric results and visualizes them.

In a traditional serial program-architecture the solving of equations gen­
erated by the problem parameters and element mesh is the most time con­
suming phase. In addition to single CPU performance, also the available
memory can be a limiting factor when solving really large problems. A typ­
ical architecture of a serial program is shown in Figure 1.1.

As the size of a mesh grows, more computing power and memory is re­
quired. Eventually the limits of a single CPU are encountered. Natural way
to continue is to use multiple CPUs and parallel solvers. In addition to a

1

Figure 1.1 Serial program architecture

Problem Geometry

parallel solver, a separate partitioning program is also needed for distributing
the data so that computational load can be balanced across processors and
interprocessor communication is kept at minimum. This kind of program
architecture could be called “partially parallel” because the first part of a
pipeline is still serial as show in Figure 1.2. This is also the current goal of
the VIRKE-project.

Figure 1.2 Partially parallel program architecture

At some point adding more solver processes won’t decrease the total run­
ning time any more because the mesh generation and partitioning phases take
most of the time. Additional partitions also increase communication between
processes and require extra work at partitioning phase. In some cases, raising
the degree of parallelism can actually decrease the total performance.

2

Higher performance can still be achieved by making the whole pipeline
work in parallel as shown in figure 1.3. Graph partitioning, at its current
form, is probably just a passing stage on a way to fully parallel graph gen­
eration. However, parallel mesh generation and graph partitioning are still
very much research topics and no general implementations exists.

Figure 1.3 Fully parallel program architecture

This thesis is focused on graph partitioning during the preprocessing
phase of the FEM solution. In parallel FEM environments typical load bal­
ancing problems can often be reduced to graph partitioning problems. Since
the problem is NP-complete, only heuristic algorithms are available, though
one might argue whether the Fiedler -methods are heuristic or not, but expe­
rience has shown that they perform well in most situations. However, there
is no guarantee for optimality of solution. In general this is not a problem
since the difference between generated partitions and the optimal solution
tends to be very small.

Algorithms are divided into iterative and direct ones by the way they form
the partitions. Iterative algorithms create partitions step-by-step, making
little improvements until the local optimum is found. Direct algorithms are
based on the computation of the Fiedler vector of the graph. Partitions are
created directly by the vector without any intermediate stages.

3

The most attractive partitioning algorithms employ the multilevel scheme.
The idea is to reduce the size of the graph before partitioning by collapsing
groups of vertices together. Reduced graph can then be splitted in a frac­
tion of time that would be required for the original graph. The complexity
of partitioning algorithms is typically between O(NlogN) - 0(N3) while
graph reduction can be done in O(N). By using a multilevel partitioning
algorithm substantial performance gain can be obtained without sacraficing
the partition quality.
The rest of the thesis is organized as follows :

• In Chapter 2, the graph partitioning problem is defined in more de­
tail. Also the exact solution and some not so successful heuristics are
discussed.

• Chapter 3 presents a selection of iterative partitioning methods such
as Kernighan-Lin and Graph Growing algorithms. The complexity of
iterative algorithms is typically between 0(N log N) and 0(N2).

• Chapter 4 focuses on the Spectral Bisectioning algorithm. The actual
computational challenge of the algorithm is the computation of the sec­
ond eigenvector, so called Fiedler vector, associated with the Laplacian
matrix of the graph. The complexity of Fiedler vector computation is
roughly 0(N3).

• Chapter 5 introduces the idea of multilevel graph partitioning. Mul­
tilevel is an extension of other partitioning algorithms rather than a
totally new algorithm. The idea is to reduce the size of graph before
partitioning algorithm is applied. While the complexity of partition­
ing algorithms varies from 0(N log N) to 0(N3), the graph reduction
can be done in O(N). Multilevel algorithm can cut down CPU usage
during the partitioning phase without sacrificing the partition quality.

4

• In Chapter 6 performance, both CPU usage and partition quality, is
discussed. While there is no significant difference in partition quality
between iterative and spectral algorithms, iterative algoritms are much
faster. Currently the best performance and partition quality is obtained
by iterative multilevel algorithms.

• Chapter 7 summarizes the thesis and draws some conclusions.

5

Chapter 2

Problem

To use distributed memory parallel computers efficiently one must be able
to balance computational load across processors in a way that gives each
processor equal sized problem and keeps interprocessor communication at
minimum level.

The key to solve load balancing problem is to think of the computational
problem (in this case, solving a system of equations) as a graph where vertices
are atomic subproblems (degrees of freedom) and edges are dependencies be­
tween subproblems. It is also possible to assign a different computational
‘weight’ to each vertex and/or edge, to better describe the original problem.
A graph G obtained that way can be used as an description of the original
problem. Partitioning the G so that minimum number of cut-edges are cre­
ated between partitions and finding an effective distribution for the original
problem can be seen as an equivalent tasks.

2.1 Definitions

This thesis is focused on partitioning of an undirected graph G = (V, E).
Each vertex € V and edge ej e E may have an additional attribute,

6

weight. Weights can be used to describe a computational size of a vertex
and communication load over an edge. If weights of the edges are collected
into a matrix C, where C(i,j) is the connection from vertex i to vertex j,
then C is the connection matrix of the graph G. An unweighted graph is a
special case of a weighted graph where all connection weights are constant.
Since we are focused on undirected graphs, the connection matrix is always
symmetric.

Creating a k-way partitioning of graph G means dividing G into к subsets
Gi... G/c, such that G = G\ U ... U Gk and G\ П ... П Gk = 0. This is a gen­
eralization of the graph bisection problem (i.e. bisection is equal to a 2-way
partitioning). From now on our main focus will be on the bisection prob­
lem. Thus, a 2fc-way partitioning can be obtained easily using bisectioning
recursively.

The cost of bisection, or k-way partitioning, is defined as the sum of
weights of such edges that have their endpoints in different partitions. In a
case of bisection the cost of partitioning can be defined as

Cost — C(a, b) , where a G A and b G В.

For successful load-balancing we want partitions that have certain prop­
erties. A good partitioning can be defined as follows :

• Controlled partition size. It is not always necessary or possible to define
the exact number of vertices and edges in each partition, but there must
be a way to control a magnitude of a partition size.

• Minimal cost. Fetching data from another CPU is usually much more
expensive than using a local data. Partition cost tells us how much
remote data will be used. A lower cost means more local data and
thereby better performance.

7

• Connected partitions. It is desirable that all vertices in one partition
are connected together. This follows directly from the Minimal cost
requirement because disconnected vertices increase the cost of a parti­
tioning.

• Hardware limitations. Computation hardware used can have some lim­
itations that must be considered. For example communication between
different processors can cost a different amount of time. Partitioning
algorithm should be able to take care of these limitations.

2.2 Exact Solution

There are some good and some bad news. The Bad news is that the graph
partitioning is NP-complete problem and an exhaustive search for finding the
best partitioning is usually impossible because of a vast number of possible
combinations. Assume a graph G with n vertices which are partitioned into a
к subsets, each containing p — n/к vertices. Then there are ("-H1-1)) differ­
ent ways to choose the zth subset. Since the order of subsets is unimportant,
the number of different partitionings is

8

Even a very small values like n = 40 and к = 4 (=> p = 10) produce more
than 1020 different partitionings. For a practical problems this method is
clearly out of question.

The Good news is that usually we don’t need the optimal solution. In
most cases it’s better to find a ‘good’ solution quickly rather than finding
the optimal solution by searching all possible solutions.

2.3 False Starts

Here are a couple of unsuccessful heuristics for the partitioning problem.
However, these heuristics might be useful in some restricted cases, since they
are fast and easy to implement.

Random partitions

It is always possible to generate random partitions and take the best one
after some predetermined time or number iterations is reached. This is a
very simple and fast way to generate partitionings. Unfortunately there are a
huge number of possible partitionings, of which only few are optimal or near-
optimal. For example, graphs with 32 vertices with random connections has

different 2-way partitionings. Typically only 3 to 5 of these are feasible,
which means that probability of finding a one by chance is less than 10-7 [2].

Vertex Coordinates

Another very simple way to do partitioning is to use the coordinates of the
vertices. Suppose that each vertex has n coordinates = (ci,..., cn), then
by finding the direction of longest expansion of the domain and sorting the
vertices by that coordinate, we can create a 2-way partitioning, where vertices
with a smaller values form one partition and vertices with a larger values form

9

another partition.

Obviously this method can not be used if the coordinate information is
not available. Another serious problem is that the connectivity information
isn’t used in any way. This often leads to very undesirable results with
disconnected partitions [3]. In Figure 2.2 a simple example where coordinate-
based bisection is fooled by a geometry of the mesh is depicted. Picture on the
left shows bisection that is generated using vertex coordinates. Compared
to the optimal solution on the right, coordinate-based bisection has more
cut-edges because partition A is not connected.

Figure 2.2 Coordinate-based bisection vs. optimal solution

Coordinate-based bisection Optimal solution

Max Flow-Min Cut

The Max flow-Min cut theorem [4] states that the maximal flow values be­
tween any pair of vertices is equal to minimum cut capacity of all cuts which
separate the two vertices. In our case the graph is treated as a network in
which edge costs correspond to flow capacities, cut is a 2-way partitioning
and the cut capacity is the cost of partitioning.

10

While the algorithm finds a cut with the minimum cost, it doesn’t have
any constraints for the partition size. Unfortunately load balancing isn’t pos­
sible without some control over a partition size. However, since the algorithm
actually finds the minimal cost 2-way partitioning, it can be used to find a
lower bound for the cost of 2-way partitioning [2].

11

Chapter 3

Iterative Methods

The idea of iterative partitioning algorithm is to improve existing partitions
gradually by swapping vertices from one partition to another. The starting
point can be fully random, but better results are achieved if some more
sophisticated method is used. Typically iterative methods are used to refine
partitions generated by some other method.

In this chapter we look closely at two iterative graph partitioning algo­
rithms. Because of their different nature they are suitable for complemen­
tary partitioning problems. The first, Kernighan-Lin -algorithm (KL), is
quite dependent on an initial partitioning generator. It is possible to use a
fully random initial partitions but best results are achieved when it is used
for refining partitions generated by some other algorithm. The second type,
Graph growing -algorithm (GG), does not use any initial partitions but starts
from a single vertex and grows a partition around it. Results depend on a
choice of initial vertex and it is difficult to predict initial which vertices lead
to good partitions. GG is normally used for generating initial partitions for
some other algorithm such as KL.

12

3.1 Definitions

If we have a graph G that has two partitions A C G and В C G with no
common vertices, А П В = 0, then we can define the internal and external
cost for each vertex a 6 A as follows :

• Internal cost is the sum of connections from a to x 6 A :

h = 5Z C(a,x).

• External cost is the sum of connections from a to y G В:

Ea='£C(a,y).
уев

And similarly for Д and Eb. Difference between external and internal costs
Dx = Ex — Ix can then be defined for all vertices x G G.

If we now take any pair of vertices (a, b) such that a G A and b G В and
swap them, what is the gain of this swap, i.e. how much is the total cost
of partitioning changed ? Let Z be a total cost of such connections between
partitions A and В that do not involve neither of vertices. Then we can write
the cost of partitioning, Tm, before vertices are swapped

T0id = Z + Ea + Еь — C(a, b).

And after swapping vertices, new cost Tnew is

Tnew = Z + Ia + + C(a, b).

because connections that were external become now internal and vice versa.
Cost of partitioning is now reduced by Tm — Tnew :

Gain = T0id - Tnew = Da + Db- 2C(a, b).

This value can be used when selecting vertices that are swapped. Negative
gain means that resulting partitions are ’worse’ than the originals.

13

3.2 Kernighan-Lin

The basic version of Kernighan-Lin algorithm [2] splits a graph G into two
partitions of equal size with minimal connection cost. However, algorithm
can be easily modified to create n-way partitioning with more complex par­
tition size constraints.

The algorithm starts with two initial partitions. In each iteration it tries
to find such subset of vertices from each partition that swapping them gives a
lower cost partitioning. Algorithm stops when no such subset can be found.

Kernighan-Lin Iteration

1. Compute Dx for all vertices x G G.

2. Start a new iteration step.

3. Choose an unused pair (a¿, 6,) that gives the maximum gain gt =
Dai + Dbi — 2C(o¿, bi). Finding such a pair quickly is not a trivial task
and we shall return to this subject later.

4. Swap a¿ to В and b¡ to A. Vertices that have been swapped are marked
as ‘used’ so they don’t get swapped again at same iteration step.

5. Recompute D-values for vertices by

D'x = Dx + 2C(x, a¿) — 2C(x, bi), x 6 A — a¿

and
Dy = Dy + 2C(Vi bi) - 2С(?/, at), yeB-bi

Note that only such vertices that have connections to or need to
be recomputed. The D-values of the other vertices are not affected by
the swap.

14

6. Repeat steps 3-5, obtaining a sequence of n swapped pairs (o¿, 6¿) and
an associated gain-values until there are no more unused vertices.

7. Find sequence of swapped pairs that gives the maximum total gain by

G(k) = X>
1=1

8. If G(k) > 0, interchange the first к pairs and start a new iteration step.
If no such к can be found it means that all changes will lead to worse
partitions and algorithm has found local minimum cost partitions.

Notice that if all vertices are swapped, i.e. к = n, partitions stay the
same and the gain is 0. This means that swapping some pairs must have a
negative gain. It might seem like a clever idea to stop searching when a first
pair with a negative gain is found, but it isn’t. Function G is not monotonous
and after negative values there can be more pairs that yield new maximum
value for G. It is necessary to swap all pairs from 1 to к to obtain gain G(k)
and that’s why we can’t stop the search at first pair with negative gain [11].

3.2.1 Finding the best pair

Finding a pair of unused vertices that gives the best gain is a dominant part
of the iteration. There are three alternatives for selecting such a pair [2]. If
we want to be sure that we always get the pair with the maximum gain we
should use the sorting method. When D-values are sorted so that

Dai>Da2>...> Dan

and
An > Db2 > ... > Dbn,

only a few candidates for the best pair need to be considered because when
scanning down the lists of Da’s and Д/s if a pair (Д., Dbj) whose sum does

15

not exceed the maximum gain seen so far in this pass is found, then there
cannot be another pair (a*,, bi) with к > i and l > j with a better gain and
we can stop scanning the lists. This is assuming that all connection costs are
non-negative. If D-values were not sorted, it would be necessary to check all
combinations of a’s and b’s.

The other way is simply to find vertices with the largest D-values and use
them. It requires very little extra work, since the largest values can be saved
during the re-computation of D-values. This method works especially on
sparse connection matrices, where the probability that C(a, b) > 0 is small.

It is also possible to save two or three largest D-values from each partition
and select the best pair among them. This requires little more work, but
also performs better in situations where the largest pair does not give the
maximum gain because the connection cost between vertices, C(a,b), is too
high. Experience indicates [2] that the saving of the three largest D-values
from each partition is enough even for relatively dense connection matrices.
This method is a good compromise between speed and quality. It is faster
than sorting and yet it finds almost always the pair with the best gain.

3.2.2 Variations of Kernighan-Lin

The original KL algorithm has been improved in many ways. Here are some
common variations of the basic algorithm.

Orphan vertices

An orphan vertices are vertices that does not have any connections to other
vertices. Because they don’t have connections, they don’t change the connec­
tion cost of partitionings. With orphan vertices it is possible to relax partition
size constraints. Suppose that we have a graph with n vertices and we want
partitions that contain at least щ and at most n2 vertices (щ + n2 = n).

16

We can now add 2n2 — n orphan vertices and create partitions as usually.
Orphan vertices are assigned to both partitions so that the connection cost
is minimized. After removing orphans, we have two partitions that satisfy
previously given size constraints [2].

Boundary Kernighan-Lin

The idea of the boundary version is based on the observation that most of the
swapped vertices are on the partition boundaries. If we forget all vertices not
on the boundary, we can save a lot of work when choosing the optimal subsets
for swapping. Keeping count of the boundaries requires some extra work, but
the total computational effort is usually smaller, because of smaller number
of active vertices. Use of the boundary version of the algorithm doesn’t effect
significantly the quality of partitions generated [5].

К-way partitioning

In a many cases the partitioning algorithm must be able to handle more
than two partitions. Usually this is solved by recursive bisection. That is,
we first obtain a 2-way partitioning and then divide each part again. After
log к steps the graph is partitioned into к parts. However with a couple of
simple modifications it is possible to generalize the original KL algorithm to
handle an arbitrary number of partitions directly [8]. Instead of a single gain-
value, gains need to be computed against every partition. Gain-values are
computed for single vertices instead of pairs, because we might want to move
vertices some other fashion than a strict swaping. This also gives a possibility
to generate partitions with unequal number of vertices. When choosing the
next vertex to swap only such moves that satisfy partition size constraints
are considered. For example, if we say that no more than a 5% imbalance
is allowed, vertices cannot be moved to partitions that are already too large
or from partitions that are already too small, even if those moves would give

17

the best gains. If we want equal-sized partitions we should move vertices
only from partitions of at least average size to partitions below average size.

Linear-time algorithm

Each iteration of the original KL algorithm takes 0(\E\ log |Æ7|) operations,
where E is the number of vertices. By using appropriate data structures
complexity of the algorithm can be reduced to Od-E1]). One such modification
is presented by Fiduccia and Mattheyses in [10].

3.3 Graph Growing

Graph Growing

The Graph Growing algorithm [5] starts from a random vertex and grows a
region around it in breath-first fashion, until desired number of the vertices or
vertex weight has been included. Partitions generated by graph growing are,
by definition, always connected. However, the quality of partitions depends
totally on a chose of the initial vertex.

The main problem in the GG algorithm is that there is no general way
to know which vertices lead to good partitions. Easy but time consuming
solution is to generate multiple partitionings, by selecting many starting
vertices, and then simply choosing the one with the lowest connection cost.

In Figure 3.1 the darker vertices are added to the partition in previous
iterations and the grey vertices will be in the partition after the next iteration.
Note that there are no rules that would tell the order tell in which the vertices
on a partition boundary must be included. If we need only a one more vertex,
it can be any of those on the current boundary.

18

Figure 3.1 Graph Growing

О Vertex outside region

Vertex on boundary

Vertex inside region

Greedy Graph Growing

Greedy Graph Growing (GGG) [5] is a modification of GG. Instead of growing
a region in a strict breath-first fashion we can compute a gain value for
each vertex on a region boundary. Gain value tells how the costs of the
partitions will change if a vertex is added to a growing region. Vertices are
then sorted by their gains and the vertex that has the biggest decrease (or
smallest increase) of partition cost is inserted first. Then the gains of adjacent
vertices are updated and new vertices are joined to region boundary. Gain
values are needed only for the vertices on boundary, so it is not necessary to
precompute all gain values as in KL.

19

Figure 3.2 Greedy Graph Growing

Gain=1

Vertex outside region

Vertex on boundary

Vertex inside region

In Figure 3.2 we have three vertices, A, B, C, on partition boundary. C
is added first, because it doesn’t increase the connection cost of partition.
Both A and В would add one additional connection.

GGG has the same problem as basic GG. The quality of partitions de­
pends on the choice of initial vertex. However this dependency is not as
strong as in GG. Usually GGG gives better partitions with less work than
GG. Even though some extra work is done while computing gains, greedy
version can still be faster because to find a good partitioning it isn’t necessary
to generate as many different partitions as with GG.

20

Chapter 4

Direct Methods

The name of this chapter could be ‘Eigenvector based methods’, because all
widely used direct graph partitioning algorithms are based on the second
eigenvector, the so-called Fiedler vector, associated with the graph. The
effective computation of Fiedler vector is the actual computational challenge
of these methods, otherwise these algorithms are very simple.

4.1 Definitions

Graphs laplacian and incidence matrices have some interesting properties
that can be used in graph partitioning. For simplicity these properties are
just listed here. For details and proof see [12] and [13].

Laplacian matrix L(G) is quite similar to C(G). If we mark connections
with —1 and add degrees of nodes on the diagonal we get L(G).

L{G){i,j) = {
deg(i),

-1,
0,

if i - j.
if * ф j and C(i,j) Ф 0.
otherwise.

21

Incidence matrix 1(G) is a matrix with one row for each node and one
column for each edge. If G has an edge e between vertices i and j then
I(G)(e,i) = 1 and I(G)(e,j) = —1. All other elements in a column e of 1(G)
are zeros.

L(G) and 1(G) have the following properties :

• By definition L(G) is symmetric. This means that the eigenvalues of
L(G) are real and its eigenvectors are real and orthogonal.

• L(G) ■ eT — 0 where e = [1... 1].

• I(G)-I(G)T = L(G).

• Eigenvalues of L(G) are non-negative. 0 < Ai < Л2 < ... < \n.

• The number of connected components of G is equal to number of A,
equal to 0. In particular, Л2 ф 0 if and only if G is connected.

22

4.2 Spectral Bisection

Spectral Bisection (SB) is based on the properties of the second eigenvalue,
Л2, and the associated eigenvector, v2, of the laplacian matrix of the graph.
The tricky part of SB is a computation of eigenvalues and vectors. The
bisectioning algorithm itself is very simple after we have found the right
eigenvalue and eigenvector pair.

Spectral Bisection algorithm

1. Compute Л2 and the associated eigenvector v2 of L(G).
This is the tricky part, see chapter 4.3 for details.

2. Divide nodes into partitions N~ and N+ by

N , if v2{n) < 0.
N+, otherwise.

3. Apply algorithm recursively to new partitions.

Fiedler has proven in [15] that if the graph G is connected and partitions
N~ and N+ are generated by this algorithm, then N~ is always connected.
Similarly N+ is also connected if for every n holds that v2(n) Ф 0. However,
if there are 0’s in v2 partition connectivity can not be guaranteed.

4.2.1 ‘Vibrating string’ -analogy

It might be difficult to understand how eigenvectors can be used to partition
graphs. The following analogy [13] with a vibrating string tries to give some
motivation for the spectral bisection algorithm.

Picture a taut string that begins to vibrate when it is plucked. We know
from physics and music that it has certain modes of vibration or harmonics.
If we take snapshots of these modes they would look like strings in Figure 4.2.

23

Figure 4.2 Modes of a Vibrating String

Those parts of a string that are above the rest position are labeled by
*+’ and parts that are below it are labeled by In the case of second
frequency, A2, half of the string is above and half below the rest position.
Effectively this is bisecting the string into two connected components that
are equal sized. It turns out that if we build this vibrating string from a finite
set of identical masses (vertices) connected by identical springs (edges), write
down Newton’s Laws of motion for the masses, and solve for the frequencies
and shapes of the vibrational modes, we will get precisely the eigenvalues
and eigenvectors of the laplacian matrix L(G).

In Figure 4.3 are the first three eigenvectors of 100 vertex long chain.
There is actually a little difference between the vibrating string and eigen­
vectors. Strings were fixed at both ends but eigenvectors have no fixed points.
To make analogy between spectral bisection and vibrating string exact, we
have to make a little modification to our example. Instead of free masses
there are n horizontal rods and on each rod a mass m can slide frictionlessly.
These masses are connected with identical springs as before. The only dif­
ference is that masses at the end of chain are now connected to one moving
mass rather than to one mass and one fixed point.

24

Figure 4.3 Eigenvectors

1 st eigenvector

11

О--

C_______ I__________ I____________ I__________ I__________ I________ I____________ I__________ I__________ I__________ L

0 10 20 30 40 50 60 70 80 90 100

2nd eigenvector

0 10 20 30 40 50 60 70 80 90 100

3rd eigenvector

0 10 20 30 40 50 60 70 80 90 100

In case of a more complex graphs than simple chains, the same intuition
applies. Another easy to understand case is generic planar graph. We can
think a planar graph as a kind of trampoline. The second mode of vibration
bisects the graph (trampoline) into two parts. Vertices are divided into two
partitions so that ones above the rest position form one partition, and ones
below it form another.

4.3 Estimating the Fiedler vector

Computing of A2 and v2 of L(G) is the most important part of spectral
bisection algorithm. Many mathematical libraries have functions to compute
eigenvalues and eigenvectors of matrices, such as eig in Matlab, dsyevx in
LAPACK or pdsyevx in ScaLAPACK. However, in this case these are not very
cost effective solutions because they use dense matrices, while our matrices

25

are typically sparse, and their running time is proportional to N3 where N
is a matrix dimension.

Lanczos algorithm offers another, more attractive, method for finding re­
quired the A2 and u2. The idea of Lanczos iteration is to find a tridiagonal
matrix T(G) whose eigenvalues are good approximations of the original ma­
trix L{G). After we have found this T(G) it is quite trivial to compute the
right eigenvalue and vector. More details are presented in Chapter 4.3.1.

There is also another reason to use tridiagonal approximation of L(G).
Since we are not actually interested in eigenvalues, but eigenvectors asso­
ciated with them, a good estimate of eigenvalues is good enough for our
purposes. It is not necessary to know the actual eigenvalues. This means
that T(G) can be much smaller than L(G) which gives us an additional speed­
up. The size of a matrix depends on how accurate estimates we need. As
the matrix size grows, eigenvalue approximations get more accurate.1 The
convergence of eigenvalues is fastest at the both ends of spectrum. Because
the only eigenvalue that we are interested in, A2, is at the end of spectrum,
we need only a few iterations to get accurate results.

Our Lanczos algorithm is based on a version presented in [16]. This is
only a basic version of the algorithm, but in most cases it performs quite well.
There are also a lot of variations of the algorithm for more special applications
like the ones presented in [17], but in our case they are ‘overkill’ because we
don’t need very accurate eigenvalue approximations (see Chapter 4.3.2).

Although it is not possible to grow T(G) endlessly because of the well-known ‘break­
down phenomenon.

26

4.3.1 Lanczos algorithm

Following algorithm for computing fcth eigenvalue is presented in [18].

Let Tr denote the leading r-by-r principal sub-matrix of

T =

(Oi 61

b\ a2

V 0

0 \

bn— 1
“'71— 1

0"П

and define the polynomials pr(x) = det(Tr — z/), r = 1 : n. A simple
determinental expansion can be used to show that

pr(x) = (or - x)pr-i(x) - bl^pr^x)

for r = 2 : n if we set po{x) = 1. Because pn(x) can be evaluated in 0(n)
flops, it is feasible to find its roots by using the method of bisection. For
example, if pn(y)Pn{z) < 0 and y < z, then the iteration shown in Figure 4.4
is guaranteed to terminate with (y + z)/2 an approximate zero of pn(x), i.e.,
an approximate eigenvalue of T. The iteration converges linearly in that the
error is approximately halved at each step.

Sometimes it is necessary to compute only the kth largest eigenvalue of
T for some prescribed value of к (in our case к = 2). This can be done
efficiently by using the bisection idea and the Sturm Sequence Property.

Sturm Sequence Property

If the tridiagonal matrix is un-reduced, then the eigenvalues of Tr_x strictly
separate the eigenvalues of Tr\

^n(Fn) < An_1(T„_1) < An_i(Tn) < • • • < A2(Tn) < A1(T„_1) < Ai(Tn).

27

Figure 4.4 Eigenvalue iteration

while \y-z\> e(\y\ + |z|)
x = (y + z)/2
if Pn(x)pn(y) < 0

Z — X

end

else
У — x

end

Moreover, if a(A) denotes the number of sign changes in the sequence

Po(A),Pi(A),...,pn(A)

then a(A) equals the number of T’s eigenvalues that are less than A.

After A2 is found, the Fiedler vector can be computed via inverse iteration
algorithm [19] shown in Figure 4.5.

Figure 4.5 Inverse Iteration

for к = 1,2,...
Solve (A — pI)ZW = qk~l
gW = ZW/||ZW||2
A (fc) = qWH Aqk

end

Inverse iteration is just the power method applied to (A — pl)~x.

28

4.3.2 Performance of Lanczos algorithm

Previously in this chapter it was said that we don’t need to know the ex­
act eigenvalues of L to be able to split the graph. The next question is,
how accurate eigenvalues and vectors have to be in order to generate good
partitions ?

Three test graphs shown in Figure 4.6 were used to compare Lanczos
algorithm with accurate values based on the original laplacian matrices. The
purpose of the first graph, Basic (400 vertices), is to test algorithm on large
structured areas. The second graph, Doughnut (364 vertices), is like the
first one, but because there is a hole in the middle of graph, it has both
inner and outer boundaries. The third graph, Cross (256 vertices), is not
connected in the same way as previous graphs, but it has four extensions
that are connected only at the middle.

Figure 4.6 Lanczos-test Graphs

(a) Basic (b) Doughnut (c) Cross

29

Eigenvalues

The first test compared eigenvalues of tridiagonal Lanczos matrix and original
laplacian matrix. Figure 4.7 shows a convergence of the second eigenvalue.
On the horizontal axis is the number of Lanczos iterations and on the vertical
one is the difference between Л2 of L and Л2 computed for Lanczos matrix.
We can see that all three test cases got good approximation of A2 after 45-50
iterations, i.e. the dimension of Lanczos matrix was between 45-50. This is
relatively fast and small compared to the original laplacian matrices whose
dimensions were 400, 364 and 256, respectively.

Figure 4.7 Eigenvalue convergence

25 TT\ I

20 il

Basic
- Doughnut

Cross

t\
i\

i \
i \

5

0
30 35 40 45 50 55

Matrix size
60 65 70

30

Partitions

The second test compared the quality of the partitions. Computation of
eigenvector approximations was based on eigenvalues computed in previous
tests. We didn’t compare these approximations directly with the real eigen­
vector because eigenvectors are only used to generate partitions.

Instead we compared bisections generated by eigenvector approximations
and the real eigenvector. In Figure 4.8 on the horizontal axis is the number
of Lanczos iterations. This is the same scale that was used in Figure 4.7. On
the vertical axis is the difference in partition quality measured by connection
cost. Values below 0% mean that eigenvector approximation computed with
Lanczos algorithm gives better partitions than the real eigenvector of lapla-
cian matrix. It is worth noting that there is no quarantee for optimality in
neither case.

Figure 4.8 Connection cost

25

20

15

10

S' 5
8
I 0
å
O -5

-10 -

-15

-20

-25

» /
» /i /i / i / i _/ t I t /

v

30 35 40 45 50 55
Matrix size

60 65 70

31

If we compare Figures 4.7 and 4.8 we see that the eigenvectors, measured
by connection cost of partitions, converged even faster than the eigenvalue
approximations !

The reason why the Lanczos iteration didn’t find the correct partitions
in “Doughnut” -case is in the original laplacian matrix that has a dual­
eigenvalue. Because values are equal it is impossible to say which one is A2
and which is A3. Unfortunately the eigenvectors associated with A2 and A3
are not equal and in this case the algorithm has chosen a wrong vector. This
kind of behavior can only be avoided if in case of multiple equal eigenvalues
all associated eigenvectors are checked and the one that gives the lowest
connection cost is selected.

32

Chapter 5

Multilevel Partitioning

The idea of multilevel graph partitioning is to approximate the original graph
by a sequence of smaller graphs. The smallest graph is then partitioned
using some suitable method and the partitions are then projected back to
the original graph. The advantage of multilevel partitioning algorithm is
that the graph coarsening can be done in time proportional to the number of
edges, while the complexity of partitioning increases exponentially with the
number of vertices.

In Figure 5.1 on the left is the original graph. Edges that will be collapsed
at the next stage are marked with dashed lines. We shall explain later how
these edges are selected. In the same figure on the right is the same graph
after collapsing those marked edges.

Note that even though the original graph was unweighted, the reduced
graph has weights on both vertices and edges. This is necessary because
we want to preserve information about the structure of the original graph.
Without weights it would be impossible to tell the actual size or connection
cost of partitions after they were propagated back to the original graph. It is
important that the partitioning algorithm used with multilevel partitioning
can handle graphs with weighted edges and vertices.

33

Figure 5.1 Original and Reduced Graph

(a) Original (b) Reduced

5.1 Graph Reduction

There are basicly two kinds of graph reduction algorithms. Some algorithms,
like Random Matching (RM), just match random vertices together, while
others, like Heavy Edge Matching (HEM) and Heavy Clique Matching (HCM),
use the connectivity information to find a groups of tightly connected vertices.

Random algorithms work quite well when degrees of vertices are close to
the average degree of the graph. Graphs from finite element applications
(FEM) are typically in this category. However, if a graph has tightly con­
nected components it is usually better to keep those components together
and use something like HEM or HCM. Splitting tightly connected compo­
nents into different partitions typically leads to unnecessary increase in the
connection cost of partitioning.

Since reduction algorithms have roughly similar complexity, it is usually
better to use some more advanced algorithm like HEM or HCM than try to
save a little time using RM. Carelessly done reduction can harm partitioning
algorithm and lead to significantly higher cost partitions.

34

Random Matching

Random Matching (RM) [5] visits vertices in random order. If vertex has not
been matched yet, we randomly select one of its unmatched neighbors and
mark both the vertices and the edge between them as matched. If vertex
has no unmatched neighbors, it remains unmatched. This continues until
no more vertices can be matched. After that, matched vertices are joined
together and are marked as unmatched for the next reduction step.

Heavy Edge Matching

Heavy Edge Matching (HEM) [5] visits vertices in random order, same way
as RM did. However, when selecting a neighbor to match with, it chooses the
one that is connected with the heaviest edge. Naturally only such neighbors
that are not already matched are considered.

The idea of HEM is to minimize the edge weights of the reduced graph.
Smaller edge weight typically leads to smaller connection cost when reduced
graph is partitioned. This algorithm doesn’t guarantee that the edge weight
of the reduced graph is minimized, but experience has shown that it works
very well.

Modified Heavy Edge Matching

Modified Heavy Edge Matching (МНЕМ) [7] tries to minimize the average
degree of the graph. Again vertices are visited in random order and matched
with the neighbor that has the heaviest connection. If there are more than
one vertex to choose from, the vertex that has most connections from it’s
neighbors to a matching vertex, is chosen.

35

Analysis of the multilevel bisection algorithm in [6] shows that a good
edge-cut of a coarser graph is closer to a good edge-cut of the original graph
if the average degree of the coarser graph is small and/or the average weight
of the edges in the coarser graph is small [7].

Light Edge Matching

Light Edge Matching (LEM) [5] is like HEM, but instead of matching heavily
connected vertices it matches neighbors that has the lightest edge between
them. Reduced graphs produced by LEM have typically much higher average
degree than the original graphs. This kind of graphs are easier to handle for
some partitioning algorithms like Kernighan-Lin. The choice between HEM
and LEM depends on what kind of partitioning algorithm is selected for the
reduced graph.

Heavy Clique Matching

Heavy Clique Matching (HCM) [5] tries to find subgraphs that are fully or
almost fully connected. The idea is very similar to the HEM but instead
of just matching vertices with the heaviest edge between them, HCM joins
vertices that have the highest edge density.

For a pair of vertices (м, у) edge density is defined as follows :

EdgeDensity — 2 (CE(u) + CE(v) + EW{u, v))
(VW(u) + VW(v))(VW(u) + VW(v) - 1)

where VW(x) is the weight of vertex x, EW(x,y) is the weight of edge
between vertices x and y, and CE(x) is the total weight of edges already
collapsed into a vertex x. Vertices that are not connected in any way have
edge density of 0 and vertices that form a clique have edge density of 1.

36

5.2 Graph Refinement

After the reduced graph is partitioned the results have to be projected back
to the original graph. This can be done by simply assigning all vertices to
the same partition as their parent in the reduced graph. However, since the
original graph is much finer and has many more degrees of freedom than
the reduced one, these projected results can usually still be improved by
swapping some vertices from one partition to another.

Three common refinement-algorithms are presented here. They are all
based on Kernighan-Lin algorithm that was presented previously in Chap­
ter 3.2. KL-based algorithms suit very well in this kind of situations because
good initial partitions are already available.

Kernighan-Lin Refinement

Kernighan-Lin refinement (KLR) [5] simply runs KL partitioning algorithm
with projected partitions. Since those partitions are already quite good,
algorithm converges fast, typically within three to five iterations.

To further improve the performance of the algorithm, some additional
stopping conditions can be set. For example, continue until N swaps that do
not decrease the cost of partitioning, are made. Since the original partitions
were already good there is only a small number of swaps that will lead to
better partitions. All other moves will increase the cost of partitioning.

Greedy Refinement

Experiments show that the largest gain is obtained during the first iteration
step. Greedy refinement (GR) [5] runs only a single iteration of KL algorithm.
Iteration is stopped immediately when no more swaps with positive gain are
found. This reduces the complexity of refinement phase. Unfortunately
the number of swapped vertices and total running time does not change

37

in asymptotic terms because a lot of work has to be done while building
appropriate data structures before iteration.

Boundary Refinement

Almost all of the swaps in refinement phase are done between vertices on a
partition boundary. Boundary refinement [5] uses this information to skip
unnecessary work.

The idea is to focus on those vertices that are on a partition boundary
and forget all other vertices. After every iteration algorithm has to check for
new vertices that might have got onto a boundary due to swapping of vertices
that were already on the partition boundary. Boundary-idea can applied to
both KLR (BKLR) and GR (BGR).

Boundary method can save a lot of work on large graphs because the
data structures used by refinement algorithm become much smaller and are
faster to update. More complex the original refinement algorithm is, more
advantage is gained by using a boundary method.

5.3 Aspects of Multilevel Partitioning

Effective use of multilevel partitioning algorithms requires some understading
of how different parameters affect resulting partitions. The use of unappro­
priate partitioning methods or parameters can cause badly shaped partitions,
high connection costs and long running times. The choice of methods and
parameters depends on a graph that is partitioned. If one wishes to split
multiple graphs that have somewhat similar connection structure, it might
be worth while to make some experiments with different combinations of
algorithms and parameters.

38

Figures 5.2 and 5.3 show how changing the coarsening level can affect
the bisection of graph. The graph is constructed from 400 vertices that are
laid on a regular grid. In each figure the same graph is bisected using the
multilevel partitioning algorithm. Coarsening was made by using HEM and
combination of BKLR and BGR algorithms was used to refine partitions.
The actual bisection was made by using Spectral Bisectioning algorithm.

In Figure 5.2 are three bisections that were generated by coarsening the
original graph down to 4, 8 and 16 vertices. To see better how coarsening
affects bisectioning algorithm, no refining was used after bisectioning.

The Effect of coarsening is shown on the edge of partitions. As the size
of bisected graph grows from 4 to 16 vertices, the edge gets more details, i.e.
becames less “block-like”. If no coarsening and no refining is used the edge
of partitions would split square diagonaly. This kind of behavior can be seen
in the rightmost picture.

Figure 5.2 Partitions before refining

Г ВФ-Ф
I В Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф
i e о о о о ф-ф о о о о
I ■ <5 Ф Ф Ф Ф Ф Ф Ф Ф Ф
I ФФФ Ф Ф ФФ ФФФФ
I Ф Ф Ф ФФФФ
l-ф-ф-ф ф-ф Ф Ф Ф Ф Ф Ф
I Ф"Ф
I Ф Ф Ф Ф-Ф Ф Ф Ф Ф Ф Ф
I Ф ф-ф-ф-ф-ф-
I I I * ф Ф о о ф-ф ♦ о
1-В-В-ф-Ф-ф-ф......................
И в в ФФФ

1-в ф-ф ф-ф ф-ф ф-ф ф-ф

I ■ О ф 4> ф О О €> О ^ в
1В<><>Ф<>0000
IBü«Oê®ôe4éô

о

)ваавввв>
i в в а а в а в Ф о о о

I I I в в в в в

IBB ВВВВФФ ф-фф

I В В В В Ф ф Ф ф Ф Ф Ф
|.ф.ф-ф.ф.ф>.ф.ф.ф>.ф.
I ф ф ф ф ф ф ф ф ф ф ф

♦•ф-ф-ф.ф-ф-
I ф ф ф ф ф ф ф ф ф ф ф
I ф-ф ф ф ф ф ф ф ф-ф ф
|ффффффф.фф-фф
I ф.ф..ф.ф..ф.ф.ф.ф.ф.ф.ф.
1ФФФФФФФФФФФ

ф ф ф ф ф

ф ф ф
ф фф
ф ф-ф

ф ф-ф
ф ф-ф
ф-ф-ф

ф ф ф
ф ф-ф

ф ф-ф ф-ф-ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф
Ф Ф Ф фффффф фффф оофоофф
ф-ф-ф фффффф ффффффффффф
ф-ф-ф ф ф Ф Ф Ф Ф ФФФФФФ ф-ф ф а в
Ф Ф Ф Ф-ф Ф Ф-Ф ффффффффвввв
ф-ф-ф - ф-ф-ф-ф-ф-ф-ф-ф-ф-ф-|-в-в-в-в-i-в
ф-ф ф Ф-Ф ф ф-ф ф ф ф-ф-ф-в в в в в в в
ф ф ф ф ф ф ф ф ф ф-В-В-В-В-В-В-В-В-в-В
Ф-Ф-Ф-Ф-Ф-Ф-Ф-Ф-Ф-Ф-в-а-в-в-в-в-в-а-а-в
ФФФФФФФФФвввввввваав
«фффффф ф в в в в в в-в-в в-в-а в
ф-ф-ф-ф-ф-ф-ф-В-ВВ-В-В-В-В-ВВ-В-В-ВВ
ООО Ф-Ф-Ф-Ф в а в в в в а а в в в в в
фффффффВВВВВВВВВВВВВ

(a) CoarsenTo=4 (b) Coarsen То=8 (с) Coarsen То—16

Coarsening can significantly reduce CPU time used in graph partition­
ing. However, using too much coarsening can destroy some of the connection
information and thereby lead to higher connection costs and badly shaped
partitions. On the other hand, coarsening can also help bisectioning algo­

39

rithm by hiding “unimportant” information. There is no general rule, how
much coarsening one should use. Typically iterative partitioning algorithms
work better with larger, less coarsened, graphs and eigenvector based like
more coarsened graphs.

In Figure 5.3 are the same three partitionings after refining. Both second
and third bisection, where the coarsest graph was 8 and 16 vertices respec­
tively, have minimal connection costs after refining.

However in the leftmost picture, where graph was coarsened down to four
vertices before partitioning, refinement algorithm was no longer able to find
optimal partitions. This is due to excessive coarsening, too much connection
information was lost during graph coarsening.

Figure 5.3 Partitions after refining

II4 о о о о i > о о 4 4

14 4 4 <Н>

I*.4 4 4-4
I ■ -4 4 4-4

I ■ ■ ■ О 4

♦ ■4 О 4 4 0
4 4 4 4 4 0
4 4 4 4 4 4

4-4 4 4 40
4 4 4 4 4 4
4 4 4 4 4-4
4 о 4 4 4 4
4 4 4 4 4 0
4 4 4 4 4 4
4-4 4-4 4-0
4-4 4-4-4-4
4 4 4 4 4 4
4 4 4 4 4 4

14 4 4 4 4 4 4 4 4 4
I oo 4Ó 4 4 4 4 44
14 4 4.4 4 4 4 4 4.4
I 0 0 4 0 0 4 0 0 4 0
1 4 4 4 4 4 4 44 4.4
14 4 4 4 4 4 4 4 4 4

144 4 4 0 4 4 4 4 0
I 4 4 4 4 4 4 0 4 4 О
1-4-4-4-4-4-4-4-4 4- О
14 4 4 44 44 4 44
I 4.4.4.4 4.4 4 4 4.4
14 4 44 4 4 4 4 4 4
I4.4.4.44.44.44.4
1-0 4 4 4 4 4 4 4 4 0
I.4.4.4.4.4.4.4.44. о
14 4 4 4 4 4 44 44
14 4 4 4 4 4 4 4 4 4
I 4 4 4 4 4 4 4 4 4 4

I-4-4-4 -4 4-4-4-4 4-0
I $ $ ô ô 6 Ô

9 4 4 4 4 4444444494444 49
4 4 4 4 4 4 4 9 4499944444 40
04004040044440044400
0 4 4 4 4 4 4 0 4 4 4 4 4 4 4 4 4 4 4 4
0 9 4 4 4 4 4 4 9 4 4 9 4 4 4 4 9 9 4 о

9 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0
4-4 4 4-4 -0 4 4 4 4-4 4-4-4 4 4-4 4 4 4
4 4 4 4 4 4-4-4 4 4-4-4 Ó 4-4 4-4 4 4 4
4 4 4 Ó-4-4-4 4 4-4 4-4-4 4 4-4-4-4 4 4
4 4 4-4 4-0-4-4 4-4 4 4--4-0-4-4-4-4 4 4

(a) CoarsenТо=4 (b) CoarsenTo=8 (c) CoarsenTo=16

40

Chapter 6

Results

In this Chapter the performance of iterative and direct partitioning algo­
rithms is compared. Also the effect of the multilevel scheme on both connec­
tion cost and CPU usage is reviewed.

Performance of graph partitioning algorithm can be measured on two
different scales: connection cost and CPU usage. Partitioning algorithms
are trying to minimize the connection cost, so that inter-processor commu­
nication is kept at the minimum level and parallel FEM-solver can obtain
the maximum performance. However, even a very good partitioning can be
unsatisfying if too much CPU time is wasted in the partitioning phase.

Whether to emphasize on partition quality or CPU time depends on the
underlaying application. If partitionings can be re-used it is justified to use
more CPU time to generate good partitions. On the other hand, if only a
“throwaway” partitions are required it is better to cut the CPU usage at the
expense of partition quality.

41

6.1 Testing Environment

6.1.1 Hardware

The Performance-tests were run on a Digital AlphaServer 2100 with three
300MHz CPUs and 1GB of memory. One of CPUs was dedicated for the
graph partitioning process while the other two had moderate interactive load
at that time.

All file-I/O was left out because disks were mounted over network by NFS.
There were also many programs running on the other two CPUs that used
some unknown amount of machines I/O-capacity. Under these conditions
it would have been meaningless to measure time taken by I/O. Since all
partitioning algorithms read and write almost same amount of data and use
same I/O-routines, the time used in file-I/O can be seen as function of graph
size that is same for all algorithms. It is clear that when the size of graph
grows it will become a major problem. However the focus of this thesis is on
graph partitioning algorithms, not on I/O-performance.

6.1.2 Software

For testing purposes a graph partitioning software called heli was imple­
mented according to methods presented in previous chapters.

As an input heli reads a mesh generated by a separate program. After
that it builds a connection graph, generates partitions and finally writes each
partition to separate files on a disk. Parallel solver processes can then read
only the information they are interested in.

The actual graph partitioning in heli is done by using the multilevel al­
gorithm implemented by the metis-library [20]. Metis is a publicly available
library and collection of sample programs for unstructured graph partition­
ing and sparse matrix ordering. Both heli and metis are supporting the

42

following matching, partitioning and refinement algorithms :

Matching: Random (RM), Heavy-edge (HEM), Light-edge (LEM), Heavy-
clique (HCM), Modified Heavy-edge (МНЕМ), Sorted Random (SRM),
Sorted Heavy-edge (SHEM) and Sorted Modified Heavy-edge (SMHEM).

Partitioning: Graph Growing (GG), Greedy Graph Growing (GGG), Spec­
tral Bisection (SB) and Combination of Graph Growing &; Boundary
Kernighan-Lin (GGKL).

Refinement: Greedy (GR), Kernighan-Lin (KLR), Combination of Greedy
and Kernighan-Lin (GKLR), Boundary Greedy (BGR), Boundary
Kernighan-Lin (BKL) and Combination of Boundary Greedy & Bound­
ary Kernighan-Lin (BGKLR).

Sorting versions of matching algorithms first sort vertices in increasing order
of vertex degree and while finding matchings they browse vertices in this
order. Sorting matching algorithms usually find larger matchings than their
non-sorting counterparts.

By default SHEM is used for graph reduction, SB for partitioning the
reduced graph and GKLR for partition refinement. If the size of the reduced
graph is not explicitly defined, the graph is reduced down to 100 vertices
before partitioning. All these parameters can be modified via command-line
interface.

The program can process both 2D and 3D element meshes. The basic
elements of two dimensional meshes are triangles and in three dimensional
cases, tetrahedra. The type of the elements doesn’t affect the actual parti­
tioning phase in any way. The only difference between processing 2D and 3D
meshes is in the input- and output-routines.

43

6.1.3 Graphs

All test graphs have regular structure and identical geometry. The only
difference is the number of elements. Graphs of 10k, 40k, 55k, 80k and 100k
vertices are used.

The use of multiple precisions of the same geometry tries to mimic the
iterative nature of typical design process. In the first simulation rather coarse
mesh is used to get results quickly. Model can then be altered if necessary.
When the right geometry is found more precise mesh is used to get accurate
results.

The geometry of test graphs is shown in Figure 6.1.

Figure 6.1 Test Graph

44

In addition to mesh geometry, also the way that elements are connected
to their neighbors affects resulting partitions. When constructing a connec­
tion graph for a given mesh, elements were connected only to their “natural
neighbors”. Natural and Non-natural neighbors are defined as follows :

• Natural neighbor of a triangle is an element that shares edge with the
given triangle. Natural neighbors of tetrahedra share a face with the
given element.

• Non-natural neighbor is an element that shares a vertex with the given
element, but is not a natural neighbor of that element.

Depending on application, there can be significant difference in commu­
nication required between natural and non-natural neighbors. If appropriate
weights are assigned to different types of connections, partitioning algorithm
can take care of these requirements and create partitions that have lower
communication costs.

45

6.2 Performance

Three different partitioning algorithms were tested both with (solid lines)
and without (dashed lines) refining. Greedy and Spectral algorithms are
described in Chapter 4 and Hybrid is a combination of these two. The Hybdir
algorithm uses Spectral Bisection to do the first bisection and after that
Greedy algorithm is used. The refining algorithm used in all cases was a
combination of Greedy and Kernighan-Lin. In all test cases, the same graphs
were partitioned into 8 partitions, i.e. 3 recursive bisections were made.

CPU times measured here are shown only to make it possible to compare
different algorithms and to give a rough estimate how long graph partitioning
takes. They are not meant to be taken as ultimate performance results
because only default optimization was used when compiling code and no
performance analysis was made to find and/or correct possible bottlenecks
in heli and metis-library.

6.2.1 Connection cost and CPU usage

The next four pairs of figures show how the connection cost and CPU usage
are releated together and what are the effects of the multilevel scheme. In
the first picture, Figure 6.3, graph is reduced down to 8 vertices before par­
titioning, i.e. partitioning algorithms are appied to a graph with 8 vertices.
Similar cases with 100 and 1000 vertices are shown in Figures 6.4 and 6.5.
The fourth picture, Figure 6.6, shows the situation when no coarsening is
used but graphs are partitioned directly.

In the first two cases, Figures 6.3 and 6.4, where the size of the reduced
graph is 8 and 100 vertices, all three algorithms produce almost identical
results. Due to excessive coarsening, the actual work is done in graph re­
duction and refinement phases and most of the connectivity information is
hidden during the partitioning phase. There are no significant difference be-

46

tween partitioning algoorithms when the size of the graph is small, in this
case 8 or 100 vertices. However, this proves that multilevel scheme can be
very effective. The results are good despite the fact that most of the par­
titioning work is done by reduction and refinement algorithms instead the
actual partitioning algorithm.

When less coarsening is used, as in Figure 6.5, the real characteristics of
the partitioning algorithms are beginning to show. The CPU usage of the
Spectral Bisectioning is clearly higher than other two algorithms. This could
be expected as the complexity of the Spectral Bisectioning is almost 0(N3)
while Greedy partitioning algorithm is only O(NlogN).

The effect of multilevel scheme is shown clearly when no multilevel al­
gorithm is used. In Figure 6.6 are the same five graphs partitioned without
coarsening. There are many explanations to the rapid growth of CPU us­
age of the Spectral algorithm. The higher complexity is one reason, but it
surely is not the only one. Running out of cache is probably another rea­
son why Spectral Bisectioning performs so badly. The Greedy algorithm is
more “cache-friendly” since it is focused on making local improvements to
partitions while Spectral algorithm has a more global view of the situation.
Also the version of Spectral algorithm implemented in metis is not very suit­
able for large graphs since it uses a constant tolerance in computation of the
Fiedler-vector. If Spectral algorithm is used with graphs of varying size, it
is recommended that tolerances are computed as functions of graph size.

Partition refining is profitable with all combinations of graph size and
coarsening level. With only nominal extra CPU usage, refining can give
considerable savings in connection cost. Note that refining can be used even
if no coarsening is used, as in Figure 6.6.

47

Fi
gu

re
 6.3

 Co
nn

ec
tio

n c
os

t a
nd

 C
PU

 us
ag

e (
co

ar
se

ni
ng

 to
 8

ve
rti

ce
s)

E0)
Ш

(s) ЭШЦ DdO

8 § ? В В § §
UOjÜUBd / iSOO UOjpøUUOQ

о

48

Fi
gu

re
 6.

4 C
on

ne
ct

io
n c

os
t a

nd
 C

PU
 us

ag
e (c

oa
rs

en
in

g t
o 1

00
 ve

rti
ce

s)

E0)
Ш

(S) 9ШЦ ndO

Eф
ш
о*

s §
uofliyed / isoa uoipøuuoo

49

Fi
gu

re
 6.

5 C
on

ne
ct

io
n c

os
t a

nd
 C

PU
 us

ag
e (

co
ar

se
ni

ng
 to

 10
00

 ve
rti

ce
s)

со

I § E
S. £<5 CO X

о X ж

uowyed / 1SOO UOÜ09UUOQ

50

Fi
gu

re
 6.

6 C
on

ne
ct

io
n c

os
t a

nd
 C

PU
 us

ag
e (

w
ith

ou
t c

oa
rs

en
in

g)

■O § 5
111.
CD C/3 I

О X ж

c0)
E

(s) эшц ndo

>. «
liio S i

8 §

Ш
o

UODI^IBd / ISOO UOI109UUOQ

51

6.2.2 Multilevel effects

As the multilevel scheme is clearly capable of outperforming traditional parti­
tioning methods in both partition quality and CPU usage, it is still not clear
how much graph should be reduced to get the optimal quality and/or CPU
usage ? While the answer depends on how connection cost and CPU time
are emphasized and what kind partitioning algorithm used, some general
guidelines can be given.

In Figures 6.7 and 6.8 partition quality and CPU usage are shown as a
function of the coarsening level. The graph that was used in these test is the
same as in previous section (the one with 100k vertices).

As long as the size of the reduced graph is relatively small, from 100
to 1000 vectices, there is no difference in performance. However, when less
coarsening is used, i.e. larger graphs are partitioned, spectral algorithm runs
into problems. As said the in previous section, the rapid growth of CPU
usage has multiple reasons: high complexity of algorithm, running out of
cache and constant tolerance used in the Fiedler-vector computation.

A rule of thumb for multilevel partitioning is to coarsen the original graph
down to few hundred vertices and use either greedy or spectral algorithm
to create partitions. When the coarse partitions are projected back to the
original graph some greedy refining algorithm like GKLR should be used.

Closer analysis of CPU usage per algorithm is shown in Figure 6.9 where
each stacked bar shows how time is divided per recursion level, when graph
is partitioned without coarsening (the rightmost points in Figure 6.8). The
CPU time used in first bisection is shown on bottom of each bar and following
recursion levels are stacked on top of it. It is interesting to notice, that
time per recursion step is almost constant for both Greedy and Spectral
algorithms, i.e. running time depends only on total size of the graph. It
does not matter whether N vertices are partitioned into 2m partitions, each
having n vertices, or into m partitions with 2n vertices.

52

Figure 6.7 Connection cost vs. Coarsening level

200 ■ ^-X

60

40 ■

20

O'------- '------- '------- -------- '------- -
0 1 2 3 4 5

CoarsenTo (log 10)

Figure 6.8 CPU time vs. Coarsening level

53

Figure 6.9 CPU usage per Recursion step

Spectral

Hybrid

Greedy

6.3 Examples

Here are three examples of partitioning 2-dimensional meshes. All meshes
have about 1000 elements (vertices of connection graph) and geometries are
the same that were used for testing Lanczos-algorithm in Chapter 4. However
the connection structure is totally different. Graphs in Chapter 4 were built
on top of a regular grid while examples here are irregular triangular meshes.

While partitions shown here are probpably not the optimal ones, they
are still very good. No obvious improvements that would give considerable
decrease of connection cost can be seen. These partitions were created using
the default parameters of heli, i.e. SHEM for graph reduction, SB for
partitioning and GKLR for partition refinement. The size of the reduced
graph was 100 elements.

Sample partitionings of 2D and 3D meshes are shown in the Appendix A.

54

Fi
gu

re
 6.

10
 Ex

am
pl

es
 of

 2
D

 m
es

he
s

WP*улШВ&

ТВ
***■'*%

*
rjWAWiWàW^IWiWiWir^r^№WiWiWiVi¿;

I»
iPSSaÉÉíÉiie5*

ВДЛЛЛЛЛЛЛЛАвдЗз
. _ j '.*до«лл1ъг« rø&wsi

S
SS3öä5§l8h

3öiiä5555S^
Агамеямжго

55

Chapter 7

Conclusions

Graph partitioning is an NP-complete problem. At the begining there were
some doubts if a partitioning of very large graphs is possible in reasonable
time, so that the parallel solver could outperform its serial counterpart. For­
tunately some very good heuristics exist and even more are in development.

Graph partitioning algorithms can be divided into three basic groups :

• The iterative methods like Kernighan-Lin and Graph Growing improve
existing partitions by making small local changes. The problem with
these algorithms is that they can find only the local minimum of con­
nection cost, i.e. the choice of the starting point is crucial. However,
iterative partitioning algorithms can be very fast and they are quite
simple to implement.

• Spectral methods are based on the properties of eigenvectors. Unlike
iterative methods spectral bisection is done in one step and no interme­
diate results are available. The problem with spectral bisectioning is
the complexity of algorithms. While the complexity of iterative meth­
ods is usually between 0(N log N) and 0(N2), the spectral methods
are closer to 0(N3). On the other hand, the spectral bisectioning has

56

better global view of a graph than iterative methods do. If appropriate
methods for estimating the second eigenvector of laplacian matrix can
be found, spectral bisectioning could be very competitive with iterative
methods.

• Multilevel method is really an extension of two previous groups rather
than a totally new method. The idea is to reduce the size of the graph
before partitioning. After the partitions are generated they are pro­
jected back to the original graph with refining.

Based on the current knowledge the multilevel approach is the most at­
tractive graph partitioning strategy. Using multilevel algorithms a problem
size can be reduced in time proportional to number of vertices. The actual
partitioning algorithms, that typically have complexity of 0(N2) or 0(N3),
can then generate partitions in a fraction of time that would be required for
original unreduced graph. There is no significant difference in partition qual­
ity between multilevel and traditional “non-multilevel” algorithms. In some
cases multilevel algorithms can actually produce better partitions. However,
the efficient use of multilevel algorithms requires some understanding of their
inner structure. Selected graph reduction and refinement algorithms together
with a reduction level have strong influence to resulting partitions.

Graph partitioning is still an active researh area and new results are
published almost monthly. Because element meshes are perhaps the most
obvious source of graphs, it is not very surprising that most of the projects
are dealing with Finite Element Method problems. A good example of a
project almost identical to ours is the Quake project [21] [22] that is working
on an earthquake simulations. However, the same heuristics can be applied
to any data dependency problem, for example, parallel compilers could use
graph partitioning heuristics to distribute application data among processors.

57

Appendix A

Examples of 2D and 3D meshes

Here, in Figures A.l through A.4, are four examples of 2D and 3D par­
titionings. All partitions were generated by using heli with the default
parameters: Sorted Heavy Edge Matching, Spectral Bisection and Greedy
Kernighan-Lin Refinement. The size of the coarsened graph was 100 ele­
ments.

58

Fi
gu

re
 А

Л
 ’H

el
m

ho
ltz

’ -g
eo

m
et

ry

¿vvvvvvv

59

Fi
gu

re
 A

.2
St

ep
 in

 2
di

m
en

sio
n

60

Fi
gu

re
 A

.3
 ’U

’-s
ha

pe
d o

bj
ec

t

61

Fi
gu

re
 A

.4
 Si

m
pl

e m
od

el
 of

 an
 ai

rp
la

ne

62

Glossary

Connection cost
Total weigth of such edges that have their end-points in different partitions.
Connection cost is usually used to measure the quality of partitions. Lower
cost equals to better partitions.

Iterative partitioning method
Partitions are created step-by-step by making little improvements until the
local minimum of connection cost is found. See Direct partitioning method.

Direct partitioning method
Partitions are based on the Fiedler-vector of the graph and they are created
directly without any intermediate stages. See Iterative partitioning method.

Multilevel partitioning
The size of the original graph is reduced before partitioning in order to cut
down CPU usage of the partitioning phase. Smaller graph is partitioned
and results are projected back to the original one. See Graph reduction and
Partition refinement.

63

Graph reduction
Reducing the size of the graph by collapsing groups of vertices together. How
the groups are selected depends on a reduction algorithm. Typically tightly
connected groups (cliques) are prefered.

Partition refinement
As partitions are projected back the original graph results are not always
best possible. Small defects on partition boundaries can be corrected by
running a few iterations of some greedy partitioning algorithm like Boundary
Kernighan-Lin or Boundary Greedy. See Multilevel partitioning.

Connection matrix
A matrix that holds the connection information of graph. Elements of the
matrix are defined as follows :

1, if there is an edge from i to j.
0, otherwise.

Laplacian matrix
A close relative of the connection matrix. The second eigenvector of laplacian
matrix, so-called Fiedler-vector, is used in direct partitioning methods. See
Direct partitioning method and Fiedler-vector.

L{i,j) = <
deg (г),
-1,
0,

if i = j.
if г t¿ j and C(i,j) Ф 0.
otherwise.

Fiedler-vector
The second eigenvector of the laplacian matrix associated with the graph.
See Direct partitioning method.

64

Bibliography

[1] J. Järvinen. Virtauslaskentaohjelmiston kehittäminen, projekti­
suunnitelma. CSC-Tieteellinen laskenta Oy, 1995

[2] B.W. Kernighan, S. Lin. An Efficient Heuristic Procedure for Partition­
ing Graphs. The Bell System Technical Journal, pp. 291-307, 1970

[3] H.D. Simon. Partitioning of Unstructured Problems for Parallel Process­
ing. NASA Ames Research Center, 1994

[4] L.R. Ford, D.R. Fulkerson. Flows in Networks. Princeton University
Press, 1962

[5] G. Karypis, V. Kumar. A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs. Technical Report TR 95-035, University
of Minnesota, 1995

[6] G. Karypis, V. Kumar. Analysis of Multilevel Graph Partitioning. Tech­
nical Report TR 95-037, University of Minnesota, 1995

[7] G. Karypis, V. Kumar. Multilevel к-way Partitioning Scheme for Ir­
regular Graphs. Technical Report TR 95-064, University of Minnesota,
1995

[8] B. Hendrickson, R. Leland. Multidimensional Spectral Load Balancing.
Technical Report SAND93-0074, Sandia National Laboratories, 1993

65

[9] В. Hendrickson, R. Leland. A Multilevel Algorithm for Partitioning
Graphs. Technical Report SAND93-1301, Sandia National Laboratories,
1993

[10] C.M. Fiduccia, R.M. Mattheyses. A Linear-Time Heuristic for Improv­
ing Network Partitions. Proc. 19th IEEE Design Automation Confer­
ence, pp. 175-181, 1982

[11] C.H. Papadimitriou, К. Steiglitz. Combinatorial Optimization: Algo­
rithms and Complexity. Prentice Hall, 1982, pp. 467-468.

[12] B. Mohar. The Laplacian Spectrum of Graphs. Dept, of Matchematics,
University of Ljubljana, Yugoslavia, 1988

[13] Applications of Parallel Computers -course homepage.
http://www.icsi.berkeley.edu/cs267/ University of California,
Berkeley.

[14] M. Fiedler. Algebraic Connectivity of Graphs. Czech. Math Journal,
vol.23, pp. 298-305, 1973

[15] M. Fiedler. A Property of Eigenvectors of Nonnegative Symmetric Ma­
trices and its applications to Graph Theory. Czech. Math Journal, vol.25,
pp. 619-637, 1975

[16] B.N. Parlett, H. Simon, L.M. Stringer. On Estimating the Largest Eigen­
value With the Lanczos Algorithm. Mathematics of Computation, vol.38,
no. 157, pp. 153-165, 1982.

[17] Roger G. Grimes, John G. Lewis, Horst D. Simon. A Shifted Block Lanc­
zos Algorithm for Solving sparse Symmetric Generalized Eigenproblems.
SIAM J. Matrix Anal. Appi., vol.15, no.l, 1994

[18] G. Golub, van Loan. Matrix Computations, 2.ed, pp. 437-438, 1989

66

[19] G. Golub, van Loan. Matrix Computations, 2.ed, pp. 383-385, 1989

[20] G. Karypis, V. Kumar. Metis - Unstructured Graph Partitioning and
Sparse Matrix Ordering System. Department of Computer Science, Uni­
versity of Minnesota, 1995

[21] The Quake Project -homepage, http : //www. cs . emu. edu/'/,7Equake/quake. html
School of Computer Science, Carnegie Mellon University.

[22] Archimedes -homepage, http : //www. cs . emu. edu/'/.TEquake/archimedes . html
School of Computer Science, Carnegie Mellon University.

67

TEKNItLUMKJ KORKEAKOUIU
TIETOJENKÄSITTELYOPIN

KÄSIKIRJASTO

