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Chapter 1 

Introduction

This thesis is a part of VIRKE-project whose goal is to develop a paral­
lel computational fluid dynamics program ELMER [1], based on the Finite 
Element Method, which can be utilized in the industrial processes involv­
ing heat transfer due to conduction, convection or radiation, incompressible 
flows, laminar or turbulent, and free boundaries.

The ELMER-package includes a preprocessor, finite element routines, a 
matrix equations solver and a postprocessor. At the preprocessing phase the 
element mesh is generated and distributed to the processors. After that a 
system of equations is created and solved in parallel. The postprocessing 
collects the numeric results and visualizes them.

In a traditional serial program-architecture the solving of equations gen­
erated by the problem parameters and element mesh is the most time con­
suming phase. In addition to single CPU performance, also the available 
memory can be a limiting factor when solving really large problems. A typ­
ical architecture of a serial program is shown in Figure 1.1.

As the size of a mesh grows, more computing power and memory is re­
quired. Eventually the limits of a single CPU are encountered. Natural way 
to continue is to use multiple CPUs and parallel solvers. In addition to a
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Figure 1.1 Serial program architecture

Problem Geometry

parallel solver, a separate partitioning program is also needed for distributing 
the data so that computational load can be balanced across processors and 
interprocessor communication is kept at minimum. This kind of program 
architecture could be called “partially parallel” because the first part of a 
pipeline is still serial as show in Figure 1.2. This is also the current goal of 
the VIRKE-project.

Figure 1.2 Partially parallel program architecture

At some point adding more solver processes won’t decrease the total run­
ning time any more because the mesh generation and partitioning phases take 
most of the time. Additional partitions also increase communication between 
processes and require extra work at partitioning phase. In some cases, raising 
the degree of parallelism can actually decrease the total performance.
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Higher performance can still be achieved by making the whole pipeline 
work in parallel as shown in figure 1.3. Graph partitioning, at its current 
form, is probably just a passing stage on a way to fully parallel graph gen­
eration. However, parallel mesh generation and graph partitioning are still 
very much research topics and no general implementations exists.

Figure 1.3 Fully parallel program architecture

This thesis is focused on graph partitioning during the preprocessing 
phase of the FEM solution. In parallel FEM environments typical load bal­
ancing problems can often be reduced to graph partitioning problems. Since 
the problem is NP-complete, only heuristic algorithms are available, though 
one might argue whether the Fiedler -methods are heuristic or not, but expe­
rience has shown that they perform well in most situations. However, there 
is no guarantee for optimality of solution. In general this is not a problem 
since the difference between generated partitions and the optimal solution 
tends to be very small.

Algorithms are divided into iterative and direct ones by the way they form 
the partitions. Iterative algorithms create partitions step-by-step, making 
little improvements until the local optimum is found. Direct algorithms are 
based on the computation of the Fiedler vector of the graph. Partitions are 
created directly by the vector without any intermediate stages.
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The most attractive partitioning algorithms employ the multilevel scheme. 
The idea is to reduce the size of the graph before partitioning by collapsing 
groups of vertices together. Reduced graph can then be splitted in a frac­
tion of time that would be required for the original graph. The complexity 
of partitioning algorithms is typically between O(NlogN) - 0(N3) while 
graph reduction can be done in O(N). By using a multilevel partitioning 
algorithm substantial performance gain can be obtained without sacraficing 
the partition quality.
The rest of the thesis is organized as follows :

• In Chapter 2, the graph partitioning problem is defined in more de­
tail. Also the exact solution and some not so successful heuristics are 
discussed.

• Chapter 3 presents a selection of iterative partitioning methods such 
as Kernighan-Lin and Graph Growing algorithms. The complexity of 
iterative algorithms is typically between 0(N log N) and 0(N2).

• Chapter 4 focuses on the Spectral Bisectioning algorithm. The actual 
computational challenge of the algorithm is the computation of the sec­
ond eigenvector, so called Fiedler vector, associated with the Laplacian 
matrix of the graph. The complexity of Fiedler vector computation is 
roughly 0(N3).

• Chapter 5 introduces the idea of multilevel graph partitioning. Mul­
tilevel is an extension of other partitioning algorithms rather than a 
totally new algorithm. The idea is to reduce the size of graph before 
partitioning algorithm is applied. While the complexity of partition­
ing algorithms varies from 0(N log N) to 0(N3), the graph reduction 
can be done in O(N). Multilevel algorithm can cut down CPU usage 
during the partitioning phase without sacrificing the partition quality.

4



• In Chapter 6 performance, both CPU usage and partition quality, is 
discussed. While there is no significant difference in partition quality 
between iterative and spectral algorithms, iterative algoritms are much 
faster. Currently the best performance and partition quality is obtained 
by iterative multilevel algorithms.

• Chapter 7 summarizes the thesis and draws some conclusions.

5



Chapter 2

Problem

To use distributed memory parallel computers efficiently one must be able 
to balance computational load across processors in a way that gives each 
processor equal sized problem and keeps interprocessor communication at 
minimum level.

The key to solve load balancing problem is to think of the computational 
problem (in this case, solving a system of equations) as a graph where vertices 
are atomic subproblems (degrees of freedom) and edges are dependencies be­
tween subproblems. It is also possible to assign a different computational 
‘weight’ to each vertex and/or edge, to better describe the original problem. 
A graph G obtained that way can be used as an description of the original 
problem. Partitioning the G so that minimum number of cut-edges are cre­
ated between partitions and finding an effective distribution for the original 
problem can be seen as an equivalent tasks.

2.1 Definitions

This thesis is focused on partitioning of an undirected graph G = (V, E). 
Each vertex € V and edge ej e E may have an additional attribute,
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weight. Weights can be used to describe a computational size of a vertex 
and communication load over an edge. If weights of the edges are collected 
into a matrix C, where C(i,j) is the connection from vertex i to vertex j, 
then C is the connection matrix of the graph G. An unweighted graph is a 
special case of a weighted graph where all connection weights are constant. 
Since we are focused on undirected graphs, the connection matrix is always 
symmetric.

Creating a k-way partitioning of graph G means dividing G into к subsets 
Gi... G/c, such that G = G\ U ... U Gk and G\ П ... П Gk = 0. This is a gen­
eralization of the graph bisection problem (i.e. bisection is equal to a 2-way 
partitioning). From now on our main focus will be on the bisection prob­
lem. Thus, a 2fc-way partitioning can be obtained easily using bisectioning 
recursively.

The cost of bisection, or k-way partitioning, is defined as the sum of 
weights of such edges that have their endpoints in different partitions. In a 
case of bisection the cost of partitioning can be defined as

Cost — C(a, b) , where a G A and b G В.

For successful load-balancing we want partitions that have certain prop­
erties. A good partitioning can be defined as follows :

• Controlled partition size. It is not always necessary or possible to define 
the exact number of vertices and edges in each partition, but there must 
be a way to control a magnitude of a partition size.

• Minimal cost. Fetching data from another CPU is usually much more 
expensive than using a local data. Partition cost tells us how much 
remote data will be used. A lower cost means more local data and 
thereby better performance.
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• Connected partitions. It is desirable that all vertices in one partition 
are connected together. This follows directly from the Minimal cost 
requirement because disconnected vertices increase the cost of a parti­
tioning.

• Hardware limitations. Computation hardware used can have some lim­
itations that must be considered. For example communication between 
different processors can cost a different amount of time. Partitioning 
algorithm should be able to take care of these limitations.

2.2 Exact Solution

There are some good and some bad news. The Bad news is that the graph 
partitioning is NP-complete problem and an exhaustive search for finding the 
best partitioning is usually impossible because of a vast number of possible 
combinations. Assume a graph G with n vertices which are partitioned into a 
к subsets, each containing p — n/к vertices. Then there are ("-H1-1)) differ­
ent ways to choose the zth subset. Since the order of subsets is unimportant, 
the number of different partitionings is
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Even a very small values like n = 40 and к = 4 (=> p = 10) produce more 
than 1020 different partitionings. For a practical problems this method is 
clearly out of question.

The Good news is that usually we don’t need the optimal solution. In 
most cases it’s better to find a ‘good’ solution quickly rather than finding 
the optimal solution by searching all possible solutions.

2.3 False Starts

Here are a couple of unsuccessful heuristics for the partitioning problem. 
However, these heuristics might be useful in some restricted cases, since they 
are fast and easy to implement.

Random partitions

It is always possible to generate random partitions and take the best one 
after some predetermined time or number iterations is reached. This is a 
very simple and fast way to generate partitionings. Unfortunately there are a 
huge number of possible partitionings, of which only few are optimal or near- 
optimal. For example, graphs with 32 vertices with random connections has 

different 2-way partitionings. Typically only 3 to 5 of these are feasible, 
which means that probability of finding a one by chance is less than 10-7 [2].

Vertex Coordinates

Another very simple way to do partitioning is to use the coordinates of the 
vertices. Suppose that each vertex has n coordinates = (ci,..., cn), then 
by finding the direction of longest expansion of the domain and sorting the 
vertices by that coordinate, we can create a 2-way partitioning, where vertices 
with a smaller values form one partition and vertices with a larger values form
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another partition.

Obviously this method can not be used if the coordinate information is 
not available. Another serious problem is that the connectivity information 
isn’t used in any way. This often leads to very undesirable results with 
disconnected partitions [3]. In Figure 2.2 a simple example where coordinate- 
based bisection is fooled by a geometry of the mesh is depicted. Picture on the 
left shows bisection that is generated using vertex coordinates. Compared 
to the optimal solution on the right, coordinate-based bisection has more 
cut-edges because partition A is not connected.

Figure 2.2 Coordinate-based bisection vs. optimal solution

Coordinate-based bisection Optimal solution

Max Flow-Min Cut

The Max flow-Min cut theorem [4] states that the maximal flow values be­
tween any pair of vertices is equal to minimum cut capacity of all cuts which 
separate the two vertices. In our case the graph is treated as a network in 
which edge costs correspond to flow capacities, cut is a 2-way partitioning 
and the cut capacity is the cost of partitioning.
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While the algorithm finds a cut with the minimum cost, it doesn’t have 
any constraints for the partition size. Unfortunately load balancing isn’t pos­
sible without some control over a partition size. However, since the algorithm 
actually finds the minimal cost 2-way partitioning, it can be used to find a 
lower bound for the cost of 2-way partitioning [2].
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Chapter 3

Iterative Methods

The idea of iterative partitioning algorithm is to improve existing partitions 
gradually by swapping vertices from one partition to another. The starting 
point can be fully random, but better results are achieved if some more 
sophisticated method is used. Typically iterative methods are used to refine 
partitions generated by some other method.

In this chapter we look closely at two iterative graph partitioning algo­
rithms. Because of their different nature they are suitable for complemen­
tary partitioning problems. The first, Kernighan-Lin -algorithm (KL), is 
quite dependent on an initial partitioning generator. It is possible to use a 
fully random initial partitions but best results are achieved when it is used 
for refining partitions generated by some other algorithm. The second type, 
Graph growing -algorithm (GG), does not use any initial partitions but starts 
from a single vertex and grows a partition around it. Results depend on a 
choice of initial vertex and it is difficult to predict initial which vertices lead 
to good partitions. GG is normally used for generating initial partitions for 
some other algorithm such as KL.
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3.1 Definitions

If we have a graph G that has two partitions A C G and В C G with no 
common vertices, А П В = 0, then we can define the internal and external 
cost for each vertex a 6 A as follows :

• Internal cost is the sum of connections from a to x 6 A :

h = 5Z C(a,x).

• External cost is the sum of connections from a to y G В:

Ea='£C(a,y).
уев

And similarly for Д and Eb. Difference between external and internal costs 
Dx = Ex — Ix can then be defined for all vertices x G G.

If we now take any pair of vertices (a, b) such that a G A and b G В and 
swap them, what is the gain of this swap, i.e. how much is the total cost 
of partitioning changed ? Let Z be a total cost of such connections between 
partitions A and В that do not involve neither of vertices. Then we can write 
the cost of partitioning, Tm, before vertices are swapped

T0id = Z + Ea + Еь — C(a, b).

And after swapping vertices, new cost Tnew is

Tnew = Z + Ia + + C(a, b).

because connections that were external become now internal and vice versa. 
Cost of partitioning is now reduced by Tm — Tnew :

Gain = T0id - Tnew = Da + Db- 2C(a, b).

This value can be used when selecting vertices that are swapped. Negative 
gain means that resulting partitions are ’worse’ than the originals.

13



3.2 Kernighan-Lin

The basic version of Kernighan-Lin algorithm [2] splits a graph G into two 
partitions of equal size with minimal connection cost. However, algorithm 
can be easily modified to create n-way partitioning with more complex par­
tition size constraints.

The algorithm starts with two initial partitions. In each iteration it tries 
to find such subset of vertices from each partition that swapping them gives a 
lower cost partitioning. Algorithm stops when no such subset can be found.

Kernighan-Lin Iteration

1. Compute Dx for all vertices x G G.

2. Start a new iteration step.

3. Choose an unused pair (a¿, 6,) that gives the maximum gain gt = 
Dai + Dbi — 2C(o¿, bi). Finding such a pair quickly is not a trivial task 
and we shall return to this subject later.

4. Swap a¿ to В and b¡ to A. Vertices that have been swapped are marked 
as ‘used’ so they don’t get swapped again at same iteration step.

5. Recompute D-values for vertices by

D'x = Dx + 2C(x, a¿) — 2C(x, bi), x 6 A — a¿

and
Dy = Dy + 2C(Vi bi) - 2С(?/, at), yeB-bi

Note that only such vertices that have connections to or need to 
be recomputed. The D-values of the other vertices are not affected by 
the swap.
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6. Repeat steps 3-5, obtaining a sequence of n swapped pairs (o¿, 6¿) and
an associated gain-values until there are no more unused vertices.

7. Find sequence of swapped pairs that gives the maximum total gain by

G(k) = X>
1=1

8. If G(k) > 0, interchange the first к pairs and start a new iteration step. 
If no such к can be found it means that all changes will lead to worse 
partitions and algorithm has found local minimum cost partitions.

Notice that if all vertices are swapped, i.e. к = n, partitions stay the 
same and the gain is 0. This means that swapping some pairs must have a 
negative gain. It might seem like a clever idea to stop searching when a first 
pair with a negative gain is found, but it isn’t. Function G is not monotonous 
and after negative values there can be more pairs that yield new maximum 
value for G. It is necessary to swap all pairs from 1 to к to obtain gain G(k) 
and that’s why we can’t stop the search at first pair with negative gain [11].

3.2.1 Finding the best pair

Finding a pair of unused vertices that gives the best gain is a dominant part 
of the iteration. There are three alternatives for selecting such a pair [2]. If 
we want to be sure that we always get the pair with the maximum gain we 
should use the sorting method. When D-values are sorted so that

Dai>Da2>...> Dan

and
An > Db2 > ... > Dbn,

only a few candidates for the best pair need to be considered because when 
scanning down the lists of Da’s and Д/s if a pair (Д., Dbj) whose sum does
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not exceed the maximum gain seen so far in this pass is found, then there 
cannot be another pair (a*,, bi) with к > i and l > j with a better gain and 
we can stop scanning the lists. This is assuming that all connection costs are 
non-negative. If D-values were not sorted, it would be necessary to check all 
combinations of a’s and b’s.

The other way is simply to find vertices with the largest D-values and use 
them. It requires very little extra work, since the largest values can be saved 
during the re-computation of D-values. This method works especially on 
sparse connection matrices, where the probability that C(a, b) > 0 is small.

It is also possible to save two or three largest D-values from each partition 
and select the best pair among them. This requires little more work, but 
also performs better in situations where the largest pair does not give the 
maximum gain because the connection cost between vertices, C(a,b), is too 
high. Experience indicates [2] that the saving of the three largest D-values 
from each partition is enough even for relatively dense connection matrices. 
This method is a good compromise between speed and quality. It is faster 
than sorting and yet it finds almost always the pair with the best gain.

3.2.2 Variations of Kernighan-Lin

The original KL algorithm has been improved in many ways. Here are some 
common variations of the basic algorithm.

Orphan vertices

An orphan vertices are vertices that does not have any connections to other 
vertices. Because they don’t have connections, they don’t change the connec­
tion cost of partitionings. With orphan vertices it is possible to relax partition 
size constraints. Suppose that we have a graph with n vertices and we want 
partitions that contain at least щ and at most n2 vertices (щ + n2 = n).
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We can now add 2n2 — n orphan vertices and create partitions as usually. 
Orphan vertices are assigned to both partitions so that the connection cost 
is minimized. After removing orphans, we have two partitions that satisfy 
previously given size constraints [2].

Boundary Kernighan-Lin

The idea of the boundary version is based on the observation that most of the 
swapped vertices are on the partition boundaries. If we forget all vertices not 
on the boundary, we can save a lot of work when choosing the optimal subsets 
for swapping. Keeping count of the boundaries requires some extra work, but 
the total computational effort is usually smaller, because of smaller number 
of active vertices. Use of the boundary version of the algorithm doesn’t effect 
significantly the quality of partitions generated [5].

К-way partitioning

In a many cases the partitioning algorithm must be able to handle more 
than two partitions. Usually this is solved by recursive bisection. That is, 
we first obtain a 2-way partitioning and then divide each part again. After 
log к steps the graph is partitioned into к parts. However with a couple of 
simple modifications it is possible to generalize the original KL algorithm to 
handle an arbitrary number of partitions directly [8]. Instead of a single gain- 
value, gains need to be computed against every partition. Gain-values are 
computed for single vertices instead of pairs, because we might want to move 
vertices some other fashion than a strict swaping. This also gives a possibility 
to generate partitions with unequal number of vertices. When choosing the 
next vertex to swap only such moves that satisfy partition size constraints 
are considered. For example, if we say that no more than a 5% imbalance 
is allowed, vertices cannot be moved to partitions that are already too large 
or from partitions that are already too small, even if those moves would give
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the best gains. If we want equal-sized partitions we should move vertices 
only from partitions of at least average size to partitions below average size.

Linear-time algorithm

Each iteration of the original KL algorithm takes 0(\E\ log |Æ7|) operations, 
where E is the number of vertices. By using appropriate data structures 
complexity of the algorithm can be reduced to Od-E1]). One such modification 
is presented by Fiduccia and Mattheyses in [10].

3.3 Graph Growing

Graph Growing

The Graph Growing algorithm [5] starts from a random vertex and grows a 
region around it in breath-first fashion, until desired number of the vertices or 
vertex weight has been included. Partitions generated by graph growing are, 
by definition, always connected. However, the quality of partitions depends 
totally on a chose of the initial vertex.

The main problem in the GG algorithm is that there is no general way 
to know which vertices lead to good partitions. Easy but time consuming 
solution is to generate multiple partitionings, by selecting many starting 
vertices, and then simply choosing the one with the lowest connection cost.

In Figure 3.1 the darker vertices are added to the partition in previous 
iterations and the grey vertices will be in the partition after the next iteration. 
Note that there are no rules that would tell the order tell in which the vertices 
on a partition boundary must be included. If we need only a one more vertex, 
it can be any of those on the current boundary.

18



Figure 3.1 Graph Growing

О Vertex outside region 

Vertex on boundary 

Vertex inside region

Greedy Graph Growing

Greedy Graph Growing (GGG) [5] is a modification of GG. Instead of growing 
a region in a strict breath-first fashion we can compute a gain value for 
each vertex on a region boundary. Gain value tells how the costs of the 
partitions will change if a vertex is added to a growing region. Vertices are 
then sorted by their gains and the vertex that has the biggest decrease (or 
smallest increase) of partition cost is inserted first. Then the gains of adjacent 
vertices are updated and new vertices are joined to region boundary. Gain 
values are needed only for the vertices on boundary, so it is not necessary to 
precompute all gain values as in KL.
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Figure 3.2 Greedy Graph Growing

Gain=1

Vertex outside region 

Vertex on boundary 

Vertex inside region

In Figure 3.2 we have three vertices, A, B, C, on partition boundary. C 
is added first, because it doesn’t increase the connection cost of partition. 
Both A and В would add one additional connection.

GGG has the same problem as basic GG. The quality of partitions de­
pends on the choice of initial vertex. However this dependency is not as 
strong as in GG. Usually GGG gives better partitions with less work than 
GG. Even though some extra work is done while computing gains, greedy 
version can still be faster because to find a good partitioning it isn’t necessary 
to generate as many different partitions as with GG.
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Chapter 4

Direct Methods

The name of this chapter could be ‘Eigenvector based methods’, because all 
widely used direct graph partitioning algorithms are based on the second 
eigenvector, the so-called Fiedler vector, associated with the graph. The 
effective computation of Fiedler vector is the actual computational challenge 
of these methods, otherwise these algorithms are very simple.

4.1 Definitions

Graphs laplacian and incidence matrices have some interesting properties 
that can be used in graph partitioning. For simplicity these properties are 
just listed here. For details and proof see [12] and [13].

Laplacian matrix L(G) is quite similar to C(G). If we mark connections 
with —1 and add degrees of nodes on the diagonal we get L(G).

L{G){i,j) = {
deg(i),

-1,
0,

if i - j.
if * ф j and C(i,j) Ф 0. 
otherwise.
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Incidence matrix 1(G) is a matrix with one row for each node and one 
column for each edge. If G has an edge e between vertices i and j then 
I(G)(e,i) = 1 and I(G)(e,j) = —1. All other elements in a column e of 1(G) 
are zeros.

L(G) and 1(G) have the following properties :

• By definition L(G) is symmetric. This means that the eigenvalues of 
L(G) are real and its eigenvectors are real and orthogonal.

• L(G) ■ eT — 0 where e = [1... 1].

• I(G)-I(G)T = L(G).

• Eigenvalues of L(G) are non-negative. 0 < Ai < Л2 < ... < \n.

• The number of connected components of G is equal to number of A, 
equal to 0. In particular, Л2 ф 0 if and only if G is connected.
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4.2 Spectral Bisection

Spectral Bisection (SB) is based on the properties of the second eigenvalue, 
Л2, and the associated eigenvector, v2, of the laplacian matrix of the graph. 
The tricky part of SB is a computation of eigenvalues and vectors. The 
bisectioning algorithm itself is very simple after we have found the right 
eigenvalue and eigenvector pair.

Spectral Bisection algorithm

1. Compute Л2 and the associated eigenvector v2 of L(G).
This is the tricky part, see chapter 4.3 for details.

2. Divide nodes into partitions N~ and N+ by

N , if v2{n) < 0. 
N+, otherwise.

3. Apply algorithm recursively to new partitions.

Fiedler has proven in [15] that if the graph G is connected and partitions 
N~ and N+ are generated by this algorithm, then N~ is always connected. 
Similarly N+ is also connected if for every n holds that v2(n) Ф 0. However, 
if there are 0’s in v2 partition connectivity can not be guaranteed.

4.2.1 ‘Vibrating string’ -analogy

It might be difficult to understand how eigenvectors can be used to partition 
graphs. The following analogy [13] with a vibrating string tries to give some 
motivation for the spectral bisection algorithm.

Picture a taut string that begins to vibrate when it is plucked. We know 
from physics and music that it has certain modes of vibration or harmonics. 
If we take snapshots of these modes they would look like strings in Figure 4.2.
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Figure 4.2 Modes of a Vibrating String

Those parts of a string that are above the rest position are labeled by 
*+’ and parts that are below it are labeled by In the case of second 
frequency, A2, half of the string is above and half below the rest position. 
Effectively this is bisecting the string into two connected components that 
are equal sized. It turns out that if we build this vibrating string from a finite 
set of identical masses (vertices) connected by identical springs (edges), write 
down Newton’s Laws of motion for the masses, and solve for the frequencies 
and shapes of the vibrational modes, we will get precisely the eigenvalues 
and eigenvectors of the laplacian matrix L(G).

In Figure 4.3 are the first three eigenvectors of 100 vertex long chain. 
There is actually a little difference between the vibrating string and eigen­
vectors. Strings were fixed at both ends but eigenvectors have no fixed points. 
To make analogy between spectral bisection and vibrating string exact, we 
have to make a little modification to our example. Instead of free masses 
there are n horizontal rods and on each rod a mass m can slide frictionlessly. 
These masses are connected with identical springs as before. The only dif­
ference is that masses at the end of chain are now connected to one moving 
mass rather than to one mass and one fixed point.
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Figure 4.3 Eigenvectors

1 st eigenvector

11

О------------------------------------------------------------------

C_______ I__________ I____________ I__________ I__________ I________ I____________ I__________ I__________ I__________ L

0 10 20 30 40 50 60 70 80 90 100

2nd eigenvector

0 10 20 30 40 50 60 70 80 90 100

3rd eigenvector

0 10 20 30 40 50 60 70 80 90 100

In case of a more complex graphs than simple chains, the same intuition 
applies. Another easy to understand case is generic planar graph. We can 
think a planar graph as a kind of trampoline. The second mode of vibration 
bisects the graph (trampoline) into two parts. Vertices are divided into two 
partitions so that ones above the rest position form one partition, and ones 
below it form another.

4.3 Estimating the Fiedler vector

Computing of A2 and v2 of L(G) is the most important part of spectral 
bisection algorithm. Many mathematical libraries have functions to compute 
eigenvalues and eigenvectors of matrices, such as eig in Matlab, dsyevx in 
LAPACK or pdsyevx in ScaLAPACK. However, in this case these are not very 
cost effective solutions because they use dense matrices, while our matrices

25



are typically sparse, and their running time is proportional to N3 where N 
is a matrix dimension.

Lanczos algorithm offers another, more attractive, method for finding re­
quired the A2 and u2. The idea of Lanczos iteration is to find a tridiagonal 
matrix T(G) whose eigenvalues are good approximations of the original ma­
trix L{G). After we have found this T(G) it is quite trivial to compute the 
right eigenvalue and vector. More details are presented in Chapter 4.3.1.

There is also another reason to use tridiagonal approximation of L(G). 
Since we are not actually interested in eigenvalues, but eigenvectors asso­
ciated with them, a good estimate of eigenvalues is good enough for our 
purposes. It is not necessary to know the actual eigenvalues. This means 
that T(G) can be much smaller than L(G) which gives us an additional speed­
up. The size of a matrix depends on how accurate estimates we need. As 
the matrix size grows, eigenvalue approximations get more accurate.1 The 
convergence of eigenvalues is fastest at the both ends of spectrum. Because 
the only eigenvalue that we are interested in, A2, is at the end of spectrum, 
we need only a few iterations to get accurate results.

Our Lanczos algorithm is based on a version presented in [16]. This is 
only a basic version of the algorithm, but in most cases it performs quite well. 
There are also a lot of variations of the algorithm for more special applications 
like the ones presented in [17], but in our case they are ‘overkill’ because we 
don’t need very accurate eigenvalue approximations (see Chapter 4.3.2).

Although it is not possible to grow T(G) endlessly because of the well-known ‘break­
down phenomenon.
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4.3.1 Lanczos algorithm

Following algorithm for computing fcth eigenvalue is presented in [18]. 

Let Tr denote the leading r-by-r principal sub-matrix of

T =

( Oi 61

b\ a2

V 0

0 \

bn— 1
“'71— 1 

0"П

and define the polynomials pr(x) = det(Tr — z/), r = 1 : n. A simple 
determinental expansion can be used to show that

pr(x) = (or - x)pr-i(x) - bl^pr^x)

for r = 2 : n if we set po{x) = 1. Because pn(x) can be evaluated in 0(n) 
flops, it is feasible to find its roots by using the method of bisection. For 
example, if pn(y)Pn{z) < 0 and y < z, then the iteration shown in Figure 4.4 
is guaranteed to terminate with (y + z)/2 an approximate zero of pn(x), i.e., 
an approximate eigenvalue of T. The iteration converges linearly in that the 
error is approximately halved at each step.

Sometimes it is necessary to compute only the kth largest eigenvalue of 
T for some prescribed value of к (in our case к = 2). This can be done 
efficiently by using the bisection idea and the Sturm Sequence Property.

Sturm Sequence Property

If the tridiagonal matrix is un-reduced, then the eigenvalues of Tr_x strictly 
separate the eigenvalues of Tr\

^n(Fn) < An_1(T„_1) < An_i(Tn) < • • • < A2(Tn) < A1(T„_1) < Ai(Tn).
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Figure 4.4 Eigenvalue iteration

while \y-z\> e(\y\ + |z|) 
x = (y + z)/2
if Pn(x)pn(y) < 0 

Z — X

end

else
У — x

end

Moreover, if a(A) denotes the number of sign changes in the sequence

Po(A),Pi(A),...,pn(A)

then a(A) equals the number of T’s eigenvalues that are less than A.

After A2 is found, the Fiedler vector can be computed via inverse iteration 
algorithm [19] shown in Figure 4.5.

Figure 4.5 Inverse Iteration

for к = 1,2,...
Solve (A — pI)ZW = qk~l 
gW = ZW/||ZW||2 
A (fc) = qWH Aqk

end

Inverse iteration is just the power method applied to (A — pl)~x.
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4.3.2 Performance of Lanczos algorithm

Previously in this chapter it was said that we don’t need to know the ex­
act eigenvalues of L to be able to split the graph. The next question is, 
how accurate eigenvalues and vectors have to be in order to generate good 
partitions ?

Three test graphs shown in Figure 4.6 were used to compare Lanczos 
algorithm with accurate values based on the original laplacian matrices. The 
purpose of the first graph, Basic (400 vertices), is to test algorithm on large 
structured areas. The second graph, Doughnut (364 vertices), is like the 
first one, but because there is a hole in the middle of graph, it has both 
inner and outer boundaries. The third graph, Cross (256 vertices), is not 
connected in the same way as previous graphs, but it has four extensions 
that are connected only at the middle.

Figure 4.6 Lanczos-test Graphs

(a) Basic (b) Doughnut (c) Cross
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Eigenvalues

The first test compared eigenvalues of tridiagonal Lanczos matrix and original 
laplacian matrix. Figure 4.7 shows a convergence of the second eigenvalue. 
On the horizontal axis is the number of Lanczos iterations and on the vertical 
one is the difference between Л2 of L and Л2 computed for Lanczos matrix. 
We can see that all three test cases got good approximation of A2 after 45-50 
iterations, i.e. the dimension of Lanczos matrix was between 45-50. This is 
relatively fast and small compared to the original laplacian matrices whose 
dimensions were 400, 364 and 256, respectively.

Figure 4.7 Eigenvalue convergence
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Partitions

The second test compared the quality of the partitions. Computation of 
eigenvector approximations was based on eigenvalues computed in previous 
tests. We didn’t compare these approximations directly with the real eigen­
vector because eigenvectors are only used to generate partitions.

Instead we compared bisections generated by eigenvector approximations 
and the real eigenvector. In Figure 4.8 on the horizontal axis is the number 
of Lanczos iterations. This is the same scale that was used in Figure 4.7. On 
the vertical axis is the difference in partition quality measured by connection 
cost. Values below 0% mean that eigenvector approximation computed with 
Lanczos algorithm gives better partitions than the real eigenvector of lapla- 
cian matrix. It is worth noting that there is no quarantee for optimality in 
neither case.

Figure 4.8 Connection cost
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If we compare Figures 4.7 and 4.8 we see that the eigenvectors, measured 
by connection cost of partitions, converged even faster than the eigenvalue 
approximations !

The reason why the Lanczos iteration didn’t find the correct partitions 
in “Doughnut” -case is in the original laplacian matrix that has a dual­
eigenvalue. Because values are equal it is impossible to say which one is A2 
and which is A3. Unfortunately the eigenvectors associated with A2 and A3 
are not equal and in this case the algorithm has chosen a wrong vector. This 
kind of behavior can only be avoided if in case of multiple equal eigenvalues 
all associated eigenvectors are checked and the one that gives the lowest 
connection cost is selected.
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Chapter 5

Multilevel Partitioning

The idea of multilevel graph partitioning is to approximate the original graph 
by a sequence of smaller graphs. The smallest graph is then partitioned 
using some suitable method and the partitions are then projected back to 
the original graph. The advantage of multilevel partitioning algorithm is 
that the graph coarsening can be done in time proportional to the number of 
edges, while the complexity of partitioning increases exponentially with the 
number of vertices.

In Figure 5.1 on the left is the original graph. Edges that will be collapsed 
at the next stage are marked with dashed lines. We shall explain later how 
these edges are selected. In the same figure on the right is the same graph 
after collapsing those marked edges.

Note that even though the original graph was unweighted, the reduced 
graph has weights on both vertices and edges. This is necessary because 
we want to preserve information about the structure of the original graph. 
Without weights it would be impossible to tell the actual size or connection 
cost of partitions after they were propagated back to the original graph. It is 
important that the partitioning algorithm used with multilevel partitioning 
can handle graphs with weighted edges and vertices.
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Figure 5.1 Original and Reduced Graph

(a) Original (b) Reduced

5.1 Graph Reduction

There are basicly two kinds of graph reduction algorithms. Some algorithms, 
like Random Matching (RM), just match random vertices together, while 
others, like Heavy Edge Matching (HEM) and Heavy Clique Matching (HCM), 
use the connectivity information to find a groups of tightly connected vertices.

Random algorithms work quite well when degrees of vertices are close to 
the average degree of the graph. Graphs from finite element applications 
(FEM) are typically in this category. However, if a graph has tightly con­
nected components it is usually better to keep those components together 
and use something like HEM or HCM. Splitting tightly connected compo­
nents into different partitions typically leads to unnecessary increase in the 
connection cost of partitioning.

Since reduction algorithms have roughly similar complexity, it is usually 
better to use some more advanced algorithm like HEM or HCM than try to 
save a little time using RM. Carelessly done reduction can harm partitioning 
algorithm and lead to significantly higher cost partitions.
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Random Matching

Random Matching (RM) [5] visits vertices in random order. If vertex has not 
been matched yet, we randomly select one of its unmatched neighbors and 
mark both the vertices and the edge between them as matched. If vertex 
has no unmatched neighbors, it remains unmatched. This continues until 
no more vertices can be matched. After that, matched vertices are joined 
together and are marked as unmatched for the next reduction step.

Heavy Edge Matching

Heavy Edge Matching (HEM) [5] visits vertices in random order, same way 
as RM did. However, when selecting a neighbor to match with, it chooses the 
one that is connected with the heaviest edge. Naturally only such neighbors 
that are not already matched are considered.

The idea of HEM is to minimize the edge weights of the reduced graph. 
Smaller edge weight typically leads to smaller connection cost when reduced 
graph is partitioned. This algorithm doesn’t guarantee that the edge weight 
of the reduced graph is minimized, but experience has shown that it works 
very well.

Modified Heavy Edge Matching

Modified Heavy Edge Matching (МНЕМ) [7] tries to minimize the average 
degree of the graph. Again vertices are visited in random order and matched 
with the neighbor that has the heaviest connection. If there are more than 
one vertex to choose from, the vertex that has most connections from it’s 
neighbors to a matching vertex, is chosen.

35



Analysis of the multilevel bisection algorithm in [6] shows that a good 
edge-cut of a coarser graph is closer to a good edge-cut of the original graph 
if the average degree of the coarser graph is small and/or the average weight 
of the edges in the coarser graph is small [7].

Light Edge Matching

Light Edge Matching (LEM) [5] is like HEM, but instead of matching heavily 
connected vertices it matches neighbors that has the lightest edge between 
them. Reduced graphs produced by LEM have typically much higher average 
degree than the original graphs. This kind of graphs are easier to handle for 
some partitioning algorithms like Kernighan-Lin. The choice between HEM 
and LEM depends on what kind of partitioning algorithm is selected for the 
reduced graph.

Heavy Clique Matching

Heavy Clique Matching (HCM) [5] tries to find subgraphs that are fully or 
almost fully connected. The idea is very similar to the HEM but instead 
of just matching vertices with the heaviest edge between them, HCM joins 
vertices that have the highest edge density.

For a pair of vertices (м, у) edge density is defined as follows :

EdgeDensity — 2 (CE(u) + CE(v) + EW{u, v))
(VW(u) + VW(v))(VW(u) + VW(v) - 1)

where VW(x) is the weight of vertex x, EW(x,y) is the weight of edge 
between vertices x and y, and CE(x) is the total weight of edges already 
collapsed into a vertex x. Vertices that are not connected in any way have 
edge density of 0 and vertices that form a clique have edge density of 1.
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5.2 Graph Refinement

After the reduced graph is partitioned the results have to be projected back 
to the original graph. This can be done by simply assigning all vertices to 
the same partition as their parent in the reduced graph. However, since the 
original graph is much finer and has many more degrees of freedom than 
the reduced one, these projected results can usually still be improved by 
swapping some vertices from one partition to another.

Three common refinement-algorithms are presented here. They are all 
based on Kernighan-Lin algorithm that was presented previously in Chap­
ter 3.2. KL-based algorithms suit very well in this kind of situations because 
good initial partitions are already available.

Kernighan-Lin Refinement

Kernighan-Lin refinement (KLR) [5] simply runs KL partitioning algorithm 
with projected partitions. Since those partitions are already quite good, 
algorithm converges fast, typically within three to five iterations.

To further improve the performance of the algorithm, some additional 
stopping conditions can be set. For example, continue until N swaps that do 
not decrease the cost of partitioning, are made. Since the original partitions 
were already good there is only a small number of swaps that will lead to 
better partitions. All other moves will increase the cost of partitioning.

Greedy Refinement

Experiments show that the largest gain is obtained during the first iteration 
step. Greedy refinement (GR) [5] runs only a single iteration of KL algorithm. 
Iteration is stopped immediately when no more swaps with positive gain are 
found. This reduces the complexity of refinement phase. Unfortunately 
the number of swapped vertices and total running time does not change
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in asymptotic terms because a lot of work has to be done while building 
appropriate data structures before iteration.

Boundary Refinement

Almost all of the swaps in refinement phase are done between vertices on a 
partition boundary. Boundary refinement [5] uses this information to skip 
unnecessary work.

The idea is to focus on those vertices that are on a partition boundary 
and forget all other vertices. After every iteration algorithm has to check for 
new vertices that might have got onto a boundary due to swapping of vertices 
that were already on the partition boundary. Boundary-idea can applied to 
both KLR (BKLR) and GR (BGR).

Boundary method can save a lot of work on large graphs because the 
data structures used by refinement algorithm become much smaller and are 
faster to update. More complex the original refinement algorithm is, more 
advantage is gained by using a boundary method.

5.3 Aspects of Multilevel Partitioning

Effective use of multilevel partitioning algorithms requires some understading 
of how different parameters affect resulting partitions. The use of unappro­
priate partitioning methods or parameters can cause badly shaped partitions, 
high connection costs and long running times. The choice of methods and 
parameters depends on a graph that is partitioned. If one wishes to split 
multiple graphs that have somewhat similar connection structure, it might 
be worth while to make some experiments with different combinations of 
algorithms and parameters.
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Figures 5.2 and 5.3 show how changing the coarsening level can affect 
the bisection of graph. The graph is constructed from 400 vertices that are 
laid on a regular grid. In each figure the same graph is bisected using the 
multilevel partitioning algorithm. Coarsening was made by using HEM and 
combination of BKLR and BGR algorithms was used to refine partitions. 
The actual bisection was made by using Spectral Bisectioning algorithm.

In Figure 5.2 are three bisections that were generated by coarsening the 
original graph down to 4, 8 and 16 vertices. To see better how coarsening 
affects bisectioning algorithm, no refining was used after bisectioning.

The Effect of coarsening is shown on the edge of partitions. As the size 
of bisected graph grows from 4 to 16 vertices, the edge gets more details, i.e. 
becames less “block-like”. If no coarsening and no refining is used the edge 
of partitions would split square diagonaly. This kind of behavior can be seen 
in the rightmost picture.

Figure 5.2 Partitions before refining
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(a) CoarsenTo=4 (b) Coarsen То=8 (с) Coarsen То—16

Coarsening can significantly reduce CPU time used in graph partition­
ing. However, using too much coarsening can destroy some of the connection 
information and thereby lead to higher connection costs and badly shaped 
partitions. On the other hand, coarsening can also help bisectioning algo­
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rithm by hiding “unimportant” information. There is no general rule, how 
much coarsening one should use. Typically iterative partitioning algorithms 
work better with larger, less coarsened, graphs and eigenvector based like 
more coarsened graphs.

In Figure 5.3 are the same three partitionings after refining. Both second 
and third bisection, where the coarsest graph was 8 and 16 vertices respec­
tively, have minimal connection costs after refining.

However in the leftmost picture, where graph was coarsened down to four 
vertices before partitioning, refinement algorithm was no longer able to find 
optimal partitions. This is due to excessive coarsening, too much connection 
information was lost during graph coarsening.

Figure 5.3 Partitions after refining
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Chapter 6

Results

In this Chapter the performance of iterative and direct partitioning algo­
rithms is compared. Also the effect of the multilevel scheme on both connec­
tion cost and CPU usage is reviewed.

Performance of graph partitioning algorithm can be measured on two 
different scales: connection cost and CPU usage. Partitioning algorithms 
are trying to minimize the connection cost, so that inter-processor commu­
nication is kept at the minimum level and parallel FEM-solver can obtain 
the maximum performance. However, even a very good partitioning can be 
unsatisfying if too much CPU time is wasted in the partitioning phase.

Whether to emphasize on partition quality or CPU time depends on the 
underlaying application. If partitionings can be re-used it is justified to use 
more CPU time to generate good partitions. On the other hand, if only a 
“throwaway” partitions are required it is better to cut the CPU usage at the 
expense of partition quality.

41



6.1 Testing Environment

6.1.1 Hardware

The Performance-tests were run on a Digital AlphaServer 2100 with three 
300MHz CPUs and 1GB of memory. One of CPUs was dedicated for the 
graph partitioning process while the other two had moderate interactive load 
at that time.

All file-I/O was left out because disks were mounted over network by NFS. 
There were also many programs running on the other two CPUs that used 
some unknown amount of machines I/O-capacity. Under these conditions 
it would have been meaningless to measure time taken by I/O. Since all 
partitioning algorithms read and write almost same amount of data and use 
same I/O-routines, the time used in file-I/O can be seen as function of graph 
size that is same for all algorithms. It is clear that when the size of graph 
grows it will become a major problem. However the focus of this thesis is on 
graph partitioning algorithms, not on I/O-performance.

6.1.2 Software

For testing purposes a graph partitioning software called heli was imple­
mented according to methods presented in previous chapters.

As an input heli reads a mesh generated by a separate program. After 
that it builds a connection graph, generates partitions and finally writes each 
partition to separate files on a disk. Parallel solver processes can then read 
only the information they are interested in.

The actual graph partitioning in heli is done by using the multilevel al­
gorithm implemented by the metis-library [20]. Metis is a publicly available 
library and collection of sample programs for unstructured graph partition­
ing and sparse matrix ordering. Both heli and metis are supporting the
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following matching, partitioning and refinement algorithms :

Matching: Random (RM), Heavy-edge (HEM), Light-edge (LEM), Heavy- 
clique (HCM), Modified Heavy-edge (МНЕМ), Sorted Random (SRM), 
Sorted Heavy-edge (SHEM) and Sorted Modified Heavy-edge (SMHEM).

Partitioning: Graph Growing (GG), Greedy Graph Growing (GGG), Spec­
tral Bisection (SB) and Combination of Graph Growing &; Boundary 
Kernighan-Lin (GGKL).

Refinement: Greedy (GR), Kernighan-Lin (KLR), Combination of Greedy 
and Kernighan-Lin (GKLR), Boundary Greedy (BGR), Boundary 
Kernighan-Lin (BKL) and Combination of Boundary Greedy & Bound­
ary Kernighan-Lin (BGKLR).

Sorting versions of matching algorithms first sort vertices in increasing order 
of vertex degree and while finding matchings they browse vertices in this 
order. Sorting matching algorithms usually find larger matchings than their 
non-sorting counterparts.

By default SHEM is used for graph reduction, SB for partitioning the 
reduced graph and GKLR for partition refinement. If the size of the reduced 
graph is not explicitly defined, the graph is reduced down to 100 vertices 
before partitioning. All these parameters can be modified via command-line 
interface.

The program can process both 2D and 3D element meshes. The basic 
elements of two dimensional meshes are triangles and in three dimensional 
cases, tetrahedra. The type of the elements doesn’t affect the actual parti­
tioning phase in any way. The only difference between processing 2D and 3D 
meshes is in the input- and output-routines.
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6.1.3 Graphs

All test graphs have regular structure and identical geometry. The only 
difference is the number of elements. Graphs of 10k, 40k, 55k, 80k and 100k 
vertices are used.

The use of multiple precisions of the same geometry tries to mimic the 
iterative nature of typical design process. In the first simulation rather coarse 
mesh is used to get results quickly. Model can then be altered if necessary. 
When the right geometry is found more precise mesh is used to get accurate 
results.

The geometry of test graphs is shown in Figure 6.1.

Figure 6.1 Test Graph
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In addition to mesh geometry, also the way that elements are connected 
to their neighbors affects resulting partitions. When constructing a connec­
tion graph for a given mesh, elements were connected only to their “natural 
neighbors”. Natural and Non-natural neighbors are defined as follows :

• Natural neighbor of a triangle is an element that shares edge with the 
given triangle. Natural neighbors of tetrahedra share a face with the 
given element.

• Non-natural neighbor is an element that shares a vertex with the given 
element, but is not a natural neighbor of that element.

Depending on application, there can be significant difference in commu­
nication required between natural and non-natural neighbors. If appropriate 
weights are assigned to different types of connections, partitioning algorithm 
can take care of these requirements and create partitions that have lower 
communication costs.
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6.2 Performance

Three different partitioning algorithms were tested both with (solid lines) 
and without (dashed lines) refining. Greedy and Spectral algorithms are 
described in Chapter 4 and Hybrid is a combination of these two. The Hybdir 
algorithm uses Spectral Bisection to do the first bisection and after that 
Greedy algorithm is used. The refining algorithm used in all cases was a 
combination of Greedy and Kernighan-Lin. In all test cases, the same graphs 
were partitioned into 8 partitions, i.e. 3 recursive bisections were made.

CPU times measured here are shown only to make it possible to compare 
different algorithms and to give a rough estimate how long graph partitioning 
takes. They are not meant to be taken as ultimate performance results 
because only default optimization was used when compiling code and no 
performance analysis was made to find and/or correct possible bottlenecks 
in heli and metis-library.

6.2.1 Connection cost and CPU usage

The next four pairs of figures show how the connection cost and CPU usage 
are releated together and what are the effects of the multilevel scheme. In 
the first picture, Figure 6.3, graph is reduced down to 8 vertices before par­
titioning, i.e. partitioning algorithms are appied to a graph with 8 vertices. 
Similar cases with 100 and 1000 vertices are shown in Figures 6.4 and 6.5. 
The fourth picture, Figure 6.6, shows the situation when no coarsening is 
used but graphs are partitioned directly.

In the first two cases, Figures 6.3 and 6.4, where the size of the reduced 
graph is 8 and 100 vertices, all three algorithms produce almost identical 
results. Due to excessive coarsening, the actual work is done in graph re­
duction and refinement phases and most of the connectivity information is 
hidden during the partitioning phase. There are no significant difference be-
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tween partitioning algoorithms when the size of the graph is small, in this 
case 8 or 100 vertices. However, this proves that multilevel scheme can be 
very effective. The results are good despite the fact that most of the par­
titioning work is done by reduction and refinement algorithms instead the 
actual partitioning algorithm.

When less coarsening is used, as in Figure 6.5, the real characteristics of 
the partitioning algorithms are beginning to show. The CPU usage of the 
Spectral Bisectioning is clearly higher than other two algorithms. This could 
be expected as the complexity of the Spectral Bisectioning is almost 0(N3) 
while Greedy partitioning algorithm is only O(NlogN).

The effect of multilevel scheme is shown clearly when no multilevel al­
gorithm is used. In Figure 6.6 are the same five graphs partitioned without 
coarsening. There are many explanations to the rapid growth of CPU us­
age of the Spectral algorithm. The higher complexity is one reason, but it 
surely is not the only one. Running out of cache is probably another rea­
son why Spectral Bisectioning performs so badly. The Greedy algorithm is 
more “cache-friendly” since it is focused on making local improvements to 
partitions while Spectral algorithm has a more global view of the situation. 
Also the version of Spectral algorithm implemented in metis is not very suit­
able for large graphs since it uses a constant tolerance in computation of the 
Fiedler-vector. If Spectral algorithm is used with graphs of varying size, it 
is recommended that tolerances are computed as functions of graph size.

Partition refining is profitable with all combinations of graph size and 
coarsening level. With only nominal extra CPU usage, refining can give 
considerable savings in connection cost. Note that refining can be used even 
if no coarsening is used, as in Figure 6.6.
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6.2.2 Multilevel effects

As the multilevel scheme is clearly capable of outperforming traditional parti­
tioning methods in both partition quality and CPU usage, it is still not clear 
how much graph should be reduced to get the optimal quality and/or CPU 
usage ? While the answer depends on how connection cost and CPU time 
are emphasized and what kind partitioning algorithm used, some general 
guidelines can be given.

In Figures 6.7 and 6.8 partition quality and CPU usage are shown as a 
function of the coarsening level. The graph that was used in these test is the 
same as in previous section (the one with 100k vertices).

As long as the size of the reduced graph is relatively small, from 100 
to 1000 vectices, there is no difference in performance. However, when less 
coarsening is used, i.e. larger graphs are partitioned, spectral algorithm runs 
into problems. As said the in previous section, the rapid growth of CPU 
usage has multiple reasons: high complexity of algorithm, running out of 
cache and constant tolerance used in the Fiedler-vector computation.

A rule of thumb for multilevel partitioning is to coarsen the original graph 
down to few hundred vertices and use either greedy or spectral algorithm 
to create partitions. When the coarse partitions are projected back to the 
original graph some greedy refining algorithm like GKLR should be used.

Closer analysis of CPU usage per algorithm is shown in Figure 6.9 where 
each stacked bar shows how time is divided per recursion level, when graph 
is partitioned without coarsening (the rightmost points in Figure 6.8). The 
CPU time used in first bisection is shown on bottom of each bar and following 
recursion levels are stacked on top of it. It is interesting to notice, that 
time per recursion step is almost constant for both Greedy and Spectral 
algorithms, i.e. running time depends only on total size of the graph. It 
does not matter whether N vertices are partitioned into 2m partitions, each 
having n vertices, or into m partitions with 2n vertices.
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Figure 6.7 Connection cost vs. Coarsening level
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Figure 6.8 CPU time vs. Coarsening level
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Figure 6.9 CPU usage per Recursion step

Spectral

Hybrid

Greedy

6.3 Examples

Here are three examples of partitioning 2-dimensional meshes. All meshes 
have about 1000 elements (vertices of connection graph) and geometries are 
the same that were used for testing Lanczos-algorithm in Chapter 4. However 
the connection structure is totally different. Graphs in Chapter 4 were built 
on top of a regular grid while examples here are irregular triangular meshes.

While partitions shown here are probpably not the optimal ones, they 
are still very good. No obvious improvements that would give considerable 
decrease of connection cost can be seen. These partitions were created using 
the default parameters of heli, i.e. SHEM for graph reduction, SB for 
partitioning and GKLR for partition refinement. The size of the reduced 
graph was 100 elements.

Sample partitionings of 2D and 3D meshes are shown in the Appendix A.
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Chapter 7 

Conclusions

Graph partitioning is an NP-complete problem. At the begining there were 
some doubts if a partitioning of very large graphs is possible in reasonable 
time, so that the parallel solver could outperform its serial counterpart. For­
tunately some very good heuristics exist and even more are in development. 

Graph partitioning algorithms can be divided into three basic groups :

• The iterative methods like Kernighan-Lin and Graph Growing improve 
existing partitions by making small local changes. The problem with 
these algorithms is that they can find only the local minimum of con­
nection cost, i.e. the choice of the starting point is crucial. However, 
iterative partitioning algorithms can be very fast and they are quite 
simple to implement.

• Spectral methods are based on the properties of eigenvectors. Unlike 
iterative methods spectral bisection is done in one step and no interme­
diate results are available. The problem with spectral bisectioning is 
the complexity of algorithms. While the complexity of iterative meth­
ods is usually between 0(N log N) and 0(N2), the spectral methods 
are closer to 0(N3). On the other hand, the spectral bisectioning has
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better global view of a graph than iterative methods do. If appropriate 
methods for estimating the second eigenvector of laplacian matrix can 
be found, spectral bisectioning could be very competitive with iterative 
methods.

• Multilevel method is really an extension of two previous groups rather 
than a totally new method. The idea is to reduce the size of the graph 
before partitioning. After the partitions are generated they are pro­
jected back to the original graph with refining.

Based on the current knowledge the multilevel approach is the most at­
tractive graph partitioning strategy. Using multilevel algorithms a problem 
size can be reduced in time proportional to number of vertices. The actual 
partitioning algorithms, that typically have complexity of 0(N2) or 0(N3), 
can then generate partitions in a fraction of time that would be required for 
original unreduced graph. There is no significant difference in partition qual­
ity between multilevel and traditional “non-multilevel” algorithms. In some 
cases multilevel algorithms can actually produce better partitions. However, 
the efficient use of multilevel algorithms requires some understanding of their 
inner structure. Selected graph reduction and refinement algorithms together 
with a reduction level have strong influence to resulting partitions.

Graph partitioning is still an active researh area and new results are 
published almost monthly. Because element meshes are perhaps the most 
obvious source of graphs, it is not very surprising that most of the projects 
are dealing with Finite Element Method problems. A good example of a 
project almost identical to ours is the Quake project [21] [22] that is working 
on an earthquake simulations. However, the same heuristics can be applied 
to any data dependency problem, for example, parallel compilers could use 
graph partitioning heuristics to distribute application data among processors.
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Appendix A

Examples of 2D and 3D meshes

Here, in Figures A.l through A.4, are four examples of 2D and 3D par­
titionings. All partitions were generated by using heli with the default 
parameters: Sorted Heavy Edge Matching, Spectral Bisection and Greedy 
Kernighan-Lin Refinement. The size of the coarsened graph was 100 ele­
ments.
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Glossary

Connection cost
Total weigth of such edges that have their end-points in different partitions. 
Connection cost is usually used to measure the quality of partitions. Lower 
cost equals to better partitions.

Iterative partitioning method
Partitions are created step-by-step by making little improvements until the 
local minimum of connection cost is found. See Direct partitioning method.

Direct partitioning method
Partitions are based on the Fiedler-vector of the graph and they are created 
directly without any intermediate stages. See Iterative partitioning method.

Multilevel partitioning
The size of the original graph is reduced before partitioning in order to cut 
down CPU usage of the partitioning phase. Smaller graph is partitioned 
and results are projected back to the original one. See Graph reduction and 
Partition refinement.

63



Graph reduction
Reducing the size of the graph by collapsing groups of vertices together. How 
the groups are selected depends on a reduction algorithm. Typically tightly 
connected groups (cliques) are prefered.

Partition refinement
As partitions are projected back the original graph results are not always 
best possible. Small defects on partition boundaries can be corrected by 
running a few iterations of some greedy partitioning algorithm like Boundary 
Kernighan-Lin or Boundary Greedy. See Multilevel partitioning.

Connection matrix
A matrix that holds the connection information of graph. Elements of the 
matrix are defined as follows :

1, if there is an edge from i to j. 
0, otherwise.

Laplacian matrix
A close relative of the connection matrix. The second eigenvector of laplacian 
matrix, so-called Fiedler-vector, is used in direct partitioning methods. See 
Direct partitioning method and Fiedler-vector.

L{i,j) = <
deg (г), 
-1,
0,

if i = j.
if г t¿ j and C(i,j) Ф 0. 
otherwise.

Fiedler-vector
The second eigenvector of the laplacian matrix associated with the graph. 
See Direct partitioning method.
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