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Reducing Aliasing from Synthetic Audio Signals
Using Polynomial Transition Regions

Jari Kleimola and Vesa Välimäki, Senior Member, IEEE

Abstract—Sampling of discontinuous audio signals with rich
spectra is a valuable asset in subtractive synthesis, but results
in aliasing distortion. This letter proposes an aliasing-reduction
technique, which is cost-effective, transient-free, and extensible
to various discontinuities. It replaces the samples on a �nite
region around each discontinuity with values taken from a smooth
polynomial, based on a novel interpretation of the differentiated
polynomial waveform (DPW) method. In the musical pitch range,
the number of operations in the proposed method is at least 40%
smaller than in the DPW algorithm. The method is widely usable
in sound synthesis applications.

Index Terms—Acoustic signal processing, antialiasing, audio os-
cillators, music, signal synthesis.

I. INTRODUCTION

D IGITAL subtractive synthesis of audio signals requires a
way of reducing aliasing from its input signal, which is

usually a classical waveform [1], [2]. Straightforward sampling
of such discontinuous waveforms leads to unpleasant aliasing
distortion, unless the fundamental frequency is very low with
respect to the sample rate. This letter proposes to reduce
aliasing by replacing a few samples around each discontinuity
with values taken from a smooth polynomial. The new method
is cost-effective and can be applied to miscellaneous signals
containing discontinuities.
The idea to implement alias-reduced waveforms for subtrac-

tive synthesis was proposed by Stilson and Smith, who sug-
gested generating �rst an approximately bandlimited impulse
train (BLIT) using a look-up table and then �ltering the im-
pulse train to obtain the desired waveshape [3]. This is generally
more ef�cient and �exible than using additive synthesis [4], [5],
which would otherwise be the method of choice, as it offers a
completely alias-free solution. Brandt developed an improved
approach, in which an approximately bandlimited step function
(BLEP) is used for deriving a correction function for each dis-
continuity [6]. The BLEP correction function, or BLEP residual,
is obtained by integrating the sinc function or the impulse re-
sponse of a lowpass �lter and by subtracting an ideal unit step
function from it [2], [6].
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Nam and his co-workers have proposed an alternative BLIT
method implemented using fractional delay �lters (BLIT-FDF)
[7]. In that method, an impulse response of a polynomial in-
terpolation �lter is generated once every period, thus avoiding
the look-up table of the original BLIT algorithm. Similarly, the
BLEP method has been converted into a polynomial algorithm,
in which the BLEP residual function is derived using low-order
polynomial functions (PolyBLEP) [2].
Välimäki has invented the simplest alias-reducing method to

date, which is based on polynomial waveshaping, differenti-
ating, and scaling a trivial sawtooth waveform, i.e., a bipolar
modulo counter output [8]. Squaring the bipolar modulo counter
output leads to a piecewise parabolic signal, which is equiva-
lent to the integral of the sawtooth waveform, and the differen-
tiator can be implemented using the �rst-order difference oper-
ator. This algorithm has been recently extended to an arbitrary
number of integrations and differentiations, and is called the dif-
ferentiated polynomial waveform (DPW)method [9]. The DPW
method has a perceptual advantage, as aliasing is suppressed
most in the lower half of the spectrum, where the hearing is
most sensitive. The drawbacks of this approach are the cumber-
some scaling of the output signal [8], [9] and the requirement
for differentiable polynomial waveforms.
In this letter, we derive an alternative realization of the DPW

algorithm and extend its applicability. This advancement is
based on the observation that the DPW method [8], [9] only
modi�es samples of the modulo-counter signal on a �nite
region around each discontinuity and offsets the other samples,
although all signal samples go through the same processing
steps. The modi�ed sample values are equal to those taken from
a polynomial. As a result, we propose an alternative algorithm
that shares the alias-reduction qualities of the DPW method
without unnecessary operations. This novel approach, which
we call PTR (polynomial transition regions), is cost-effective,
and free of the transient problems we encountered in the DPW
algorithm. Furthermore, it can be directly applied to any dis-
continuous waveform, not just the classical waveforms.
The letter is structured as follows. In Section II, the DPW al-

gorithm is brie�y summarized and reinterpreted. In Section III,
the new polynomial transition region method is introduced and
its computational load is compared to previous methods. Ap-
plication of the PTR method to the alias-reduction of nontrivial
waveforms is demonstrated in Section IV. Section V concludes
this letter.

II. TIME-DOMAIN PROPERTIES OF THE DPW ALGORITHM

A. Summary of the DPW Algorithm
The DPW method [8], [9] produces alias-suppressed saw-

tooth waveforms in four stages. First, a unipolar modulo counter
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signal is transformed into a trivial bipolar sawtooth
using expressions [8], [9]

(1)
(2)

where is the sample number, is the phase incre-
ment, is the fundamental frequency, and is the sampling
rate. The trivial sawtooth signal is then processed with an
-order polynomial waveshaper (using a successive integral

sN as the transfer function, e.g., , , or [9]), and in
the third stage, differentiated times to revert to the piece-
wise linear form. The result is �nally multiplied by a scaling
factor to restore the differentiated signal level. The alias-sup-
pressed sawtooth waveform is thus given by [9]

(3)

where is the backward difference operator
applied times, is the waveshaper

polynomial, and is the period of the unipolar modulo
counter . This process reduces aliasing because the spectra
of the resulting signals decay about dB per octave (i.e., as
a function of the polynomial order), and then the differentia-
tion stage restores the spectral tilt towards that of a sawtooth
waveform. In the time domain, earlier work [2], [8]–[10] noted
that for , the alias-suppressed waveform differs from
the trivial waveform by a single sample and a shift. This pro-
vides a smoother transition from one period to another. How-
ever, previous work does not explicitly interpret the time-do-
main behavior of the DPW method.

B. Novel Interpretation of the DPW Algorithm

We noticed that the transition region between two successive
alias-suppressed waveform periods starts at the instant of the
modulo operation of (1), and that because of successive differ-
entiations in (3), this region is samples wide [see
Fig. 1(a)]. The alias-suppressed output signal can therefore be
sliced into

when
when (4)

where the subscripts A and B denote the segments inside and
outside the transition region, i.e., in Fig. 1(a) samples 9–11 and
12–26, respectively. The expressions of and are
derived here by �rst expanding (3) for the case of , and
then extending the results into higher DPW orders. For brevity
of expression, we restrict , and note that the results
are applicable to subsequent periods because of the modulo-
operation of (1).
For (i.e., ), the waveshaper is

and . Outside
the transition region, the modulo operation of (1) is inactive, and
therefore and . Substitution
and straightforward development of (3) leads to

Fig. 1. (a) The trivial sawtooth (squares), the DPW sawtooth with
(dots), and (b) their difference ( , and as in all
plots in this letter). The modulo operation is activated at , 26, and 44.

(5)
Inside the initial transition region, the modulo operation of (1)
is active, yielding and .
Applying (3) gives now

(6)

The �rst two terms of the right-hand side of (5) and (6) form
, i.e., the trivial bipolar sawtooth signal of (2),

while the third term represents an offset. Within the initial
transition, the term of (6) de�nes the distance from
the discontinuity to the samples following it. This can be ex-
pressed in terms of as ,
so that . Comparing (5) and (6) reveals that

, where the correction
polynomial is responsible for the tran-
sition smoothing between the waveform periods.
Repeating this derivation for higher DPW orders gives the

general cases

when
when

(7)
where the term corresponds to the dc offset [see Fig. 1(b)],
and is the correction polynomial, as listed at the ac-
companying webpage of this letter [11].
To summarize, the novel interpretation of the DPW algorithm

implies that DPW produces alias-suppressed sawtooth wave-
forms by generating an offset trivial sawtooth signal, which is
adjusted with a correction polynomial when the phase counter
is within the transition region. This leads to the de�nition of the
new polynomial transition region algorithm.
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TABLE I
PTR TRANSITION POLYNOMIALS FOR AN ALIAS-SUPPRESSED

SAWTOOTH SIGNAL AS FUNCTION OF DISTANCE FROM
DISCONTINUITY

III. POLYNOMIAL TRANSITION REGION ALGORITHM
The polynomial transition region (PTR) algorithm is de�ned

as

when
when . (8)

where is the transition polynomial that replaces the input
signal samples when the phase counter is within the tran-
sition region that is samples wide, is the aliasing-con-
taminated input signal, and is the offset.
To explore the properties of the proposed algorithm, consider

an ef�cient alias-suppressed sawtooth synthesis method based
on the DPW reinterpretation of Section II-B. The aliasing-con-
taminated input signal is offset by

. The transition polynomials
are formed by adjusting the offset trivial signal with

a scaled correction polynomial , where for
downward and for upward transitions (see Table I).
The PTR form has an immediate advantage over the DPW

method: PTR provides substantial savings in the computational
cost since outside the transition region, which is in most cases
considerably wider than samples, DPW reduces into
a bipolar modulo counter with an offset. This is demonstrated by
Fig. 1(b), which remains at a constant value outside the transi-
tion region. Yet, the DPW method applies (3) to every sample.
Table II compares the computational load of the PTR method
to previous DPW, B-spline BLIT-FDF [7] and PolyBLEP [2]
methods in terms of number of operations per output sample,
using (1) as the input signal. The DPW implementation is based
on (3), while the PTR method computes (8) as explained earlier
in this section. Horner’s rule was applied for optimization (the
source code is available at [11]).
Fig. 2 compares visually the computational load of DPW,

PolyBLEP, BLIT-FDF, and PTR methods showing that the pro-
posed PTR method has the smallest number of operations in all
cases. Because of the branch operations in (8), certain computa-
tions are performed only a few times per waveform period, and
therefore, the computational load of PTR depends on the fun-
damental frequency: since the length of the waveform period
shrinks when the fundamental frequency rises, while the transi-
tion region width remains constant, the relative savings de-
crease with increasing fundamental frequency.
However, PTR uses considerably less operations than the

DPW method over the entire frequency range of interest, as
shown in Fig. 2. At 4186 Hz, which is the fundamental fre-
quency of the highest key of an 88-key piano keyboard, PTR

TABLE II
COMPUTATIONAL LOAD AS NUMBER OF OPERATIONS PER OUTPUT SAMPLE,

OPTIMIZED FOR UNIPOLAR MODULO COUNTER INPUT

Fig. 2. Computational load of DPW (dashed), PolyBLEP (crosses), BLIT-FDF
(dash-dotted) and the proposed PTR (solid lines) sawtooth signals over the fun-
damental frequency range of an 88-key piano keyboard: (a) , (b) ,
and (c) .

consumes 40%, 54%, and 50% less operations than DPW, for
, 2 and 3, respectively (see Fig. 2). We found the savings

to be smaller in practical implementations, but still favorable
with PTR. In a benchmark test involving a general purpose
CPU with 20 banks of 88-voice sawtooth oscillators, PTR

used 27% of the available CPU power, in comparison
to the 36% consumed by the DPW method. It can be deduced
from (8) and Table I that, for , the overhead of the
transition polynomial coef�cient calculation per fundamental
frequency change is 4, 6, and 9 operations for , 2 and 3,
respectively, which is acceptable for control rate updates.
Furthermore, it has been noticed that the differentiator state

variables of (3) generate audible transients when is changed
rapidly in the DPW method. PTR is state-free, and does not
suffer from transient problems. This additional advantage is il-
lustrated in Fig. 3, which shows that the transient present in
the DPW implementation is not reproduced in the PTR form.
BLIT-FDF and PolyBLEP are likewise transient-free, although
the leaky integration in the former approach causes dc �uctua-
tions.

IV. EXTENSION TO OTHER DISCONTINUITIES
The third advantage of the PTR algorithm is that it scales to

arbitrary transition heights, and that it can be applied to other
waveforms besides the trivial sawtooth—even to those that
are nondifferentiable. As an example, this section explores the
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Fig. 3. Ramp-like frequency modulation from to
using (a) DPW and (b) PTR . The disturbing transient

in (a) is indicated with a circle.

Fig. 4. Waveform and spectrum of (a), (b) trivial, and (c), (d) PTR oscillator
hard synchronization algorithms ( , , ). The
desired harmonics in (b) and (d) are indicated with circles, and the dashed line
in (d) plots the harmonic envelope of the trivial spectrum.

alias-suppressed oscillator hard synchronization effect, whose
implementation is impractical using the DPW method.
In classic oscillator hard synchronization (hard sync) [6], the

phase of the slave oscillator, which generates the output signal,
is reset each time the master oscillator completes its cycle. The
frequency of the master oscillator determines the funda-
mental frequency of the output, while the frequency of the slave

controls the timbre of the produced sound. The produced
timbre is rich and complex, and because the phase resets gen-
erate abrupt discontinuities in the output, straightforward dig-
ital hard sync implementations suffer from excessive aliasing,
as shown in Fig. 4(a) and (b). The desired harmonics in Fig. 4(b)
are indicated with circles—the rest of the spectral components
are aliasing.
The DPW method fails to reduce the aliasing of hard sync

implementations, because the derivatives of the waveshapers
of (3) are discontinuous at the instant of phase reset. This

is not of concern in PTR, which applies the transition polyno-
mials of Table I separately for each discontinuity. However, the
correction term of the transition polynomial has to be scaled
according to the height of the discontinuity at the instant
of the reset, which is determined by the frequency ratio

as

when is an integer
otherwise. (9)

To preserve the phase continuity at the fundamental fre-
quency, the phase of the slave oscillator is reset to ,

where is the phase of the master oscillator after the modulo
operation. Figs. 4(c) and 4(d) show that the aliasing present in
the trivial hard sync spectrum is reduced substantially when
exploiting the PTR algorithm. The high end of the spectrum
is slightly attenuated, which is typical to alias-suppression
methods [9], but this can be compensated with a low-order
equalizer, if desired. Audio examples and further applications
are available at [11].

V. CONCLUSIONS

This letter provided a time-domain reinterpretation of the
DPW method, which lead to the de�nition of a novel alias-sup-
pression algorithm called Polynomial Transition Regions
(PTR). The proposed method replaces the discontinuities of
the aliasing-contaminated input signal with polynomial func-
tions, while offsetting the other samples. The method was
shown to have several advantages over the DPW method,
including computational ef�ciency, transient-free operation,
and applicability to various waveforms having discontinuities.
The computational cost of PTR compares favorably against
previous BLIT-FDF and PolyBLEP methods. Furthermore,
since the polynomial, which de�nes the transition region,
does not have to be differentiable, the PTR algorithm enables
experimenting with and optimizing of alternative polynomial
functions. This is left for future work.
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