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A recently rediscovered sound synthesis method, which is based on feedback amplitude modulation (FBAM), is investigated. The
FBAM system is interpreted as a periodically linear time-varying digital filter, and its stability, aliasing, and scaling properties are
considered. Several novel variations of the basic system are derived and analyzed. Separation of the input and the modulation
signals in FBAM structures is proposed which helps to create modular sound synthesis and digital audio effects applications.
The FBAM is shown to be a powerful and versatile sound synthesis principle, which has similarities to the established distortion
synthesis methods, but which is also essentially different from them.

1. Introduction

Amplitude modulation (AM) is a well-described technique
of sound processing [1]. It is based on the audio-range
modulation of the amplitude of a carrier signal generator
by another signal. For each component in the two input
signals, three components will be produced at the output: the
sum and difference between the two, plus the carrier signal
component. The amplitude of the output signal sAM(n) is
offset by the carrier amplitude a, that is,

sAM(n) = [sm(n) + a]
sc(n)
a

, (1)

where sc(n) and sm(n) are the carrier and modulation signals,
respectively, and a is the maximum absolute amplitude of the
carrier signal.

AM has a sister technique, ring modulation (RM) [1],
which is very similar, but with one important difference:
there is no offset in the output amplitude, and the output
signal can be expressed as

sRM(n) = sm(n)sc(n). (2)

Thus, the spectrum of ring modulation will not contain the
carrier signal.

For sinusoidal inputs, both techniques will produce a
limited set of partials. In order to develop them into a useful
method of synthesis, one may either employ a component-
rich carrier, or by means of feedback, add partials to
the modulator [2]. The second option has the advantage
of providing a rich output simply using two sinusoidal
oscillators. Note that in this case only the AM method is
practical, since feedback RM produces only silence after the
modulator signal becomes zero.

The feedback AM (FBAM) oscillator first appeared in
the literature as instrument 1 in example no. 510 from
Risset’s catalogue of computer synthesized sounds [3] and
subsequently in a conference paper by Layzer [4] to whom
Risset had attributed the idea. Also, a further implementation
of the algorithm is found in [5].

However, the FBAM algorithm remains relatively un-
known and, apart from the prior work cited above, is largely
unexplored. The authors started examining it in [2] and will
now expand this work in order to provide a framework for
a general theory of feedback synthesis by exploring the peri-
odically linear time-variant (PLTV) filter theory in synthesis
contexts. A further goal is to gain a better understanding
of FBAM for practical implementation purposes. The novel
work comprises (i) the PLTV filter interpretation of the
method, (ii) stability, aliasing, and scaling considerations,
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Figure 1: Feedback AM oscillator [4].

(iii) detailed analysis of the variations, (iv) additional
variations and implementations (generalized coefficient-
modulated IIR filter, adaptive FBAM, Csound opcode), and
(v) evaluation and applications of the FBAM method.

The paper is organized as follows. Section 2 presents the
basic FBAM structure and contextualizes it as a coefficient-
modulated first-order feedback filter. Section 3 proposes six
general variations on the basic equation, while Section 4
explores the implementation aspects of FBAM in the form of
synthesis operator structures. Section 5 evaluates the FBAM
method against established nonlinear distortion techniques,
Section 6 discusses its applications in various areas of
digital sound generation and effects, and, finally, Section 7
concludes.

2. Feedback AM Oscillator

The signal flowchart of Layzer’s feedback AM instrument is
shown in Figure 1. This instrument is now investigated in
detail by interpreting it as a periodically linear time-variant
filter. The basic FBAM equation with feedback amount
control is then introduced, and its impact on the stability,
aliasing, and scaling properties of the system is discussed.

2.1. The FBAM Algorithm. First, consider the simplest FBAM
form, utilizing a unit delay feedback, that can be written as

y(n) = cos(ω0n)
[
1 + y(n− 1)

]
(3)

with the fundamental frequency f0, the sampling rate fs, and
ω0 = 2π f0/ fs. The initial condition y(n) = 0, for n ≤ 0, is
used in this and all other recursive equations in this paper.
This feedback expression can be expanded into an infinite
sum of products given by

y(n) = cos(ω0n) + cos(ω0n) cos(ω0[n− 1])

+ cos(ω0n) cos(ω0[n− 1]) cos(ω0[n− 2]) + · · ·

=
∞∑
k=0

k∏
m=0

cos[ω0(n−m)],

(4)

which leads to the conclusion that the resulting spectrum is
composed of various harmonics of the fundamental f0. In
fact, as can be seen in Figure 2, a smooth pulse-like waveform
that reaches its steady-state condition within the first period
of the waveform is obtained (the reduced initial peak of the
waveform is not present if the cos(·) term of (3) is replaced
by a sin(·) term. The cosine form, however, simplifies the
theoretical discussion).

Rewriting (4) as

y(n) =
∞∑
k=0

pk
2k

(5)

with

pk = 2k
k∏

m=0

cos[ω0(n−m)], (6)

one gets a glimpse of what the resulting spectrum might look
like. The products pk for k = 0 · · · 4 are the following:

p0 = cos(ω0n),

p1 = cos(ω0) + cos
[

2ω0

(
n− 1

2

)]
,

p2 = cos[ω0(n− 3)] + 2 cos(ω0) cos(ω0n) + cos[3ω0(n− 1)],

p3 = 1 + cos(2ω0) + cos(4ω0) + cos
[

2ω0

(
n− 3

2

)]

+ cos[2ω0(n− 2)] + cos[2ω0(n− 1)] + cos(2ω0n)

+ cos
[

4ω0

(
n− 3

2

)]
,

p4 = cos[ω0(n− 8)] + cos[ω0(n− 6)] + cos[ω0(n− 2)]

+ 2 cos(4ω0) cos(ω0n) + 2 cos(2ω0) cos(ω0n)

+ cos
[

3ω0

(
n− 10

3

)]
+ cos

[
3ω0

(
n− 8

3

)]

+ cos[3ω0(n− 2)] + cos
[

3ω0

(
n− 4

3

)]

+ cos
[

3ω0

(
n− 3

2

)]
+ cos[5ω0(n− 2)].

(7)

So, for this partial sum, the fundamental (harmonic 1) is a
combination of cosines having slightly different phases and
amplitudes

1
16
{cos[ω0(n− 8)] + cos[ω0(n− 6)]

+ cos[ω0(n− 2)]} +
1
4

cos[ω0(n− 3)]

+
{

1
2

cos(ω0) +
1
8

[cos(4ω0) + cos(2ω0)] + 1
}

cos(ω0n).

(8)

This indicates that the harmonic amplitudes will be depen-
dent on the fundamental frequency (given the various cos(·)
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Figure 2: Peak-normalized FBAM waveform ( f0 = 500 Hz) and its
spectrum. The sample rate fs = 44.1 kHz is used in this and all
other examples in this paper unless noted otherwise.

terms in the scaling of some components). The combined
magnitudes of the components will also depend on the
fundamental frequency and sampling rate because of the
mixture of various delayed terms.

Figure 2 shows that the spectrum has a low-pass shape
and that the components fall gradually. Disregarding the
frequency dependency, a spectrum falling with a 2−k decay
(with k taken as harmonic number) can be predicted.
However, given that there is a substantial dependency on
the fundamental, the spectral decay will be less accented.
Figure 2 shows also that the FBAM waveform contains a
significant DC component. By expanding (6) further, the
static component is observed to be generated by the odd-
order products of the summation.

Given the complexity of the product in (4), there is little
more to be gained, as far as the spectral description of the
sound is concerned, proceeding this way. We will instead turn
to an alternative description of the problem, studying it as an
IIR system.

2.2. Filter Interpretation. The FBAM algorithm can be inter-
preted as a coefficient-modulated one-pole IIR filter that is
fed with a sinusoid. Rewriting (3) as

y(n) = x(n) + a(n)y(n− 1) (9)

with

x(n) = a(n) = cos(ω0n) (10)

results in a filter description for the algorithm, a periodically
linear time-varying (PLTV) filter. This is a different system
from the usual linear time-invariant (LTI) filters with static
coefficients. Firstly, instead of a single fixed impulse response,

this system has a periodically time-varying impulse response.
Secondly, the filter’s spectral properties are on their own
functions of the discrete time: at each time sample, the filter
transforms the input into an output signal depending on
the coefficient values at that and preceding time instants.
These types of filters were thoroughly investigated in [6, 7].
Equation (11) of [6] defines a nonrecursive PLTV filter as

y(n) =
N∑
k=0

bk(n)x(n− k). (11)

The time-varying impulse response of a PLTV filter is defined
in [6] as the output y(n) measured at time n in response to a
discrete-time impulse x(m) = δ(m) applied at time m, and is
given for the PLTV filter of (11) by (Equation (12) of [6])

h(m,n) =
N∑
k=0

bk(n)δ(n− k −m). (12)

Consequently, the filter’s generalized transfer function (GTF)
and generalized frequency response (GFR) [6, 7], which are
the generalizations of the transfer function and frequency
responses to the time-varying case, can be represented,
respectively, as (Equations (2.14), (4.4), and (4.5) of [7])

H(z,n) =
∞∑

m=−∞

N∑
k=0

bk(n)δ(n− k −m)zm−n =
N∑
k=0

bk(n)z−k,

H(ω,n) =
N∑
k=0

bk(n)e− jkω.

(13)

The case of recursive PLTV filters, such as the one
represented by FBAM, is more involved. The time-varying
impulse response for the first-order recursive PLTV of (9) is
given in [7] as

h(m,n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∏
i=m+1

a(i) = g(n)
g(m)

, m < n,

1, m = n,

0, m > n,

0, n < 0,

(14)

with

g(n) =
n∏
i=1

a(i) for n ≥ 1, g(0) = 1. (15)

The GTF of this filter is then defined as

H(z,n) =
∑N−1

k=0 h(n− k,n)z−k

1− g(N)z−N
, (16)

where N is the period in samples of the modulator signal
a(n). With this in hand, the time-varying frequency response
of the filter in (9) can now be written as

H(ω,n) =
∑N−1

k=0 h(n− k,n)e− jkω

1− g(N)e− jNω . (17)
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In the specific case of FBAM, (10) tells that the modulator
signal a(n) is a cosine wave with frequency ω0 = 2π f0/ fs and
period in samples T0 = 2π/ω0. In this case, to calculate the
GTF for this filter, we can set N = �T0 + 0.5�, where �·� is the
floor function. Then, (17), (14), and (15) yield

H(ω,n) = 1 +
∑N−1

k=1 bk(n)e− jkω

1− aNe− jNω , (18)

with the coefficients bk and aN set to

bk(n) =
k∏

m=1

cos(ω0[n−m + 1]),

aN =
N∏

m=1

cos(ω0m).

(19)

The filter defined by (9) and (10) is therefore equivalent to
a filter of length N , made up of a cascade of a time-varying
FIR filter of order N − 1 and coefficients bk(n), and an IIR
(comb) filter with a fixed coefficient aN . The equivalent filter
equation is, thus,

y(n) = x(n) +
N−1∑
k=1

bk(n)x(n− k) + aN y(n−N). (20)

The recursive section does not have a significant effect on the
FBAM signal, as the magnitude response peaks will line up
with the harmonics of the fundamental. It will, however, have
implications for the stability of the filter as will be seen later.
The time-varying FIR section of this equivalent filter is then
responsible for the generation of harmonic partials and the
overall spectral envelope of the signal. In [7], these partials
are called combinational components, which are added to the
output in addition to the input signal spectral components
(which in the case of FBAM are limited to a single sinusoid).
Plots of the output of this filter when fed with a sinusoid
with radian frequency ω0 = 2π f0/ fs and its equivalent FBAM
signal are shown in Figure 3.

Studies have shown that modulation of IIR filter coef-
ficients (such as the coefficient-modulated allpass) has
a phase-distortion effect on the input signal [8–10]. In
addition, the amplitude modulation effect caused by the
time-varying magnitude response will help in shaping the
output signal. To demonstrate this, the FBAM signal can
be reconstituted using phase and amplitude modulation,
defined by

y(n) = A(n) cos
(
ω0n + φ(n)

)
, (21)

where

A(n) = |H(ω0,n)|, φ(n) = arg(H(ω0,n)), (22)

with H(ω,n) defined by (18) and setting ω = ω0. A plot
of this reconstruction and its equivalent FBAM waveform is
shown on Figure 4, where the steady-state signals are seen to
match each other. It is worth pointing out that this result
can be alternatively inferred from the similarities between
the periodic time-varying filter transfer function and the
expansion of the FBAM expression in (4).
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Figure 3: Plots of the FBAM waveform (dots) and the output of
its equivalent time-varying filter of (20) (solid), when fed with a
sinusoid ( f0 = 441 Hz).
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Figure 4: Plot of the reconstructed FBAM signal (solid) against
the actual FBAM waveform (dots), with f0 = 441 Hz. The
reconstruction is based on the steady-state spectrum and thus does
not include the transient effect seen at the start of the FBAM
waveform.

2.3. The Basic FBAM Equation. To make the algorithm
more flexible, some means of controlling the amount of
modulation (and therefore, distortion) is inserted into the
system. This can be effected by introducing a modulation
index β into (3), which yields

y(n) = cos(ω0n)
[
1 + βy(n− 1)

]
. (23)

The flowchart of this equation is shown in Figure 5. By
varying the parameter β, it is possible to produce dynamic
spectra, from a pure sinusoid to a fully-modulated signal
with various harmonics. The action of this parameter is
demonstrated in Figure 6, which shows the spectrogram of
a FBAM signal with β sweeping linearly from 0 to 1.5. The
signal bandwidth and the amplitude of each partial increase
with the β parameter. Notice that this is a simpler relation
than in frequency modulation (FM) synthesis [11], in which
partials are momentarily faded out as the modulation index
is changed (see, e.g., Figure 4.2 on page 301 in [12]).

The maximum value of β will mostly depend on the
tolerable aliasing levels, as higher values of β will increase
the signal bandwidth significantly. Even higher values of
this parameter will also cause stability problems, which are
discussed below.

2.4. Stability and Aliasing. The stability of time-varying
filters is generally difficult to guarantee [13]. However, in
the present case, it is possible to have a stable algorithm by
controlling the amount of feedback in the system. From (20)
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Figure 5: Flowchart of the basic FBAM equation, where z−1 denotes
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Figure 6: Spectrogram of the FBAM output with β varying from 0
to 1.5 ( f0 = 500 Hz).

and (23), the impulse response of the system is noted to
decrease in time when

∣∣β aN
∣∣ < 1, (24)

that is, when the product of instantaneous coefficient values
over the period multiplied by the modulation index β
is less than unity [7]. The dashed line of Figure 7 plots
the maximum β values satisfying this stability condition,
showing that the stability is frequency dependent. The
approximate stability limit is given by βstable ≈ 1.9986 − 0.
00003532 ( f0 − 27.5).

In practice, however, the system stability will never
become the limiting issue. This is because for values of β well
within the range of stable values, an objectionable amount of
aliasing is obtained. So, in fact, the real question is how large
can the modulation index be before the digital baseband is
exceeded. This will of course depend on the combination
of the sampling rate and fundamental frequency. Taking for
instance f0 = 500 Hz and fs = 44100 Hz, one observes
that for β = 1.9, there is considerable foldover distortion
throughout the spectrum (see Figure 8). The distortion is
also visible in the signal waveform as the formation of wave
packets similar to those found in overmodulated feedback
FM synthesis [14].

The solid and dotted curves in Figure 7 show the
maximum β values that keep the amount of aliasing 80 dB
below the loudest harmonic (the fundamental) at sample
rates of 44.1 kHz and 88.2 kHz, respectively. The curves were
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Figure 7: Stability (dashed) and aliasing (solid: fs = 44.1 kHz,
dotted: fs = 88.2 kHz) limits of FBAM.
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Figure 8: FBAM spectrum and waveform with β = 1.9 ( f0 =
500 Hz).

obtained through iterated spectral analysis: the frequency
axis was sampled at 100 points, and for each fundamental
frequency, the β value was increased until the magnitude
of the strongest aliasing harmonic reached the −80 dB limit
(the algorithm is available at [15]). The solid curve ( fs =
44.1 kHz) shows that for fundamental frequencies lower
than 1300 Hz, when the curve is smooth, the maximum
usable β values are determined by the overmodulation
foldover distortion discussed above. For higher fundamental
frequencies, the stepwise shape of the curve suggests that the
−80 dB limit is determined by the harmonics folding back
to the digital baseband at the Nyquist limit. The dotted curve
( fs = 88.2 kHz) shows that oversampling increases the usable
β range by stretching the maximum β values towards higher
frequencies relative to the oversampling amount.

2.5. Scaling. The gain of the FBAM system varies consid-
erably with different β values—in a frequency-dependent
manner—and grows rapidly after β exceeds unity. This
makes the output gain normalization a challenge, which
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Figure 9: FBAM gain (solid) and its polynomial approximation
(dotted). β = 0.1 (bottom)· · ·β = 0.9 (top).

can, however, be resolved by approximate peak-scaling and
average power balancing algorithms.

Figure 9 shows that the peak gain of the basic FBAM
equation (solid line) can be approximated well within a 1-
dB deviation by polynomials of degree 1 (β < 0.7) and of
degrees 2, 3, and 5 (corresponding to β values 0.7, 0.8, and
0.9, resp.).

The scaling factors for in-between β values can be
found by linear interpolation, provided that the polynomial
approximations are taken at sufficiently small intervals (e.g.,
setting Δβ = 0.05 generated acceptable results). Scaling
factors for β ≥ 1 follow power-law approximations, which
are problematic with low fundamental frequencies where the
FBAM gain rate changes most rapidly. A two-dimensional
lookup table (Δβ = 0.05, 100 frequency samples) with
bilinear interpolation was found to be able to provide more
accurate results across the entire stable β range. Each entry in
the table can be precalculated by evaluating one half period
of (23) using a sine input and finding the maximum value
of the result. The lookup table and the function coefficients
are available at [15]. The two-dimensional lookup table
approach was observed to provide transient-free scaling for
control rate parameter sweeps.

Equation (23) may alternatively be evaluated at the
control rate for each block of output samples. Another online
solution is to use a root-mean-square (RMS) balancer [1]
that consists of two RMS estimators and an adaptive gain
control. The FBAM output and cosine comparator signals are
first fed into the RMS estimators, which rectify and low-pass
filter their inputs to obtain the estimates. The scaling factor is
then calculated from a ratio of the two RMS estimates. This
solution is sufficiently general to work with the variations
discussed in the next section.

3. Variations

The basic structure of FBAM provides an interesting plat-
form on which new variants can be constructed. This section

will examine a number of these (see Figure 10), starting from
the insertion of a feedforward term, which can subsequently
be used for an allpass filter-derived structure, and proceeding
to heterodyning, nonlinear distortion, nonunitary delays,
and the generalization of FBAM as a coefficient-modulated
filter.

3.1. Variation 1: Feedforward Delay. A simple way of gener-
ating a different waveshape is to include a feedforward delay
term in the basic FBAM equation (see Figure 10(a))

y(n) = cos[ω0(n− 1)]− cos(ω0n)
[
1 + βy(n− 1)

]
. (25)

In this case, besides the DC offset, there is no change in the
spectrum as the feedforward delay will not change the shape
of the input (i.e., it remains a sinusoid). However, because
of the half-sample delay caused by the feedforward section,
the shape of the waveform is different, as its harmonics are
given different phase offsets. Figure 11 shows the waveform
and spectrum of this FBAM variant.

3.2. Variation 2: Coefficient-Modulated Allpass Filter. From
the feedforward delay variation discussed above, it is possible
to derive a variant that is similar to the coefficient-modulated
allpass filter described in [8] and used for phase distortion
synthesis in [9, 10]. The general form of this filter is

y(n) = x(n− 1)− a(n)
[
x(n)− y(n− 1)

]
. (26)

This is translated into the presented FBAM form by equating
a(n) to the input signal x(n) = cos(ω0n), as in Section 2.1

y(n) = cos[ω0(n− 1)]− β cos(ω0n)
[
cos(ω0n)− y(n− 1)

]
.

(27)

The flowchart of the coefficient-modulated allpass filter is
shown in Figure 10(b), while its waveform and spectrum are
plotted in Figure 12.

The resulting process is equivalent to a form of phase
modulation synthesis, as discussed in [9]. As with the basic
version of FBAM, it is possible to raise the modulation index
β above one, as this variant exhibits similar stability and
aliasing behavior.

3.3. Variation 3: Heterodyning. Employing a second sinu-
soidal oscillator as a ring-modulator provides a further
variant to the basic FBAM method. This heterodyning
variant can have two forms, by placing the modulator inside
or outside the feedback loop, as shown in Figures 10(c) and
10(d), respectively, producing different output spectra.

3.3.1. Type I: Modulator inside the Feedback Loop. In this
structure, the basic FBAM expression is simply multiplied by
a cosine wave of a different frequency

y(n) = cos(θn)
{

cos(ω0n)
[
1 + βy(n− 1)

]}
, (28)

where θ is the normalized radian frequency of the ring-
modulator. The main characteristic of this variant is that the
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Figure 10: FBAM variation flowcharts. The z−1 and z−D symbols denote delays of one and D sample periods, respectively.
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Figure 11: Waveform and spectrum of FBAM variation 1 (β = 1,
f0 = 500 Hz), see Figure 10(a).

whole of the modulated signal is fed back to modulate the
amplitude of the first oscillator, as shown in Figure 10(c).
In general, if the ratio of frequencies of the modulator and
FBAM oscillators is of small integers, the result is a harmonic
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Figure 12: Waveform and spectrum of FBAM variation 2 (β = 1,
f0 = 500 Hz), see Figure 10(b).

spectrum. This ratio also determines the general shape of
the spectrum, which exhibits regularly-spaced peaks. Both
the fundamental frequency and the spacing of peaks are
dependent on this frequency ratio.
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Figure 13: Heterodyne FBAM variation 3-I ( f0 = 500 Hz, β = 0.2,
modulator frequency 4000 Hz (8 : 1 ratio)), see Figure 10(c).

In some cases, harmonics are missing or they have very
small amplitudes, such as in the case of the 8 : 1 ratio shown
in Figure 13. Here, harmonics 1, 3, 6, 8, 10, 13, 15, 17, 19,
22, 24, 26, and so forth are seen to be missing (or have
an amplitude at least −100 dB from the maximum). The
peaks in the spectrum are around harmonics 8 (missing), 16,
24 (missing), 32 and 40 (missing). This method provides a
rich source of spectra. However, its mathematical description
is very complex and the matching of parameters to the
spectrum is not as straightforward as in other variants. On
the plus side, the β parameter (FBAM modulation index)
maps simply to spectral richness and it does not have a major
effect on the relative amplitude of harmonics (beyond that
of adding more energy to higher components). However,
because of aliasing issues, the practical β range decreases
rapidly with increasing θ/ω0 ratios.

3.3.2. Type II: Modulator outside the Feedback Loop. The
second form of heterodyne FBAM places the modulation
outside the feedback loop (see Figure 10(d)). In other words,
the basic FBAM algorithm is used to create a modulator
signal with a baseband spectrum, which is then shifted to be
centered on the cosine carrier frequency θ, as defined by the
following pair of equations:

y(n) = cos(ω0n)
[
1 + βy(n− 1)

]
,

s(n) = cos(θn)y(n).
(29)

A similar structure is seen in the double-sided Discrete Sum-
mation Formula (DSF) algorithm [16], as well as in Phase-
Aligned Formant (PAF) synthesis [17] (which is derived from
DSF) and phase-synchronous Modified FM [18, 19]. This
heterodyne principle is very useful for generating resonant
spectra and formants by setting θ = kω0, with k > 0
and an integer, that is, making the cosine frequency a
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Figure 14: Heterodyne FBAM variation 3-II ( f0 = 500 Hz, β = 0.3,
cosine carrier frequency 4000 Hz (8 : 1 ratio)), see Figure 10(d).

multiple of the FBAM f0. Figure 14 depicts the waveform
and spectrum of (29), with k = 8 (β = 0.3, f0 = 500 Hz,
and fs = 44100 Hz). Note that the bandwidth of the resonant
region is proportional to β and that the practical β range is
considerably wider than in heterodyning type I.

A more general algorithm for formant synthesis would
require the use of two carriers tuned to adjacent harmonics
around the resonance frequency fc, whose signals are
weighted and mixed together to provide the output

k = int

(
fc
f0

)
, (30)

g = fc
f0
− k, (31)

y(n) = cos(ω0n)
[
1 + βy(n− 1)

]
,

s(n) = y(n)
{(

1− g
)

cos(kω0n) + g cos[(k + 1)ω0n]
}
.

(32)

This structure can be used for efficient synthesis of res-
onances from vocal formants to emulation of analogue
synthesizer sounds.

3.4. Variation 4: Nonlinear Waveshaping. An interesting
modification of the FBAM algorithm can be implemented
by employing a nonlinear mapping of the feedback path,
a process commonly known as waveshaping [20, 21]. The
general form of the algorithm is

y(n) = cos(ω0n)
{

1 + f
[
βy(n− 1)

]}
, (33)

where f (·) is an arbitrary nonlinear waveshaper
(Figure 10(e)). There are a variety of possible transfer
functions that may be employed for this purpose. The most
useful ones appear to be trigonometric (sin(·), cos(·), etc.)
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Figure 15: FBAM variation 4 with cosine waveshaping (β = 1, f0 =
500 Hz), see Figure 10(e). The transient appears because the initial
state of the filter was not set up appropriately.

and a few piecewise-linear waveshapers (such as the absolute
value function ABS).

The case of cosine and sine waveshapers is particularly
interesting; for instance,

y(n) = cos(ω0n)
{

1 + cos
[
βy(n− 1)

]}
(34)

produces a signal that is closely related to feedback FM
synthesis [22]. To demonstrate the similarities, start with the
FM equation [11]

y(n) = cos[ω0n + m(n)] (35)

and set the modulator function m(n) = y(n − 1) to
implement the feedback. Expanding this gives

y(n) = cos
[
ω0n + y(n− 1)

]
= cos(ω0n) cos

[
y(n− 1)

]− sin(ω0n) sin
[
y(n− 1)

]
.

(36)

So, the cosine-waveshaped FBAM partially implements the
feedback FM equation. As it turns out, this partial imple-
mentation removes all even harmonics from the spectrum.
This is shown in Figure 15, which illustrates also the effect of
an improper initial state: the waveform contains a transient,
which is due to a poorly chosen initial feedback state value.
Here, y(0) = 1 instead of the recommended peak value of
the steady-state waveform.

It is possible to closely approximate feedback FM by
combining two sinusoidal waveshaper FBAM structures, one
of them using cosine and the other sine functions

y(n) = cos(ω0n)
{

1 + cos
[
βy(n− 1)

]}
− sin(ω0n)

{
1 + sin

[
βy(n− 1)

]}
= cos

[
ω0n + βy(n− 1)

]
+ cos(ω0n)− sin(ω0n).

(37)
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Figure 16: FBAM variation 4 with ABS waveshaping (β = 1, f0 =
500 Hz), see Figure 10(e).

As can be seen, this expression only differs from feedback
FM by the added sine and cosine components at f0.
Equation (37) demonstrates that it is possible to create
transitions between cosine (and sine) waveshaped FBAM and
feedback FM. This might be a useful feature to be noted in
implementations of the technique.

Choosing the ABS transfer function provides another
means of removing even harmonics from the FBAM spec-
trum, as shown in Figure 16. This is because, like the cosine
waveshaper, the absolute value function is an even function.
Such a waveshaper will feature only even harmonics of its
input signal frequencies [19]. However, in the current setup,
the waveshaper output is heterodyned by a cosine wave tuned
to its fundamental frequency, thus generating odd harmonics
of that frequency.

Another interesting feature of the ABS waveshaper is that
it maintains the relative amplitudes of odd components close
to the values in the basic FBAM expression. Therefore, it
provides an interesting means of varying odd-even balance
of a synthesized tone by combining this variant with the basic
FBAM technique.

The aliasing properties of variation 4 depend naturally
on the choice of the waveshaper. For the presented cases, the
practical β range is slightly more restricting than the general
case shown in Figure 7.

3.5. Variation 5: Nonunitary Feedback Periods. The early
works on feedback amplitude modulation utilized various
feedback delay lengths. In [3], Risset does not discuss the
design in detail, but from his MUSIC V code the feedback
delay is seen to be one sample block (existing FORTRAN
code shows that the program processes the signal on a
block-by-block basis [23]). Layzer’s article [4] describes the
algorithm as based on a fixed feedback delay of 512 samples
(the system block size). A footnote mentions an alternative



10 EURASIP Journal on Advances in Signal Processing

implementation by F.R. Moore allowing delays from one to
512 samples. In [5], the feedback delay is equivalent to the
default processing block size for the system in which it is
implemented (64 samples). The differences in feedback delay
lengths are important to the resulting output.

The feedback delay of the basic FBAM can be generalized
to allow for an arbitrary period size (see Figure 10(f)).
Instead of limiting the delay to one sample, it can be made
variable

y(n) = cos(ω0n)
[
1 + βy(n−D)

]
, (38)

where D is the delay length in samples. From a filter
perspective, this equation defines a coefficient-modulated
comb filter (which is fed a cosine wave as input). As such
the delay D can be expected to have an effect on the
output spectrum. Different waveshapes can be produced
with various delays, but the spectrum will be invariant if
the ratio of the delay time TD = fs/D and the modulation
frequency, which is in this case also f0, is preserved. For this
to be effective, the delay time will be inversely proportional to
the change in fundamental frequency. This principle should
additionally allow keeping the basic FBAM spectrum f0-
invariant by lengthening the delay as frequency decreases. Of
course, there will be an upward limit of one-sample delay (if
fractional delays are not desired).

An interesting case arises when the TD : f0 ratio is one,
and so D = 2πω−1

0 = fs/ f0. In this case, the FBAM expression
becomes much simpler

y(n) = cos(ω0n)
[

1 + βy
(
n− 2π

ω0

)]

=
∞∑
k=0

βk
k∏

m=0

cos(ω0n− 2πm)

=
∞∑
k=1

βk−1 cos (ω0n)k = cos(ω0n)
1− β cos(ω0n)

,

(39)

for 0 ≤ β < 1 (see Figure 17); with β = 1, there is a singularity
at cos(0), and with β > 1, the series is divergent and the
closed form does not apply. It is also possible to expand the
summation in (39) to obtain its spectra

∞∑
k=1

βk−1 cos (ω0n)k

=
∞∑
k=1

β2k−1 cos (ω0n)2k + β2k−2 cos (ω0n)2k−1

=
∞∑
k=1

β2k−1

⎧⎨
⎩ 1

22k

⎛
⎝2k

m

⎞
⎠ +

2
22k

k−1∑
m=0

⎛
⎝2k

m

⎞
⎠ cos[(2k − 2m)ω0n]

⎫⎬
⎭

+
2β2k−2

22k−1

k−1∑
m=0

⎛
⎝2k − 1

m

⎞
⎠ cos[(2k − 2m− 1)ω0n].

(40)
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Figure 17: FBAM variation 5 (β = 0.85, f0 = 441 Hz) with feedback
period D = 100 (solid), see Figure 10(f). The dashed line plots the
basic FBAM with period D = 1.

To gain an understanding of the type of spectra obtained,
(40) can be partially evaluated limiting k to 4

4∑
k=1

βk−1 cos (ω0n)k

= 1
2
β +

3
8
β3 +

[
1 +

3
4
β2
]

cos(ω0n) +

[
β − β3

2

]
cos(2ω0n)

+
1
4
β2 cos(3ω0n) +

1
8
β3 cos(4ω0n).

(41)

In order to obtain a continuous range of delay times,
some form of interpolation is required. As observed in [24],
this will have an effect on the output. Although it is beyond
the scope of the present study to discuss the best interpola-
tion methods for fractional delay FBAM, good results have
been observed with a linear interpolation method in delays
longer than a few samples. For very short delays, a higher
precision interpolator would most likely be required.

The aliasing properties of variation 5 follow closely the
general case of Figure 7. However, we observed that the
system becomes unstable with large β values when D = fs/ f0
or D = fs/2 f0.

3.6. Variation 6: Coefficient-Modulated First-Order IIR Filter.
So far, the focus has been on self-modulation scenarios that
share a single sinusoid between the carrier and the modu-
lating signal. The FBAM algorithm is now generalized as a
coefficient-modulated IIR filter by relaxing the constraint of
(10) and decoupling the input signals, that is, the carrier x(n)
and the modulator m(n), into independent and arbitrary
inputs as shown in Figure 18. Rephrasing (23) as

y(n) = x(n) + m(n)βy(n− 1) (42)
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Figure 18: FBAM variation 6 with decoupled input signals.

offers two additional degrees of freedom, because the
frequencies and the waveforms of both input signals can now
be chosen independently. In the present study, the modulator
signal should be periodic, however.

For sinusoidal carrier and modulator signals with β = 0,
the spectrum of (42) consists of a single component that
is located at the carrier frequency fx. As β is increased,
the component at fx is skirted with upper and lower
sidebands and the resultant spectra will gradually grow
into the formant-shaped structure shown in Figure 14. The
spectral structure of the formant can be controlled by the
modulation frequency fm, as the sideband components will
appear at frequencies fx ± k fm. Negative frequencies alias
at DC back to the positive domain, and, as discussed in
Section 3.3, frequency ratios fx : fm of small integers will
generate harmonic spectra, while more complex ratios result
in inharmonic timbres.

A complex periodic modulation signal generates upper
and lower sidebands for each of its spectral component,
which happens also in complex modulator FM [25, 26]. The
sidebands consist of partials that are located at frequencies
±k fx around the original modulator component, and,
therefore, the spectral structure of the formants can be
controlled by the carrier oscillator frequency fx.

The aliasing properties of variation 6 depend on the
frequency ratio between the carrier and the modulator.
Larger frequency ratios increase the amount of high end
spectral content, and, therefore, the risk of aliasing is bigger
than in the general case of fx : fm = 1.

3.6.1. Adaptive Feedback AM. The filter interpretation of
FBAM allows its treatment as an adaptive audio effect. This
can be implemented in two general lines, based on how the
input signal shall be used to control the filter behavior. The
first and the simplest method is to exchange the sinusoidal
signal with an arbitrary input. In this method, the filter
coefficient will be modulated by the input

y(n) = x(n)
[
1 + βy(n− 1)

]
. (43)

The second alternative implementation, based on (42) and
following the principles adopted in Adaptive FM [27], uses a
pitch tracking algorithm to control the modulator frequency.
In addition, the value of β can be made proportional
to the amplitude of the input signal with the use of an
envelope follower. This method is perhaps more flexible as
one can avail of a choice of modulator signals and a different
modulator frequency (whereas the first method locks a
1 : 1 ratio between the input and coefficient modulator). In
addition, both alternatives can also avail of nonunitary delay

Table 1: FBAM input signals and synthesis parameters.

Input Category Variation Description

x(n) Signal Common Carrier

m(n) Signal Common Modulator

r(n) Signal 3 Ring modulator

v Parameter Common Variation number

β Parameter Common Feedback amount

ws Parameter 4 Waveshaper type

D Parameter 5 Feedback delay length

sizes, which would allow different spectral characteristics at
the output (and of course, in this case, we are no more strictly
speaking of a first-order filter structure).

The stability of the first method depends on the input
signal matching the conditions set by (24). A special case
might occur when the input signal is not periodic, in
which case the PLTV filter theory does not apply. The
second method follows the stability condition as studied in
Section 2.4. The aliasing properties depend largely on the
input waveform.

4. Implementations

This section refines the FBAM operator and algorithm
concepts introduced in [2] and discusses their implemen-
tation in two popular audio synthesis environments. These
concepts are related to their FM synthesis counterparts
described in [28].

4.1. FBAM Operator. The audio rate interface of the FBAM
flowcharts depicted in Figures 5 and 10 consists of two
input (cos(ω0n), cos(θn)), and one output (Out) signals.
The shared cos(ω0n) input can be further decoupled into
separate carrier and modulator signals x(n) and m(n), as
discussed in Section 3.6. The control rate interface of the
flowcharts consists of the synthesis parameters. By hiding the
implementation details of the variations, the FBAM system
can be considered as a black box that is interfaced with the
inputs listed in Table 1. The contents of the FBAM black box
includes a waveshaper (variation 4), a delay line (variation
5), an output level scaling unit, and a set of state variables,
multipliers, and adders for the algorithmic details, as shown
in the FBAM flowcharts.

Cascading a sinusoidal carrier oscillator, the FBAM black
box, and an envelope-controlled gain unit brings forth the
Feedback AM Operator shown in Figure 19. The signal inputs
r(n) and m(n) can be derived from the outputs of other
FBAM operators or from the carrier oscillator output x(n)
by means of the modulation source selector SM .

To simplify the tuning of the system, the fundamental
frequency of the carrier oscillator is parametrized as a
vector [osc] = ( fB, q), where fB is the base frequency
and q is the frequency ratio, giving f0 = q fB. The other
parameter vectors are [ f bam] = (v,β,ws,D), interfacing
the FBAM black box, and [env] = (A,D, S,R), describing
the attack/decay/sustain/release settings of the envelope
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Figure 19: FBAM operator, interfaced by audio rate signals (solid)
and control rate parameters (dashed).

Table 2: Computational load of FBAM, its variations, and related
synthesis methods.

Method Figure MUL ADD Scale Total TLU

FBAM 5 1 1 1 3 1

Variation 1 10(a) 1 2 1 4 1

Variation 2 10(b) 1 2 1 4 1

Variation 3 10(c), 10(d) 2 1 1 4 2

Variation 4 10(e) 1 1 1 3 2

Variation 5 10(f) 1 1 1 3 2

Variation 6 18 1 1 1 3 2

PAF 1 0 2 3 3

ModFM 2 1 1 4 3

DSF 5 3 1 9 2

generator EG. Parameter g defines the maximum amplitude
of the output y(n). It should be noted that the encapsulated
FBAM block may be parametrized so that the output of the
operator consists only of the carrier signal produced by the
OSC block.

4.2. FBAM Algorithms. Two or more FBAM operators may
be arranged into multioperator configurations called FBAM
algorithms. Parallel multicarrier configurations simply mix
the outputs of the operators together, whereas cascaded
setups connect the output of the modulator operator to
the m(n) and/or r(n) inputs of the carrier. As a special
case of the cascaded arrangement, the output of the carrier
operator can be fed back to the m(n) input of the modu-
lator operator, thereby producing cross-modulated timbres.
Figure 20 shows three algorithms that are used in the FBAM
application examples of Section 6.

In parallel topologies, the g parameter is utilized as a
balance control, whereas in cascades the g and the [env]
vector of the modulator provide dynamic control over the
spectral richness of the carrier output. The [osc] vectors
define the frequency ratio between the modulator and the
carrier, thus affecting the harmonic or inharmonic structure
of the spectrum.

4.3. Pure Data External and Abstraction. The FBAM black
box was implemented in the C programming language

as a Pure Data (Pd) [29] external ( f bam ∼), which is
equipped with three signal inlets, four parameter inlets, and
one signal outlet. The external uses block-based processing,
but supports also single-sample feedback delays by main-
taining its state between successive block-based processing
calls. However, sample-based cross-modulation between two
operators is possible only by setting Pd’s global block size to
1.

The f bam∼ external was then patched with native Pd
OSC ∼, ∗∼, and adsr objects implementing the OSC, AMP,
and EG blocks of the operator. The patch was interfaced
with inlet and outlet ports carrying the signals and synthesis
parameters discussed in Section 4.1 and encapsulated as
the f bamOP Pd abstraction, which finally implements the
FBAM operator.

4.4. Csound Opcode. In Csound [30], we propose a simple
user-defined opcode (UDO) implementing the coefficient-
modulated first-order filter, which can then be used with
a variety of inputs in the various combinations discussed
in this paper. It could alternatively be used inside another
UDO implementing a similar structure to the Pd code in the
previous section (Figure 19). The filter UDO is isolated from
the other parts of the code for efficiency reasons: it requires
a processing vector of one sample for the feedback to be
implemented. As this is computationally costly, it is separated
from the rest of the code, as shown in Listing 1.

With this in hand, the basic FBAM algorithm is imple-
mented with the code presented in Listing 2.

5. Evaluation

This section evaluates the FBAM method by comparing it to
related nonlinear synthesis techniques. First the basic FBAM
equation is contextualized in the parameter spaces of the
related techniques, and then the computational load of the
methods are compared.

5.1. Relation to Existing Nonlinear Distortion Methods. Equa-
tion (21) reconstructed the basic FBAM waveform using
a hybrid amplitude and phase modulation technique. By
ignoring the phase modulation component φ(n) in (21), one
can look at the effect of AM separately (see Figure 21(a)). On
the other hand, by setting the A(n) component to unity, one
can see the effect of the isolated phase modulation operation,
as shown in Figure 21(b). As can be seen, the FBAM output is
mostly determined by the AM operation between a complex
signal and a sinusoid and the effect of phase modulation in
(21) is minor.

This suggests that FBAM is more related to the ring-
modulation-based PAF [17] and the recent ModFM [18,
19] methods than it is to the classic FM [11] synthesis
technique. Figure 22 compares the waveform and spectrum
of FBAM (dashed), PAF (solid), and ModFM (dots). The
parameters were chosen by first selecting the maximum β
value according to the criteria of Figure 7, then normalizing
the magnitude of the fundamental to 0 dB, finding the
highest frequency component above the −100 dB threshold,



EURASIP Journal on Advances in Signal Processing 13

Out

1, 4

+

3-II

B

(a)

Out

3-II 3-II

+ +

1 1

3-II

1

(b)

Out

5

2

ext

Loss

(c)

Figure 20: FBAM algorithms for (a) subtractive, (b) formant, and (c) abstract physical modeling sound synthesis arrangements. Variation
numbers are given inside the operator boxes (B denotes the basic FBAM equation).

and finally matching the magnitudes of the highest partials.
The waveform maxima in Figure 22(a) have been time-
aligned for easy comparison, showing that the waveform
peak is the narrowest in ModFM and widest in PAF. This
is reflected in the spectrum plot of Figure 22(b), where the
spectral slope of FBAM is less accented than the exponential
decay of PAF, but steeper than the one produced by ModFM.

The DSF formulation of PAF is similar to (4) given in
[16]. A related closed form approximation of FBAM is given
by

y(n) = cos(ω0n)

[1− 2a cos(ω0n) + a2]3 , (44)

which is similar to Equation (593) of [31], in which the ratio
parameter a is dependent on the β and ω0 parameters of
FBAM. The waveform and spectrum of (44) are shown in
Figures 23(a) and 23(b), while its normalized waveshaper
formulation is plotted in Figure 23(c).

As expected, a waveshaper based on Chebyshev’s polyno-
mials [1] can reproduce the magnitude spectrum of FBAM
exactly when β = 1. Its transfer function takes an exponential
shape with a close match to the waveshaper shown in
Figure 23(c).

5.2. Computational Load. Table 2 summarizes the number of
multiplications (MUL, Scale), additions (ADD), and table
lookups (TLU) for the basic FBAM, its variations, and related
synthesis techniques per output sample. Each oscillator
involved in the algorithm is counted as a table-lookup
operation. It is noted that FBAM, PAF, and ModFM are close
to each other in the total number of simple operations, but
that FBAM has the benefit of not using precomputed lookup
tables in the complex modulator signal evaluation. This is an
advantage of FBAM, because interpolating table lookups are
considerably more resource consuming than simple addition
and multiplication operations. DSF gains the widest output
bandwidth at the cost of additional operations per output
sample.

opcode Cmf,a,aak

setksmps 1

ay init 0

asig,amod,kb xin

ay = asig + amod∗ay∗kb
xout ay

endop

Listing 1: Csound UDO for the coefficient-modulated first-order
IIR filter.

6. Applications

The brief discussion of FBAM applications in the authors’
earlier work is now extended, and the sonic palette of FBAM
is expanded further with three novel applications. Additional
application examples are available at the accompanying web
page [15].

6.1. Subtractive Synthesis without Resonant Filters. FBAM can
imitate classic analog waveforms with variations 1 and 4.
Although the spectral brightness in these cases is limited
(see Figures 11, 15, and 16), it may be conveniently shaped
with the β parameter. A single FBAM operator can, therefore,
function as a simple low-cost subtractive synthesizer that
implements both the source oscillator and the low-pass filter
of a virtual analog system. This basic scheme can be further
refined by simulating the resonance characteristics of the
low-pass filter with (32). The structure of such a setup is
shown in Figure 20(a).

A related DSF-based implementation [32], without reso-
nance control, requires 25 operations per output sample for
the direct closed form evaluation and additional control rate
operations for dynamic cut-off frequency updates (whereas
FBAM uses 5 operations in total). However, the spectral
brightness of the DSF-based method is considerably higher
and, at the same time, bandlimited.

FBAM can control the amount of aliasing by scaling β
with the curve shown in Figure 7, while the bandwidth of
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opcode Fbam,a,kkki

kamp,kfreq,kbeta,itab xin

asig oscili kamp,kfreq,itab

aout Cmf asig,asig,kbeta

xout aout

endop

Listing 2: Csound UDO for the basic FBAM algorithm.
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Figure 21: (a) FBAM waveform (dashed) and reconstructed
using AM (solid). (b) Cosine waveform (dashed) and FBAM
reconstruction using PM (solid). Signals were generated with β = 1
and f0 = 500 Hz.

FBAM can be increased by oversampling. However, a more
cost-effective bandwidth extension is achieved by adding
partials to the modulator signal, for example, by raising
the modulator to the third power, yielding cos3(ω0n) =
0.75 cos(ω0n)+0.25 cos(3ω0n). Figure 24 compares the wave-
form and spectrum of this extended bandwidth modification
to the basic FBAM output, using β values that keep the
aliasing level −100 dB from the maximum. Note that the
cubed cosine modulator permits higher β values because
| cos(ω0n)| ≤ 1. The cost of this modification is two
multiplications per output sample.

6.2. Formants. FBAM can synthesize formant-based timbres
with parallel resonator stacks, as shown in Figure 20(b). In
this algorithm, each modulator operator is tuned to the
center frequency of the formant, while all carriers are tuned
to the fundamental frequency of the tone (possibly with
slight detuning for the added vibrato, as suggested by [33],
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Figure 22: Waveform and spectrum of FBAM (β = 1.62, dashed),
PAF (bandwidth δ = 0.164, solid), and ModFM (k = 25, dotted).
Signals were generated with fc = fm = 500 Hz.

for vocal timbres). Carrier β and g values control the width
and relative amplitude of the formant.

Figure 25 shows an example FBAM vocal timbre, with
fundamental frequency f0 = 196 Hz and approximate
formants at f1 = 700 Hz, f2 = 1090 Hz, and f3 =
2700 Hz. Because the formant frequencies do not coincide
with the harmonic series of the fundamental, each formant
is modeled using the double-carrier formula of (32). For
example, formant f3 is modeled using harmonic ordinals
kLO = int( f3/ f0) = 13 and kHI = kLO + 1 = 14, giving
fLO = 13 f0 and fHI = 14 f0, thereby coinciding with the
harmonic spectra of the fundamental f0. The modulator is
formed as a weighted sum of two cosine oscillators, which
are tuned to frequencies fLO and fHI and weighted using
linear interpolation as gHI = f3/ f0 − kLO and gLO = 1 − gHI.
The bandwidth of formant 3 is controlled by setting the
modulation index of the carrier β3 = 0.6, and, finally, the
operator output is finally scaled 35 dB below formants 1 and
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Figure 23: (a,b) Closed-form approximation (a = 2.5, solid) of FBAM (β = 1, dashed) and (c) its waveshaper formulation (input as thin,
shaping function as thick, and output as dashed line).
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Figure 24: Extended bandwidth FBAM (cubed cosine modulator
with β = 5.8, solid) and basic FBAM (β = 1.5, dashed), with
f0 = 500 Hz.

2. A similar dynamic procedure facilitates smooth morphing
between different vowel sounds.

6.3. Abstract Physical Modeling Synthesis. One-dimensional
digital waveguide implementations, such as simple plucked
string models, are often based on a non-interpolating delay
line that is cascaded with a fine-tuning fractional-delay
filter [24, 34, 35]. Since FBAM variation 5 embodies a
non-interpolating delay line internally and since variation 2
is able to realize the fine-tuning fractional delay in form of a
first-order allpass structure [36], these two FBAM operators
may be arranged into a looped topology similar to that of a
digital waveguide. A feedback path loss filter (which can be
implemented, for example, as a simple two-point moving
averager) completes this simple model. The topology of such
a system is shown in Figure 20(c). The excitation (ext) of the
system may be generated by a high-energy FBAM operator,
which facilitates tailored excitation signals, or by an external
excitation source.
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Figure 25: Waveform and spectrum of FBAM vocal timbre (a:) with
three formants ( f0 = 196 Hz).

In this structure, the coefficients of the delay line
operator, the allpass operator, or both may be modulated.
Figure 26 shows the spectrogram of the output signal of an
allpass modulated FBAM algorithm that was excited with an
external noise source. The modulating frequency was slightly
detuned from the half length of the delay line, producing
the thick dispersive spring-like beating effect discussed in
[37].

We call this fusion of physical modeling and abstract
sound synthesis techniques as Abstract Physical Modeling
Synthesis, which is a potential source of interesting timbres.
However, stability and tuning problems need to be resolved
before the method becomes usable in practical scenarios:
the presented system becomes unstable with large β values
when the modulator period is an exact fractional multiple of
the period of the delay line, that is, P mod =Pdelay k/4, where
k is an integer. The tuning problems appear because the
total delay of the system depends on the allpass operator
coefficient.
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Figure 26: FBAM as an abstract physical model ( fx = 130 Hz, fm :
fx = 0.498, β = 0.9).

6.4. Digital Audio Effects. By employing an arbitrary input
signal instead of an oscillator, the FBAM algorithm becomes
a digital audio effect. The characteristics of this effect bear
some semblance to other adaptive distortion processes such
as AdFM [27], Adaptive SpSB [38], and Adaptive Phase
Distortion [10]. In this class of effects, new partials are added
to the spectrum, producing a component-rich output. The
modulation index β can be used to control the amount of
distortion (and new partials).

As discussed in Section 3.6.1, there are two main meth-
ods of implementing such an adaptive effect, by employing
the input as a modulator (self-modulation) or by employing
a separate oscillator (generally sinusoidal) whose frequency
can be controlled by pitch-tracking the input signal. In the
former, the carrier-modulator frequency ratio is locked in a
1 : 1 proportion, whereas in the latter, various extra effects
can be produced by modifying this ratio, for instance, the
generation of inharmonic spectra. In addition, this method
has some more controlled means of timbral modification,
as the modulation source will contain a small number of
components leading to a more predictable spectrum.

Figure 27 shows a comparison between the steady-state
spectra of a flute tone and its adaptive FBAM-processed
version. For this example, a carrier-modulation ratio of
1 : 2.4 and β = 0.7 was used to produce an inharmonic
spectrum reminiscent of multiphonic sound. This effect was
implemented using a cosine modulator whose frequency was
determined by a pitch tracker applied to the input signal.

7. Conclusion

This work investigated the feedback amplitude modulation
principle and its variations for sound synthesis purposes. The
FBAM synthesis appears to be a promising synthesis method,
which has not been fully explored previously, although the
basic idea has been known for a long time. The method
has similarities to the existing nonlinear distortion synthesis
techniques, such as the creation of rich spectra based on one
or a few sinusoidal input signals. Furthermore, the spectral
brightness can be easily controlled using a single parameter,
which is comparable to the well-known modulation index
in FM synthesis. In FBAM, the corresponding parameter is
the feedback gain, introduced here as the β parameter. It
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Figure 27: Spectra of (a) C4 flute tone and (b) its Adaptive FBAM-
processed version, with the carrier-modulator ratio set to 1 : 2.4 and
β = 0.7.

is important to note, however, that the details of spectral
evolution are different from that of FM synthesis, for
example, because of the absence of holes in the spectrum,
which are a typical feature of FM synthesis.

This work continued from the authors’ previous study
[2] in which the basic FBAM system was defined as a
nonlinear generalization of the one-pole digital filter. The
present work applied the periodically linear time-varying
(PLTV) digital filter theory and derived the time-varying
frequency response of the system. This was validated by
the amplitude and phase modulation implementation of
the FBAM algorithm based on the magnitude and phase
response of the time-varying filter. This enabled defining the
limits of stability for the system as well as obtaining a method
for normalizing its output.

Six variations to this basic scheme were then refined.
The first variation adds a delayed input signal inside the
feedback loop, thus varying mainly the waveform without
affecting much the overall signal spectrum. Variation 2
is reminiscent of an allpass filter structure, and the first
harmonic dominates in the output spectrum with most
parameter settings. Two different useful versions of variation
3 were found, involving a second modulation signal. This
enables creating a formant in the output signal spectrum.

Variation 4 derived from the basic FBAM contains
a nonlinear waveshaping function in the feedback loop.
Experiments with several choices of the waveshaper show
interesting properties for some of them. For example, with
a full-wave rectifier (i.e., the ABS function), the output
signal of variation 4 is composed only of odd harmonics
of the input signal, thus enabling the creation of square
wave-like signals. Variation 5 generalizes the feedback delay
with a delay line of arbitrary length. This leads to a second
control over the spectral brightness with the delay-line length
parameter. Finally, this paper also demonstrates that, for
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some uses, it is interesting to generalize the FBAM algorithm
as a coefficient-modulated IIR filter. This allows, among
other things, the development of a novel digital audio effect
derived from the original synthesis algorithm.

For interesting musical applications, the FBAM operator
abstraction was refined and its use in various programming
environments was discussed. Additionally, a separation of
the input and modulation signals in the FBAM oscillator
was proposed to enable arbitrary modular systems built out
of several elementary FBAM structures. Now, two or more
FBAM oscillators can be cascaded.

The FBAM method was finally evaluated in compar-
ison to other established distortion synthesis techniques.
A closed-form formula for the FBAM output waveform
was presented and its corresponding waveshaping transfer
function discussed. The computational load of FBAM was
analyzed and demonstrated to compare favorably with PAF
and ModFM techniques. This article concluded by demon-
strating some applications for FBAM and its variations,
including a modification for the bandwidth extension. A
logical future extension of this work would exploit the
theoretical framework of Section 2 in the case of second- and
higher-order feedback systems.

Sound examples and software are available at [15].
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variations on a feedback theme,” in Proceedings of the 12th
International Conference on Digital Audio Effects (DAFx ’09),
pp. 139–145, Como, Italy, September 2009.

[3] J.-C. Risset, An Introductory Catalog of Computer-Synthesized
Sounds, Bell Laboratories, 1969, Published in 1995 as part
of The Historical CD of Digital Sound Synthesis, Computer
Music Currents 13, Wergo WER 20332.

[4] A. Layzer, “Some idiosyncratic aspects of computer synthe-
sized sound,” in Proceedings of the Annual Conference American
Society of University Composers, pp. 27–39, 1971.

[5] N. Valsamakis and E. R. Miranda, “Iterative sound synthesis by
means of cross-coupled digital oscillators,” Digital Creativity,
vol. 16, no. 2, pp. 90–98, 2005.

[6] M. Cherniakov, V. I. Sizov, and L. Donskoi, “Synthesis of
a periodically time-varying digital filter,” IEE Proceedings:
Vision, Image and Signal Processing, vol. 147, no. 5, pp. 393–
399, 2000.

[7] M. Cherniakov, An Introduction to Parametric Digital Filters
and Oscillators, John Wiley & Sons, New York, NY, USA, 2003.

[8] J. Pekonen, “Coefficient modulated first-order allpass filter as
a distortion effect,” in Proceedings of the 11th Conference on
Digital Audio Effects (DAFx ’08), pp. 83–87, Espoo, Finland,
2008.

[9] J. Timoney, V. Lazzarini, J. Pekonen, and V. Välimäki, “Spec-
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