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ABSTRACT 
This paper introduces a technique that improves the effi-
ciency of the Open Sound Control (OSC) communication 
protocol. The improvement is achieved by decoupling the 
user interface and the transmission layers of the protocol, 
thereby reducing the size of the transmitted data while 
simultaneously simplifying the receiving end parsing 
algorithm. The proposed method is fully compatible with 
the current OSC v1.1 specification. Three widely used 
OSC toolkits are modified so that existing applications 
are able to benefit from the improvement with minimal 
reimplementation efforts, and the practical applicability 
of the method is demonstrated using a multitouch-
controlled audiovisual application. It was found that the 
required adjustments for the existing OSC toolkits and 
applications are minor, and that the intuitiveness of the 
OSC user interface layer is retained while communicating 
in a more efficient manner. 

1. INTRODUCTION
Open Sound Control (OSC) [1], [2], [3] is a widely used 
content format for communicating between media-related 
applications. Its popularity can be attributed to the intui-
tive and extensible addressing scheme, which, together 
with the ability of describing typed parameter spaces, 
enables setups that may easily adapt to a wide variety of 
application scenarios. Furthermore, the unidirectional 
communication protocol simplifies the connection setup 
between OSC compliant end points. 

In OSC, the transmitted information stream flowing be-
tween the end points, from an OSC producer/controller to 
the OSC receiver, is quantized into time-tagged frames. 
Each frame contains  one  or  more  OSC messages,  which  
are described by a human-readable URL-style address 
part and a typed data vector (see Table 1). The data vec-
tor  is  further  divided into  type  tags  and the  actual  argu-
ments carrying the instantaneous data values. The address 
part and the type tags are transmitted as strings, whereas 
the arguments are kept in binary format. The fields of the 
message are aligned on 4-byte boundaries. 

Address part Data vector 
address type tags arguments 
"/LPF/1/cutoff" "f," 0.50

Table 1. The structure of an OSC message. 

Figure 1 shows an example communication sequence 
for a standard OSC v1.1 compliant parameter update pro-
cedure. The controller addresses a synthesizer parameter 
located at "/LPF/1/cutoff", sets its value to 0.50, and then 
immediately  updates  the  value  to  0.51.  As  can  be  seen,  
the controller simply needs to push the updated parameter 
values to the synthesizer, which parses the address string, 
and updates its data structures accordingly with the bi-
nary argument values. The communication language (i.e., 
the namespace, data types and value ranges of the argu-
ments) is defined by the receiving end, while the control-
ler is configured to speak in the same language. The ben-
efits of OSC are clear: the communication language is 
intuitive, extensible, and the stateless communication 
paradigm results in simplified application models for 
both end point implementations. 

Figure 1. Standard OSC communication sequence.  

The previous example also illustrates the inefficiency of 
the standard OSC implementations: although the human-
readable addressing scheme is intuitive, long URL-style 
address strings waste communication bandwidth because 
the address part of the message is transmitted repeatedly 
with each parameter update. Furthermore, the receiving 
end needs to perform time-consuming string parsing op-
erations for each received message. These points were 
criticized in [4], which also suggested that the inefficien-
cies might be eliminated if certain established IP-based 
techniques were adapted into the core of the OSC specifi-
cation. However, the previous work did not elaborate 
how these techniques might be adapted in practice. 

This paper explores the actual adaptation process of 
DNS-inspired [5] address mapping methods, and intro-
duces an OSC v1.1 compliant address compression tech-
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nique to improve the efficiency of OSC-based communi-
cation. The proposed method is especially useful for re-
source-constrained devices, where the CPU and power 
consumption efficiency is of great importance. It is also 
beneficial for systems where the physical connection be-
tween the end points is over a wireless medium, because 
increased network traffic has a tendency of raising the 
amount of lost packets. 

The  remainder  of  this  paper  is  organized  as  follows.  
Section 2 introduces the OSC address compression tech-
nique, while Section 3 describes its implementation in 
three popular development environments and toolkits. 
Section 4 demonstrates the practical applicability of the 
approach using a multitouch-based interaction device in 
an audiovisual application setup. Section 5 provides dis-
cussion and suggestions that might be useful when specu-
lating upon the next major OSC specification update. 
Finally, Section 6 concludes the paper. 

2. OSC ADDRESS COMPRESSION 
In order to improve the efficiency of the standard OSC 
communication mechanism, it seems beneficial to a) re-
duce the amount of transmitted data, and b) to simplify 
the parsing algorithm on the receiving end. This can be 
accomplished by compressing the potentially lengthy 
address string of the OSC message into an integer token, 
which is then transmitted in binary form inside the varia-
ble length data vector of the message, and used subse-
quently as the input for the receiving end parsing algo-
rithm. The actual address part of the message is transmit-
ted as a single character "/", denoting a compressed mes-
sage, and at the same time ensuring backwards compati-
bility with the current OSC specification. 

The internal server implementation of SuperCollider [6] 
utilizes a related method which is, however, incompatible 
with OSC and only supported by a few toolkit implemen-
tations. The technique proposed in this paper is fully OSC 
compliant, and therefore usable from any environment 
already supporting OSC. For example, a Pure Data [7] 
(Pd) patch running on the unmodified legacy OSC exter-
nals  is  able  to  take  advantage  of  the  compressed  trans-
mission stream, and base its computational logic on pars-
ing the passed integer token. Another benefit of back-
wards compatibility is that the proposed method may be 
used concurrently with the standard OSC messaging me-
chanism. For instance, languages such as TUIO [8] may 
transmit their well-defined address strings as integer to-
kens, while still retaining user-extensibility: the receiving 
end parsing algorithm can easily differentiate between the 
compressed messages – which are transmitted using "/"
as the address string – from the standard uncompressed 
OSC messages transmitted with longer address strings.

Figure 2 shows the communication sequence of the 
previous example in the proposed streamlined form. The 
user is interacting with a universal OSC controller appli-
cation, which has a slider widget in its graphical user 
interface. During the initial setup phase, the user links the 
slider with the synthesizer parameter ("/LPF/1/cutoff"). In 

response, the controller application requests string-to-
integer mapping information from the receiving end, and 
associates the slider with the supplied token value. The 
transformation from the URL-style address strings into 
the integer form tokens is thus carried out discreetly be-
hind the scenes – the user of the system still views the 
address space of the receiving end in the intuitive string-
form notation. Moreover, this procedure needs to be per-
formed only once per session, as all slider movements are 
thereafter transmitted using the integer-based parameter 
addressing method. 

Figure 2. Proposed OSC communication sequence, 
showing one of the alternative mapping mechanisms 
within the dashed rectangle.  

The reduction amount of the transmitted data depends 
on the complexity of the receiver defined namespace1.
The reduction ratio R between the proposed technique 
and the standard OSC implementation is given by expres-
sion R = 1/ceil[0.25(L+1)], where L is the length of 
the address string of the standard OSC implementation. 
The reduction in the processing complexity of the parser 
implementation depends on the parsing algorithm, e.g., 
on the complexity of the hashing function. For a 
straightforward string comparison approach, the proposed 
method is substantially more efficient, as it has up to L
times less comparisons than the standard OSC implemen-
tation, not counting the time wasted by non-matching 
string comparisons. 

OSC also supports a wildcard-based parameter address-
ing mode, which enables control of multiple parameter 
values using a single message. The proposed method 
supports this by treating the integer token as a bitmask. 
To interpret the semantics of the integer parameter at the 
receiving end, the address string of the bitmask-based 
message is transmitted as "/?" instead of "/" used in the 
normal one-to-one messages. 

As shown in Figures 1 and 2, the cost of the improved 
efficiency is the more complicated setup phase. This is 
required because the controller needs to know the map-
ping between the string and the integer form representa-
tions. We considered two alternative mapping mechan-
isms: shared dictionaries [3] and request-reply mapping, 
as discussed in the following section. 

1 It is not uncommon to have address strings that are even longer than 
20 characters.



2.1 Mapping Mechanisms 

In the shared dictionary mapping mechanism, the receiver 
publishes its entire address space dictionary as a shared 
resource. This can be done by using a text-formatted file, 
where each line defines a single address string – integer 
pair, separated by a comma. Resource-constrained con-
troller devices with fixed functionality may also opt to 
hard-code the transmitted integer tokens and leave the 
file-based mapping interpretation to the receiving end. 

The setup phase of the shared dictionary mapping me-
chanism consists of searching the user-supplied address 
string from the first column of the file, and once it is 
found, reading the corresponding integer token value 
from  the  second  column.  The  URL  of  the  mapping  file  
may  be  defined  as  a  TXT  record  entry  of  a  Zeroconf-
based service discovery process [9]. If such technology is 
unavailable, the URL may be entered by the user during 
the setup phase, or be simply hard-coded in the controller 
code. 

In the request-reply mapping mechanism (see Figure 2) 
the controller sends a request to the receiver, which rep-
lies with the integer token of the controller-supplied ad-
dress string. The address string of the reply consists of 
the requested string prefixed with a slash. This allows 
non-blocking implementation at the controller end, be-
cause the controller is then able to associate the reply in 
an asynchronous manner. 

Although this mechanism requires more complicated 
implementation than the shared dictionary-based alterna-
tive, it has the additional benefit of supporting the wild-
card enhanced address string – bitmask mapping mode: 
the receiver is responsible of resolving the wildcard for-
matted address string into the returned bitmask value. 

Following the best practices described in [3], the re-
quest-reply mechanism calls for a TCP-based connection 
between the controller and the receiver. Because the re-
ceiver may already use a TCP port for normal parameter 
updates, it needs to recognize a GET request from the 
normal OSC parameter updates, i.e., SET messages. For 
this, we propose that GET messages are sent with an 
empty data vector, so that the receiver end can simply test 
the number of arguments in the received message, and if 
it is zero, interpret the address string as a GET request. A 
similar approach has also been utilized in [10]. 

TCP connection enables also request-reply –based 
shared dictionary access: the controller may send the re-
served pattern "//*" as the address string, which the re-
ceiver recognizes and replies by dumping the contents of 
the mapping file back to the controller. 

2.2 Topological Considerations 

The proposed method works in both distributed peer-to-
peer and centralized network configurations. In the for-
mer approach the controller and the receiver are in direct 
connection with each other, as shown in Figure 2. 

The centralized hub-based topology requires a dedicat-
ed service in the network, into which the receivers regis-
ter, and into which the controllers send their parameter 

updates. The hub is responsible for redirecting the re-
ceived update messages to the registered receivers. Since 
the IP address:port of the controller-induced SET mes-
sage  is  already  pointing  to  the  hub  itself,  the  address  
string  of  the  SET  message  should  be  prefixed  with  the  
name of the destination. This name should be the one that 
the receiver supplied when registering with the central 
OSC service. 

The benefit of the centralized solution is that the ad-
dress string – integer token mapping requests may be 
handled in a single location, simplifying the receiver end 
implementations. Another benefit is that the central hub 
may act as a router, which can map controller-centric 
parameter spaces (e.g., /finger/1) into the receiver end 
parameters, even providing simple transformations for 
the data values as is demonstrated in [11]. The hub may 
also be used to define OSC processing chains, where the 
outputs of distributed OSC modules are connected into 
the inputs of other OSC modules. For example, a gesture 
recognition module might receive raw data from a multi-
touch controller, turn it into higher level gestural tokens, 
which are successively routed into another OSC 
processing module. However, the implementation of the 
centralized service is outside of the scope of this paper 
and  left  for  future  work.  Instead,  we  will  next  look  at  
three widely used OSC libraries, and describe how they 
can adapt the proposed address compression technique. 

3. IMPLEMENTATIONS 
Existing OSC applications are often built using third-
party OSC toolkits. Accordingly it makes sense to look at 
how these commonly-used libraries need to be adjusted in 
order to benefit from the proposed technique. The exist-
ing applications can then adapt to the new method with 
minimal reimplementation efforts. This section looks at 
three open source implementations, and describes the 
required steps for their modification. The source code for 
these modifications is available at the accompanying 
website of this paper [12]. 

3.1 Implementation of the Proposed Technique 

The proposed technique is implemented as a singleton 
Streamliner class, which holds two hashing tables for the 
string – integer mappings. The tables have identical con-
tent, but are indexed either with string or integer values. 
This enables fast conversion into the compressed repre-
sentation (string-to-integer), or back to the standard OSC 
form (integer-to-string). The Streamliner class has two 
public methods for making these mapping conversions, 
and one public method for reading a file into the hashing 
tables. 

Additionally, the message class implementation of the 
OSC toolkit needs to be subclassed by overriding the 
constructor in order to map the supplied address string 
into the integer token (using the Streamliner class). The 
constructor also inserts the mapped token into the argu-



ment vector of the OSC message, and sets the address 
string of the address-compressed message to "/". 

The receiver code does not usually require additional 
modifications at the library level, because the toolkits are 
natively capable of extracting the first integer argument 
from the argument list of the received OSC message. 

3.2 Processing and oscP5 

Processing [13] is a Java-based environment for building 
interactive audiovisual applications. Its OSC implementa-
tion is based on the object oriented oscP5 library [14], 
which is straightforward to modify. The OscMessage 
class was subclassed with OscMessage2, and a singleton 
OscStreamliner class was implemented in Java. To take 
the advantage of the proposed method, existing applica-
tions simply need to define their OSC message objects as 
instances of OscMessage2 instead of OscMessage, as 
shown in Listing 1. 

osc2 = new OscStreamliner("map.txt"); 
…
OscMessage2 msg = new OscMessage2("/lpf/cutoff"); 
msg.add( 0.50 ); 
oscP5.send(msg, destination); 

Listing 1. Sending compressed messages in oscP5. 

The oscP5 library routes all received OSC messages in-
to the oscEvent(…) handler, which can then perform the 
parsing based on integer arithmetic, as shown in Listing 
2. The received integer token can be converted back into 
the  string  form  presentation,  if  so  desired,  using  the  
OscStreamliner method osc2.address(iaddr). The OscPlu-
gin mechanism of oscP5 was not addressed in this work. 

void oscEvent(OscMessage msg) { 
   int iaddr = msg.get(0).intValue(); 
   switch (iaddr) { 
      case 1: … 

Listing 2. Parsing compressed messages in oscP5. 

3.3 oscpack 

The oscpack library is a "set of C++ classes for packing 
and unpacking OSC packets" [15]. The required modifi-
cations included augmenting the library with the 
osc::Streamliner class, and modifying the code of a) Be-
ginMessage class with a new constructor, taking an in-
teger token argument, and b) streaming this token into the 
argument list of the OSC message at the end of the Out-
boundPacketStream << (BeginMessage) handler. Listing 
3 shows an example of the streamlined oscpack sending 
procedure. 

Although it is possible to hide the string-to-integer 
transformation of the address pattern entirely inside the 
BeginMessage class, as was done in the oscP5 adaptation, 
the form described below is more efficient in terms of 
CPU load. 

osc::Streamliner osc2("map.txt"); 
…
osc::int32 token = osc2.iaddress("/lpf/1/cutoff"); 
p << osc::BeginBundleImmediate 
   << osc::BeginMessage( token ) << (float)0.50 
   … 

Listing 3. Sending compressed messages in oscpack. 

The oscpack ReceivedMessage class supports the non-
standard SuperCollider address patterns. In order to add 
additional support for the proposed method, the class was 
augmented with a method to extract the integer token 
from the received message. The parsing is simplified into 
the  form  shown  in  Listing  4.  As  in  oscP5,  the  address  
pattern may be regenerated from the received integer to-
ken using osc2.address(iaddr) invocation, if needed. 

try { 
   osc::int32 token = m.iaddress(); 
   switch (token) {  
      case 1: … 

Listing 4. Parsing compressed messages in oscpack. 

3.4 Pd and OSCx externals 

The OSC implementation  (OSCx)  of  Pd consists  of  sen-
dOSC, dumpOSC and OSCroute externals, and of a static 
code library containing the actual OSC implementation. 
To retrofit the proposed method, the sendOSC external 
was augmented with two functions (i.e.,  one for generat-
ing  the  mapping  dictionary,  and  another  for  the  actual  
sending routine). In addition, the setmap message was 
added to the interface to initiate the setup phase mapping 
dictionary construction. This message has to be invoked 
from  the  Pd  patch  before  the  actual  control  session  is  
started (see Figure 3). 

Figure 3. Streamlined Pd implementation. The OSC 
terminals are highlighted with dashed rectangles. 

In the initial retrofit, the setmap message was the only 
modification visible to the user, as he still sends the OSC 
parameter updates using the original OSCx send mes-
sage objects. However, because the external has to parse 



the address string parameter of the send message for each 
invocation, a send2 message was added to the interface 
as well. The parameters of send2 are identical to those of 
send, except that the parameter list is prefixed with an 
additional integer, which is unique to all send2 message 
boxes in the particular Pd patch (it does not need to 
match with the actually transmitted token value). The 
sendOSC external uses the prefixing integer to associate 
the message box instance with the actually transmitted 
integer token. This relieves the external from repeated 
string-form parsing actions, resorting to a simple integer-
to-integer lookup for each sent message. 

The parsing of the received OSC messages can be ac-
complished using the standard Pd select object. Thus, 
the more inefficient OSCroute becomes obsolete in this 
context. 

4. EXAMPLE APPLICATION 
The practical applicability of the proposed method is 
demonstrated by the following transparent example – 
wherein  a  touch  screen  is  used  to  toggle  playback  of  a  
selection of loops and apply some simple filtering. This 
demo uses the Pd implementation as described in Section 
3.4 to both transform and distribute performance cues 
sent via a multi-touch application running on the Apple 
iPad. 

In addition to the enhanced CPU efficiency, this ap-
proach reduces network traffic and hence the possibility 
of lost packets – which can especially cause concern in a 
live performance context that features wireless interfaces. 
In situations where the wireless transmission takes place 
on a mobile device, power consumption can also be re-
duced. 

The example application can be conceptually split into 
three stages – the input stage, transformation stage, and 
the output stage, as shown in Figure 4. 

Input stage: The iPad is running TUIOpad [16] – an 
open-source application which sends multi-touch data 
formatted using the TUIO protocol. This data is transmit-
ted via a wireless connection to a laptop running a simple 
Processing [13] sketch, which extracts useful high-level 
information such as the number of fingers in contact and 
recognizes gestural cues. Relevant data is passed forward 
using typical hierarchical OSC namespaces (e.g., 
/touch/1). 

Transformation stage: The resulting high-level messag-
es are received by Pd, which is running a patch similar to 
the one illustrated in Figure 3. The augmented sendOSC
function associates the incoming messages with a unique 
integer  token  according  to  the  data  in  the  mapping  file.  
The data is now compressed – the new mapping proce-
dure eliminates the need to repeatedly send address pat-
terns. 

Output stage: The compressed OSC messages control 
several looping buffers and band-pass filters in Pd. In 
addition to the audio control, a second Processing sketch 
generates a visual representation of the data. Processing 
is relieved of the burden of performing a string compari-

son every time an OSC message is received – a simple 
integer-recognition function will suffice. The visual ac-
companiment demonstrates the relatively concise data 
being parsed, in comparison with the lengthy address 
patterns that would otherwise be necessary.

Figure 4. The data flow in the example application. 

In this example, the proposed method has been demon-
strated entirely within Pd in order to provide a lucid ex-
planation. While performance issues are not necessarily 
of great concern in this kind of system, the benefits of 
implementing OSC compression at the ‘input stage’ – 
e.g., upon a mobile device sending compressed OSC with 
hardcoded integer tokens – is worthy of further investiga-
tion. 

5. DISCUSSION
The proposed technique reduces the amount of transmit-
ted data, simplifies parsing, and is straightforward to im-
plement in existing OSC libraries and OSC compliant 
environments, as was demonstrated above. However, 
looking at the examples given in this paper, one might 
initially think that the technique flattens the intuitive tree-
form address space of OSC into a continuous range of 
integers. This is not the case, because the receiving end – 
which defines how the integer tokens are mapped into the 
address strings – may construct the integer address space 
in a way similar to the IP addresses (e.g., 192.168.1.1). 
The 32-bit integer token can thus be interpreted hierarch-
ically in a tree-form structure, and the widths of the bit 
fields are completely application-configurable. The hie-
rarchical interpretation allows also wildcard-based map-
ping of the addresses, albeit consequently, it defines also 
a limit to the expansion of the address space (which is of 
no concern in the string-based representation). Since the 



integer token is transmitted inside the data vector, and is 
therefore typed, it is possible to overcome this limitation 
by using 64-bit integers as address tokens instead of the 
32-bit entity described earlier. 

The downside of the proposed approach is that the mes-
sage interpretation requires mapping information, and 
therefore the stateless presentation of OSC is not fully 
preserved. However, content formats with fixed address 
spaces may describe their a priori mapping definitions 
already at the specification level, which makes the mes-
sages self-contained, albeit still not truly stateless. 

Section 2.1 discussed briefly the means of interpreting 
the received OSC message either as a SET or a GET re-
quest. Naturally, the interpretation should not be based on 
the  amount  of  arguments  in  the  message,  but  rather,  the  
command verb should be included in the header part of 
the OSC message. Because RESTful paradigm has 
proved to be successful in many internet-based applica-
tions, the next major OSC specification update might 
consider redesigning the header part of the message ac-
cordingly. Based on our observations, a sufficient mini-
mum set of verbs would consist of SET, GET, ADD and 
DELETE, possibly augmented with PUBLISH and SUB-
SCRIBE. 

On the other hand, Zeroconf appears to be a viable solu-
tion for the service discovery and name resolution 
processes. In addition to working in a peer-to-peer fa-
shion, it offers means of acquiring IP addresses without 
dedicated DHCP servers, which might be advantageous 
in distributed OSC setups. The TXT record field of the 
multicast DNS can also be used to describe the schema of 
the service, which, as discussed in Section 2.1, can be 
utilized to describe the string-to-integer mapping of the 
proposed technique. 

XML-based schema language would offer advantages 
because it is extensible, standardized, and supported by a 
wide variety of libraries and related techniques (such as 
XPath, for example). However, since XML-based docu-
ment parsing is a resource intensive process, a lighter 
format,  such  as  JSON  or  OSC  itself  might  prove  to  be  
more attractive for resource-constrained devices. 

6. CONCLUSION
This paper proposed a technique that improves the effi-
ciency of OSC-based communication. It decouples the 
user interface and the transmission layers of the protocol 
by mapping the string-form address representation into a 
corresponding integer form, which is then used in the 
compressed transmission stage. Three commonly used 
open source libraries were patched to take advantage of 
the proposed technique, and its practical applicability was 
demonstrated with an interactive audiovisual application. 
Finally, the paper concluded by providing suggestions for 
adapting certain established IP-based techniques within 
the OSC specification. 

The OSC community is encouraged to explore the pro-
posed technique in custom applications and OSC toolkits. 
We believe that the technique improves the efficiency of 

OSC communication protocol in a transparent manner, 
but given the diversity of OSC-based application scena-
rios, its full potential is revealed after it is supported by a 
wider installation base. The source code for the discussed 
implementations is available at [12]. 
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