

 127

Publication P-7

Kleimola, J. and McGlynn, P., 2011. Improving the efficiency of Open
Sound Control with compressed address strings. In: Proc. Sound and Music
Computing Conf., Padova, Italy, July 2011, pp. 479–485.

© 2011 Kleimola and McGlynn.
Reprinted with permission.

The publication and its accompanying webpage are available online at:
http://smcnetwork.org/system/files/smc2011_submission_173.pdf
http://www.acoustics.hut.fi/go/smc2011-osc

IMPROVING THE EFFICIENCY OF OPEN SOUND
CONTROL WITH COMPRESSED ADDRESS STRINGS

Jari Kleimola Patrick J. McGlynn
Department of Signal Processing and Acoustics

Aalto University School of Electrical Engineering
Espoo, Finland

jari.kleimola@aalto.fi

Sound and Digital Music Technology Group
National University of Ireland, Maynooth

Co. Kildare, Ireland
patrick.j.mcglynn@nuim.ie

ABSTRACT
This paper introduces a technique that improves the effi-
ciency of the Open Sound Control (OSC) communication
protocol. The improvement is achieved by decoupling the
user interface and the transmission layers of the protocol,
thereby reducing the size of the transmitted data while
simultaneously simplifying the receiving end parsing
algorithm. The proposed method is fully compatible with
the current OSC v1.1 specification. Three widely used
OSC toolkits are modified so that existing applications
are able to benefit from the improvement with minimal
reimplementation efforts, and the practical applicability
of the method is demonstrated using a multitouch-
controlled audiovisual application. It was found that the
required adjustments for the existing OSC toolkits and
applications are minor, and that the intuitiveness of the
OSC user interface layer is retained while communicating
in a more efficient manner.

1. INTRODUCTION
Open Sound Control (OSC) [1], [2], [3] is a widely used
content format for communicating between media-related
applications. Its popularity can be attributed to the intui-
tive and extensible addressing scheme, which, together
with the ability of describing typed parameter spaces,
enables setups that may easily adapt to a wide variety of
application scenarios. Furthermore, the unidirectional
communication protocol simplifies the connection setup
between OSC compliant end points.

In OSC, the transmitted information stream flowing be-
tween the end points, from an OSC producer/controller to
the OSC receiver, is quantized into time-tagged frames.
Each frame contains one or more OSC messages, which
are described by a human-readable URL-style address
part and a typed data vector (see Table 1). The data vec-
tor is further divided into type tags and the actual argu-
ments carrying the instantaneous data values. The address
part and the type tags are transmitted as strings, whereas
the arguments are kept in binary format. The fields of the
message are aligned on 4-byte boundaries.

Address part Data vector
address type tags arguments
"/LPF/1/cutoff" "f," 0.50

Table 1. The structure of an OSC message.

Figure 1 shows an example communication sequence
for a standard OSC v1.1 compliant parameter update pro-
cedure. The controller addresses a synthesizer parameter
located at "/LPF/1/cutoff", sets its value to 0.50, and then
immediately updates the value to 0.51. As can be seen,
the controller simply needs to push the updated parameter
values to the synthesizer, which parses the address string,
and updates its data structures accordingly with the bi-
nary argument values. The communication language (i.e.,
the namespace, data types and value ranges of the argu-
ments) is defined by the receiving end, while the control-
ler is configured to speak in the same language. The ben-
efits of OSC are clear: the communication language is
intuitive, extensible, and the stateless communication
paradigm results in simplified application models for
both end point implementations.

Figure 1. Standard OSC communication sequence.

The previous example also illustrates the inefficiency of
the standard OSC implementations: although the human-
readable addressing scheme is intuitive, long URL-style
address strings waste communication bandwidth because
the address part of the message is transmitted repeatedly
with each parameter update. Furthermore, the receiving
end needs to perform time-consuming string parsing op-
erations for each received message. These points were
criticized in [4], which also suggested that the inefficien-
cies might be eliminated if certain established IP-based
techniques were adapted into the core of the OSC specifi-
cation. However, the previous work did not elaborate
how these techniques might be adapted in practice.

This paper explores the actual adaptation process of
DNS-inspired [5] address mapping methods, and intro-
duces an OSC v1.1 compliant address compression tech-

Copyright: © 2011 Jari Kleimola et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
3.0 Unported, which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original author and source are credited.

nique to improve the efficiency of OSC-based communi-
cation. The proposed method is especially useful for re-
source-constrained devices, where the CPU and power
consumption efficiency is of great importance. It is also
beneficial for systems where the physical connection be-
tween the end points is over a wireless medium, because
increased network traffic has a tendency of raising the
amount of lost packets.

The remainder of this paper is organized as follows.
Section 2 introduces the OSC address compression tech-
nique, while Section 3 describes its implementation in
three popular development environments and toolkits.
Section 4 demonstrates the practical applicability of the
approach using a multitouch-based interaction device in
an audiovisual application setup. Section 5 provides dis-
cussion and suggestions that might be useful when specu-
lating upon the next major OSC specification update.
Finally, Section 6 concludes the paper.

2. OSC ADDRESS COMPRESSION
In order to improve the efficiency of the standard OSC
communication mechanism, it seems beneficial to a) re-
duce the amount of transmitted data, and b) to simplify
the parsing algorithm on the receiving end. This can be
accomplished by compressing the potentially lengthy
address string of the OSC message into an integer token,
which is then transmitted in binary form inside the varia-
ble length data vector of the message, and used subse-
quently as the input for the receiving end parsing algo-
rithm. The actual address part of the message is transmit-
ted as a single character "/", denoting a compressed mes-
sage, and at the same time ensuring backwards compati-
bility with the current OSC specification.

The internal server implementation of SuperCollider [6]
utilizes a related method which is, however, incompatible
with OSC and only supported by a few toolkit implemen-
tations. The technique proposed in this paper is fully OSC
compliant, and therefore usable from any environment
already supporting OSC. For example, a Pure Data [7]
(Pd) patch running on the unmodified legacy OSC exter-
nals is able to take advantage of the compressed trans-
mission stream, and base its computational logic on pars-
ing the passed integer token. Another benefit of back-
wards compatibility is that the proposed method may be
used concurrently with the standard OSC messaging me-
chanism. For instance, languages such as TUIO [8] may
transmit their well-defined address strings as integer to-
kens, while still retaining user-extensibility: the receiving
end parsing algorithm can easily differentiate between the
compressed messages – which are transmitted using "/"
as the address string – from the standard uncompressed
OSC messages transmitted with longer address strings.

Figure 2 shows the communication sequence of the
previous example in the proposed streamlined form. The
user is interacting with a universal OSC controller appli-
cation, which has a slider widget in its graphical user
interface. During the initial setup phase, the user links the
slider with the synthesizer parameter ("/LPF/1/cutoff"). In

response, the controller application requests string-to-
integer mapping information from the receiving end, and
associates the slider with the supplied token value. The
transformation from the URL-style address strings into
the integer form tokens is thus carried out discreetly be-
hind the scenes – the user of the system still views the
address space of the receiving end in the intuitive string-
form notation. Moreover, this procedure needs to be per-
formed only once per session, as all slider movements are
thereafter transmitted using the integer-based parameter
addressing method.

Figure 2. Proposed OSC communication sequence,
showing one of the alternative mapping mechanisms
within the dashed rectangle.

The reduction amount of the transmitted data depends
on the complexity of the receiver defined namespace1.
The reduction ratio R between the proposed technique
and the standard OSC implementation is given by expres-
sion R = 1/ceil[0.25(L+1)], where L is the length of
the address string of the standard OSC implementation.
The reduction in the processing complexity of the parser
implementation depends on the parsing algorithm, e.g.,
on the complexity of the hashing function. For a
straightforward string comparison approach, the proposed
method is substantially more efficient, as it has up to L
times less comparisons than the standard OSC implemen-
tation, not counting the time wasted by non-matching
string comparisons.

OSC also supports a wildcard-based parameter address-
ing mode, which enables control of multiple parameter
values using a single message. The proposed method
supports this by treating the integer token as a bitmask.
To interpret the semantics of the integer parameter at the
receiving end, the address string of the bitmask-based
message is transmitted as "/?" instead of "/" used in the
normal one-to-one messages.

As shown in Figures 1 and 2, the cost of the improved
efficiency is the more complicated setup phase. This is
required because the controller needs to know the map-
ping between the string and the integer form representa-
tions. We considered two alternative mapping mechan-
isms: shared dictionaries [3] and request-reply mapping,
as discussed in the following section.

1 It is not uncommon to have address strings that are even longer than
20 characters.

2.1 Mapping Mechanisms

In the shared dictionary mapping mechanism, the receiver
publishes its entire address space dictionary as a shared
resource. This can be done by using a text-formatted file,
where each line defines a single address string – integer
pair, separated by a comma. Resource-constrained con-
troller devices with fixed functionality may also opt to
hard-code the transmitted integer tokens and leave the
file-based mapping interpretation to the receiving end.

The setup phase of the shared dictionary mapping me-
chanism consists of searching the user-supplied address
string from the first column of the file, and once it is
found, reading the corresponding integer token value
from the second column. The URL of the mapping file
may be defined as a TXT record entry of a Zeroconf-
based service discovery process [9]. If such technology is
unavailable, the URL may be entered by the user during
the setup phase, or be simply hard-coded in the controller
code.

In the request-reply mapping mechanism (see Figure 2)
the controller sends a request to the receiver, which rep-
lies with the integer token of the controller-supplied ad-
dress string. The address string of the reply consists of
the requested string prefixed with a slash. This allows
non-blocking implementation at the controller end, be-
cause the controller is then able to associate the reply in
an asynchronous manner.

Although this mechanism requires more complicated
implementation than the shared dictionary-based alterna-
tive, it has the additional benefit of supporting the wild-
card enhanced address string – bitmask mapping mode:
the receiver is responsible of resolving the wildcard for-
matted address string into the returned bitmask value.

Following the best practices described in [3], the re-
quest-reply mechanism calls for a TCP-based connection
between the controller and the receiver. Because the re-
ceiver may already use a TCP port for normal parameter
updates, it needs to recognize a GET request from the
normal OSC parameter updates, i.e., SET messages. For
this, we propose that GET messages are sent with an
empty data vector, so that the receiver end can simply test
the number of arguments in the received message, and if
it is zero, interpret the address string as a GET request. A
similar approach has also been utilized in [10].

TCP connection enables also request-reply –based
shared dictionary access: the controller may send the re-
served pattern "//*" as the address string, which the re-
ceiver recognizes and replies by dumping the contents of
the mapping file back to the controller.

2.2 Topological Considerations

The proposed method works in both distributed peer-to-
peer and centralized network configurations. In the for-
mer approach the controller and the receiver are in direct
connection with each other, as shown in Figure 2.

The centralized hub-based topology requires a dedicat-
ed service in the network, into which the receivers regis-
ter, and into which the controllers send their parameter

updates. The hub is responsible for redirecting the re-
ceived update messages to the registered receivers. Since
the IP address:port of the controller-induced SET mes-
sage is already pointing to the hub itself, the address
string of the SET message should be prefixed with the
name of the destination. This name should be the one that
the receiver supplied when registering with the central
OSC service.

The benefit of the centralized solution is that the ad-
dress string – integer token mapping requests may be
handled in a single location, simplifying the receiver end
implementations. Another benefit is that the central hub
may act as a router, which can map controller-centric
parameter spaces (e.g., /finger/1) into the receiver end
parameters, even providing simple transformations for
the data values as is demonstrated in [11]. The hub may
also be used to define OSC processing chains, where the
outputs of distributed OSC modules are connected into
the inputs of other OSC modules. For example, a gesture
recognition module might receive raw data from a multi-
touch controller, turn it into higher level gestural tokens,
which are successively routed into another OSC
processing module. However, the implementation of the
centralized service is outside of the scope of this paper
and left for future work. Instead, we will next look at
three widely used OSC libraries, and describe how they
can adapt the proposed address compression technique.

3. IMPLEMENTATIONS
Existing OSC applications are often built using third-
party OSC toolkits. Accordingly it makes sense to look at
how these commonly-used libraries need to be adjusted in
order to benefit from the proposed technique. The exist-
ing applications can then adapt to the new method with
minimal reimplementation efforts. This section looks at
three open source implementations, and describes the
required steps for their modification. The source code for
these modifications is available at the accompanying
website of this paper [12].

3.1 Implementation of the Proposed Technique

The proposed technique is implemented as a singleton
Streamliner class, which holds two hashing tables for the
string – integer mappings. The tables have identical con-
tent, but are indexed either with string or integer values.
This enables fast conversion into the compressed repre-
sentation (string-to-integer), or back to the standard OSC
form (integer-to-string). The Streamliner class has two
public methods for making these mapping conversions,
and one public method for reading a file into the hashing
tables.

Additionally, the message class implementation of the
OSC toolkit needs to be subclassed by overriding the
constructor in order to map the supplied address string
into the integer token (using the Streamliner class). The
constructor also inserts the mapped token into the argu-

ment vector of the OSC message, and sets the address
string of the address-compressed message to "/".

The receiver code does not usually require additional
modifications at the library level, because the toolkits are
natively capable of extracting the first integer argument
from the argument list of the received OSC message.

3.2 Processing and oscP5

Processing [13] is a Java-based environment for building
interactive audiovisual applications. Its OSC implementa-
tion is based on the object oriented oscP5 library [14],
which is straightforward to modify. The OscMessage
class was subclassed with OscMessage2, and a singleton
OscStreamliner class was implemented in Java. To take
the advantage of the proposed method, existing applica-
tions simply need to define their OSC message objects as
instances of OscMessage2 instead of OscMessage, as
shown in Listing 1.

osc2 = new OscStreamliner("map.txt");
…
OscMessage2 msg = new OscMessage2("/lpf/cutoff");
msg.add(0.50);
oscP5.send(msg, destination);

Listing 1. Sending compressed messages in oscP5.

The oscP5 library routes all received OSC messages in-
to the oscEvent(…) handler, which can then perform the
parsing based on integer arithmetic, as shown in Listing
2. The received integer token can be converted back into
the string form presentation, if so desired, using the
OscStreamliner method osc2.address(iaddr). The OscPlu-
gin mechanism of oscP5 was not addressed in this work.

void oscEvent(OscMessage msg) {
 int iaddr = msg.get(0).intValue();
 switch (iaddr) {
 case 1: …

Listing 2. Parsing compressed messages in oscP5.

3.3 oscpack

The oscpack library is a "set of C++ classes for packing
and unpacking OSC packets" [15]. The required modifi-
cations included augmenting the library with the
osc::Streamliner class, and modifying the code of a) Be-
ginMessage class with a new constructor, taking an in-
teger token argument, and b) streaming this token into the
argument list of the OSC message at the end of the Out-
boundPacketStream << (BeginMessage) handler. Listing
3 shows an example of the streamlined oscpack sending
procedure.

Although it is possible to hide the string-to-integer
transformation of the address pattern entirely inside the
BeginMessage class, as was done in the oscP5 adaptation,
the form described below is more efficient in terms of
CPU load.

osc::Streamliner osc2("map.txt");
…
osc::int32 token = osc2.iaddress("/lpf/1/cutoff");
p << osc::BeginBundleImmediate
 << osc::BeginMessage(token) << (float)0.50
 …

Listing 3. Sending compressed messages in oscpack.

The oscpack ReceivedMessage class supports the non-
standard SuperCollider address patterns. In order to add
additional support for the proposed method, the class was
augmented with a method to extract the integer token
from the received message. The parsing is simplified into
the form shown in Listing 4. As in oscP5, the address
pattern may be regenerated from the received integer to-
ken using osc2.address(iaddr) invocation, if needed.

try {
 osc::int32 token = m.iaddress();
 switch (token) {
 case 1: …

Listing 4. Parsing compressed messages in oscpack.

3.4 Pd and OSCx externals

The OSC implementation (OSCx) of Pd consists of sen-
dOSC, dumpOSC and OSCroute externals, and of a static
code library containing the actual OSC implementation.
To retrofit the proposed method, the sendOSC external
was augmented with two functions (i.e., one for generat-
ing the mapping dictionary, and another for the actual
sending routine). In addition, the setmap message was
added to the interface to initiate the setup phase mapping
dictionary construction. This message has to be invoked
from the Pd patch before the actual control session is
started (see Figure 3).

Figure 3. Streamlined Pd implementation. The OSC
terminals are highlighted with dashed rectangles.

In the initial retrofit, the setmap message was the only
modification visible to the user, as he still sends the OSC
parameter updates using the original OSCx send mes-
sage objects. However, because the external has to parse

the address string parameter of the send message for each
invocation, a send2 message was added to the interface
as well. The parameters of send2 are identical to those of
send, except that the parameter list is prefixed with an
additional integer, which is unique to all send2 message
boxes in the particular Pd patch (it does not need to
match with the actually transmitted token value). The
sendOSC external uses the prefixing integer to associate
the message box instance with the actually transmitted
integer token. This relieves the external from repeated
string-form parsing actions, resorting to a simple integer-
to-integer lookup for each sent message.

The parsing of the received OSC messages can be ac-
complished using the standard Pd select object. Thus,
the more inefficient OSCroute becomes obsolete in this
context.

4. EXAMPLE APPLICATION
The practical applicability of the proposed method is
demonstrated by the following transparent example –
wherein a touch screen is used to toggle playback of a
selection of loops and apply some simple filtering. This
demo uses the Pd implementation as described in Section
3.4 to both transform and distribute performance cues
sent via a multi-touch application running on the Apple
iPad.

In addition to the enhanced CPU efficiency, this ap-
proach reduces network traffic and hence the possibility
of lost packets – which can especially cause concern in a
live performance context that features wireless interfaces.
In situations where the wireless transmission takes place
on a mobile device, power consumption can also be re-
duced.

The example application can be conceptually split into
three stages – the input stage, transformation stage, and
the output stage, as shown in Figure 4.

Input stage: The iPad is running TUIOpad [16] – an
open-source application which sends multi-touch data
formatted using the TUIO protocol. This data is transmit-
ted via a wireless connection to a laptop running a simple
Processing [13] sketch, which extracts useful high-level
information such as the number of fingers in contact and
recognizes gestural cues. Relevant data is passed forward
using typical hierarchical OSC namespaces (e.g.,
/touch/1).

Transformation stage: The resulting high-level messag-
es are received by Pd, which is running a patch similar to
the one illustrated in Figure 3. The augmented sendOSC
function associates the incoming messages with a unique
integer token according to the data in the mapping file.
The data is now compressed – the new mapping proce-
dure eliminates the need to repeatedly send address pat-
terns.

Output stage: The compressed OSC messages control
several looping buffers and band-pass filters in Pd. In
addition to the audio control, a second Processing sketch
generates a visual representation of the data. Processing
is relieved of the burden of performing a string compari-

son every time an OSC message is received – a simple
integer-recognition function will suffice. The visual ac-
companiment demonstrates the relatively concise data
being parsed, in comparison with the lengthy address
patterns that would otherwise be necessary.

Figure 4. The data flow in the example application.

In this example, the proposed method has been demon-
strated entirely within Pd in order to provide a lucid ex-
planation. While performance issues are not necessarily
of great concern in this kind of system, the benefits of
implementing OSC compression at the ‘input stage’ –
e.g., upon a mobile device sending compressed OSC with
hardcoded integer tokens – is worthy of further investiga-
tion.

5. DISCUSSION
The proposed technique reduces the amount of transmit-
ted data, simplifies parsing, and is straightforward to im-
plement in existing OSC libraries and OSC compliant
environments, as was demonstrated above. However,
looking at the examples given in this paper, one might
initially think that the technique flattens the intuitive tree-
form address space of OSC into a continuous range of
integers. This is not the case, because the receiving end –
which defines how the integer tokens are mapped into the
address strings – may construct the integer address space
in a way similar to the IP addresses (e.g., 192.168.1.1).
The 32-bit integer token can thus be interpreted hierarch-
ically in a tree-form structure, and the widths of the bit
fields are completely application-configurable. The hie-
rarchical interpretation allows also wildcard-based map-
ping of the addresses, albeit consequently, it defines also
a limit to the expansion of the address space (which is of
no concern in the string-based representation). Since the

integer token is transmitted inside the data vector, and is
therefore typed, it is possible to overcome this limitation
by using 64-bit integers as address tokens instead of the
32-bit entity described earlier.

The downside of the proposed approach is that the mes-
sage interpretation requires mapping information, and
therefore the stateless presentation of OSC is not fully
preserved. However, content formats with fixed address
spaces may describe their a priori mapping definitions
already at the specification level, which makes the mes-
sages self-contained, albeit still not truly stateless.

Section 2.1 discussed briefly the means of interpreting
the received OSC message either as a SET or a GET re-
quest. Naturally, the interpretation should not be based on
the amount of arguments in the message, but rather, the
command verb should be included in the header part of
the OSC message. Because RESTful paradigm has
proved to be successful in many internet-based applica-
tions, the next major OSC specification update might
consider redesigning the header part of the message ac-
cordingly. Based on our observations, a sufficient mini-
mum set of verbs would consist of SET, GET, ADD and
DELETE, possibly augmented with PUBLISH and SUB-
SCRIBE.

On the other hand, Zeroconf appears to be a viable solu-
tion for the service discovery and name resolution
processes. In addition to working in a peer-to-peer fa-
shion, it offers means of acquiring IP addresses without
dedicated DHCP servers, which might be advantageous
in distributed OSC setups. The TXT record field of the
multicast DNS can also be used to describe the schema of
the service, which, as discussed in Section 2.1, can be
utilized to describe the string-to-integer mapping of the
proposed technique.

XML-based schema language would offer advantages
because it is extensible, standardized, and supported by a
wide variety of libraries and related techniques (such as
XPath, for example). However, since XML-based docu-
ment parsing is a resource intensive process, a lighter
format, such as JSON or OSC itself might prove to be
more attractive for resource-constrained devices.

6. CONCLUSION
This paper proposed a technique that improves the effi-
ciency of OSC-based communication. It decouples the
user interface and the transmission layers of the protocol
by mapping the string-form address representation into a
corresponding integer form, which is then used in the
compressed transmission stage. Three commonly used
open source libraries were patched to take advantage of
the proposed technique, and its practical applicability was
demonstrated with an interactive audiovisual application.
Finally, the paper concluded by providing suggestions for
adapting certain established IP-based techniques within
the OSC specification.

The OSC community is encouraged to explore the pro-
posed technique in custom applications and OSC toolkits.
We believe that the technique improves the efficiency of

OSC communication protocol in a transparent manner,
but given the diversity of OSC-based application scena-
rios, its full potential is revealed after it is supported by a
wider installation base. The source code for the discussed
implementations is available at [12].

Acknowledgments

This work has been supported by the Academy of Finland
(project no. 122815) and the National University of Irel-
and Maynooth (John and Pat Hume Scholarship).

7. REFERENCES
[1] M. Wright and A. Freed, “Open Sound Control: A

New Protocol for Communicating with Sound
Synthesizers,” in Proc. Int. Computer Music Conf.
(ICMC'97), Thessaloniki, Greece, Sept. 25-30, 1997.

[2] The Open Sound Control 1.0 Specification, 2002.
http://opensoundcontrol.org/spec-1_0 (accessed
19.5.2011)

[3] A. Freed and A. Schmeder, “Features and Future for
Open Sound Control version 1.1 for NIME,” in
Proc. 9th Int. Conf. New Interfaces for Musical
Expression (NIME 2009), Pittsburgh, PA, USA,
June 4-6, 2009.

[4] A. Fraietta, “Open Sound Control: Constraints and
Limitations,” in Proc. 8th Int. Conf. New Interfaces
for Musical Expression (NIME 2008), Genova, Italy,
June 5-7, 2008.

[5] C. Liu and P. Albitz, “DNS and BIND,” 5th ed.,
O'Reilly Media, 2006.

[6] J. McCartney, “SuperCollider: a New Real Time
Synthesis Language,” in Proc. Int. Computer Music
Conf. (ICMC 1996), Hong Kong, China, Aug. 19-
24, 1996.

[7] M. Puckette, “The Theory and Technique of
Electronic Music,” World Scientific Press, River
Edge, NJ, USA, 2007.

[8] M. Kaltenbrunner, T. Bovermann, R. Bencina, and
E. Costanza, “TUIO - A Protocol for Table-Top
Tangible User Interfaces,” in Proc. 6th Int.
Workshop on Gesture in Human-Computer
Interaction and Simulation (GW 2005), Vannes,
France, 2005.

[9] D. Steinberg and S. Cheshire, “Zero Configuration
Networking: The Definitive Guide,” O'Reilly Media,
2005.

[10] oscit Homepage, http://lubyk.org/en/software/oscit
(accessed 19.5.2011).

[11] J. Malloch, S. Sinclair, and M. Wanderley, “A
Network-Based Framework for Collaborative
Development and Performance of Digital Musical
Instruments,” Lecture Notes in Computer Science,
Springer, 2008.

[12] Accompanying webpage of this paper
http://www.acoustics.hut.fi/go/smc2011-osc

[13] Processing Homepage, http://processing.org/
(accessed 19.5.2011).

[14] oscP5 Homepage,
http://www.sojamo.de/libraries/oscP5/ (accessed
19.5.2011).

[15] oscpack Homepage,
http://code.google.com/p/oscpack/ (accessed
19.5.2011).

[16] TUIOpad Homepage,
http://code.google.com/p/tuiopad/ (accessed
19.5.2011).

