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1. Introduction

During past several decades the evolution of methods of computational

materials science was guided towards accurate ab initio thermochem-

istry [1, 2]. The ultimate goal is to reach a precision matching the un-

certainty of experiment. While objects of study as well as equipment for

measurements may differ, the common convention is to declare the uncer-

tainty equal to 1 kcal/mol (43 meV), which is known as "chemical accu-

racy" [1]. Among theoretical methods, only a few can guarantee such an

accuracy, which, unfortunately, comes at an enormous expense and only

the smallest systems can be studied in this manner. Anything larger than

that has to be studied with cheaper and less accurate methods.

A popular compromise between the accuracy and the cost is the density

functional theory (DFT), which is a feasible approach for a wide range

of problems. Approximations, developed to make this method tractable,

work well enough and DFT is extremely useful in various application, but

some phenomena still remain especially difficult to describe. One of such

problem cases is the van der Waals (vdW) interaction, which is recog-

nised to be important not just for new industrial devices, but also for life

itself. Approximations within DFT that have been successfully used dur-

ing several decades turn out unreliable for the vdW interaction. In an

attempt to resolve this issue, the Rutgers-Chalmers collaboration led by

D. C. Langreth and B. I. Lundqvist has produced a new approach within

DFT. Although it proved its usefulness almost immediately, there was a

temporary obstacle that disallowed its application to a large number of

problems. The most obvious implementation of the method is too expen-

sive, while alternative algorithms did not exist in the beginning.

This Thesis is focused on a design of an efficient numerical implemen-

tation, which is applied to a range of problems where the vdW interac-

tions are expected to be important. The applications in the Thesis include

9
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physisorption of planar molecules on crystalline surfaces, dissociative ad-

sorption of phenol on a silicon surface and defect phenomena in graphite.
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2. Theoretical background

2.1 Electron correlation

The world of computational materials science is divided among a number

of methods that allow for the explanation or even prediction of proper-

ties of various substances. The most sophisticated methods are derived

from the Schrödinger equation and take into account electronic structure

effects. These approaches, applied to a large number of problems, have

two main streams: quantum chemistry (QC) and DFT [3]. The typical

agenda in QC calculations is (i) solve the Hartree-Fock equations (one-

electron problem), (ii) use the solution either to apply many-body pertur-

bation theory or configuration interaction methods in order to approach

the exact answer. Step (ii) introduces the picture in which electrons are

not independent, but rather intimately correlated. Hence the energy im-

provement in step (ii) over step (i) is known as the correlation energy.

The practical approach to DFT, in turn, is based on solving the Kohn-

Sham equations [4], which, in principle, allow us to obtain the electron

density that minimises the total energy and corresponds to the ground

state. This is achieved by replacing the real problem by a simplified one

with non-interacting electrons moving in an external effective potential

that guarantees the correct ground-state density and energy. The effective

potential consists of an electrostatic term and whatever remains, which is

known as the exchange-correlation potential. The latter part is normally

approximated by local functions of density and/or its derivatives. Unfor-

tunately, this scheme does not provide an opportunity of a systematic im-

provement of DFT energies, densities and other observables towards the

exact ones.

The reason for the approximation in DFT is the high complexity of the

exact exchange - correlation energy, which, at least at the moment, can-

11
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Figure 2.1. Diagrammatic representation of Eq. 2.2. The diagrams with shaded and
empty bubbles correspond to fully interacting and non-interacting linear re-
sponse functions, respectively.

not be directly expressed as a functional of density. Instead, using the

adiabatic-connection fluctuation-dissipation theorem (ACFDT) [5, 6] it can

be written as a functional of one-electron orbitals

Exc = −
∫
d3rd3r′

∫ ∞
0

du

2π

∫ 1

0

dλ

λ
(χλ(r, r′, iu)Vλ(r, r′)−n(r)δ(r− r′)), (2.1)

where n(r) is the electron density and Vλ(r, r′) = λ
|r−r′| is the electron-

electron repulsion potential scaled by the coupling strength λ. The orbital

dependence enters Eq. 2.1 through χλ(r, r′, ω), the non-local frequency-

dependent full Kubo density-response function.

The correlation energy is singled out from Eq. 2.1 if χλ is replaced by the

non-interacting response function χλ=0. In that case, Eq. (2.1) becomes

equal to the exchange energy Ex. The correlation energy Ec is expressed

through the difference Exc − Ex as

Ec = −
∫
d3rd3r′

∫ ∞
0

du

2π

∫ 1

0

dλ

λ
(χλVλ − χ0Vλ). (2.2)

Eqs. (2.1) and (2.2) are derived in the framework of the many-body per-

turbation theory, where it is common to use diagrams in order to give in-

tuitive flavour to the complicated integral expressions. Along these lines

the two terms of Eq. 2.2 can be represented by the diagrams shown in

Fig. 2.1.

2.2 van der Waals interaction

2.2.1 Many-body picture

A typical model system to illustrate the van der Waals (vdW) interaction

is a complex of two fragments of matter with non-overlapping electron

densities with no permanent electrical multipoles. For instance, it can be

a dimer of noble-gas atoms or jellium layers, however, in the majority of

12
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Figure 2.2. Diagrammatic representation of Eq. 2.3.

real materials one cannot guarantee the complete absence of the regular

electrostatic interactions. Nevertheless, every quantum system with elec-

trons has charge fluctuations that results in instantaneous polarisation

and hence is responsible for the vdW attraction. The coupling of the fluc-

tuations can be described by the means of the linear response using the

many-body perturbation theory [7, 8]. Then, the vdW energy to the second

order in electron-electron interaction is

E(2) = −
∫
d3r1d

3r′1d
3r2d

3r′2

∫ ∞
0

du

2π

χ(1)(r1, r
′
1, iu)χ(2)(r2, r

′
2, iu)

|r1 − r2||r′1 − r′2|
, (2.3)

where χ(1) and χ(2) are the full interacting linear-response functions of the

two fragments considered separately. The interaction energy can be ex-

pressed in terms of Goldstone-Feynman diagrams [9] as shown in Fig. 2.2.

Eq. 2.3 can be derived also using the ACFDT (Eq. 2.2) as the starting

point. The comparison of Eqs. 2.2 and 2.3 reveals that they have a set

common terms, which are sometimes called spectator diagrams. This con-

cept means that the energy diagrams can be split into parts attributed to

the non-overlapping regions by cutting interaction lines. This observation

underlines the genuine non-locality and the many-body nature of the van

der Waals interaction. Since the exchange interaction in the ACFDT is

represented by the χ0V -term, i. e.., the single bare bubble closed by the

interaction line, and Eq. 2.3 does not contain it, it is apparent that the

exchange does not contribute to the vdW attraction. In other words, the

Hartree-Fock approximation completely misses the vdW interaction.

To recover the vdW interaction the correlation energy has to be cal-

culated. One of the simplest and most common methods to do it is the

Møller-Plesset perturbation theory to the second order, known simply as

MP2. In this approximation, the correlation energy is calculated as

EMP2 =
∑
i<j

∑
a<b

[(ij|ab)− (ij|ba)]2

εi + εj − εa − εb
, (2.4)

where the summation is carried over occupied (vacant) one-electron states

13
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Figure 2.3. Diagrams included in the MP2 correlation energy. The direct (on the left)
and the second-order exchange (on the right) terms do not contain any type
of screening.

for the dummy variables i and j (a and b), the symbol (ij|ab) denotes elec-

tron repulsion integrals. It is defined as (ij|ab) =
∫ ∫

ϕi(r)ϕj(r
′)ϕa(r)ϕb(r

′)/|r−
r′|d3rd3r′. ϕi(r) and εi are one-electron Hartree-Fock orbitals and corre-

sponding eigenenergies, respectively.

The MP2 correlation energy can be represented diagrammatically as

shown in Fig. 2.3. While the second-order exchange diagram (see Fig. 2.3)

is not a spectator diagram, the bubble-bubble diagram has a very similar

look to Fig. 2.2. The only difference is that the linear response functions

(“the bubbles“) in Fig. 2.3 are bare and not fully interacting. MP2 con-

tains just the simplest diagrams among those responsible for the vdW

attraction and misses such important aspects of many-body phenomena

such as screening three-body interactions. Nevertheless, the results ob-

tained with MP2 in practice are not necessarily bad. On the contrary,

benchmark calculations of Jurečka et al. [10] have shown that for non-

covalently bound molecular complexes where the bonding is dominated or

matched by electrostatic interactions, MP2 produces reasonable binding

energies.

To achieve better accuracy and to avoid the deficiencies of MP2, more

elaborate ab initio methods are available. For instance, MP3 and MP4

(the third and fourth order many-body perturbation theories) and the

coupled-cluster methods [11, 9] (which can be considered as the pertur-

bation theory to the infinite order with only certain types of diagrams

included) contain more components relevant for the vdW interaction. Un-

fortunately, these approaches are computationally very demanding and

are prohibitively expensive in too many cases. In fact, even MP2 is cur-

rently too costly for a wide range of applications that includes adsorption

of molecules on crystalline surfaces. Moreover, MP2 is applicable only to

insulators, as Eq. 2.4 diverges for metallic systems.

14
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2.2.2 Local and semilocal DFT methods

DFT as an alternative to the ab initio quantum chemistry methods has

become the most used method in the electronic structure theory. Such an

appreciation of DFT stems from its low computational complexity and the

very resonable accuracy, which is determined by the approximation to the

exchange-correlation energy functional Exc [n]. The simplest of them is

the local density approximation (LDA), where

ELDA
xc [n] =

∫
εxc(n(r))n(r)d3r. (2.5)

The energy density εxc is a function of the electron density n. The function

is chosen to reproduce the exactly known energy of the uniform electron

gas. This energy contains contributions from all Goldstone-Feynman dia-

grams, but LDA describes them in an average way that allows to discard

the overwhelming complexity of the many-body theory. The price for the

simplification is the limited accuracy of LDA, one aspect of which is re-

flected in thermochemistry benchmark studies [12]. On the other hand,

LDA applied for vdW-bound systems often has led to reasonable results.

However, such a success has wrong reasons – the binding arises from the

exchange [13], while, as shown in Sec. 2.2.1, the vdW attraction stems

from the correlation.

The efforts to improve LDA have lead to the generalised-gradient ap-

proximation (GGA) – another widely used approach to DFT. The GGA

exchange-correlation energy reads as

EGGA
xc [n] =

∫
εxc(n(r), |∇n(r)|)n(r)d3r, (2.6)

where the energy density εxc is a semi-local function of electron density.

"Semi-local" means that the locality of εxc in LDA is complemented by

the information on the behaviour of the electron density in the vicinity of

point r, since the electron density is smooth almost everywhere and the

density gradient allows to predict variations of the density near r.

GGA leads to a number of improvements over LDA in a description of

chemical bonds with a hardly noticeable additional computational effort

compared to LDA. According to benchmarks, covalent bonds are described

reasonably with LDA and even better with GGA. However, intermolecular

interactions present difficulties to both approaches. The LDA and GGA

formulations in Eqs. 2.5 and 2.6 imply that electrons at point r1 “know

nothing" about electrons at point r2. Such a picture is the opposite of the
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ideas presented by Eq. 2.3 and Fig. 2.2, which illustrate that the vdW

interaction is essentially non-local.

2.2.3 Extensions of (semi)local DFT methods

LDA and GGA completely lack a mechanism for a description of the vdW

interaction, but there are possibilities to add it in a pragmatic manner.

The non-relativistic vdW interaction between two small molecules (closed-

shell atoms) is predictable and has the asymptotic form

E ∼ −C6/r
6, (2.7)

where r is the inter-molecular (inter-atomic) separation andC6 is a material-

dependent coefficient. This relation can be proved using Eq. 2.3 [14] and

it holds universally for finite systems. Then the vdW interaction energy

can be estimated as a sum of interatomic pairwise potentials in the form

of Eq. 2.7. However, such a potential is divergent at r = 0 and, thus, is

not generally applicable. It is possible to resolve the issue by multiply-

ing Eq. 2.7 by a damping function so that the asymptotic form at r → ∞
remains and the new potential is well-behaved at small r. The approach

of adding an inter-atomic potential to the total DFT energy has been pro-

posed in various forms, but the most prominent ones have been intro-

duced by Grimme [15, 16, 17], Tkatchenko and Scheffler (TS) [18] as well

as Becke and Johnson (BJ) [19, 20].

In the method by Grimme, known as DFT-D2 [16], the potential is writ-

ten as

EvdW = −s6

∑
i<j

Cij6
rij6

1

1 + e−d(rij/sRRij−1)
, (2.8)

where rij is the distance between the i-th and the j-th atoms. The prefac-

tor s6 is a fitted scaling parameter, which is material independent, but it

is different for each version of GGA complemented by Eq. 2.8. The coef-

ficients Cij6 =
√
Ci6C

j
6 introduce another degree of empirism through the

constants Ci6, which are tabulated for each element in the periodic table.

Finally, the parameters Rij = Ri + Rj combine the tabulated emprical

van der Waals radii Ri, which are used with the constants d and sR to

determine the behaviour of the damping function.

The DFT-D2 method is numerically extremely efficient and, in test cal-

culations, produces accurate binding energies, especially if combined with

some of the double hybrid functionals instead of GGA [17]. Unfortunately,

this approach has a number of drawbacks. First, it lacks flexibility and
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dependence on the electron distribution. Polarisabilities of molecules de-

pends on electronic states, but the C6 coefficients assigned for each atom

are rigid. For instance, the method does not distinguish between di- and

trivalent carbon atoms. This issue is addressed in the DFT-D3 [17], TS

and BJ methods. The DFT-D3 method takes into account the chemical

environment of each atom by assigning a coordination number. In TS,

the C6 coefficients are rescaled based on the charge distribution, while, in

BJ, they are calculated on the basis of the exchange-hole model. Hence,

in this family, BJ is the only method that uses completely non-empirical

C6 coefficients. Although these adjustments improve qualities of these

methods, but it has never been shown convincingly that any of these ap-

proaches work accurately for solids. Second, the asymptotic rule of Eq. 2.7

does not always work for extended systems [21]. In principle, this limits

the applicability of the method, but, in practice, the unusual asymptotics

reveals itself only at large distances far beyond the typical vdW bond-

ing distance [22]. Third, the performance of DFT-D2, DFT-D3, TS and

BJ methods depends strongly on a choice of empirical parameters. A re-

cent sensitivity analysis has shown that the main source of uncertainty

in these calculations is sealed in the damping function [23]. This result

implies that the adjustment of C6 coefficients performed on-fly in the TS

and BJ method is relatively unimportant, and one should concentrate on

adjusting the van der Waals radii instead, as is it is done in DFT-D3. In

any case, the faith in these methods reduces to the faith in the parameters

used for the calculations.

2.2.4 The van der Waals density functional (vdW-DF)

Despite the deficiencies of LDA and GGA, the formulation by Hohenberg

and Kohn does not have any restrictions on what type or range of inter-

actions are included in the exact DFT. If non-locality were somehow built

in the correlation functional, the dispersion interaction could be naturally

described within such an approximation to DFT.

Langreth, Lundqvist and their collaborators have derived such a non-

local correlation functional [24] known as the van der Waals density func-

tional (vdW-DF). They used ACFDT as the starting point and splitted the

correlation energy into two parts: the short- and long-range ones. The

short-range part can be adequately described by a local or semi-local func-

tional and typically LDA is used for this purpose. The long-range part,
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however, is derived using a number of approximations, namely, (i) the

so-called full potential approximation χλ ≈ χλ=1, which is well-justified

for the long-range interactions if they are dominated by terms included

in the random-phase approximation, (ii) the plasmon-pole approximation

that allows to relate the linear response functions to the electron density

and (iii) the expansion of the correlation energy expression in powers of

the dynamic structure factor. These simplifications are essential for re-

moving the hidden orbital dependence in Eq. 2.2 and hence reducing its

complexity. As a result, the long-rang part of the correlation energy Enl
c is

expressed finally in the form:

Enl
c [n] =

1

2

∫ ∫
n(r)ϕ(r, r′)n(r′)d3rd3r′, (2.9)

where ϕ(r, r′) is a kernel function. Its mathematical definition is given in

Appendix A, where the numerical evaluation of the kernel function is also

discussed.

The kernel function has an important property – its spatial dependence

satisfies the relation ϕ(r, r′) = ϕ (q0|r− r′|, q′0|r− r′|) with local scaling pa-

rameters q0 = q0(r) and q′0 = q0(r′). For practical calculations, it is conve-

nient to express the kernel function in terms different variables, namely,

as ϕ = ϕ(D, δ) with D =
q0+q′0

2 |r − r′| and δ =
q0−q′0
q0+q′0

. This rearrangement

makes the storage and plotting of the function simpler. Its shape in the

new coordinates is shown in Fig. 2.4. Interestingly, the kernel function

always decays as 1/D6 at large D. This results in a failure to recover

unusual asymptotic power laws that may occur for interacting extended

systems [21]. As discussed above, this is a harmless drawback for a wide

range of applications, although it is important to acknowledge.

The local scaling parameter is defined as an estimate of the short-range

part of the exchange-correlation energy density ε0
xc = − 3

4π q0, where ε0
xc =

εxc− εnl
c . While, for total energy calculations, the short-range part is writ-

ten as

ε0
xc = εGGA

x + εLDA
c , (2.10)

the evaluation of q0 requires a different approach. The GGA form of ε0
xc

provides a relatively small correction to the LDA part in Eq. 2.10 and that

eventually leads to infinite static polarisabilities of atoms and molecules

α(0) ∝
∫
n(r)/(q0(r))4d3r [25]. This is circumvented by using the gradient

expansion approximation

q0(r) = −4π

3

(
εLDA

xc (r)− εLDA
x (r)

[
Zab

9

( ∇n
2kFn

)2
])

, (2.11)
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Figure 2.4. The kernel function of the vdW-DF.

where kF = (3π2n)1/3 and Zab = −0.8491. The term with the gradient

correction grows unbounded at an exponential density decay and hence

saturates the static polarisability integral. The prefactor Zab affects the

polarisability and therefore also the accuracy of dispersion forces. The

numerical value of the parameter is selected based on properties of the

uniform electron gas. Zab corresponds to the gradient expansion coeffi-

cient that contains the contribution only from the ”screened exchange“

and does not contain anything from the ”fluctuation“ diagram that corre-

sponds to essentially non-local interactions [26]. Such a choice proposed in

Ref. [24] is debatable, since the derivation of the longe-range part of the

correlation energy neglects the coupling-strength dependence in Eq. 2.2

and, thus, the ”fluctuation“ diagram cannot be accurately represented in

the non-local correlation term of the vdW-DF. Moreover, it is not clear that

the gradient expansion coefficients obtained for the uniform electron gas

are useful in calculations of molecules.

A more recent analysis by Lee et al. suggests a different value for Zab,

which is based on the large-N expansion and is not related to the uniform

electron gas [27, 28]. This update of the parameter was one of the ingre-

dients for revising the vdW-DF [28]. However, the link between the large-

N expansion and Eq. 2.11 is obscure. It might have been expected that

the reparametrisation should result in a non-local correlation functional,

which is better suited for molecules than its predecessor. But recent cal-

culations show that the update significantly worsens the accuracy of the

vdW-DF for C6 coefficents of close-shell atoms and small molecules [29].

This confirms that the new strategy of choosing Zab is also not so well

justified.

The fact that the Zab can be chosen in two ways and non of them is rigor-
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ously justified means that, strictly speaking, the vdW-DF method cannot

be called ab initio, unlike its common acceptance in the DFT community.

An alternative and more pragmatic approach is presented by Vydrov and

van Voorhis in Ref. [25]. They also face the problem of choosing a nu-

merical value of a polarisability-related parameter for their own non-local

functional and solve it by fitting it in order to reproduce C6 coefficients of

individual atoms and small molecules.

Apart from the uncertainties of the non-local part of vdW-DF, there is no

unique choice of ε0
xc – the semi-local remainder of the exchange-correlation

functional. The fundamental requirement for ε0
xc, especially for the ex-

change part, is a repulsive non-binding behaviour for complexes held to-

gether by the dispersion interaction. Although, in practice, GGA exchange

functionals tend to provide binding, some of them are better behaved in

this sense than the others. Since the revPBE exchange [30] showed very

weak binding in test calculations, it was the recommended choice for the

vdW-DF [24].

The sensitivity to the choice of the exchange functional and the lack

of the consensus on the option add a certain degree of empirism to the

method. However, in comparison to DFT-D2 and similar methods, the

vdW-DF approach does not rely on material-dependent constants and au-

tomatically adjusts to variations in the electron density. In other words,

the vdW-DF method inherits some of the flaws discussed in Sec. 2.2.3, but

heals the others.
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3. Numerical treatment of the vdW-DF

A typical DFT calculation involves several different steps and one of them

is the evaluation of the exchange-correlation functional Exc [n] and the re-

lated potential vxc(r) = δExc/δn(r). Within the LDA and GGA approaches,

this step is relatively inexpensive, especially for large problems, where

efforts spent in linear algebra or other standard numerical routines are

much more time consuming. Indeed, with the basis set size N , the form of

Eqs. (2.5–2.6) implies the computational complexity O(N), while typical

routines, such as the full-diagonalisation and fast-Fourier transform re-

quire O(N3) and O(N logN) floating point operations, respectively. Some

electronic structure codes, however, can benefit from a sparsity of matri-

ces occuring in a course of a calculation or use other tricks to reduce their

complexity and achieve the linear-scaling for the computational expense.

Still, even then the evaluation of an exchange-correlation functional is not

the major expense.

In the case of the vdW-DF, the three-dimensional integral of the semi-

local part is complemented by a six-dimensional integral of the non-local

part. Such an extension costs an additional effort, which can be over-

whelming if the evaluation of the non-local correlation energy term is not

implemented intelligently. The first algorithm described in literature and

used in pioneering applications takes the most direct and straightforward

route, which turned out to be costly and not very accurate. For obvious

reasons, in this Thesis, it is referred to as the brute-force approach.

In the course of time, more elaborate methods have emerged including

the adaptive real-space approach [31], which is described in this Thesis in

detail. The convolution approach [32] and the Monte-Carlo algorithm [33]

are among the other efficient alternatives, but they are not discussed here.
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3.1 Brute-force approach

Suppose the electron density n(r) is defined in a finite box and supplied

on an evenly-spaced three-dimensional grid {ri} with i ranging from 1 to

the grid size N . Then the integral of Eq. 2.9 can be approximated using

the definition of the Riemann integral

Enl
c [n] ≈ V 2

0

N∑
i,j=1

n(ri)ϕ(ri, rj)n(rj), (3.1)

where V0 is the volume of the primitive element of the grid. This ex-

pression is equivalent to the trapezoid rule if the density vanishes at the

boundaries of the box. The direct application of Eq. 3.1 leads to a compu-

tational effort that scales as O(N2). It means that a twofold increase in

the resolution of the grid with a constant box size leads to a four times

heavier calculation.

If the electron density n(r) is a periodic function and it is supplied on a

grid within a primitive unit cell, Eq. 3.1 is still applicable. Now, Enl
c has

to be evaluated as the energy per unit cell and the index i still runs over

N points of the cell. The other summation, however, is carried out over

all space and j ranges over an infinite number of points. In practice, it is

sufficient to consider a finite number of points M that is large enough to

converge the sum. Typically M > N , which maintains the O(N2) scaling.

The algorithm can be slightly refined using the fact that ϕ(D, δ) decays

rapidly at large D (or equivalently at large |r−r′|). Then it makes sense to

define a cutoff length Rc such that if |ri−r′j | > Rc the corresponding term

in the sum is disregarded. This simple trick introduces a linear scaling

to the algorithm, since for each ri only a fixed number of rj have to be

considered. For instance, if the grid spacing in a typical pseudopotential

calculation is d = 0.1 Å and, without aiming at a high accuracy, Rc =

10 Å is chosen, the introduced cutoff length leads to M = 4π/3(R/d)3 =

4.2 ·106. Since M is so large, such an evaluation of Enl
c brings an enormous

overhead compared to a calculation of a GGA exchange correlation energy.

Unfortunately, the efficiency considerations are not the only concern. As

discussed in Appendix A, ϕ(r, r′) is singular at r = r′ and hence it is not

straightforward to decide what to do if i = j. Moreover, the trapeziodal

rule is accurate only for smooth integrands, but ϕ(r, r′) varies rapidly at

small |r−r′| and has a region of interest determined by the local parameter

q0(r) (see Fig. 2.4). In other words, the evenly-spaced grid is suitable to

resolve all the features of the density, but it ignores the scales relevant for
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the kernel function and hence is inappropriate for calculating the whole

six-dimensional integral of Eq. 2.9.

3.2 Adaptive real-space approach

In Publication I, it is shown that the problems of the brute-force approach

can be overcome simply by evaluating integral

εnl
c (r) =

1

2

∫
ϕ(r, r′)n(r′)d3r′ (3.2)

in spherical coordinates with the origin at r. Defining r̃ = r′ − r and

F (r̃) = ϕ(r′, r)n(r′), Eq. 3.2 can be rewritten as

εnl
c (r) =

1

2

∫ ∞
0

dr̃

∫ π

0
dϑ

∫ 2π

0
dφ r̃2 sinϑF (r̃, ϑ, φ), (3.3)

where the Jacobian r̃2 sinϑ immediately resolves the singularity issue.

Inspired by the procedure descibed in Ref. [34], the practical approach

to evaluation of Eq. 3.3 is based on the Gauss-Chebyshev quadrature of

the second kind for the radial part and the Lebedev quadrature for the

angular part [35, 36]. However, to make the Gauss-Chebyshev quadrature

applicable to Eq. 3.3 it is necessary to map the integration range r̃ ∈ [0;∞)

to x ∈ [−1; 1], where x is a new integration variable. The transformation

r̃ = rm

√
1 + x

1− x (3.4)

fulfills the requirement with rm being an arbitrary positive constant. Eq. 3.3

is then approximated as

εnl
c (r) ≈ 2π

N(r)∑
i=0

w
(r)
i

r3
m

(1− xi)3

N(Ω)∑
j=1

w
(Ω)
j F (r̃(xi),Ωj). (3.5)

The angular points Ωj and their weights w(Ω)
j are pretabulated. For the

Gauss-Chebyshev grid points and corresponding weights, simple expres-

sions exist

xi = cos
πi

N (r)
(3.6)

and

w
(r)
i =

π

N (r)
sin2 πi

N (r)
, (3.7)

where N (r) is the size of the quadrature grid and 0 ≤ i ≤ N (r).

Inserting all values of i where 0 ≤ i < N (r)/2 and N (r)/2 < i ≤ N (r)

into Eqs. 3.4 and 3.6 produces radial shells with 0 ≤ ri < rm and rm <
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ri < ∞ in equal amounts. Thus, the transformation in Eq. 3.4 contains

a mechanism to adjust the quadrature grid according to the scale of the

kernel function, and setting rm = 1/q0 allows Eq. 3.5 to be equally useful

low- and high-q0 regions.

The effort required to calculate εnl
c with this method requires a number

of floating point operations proportional to N (r)N (Ω), which is a number

limited by convergence considerations and does not depend on N . For

most of practical applications, especially when pseudo-densities are han-

dled, the values N (r) = 50 and N (Ω) = 86 guarantee a very high accuracy.

A calculation of Enl
c requires one evaluation of εnl

c in each of N grid points

that settles the overall computational complexity to O(N). This is the

same scaling of the computational complexity as in the refined brute-force

approach, but with a much smaller prefactor, since N (r)N (Ω) �M .

The comparison of the two methods, however, is not that straightfor-

ward, because the brute-force approach uses the electron density only in

predefined grid points, while the adaptive method requires an ability to

evaluate the density at any point between the grid nodes. A convenient

and efficient solution is interpolation, which is described in detail in Ap-

pendix B. Clearly, an interpolation is a slower process than just retriev-

ing a number from a table, but the adaptive approach is still considerably

faster than the brute-force method.

In comparison to a plain GGA calculation, the adaptive algorithm is still

fairly expensive, but it is possible to make it cheaper by allowing εnl
c (r) to

be evaluated with smaller quadrature grids at points where high enough

accuracy can be achieved with smaller grids. For instance, the number of

angular grid points N (Ω) does not have to be the same for each radial shell

and a predefined accuracy can be reached by adjusting (or adapting) N (Ω)

in each particular case. In computational chemistry, such an approach

is known as grid pruning and is commonly used for multi-centre integra-

tion of the energy density in DFT calculations [37, 38]. Unfortunately, the

experience accumulated in this field during two decades is not directly

transferable for Eq. 3.5, since the spatial size of quadrature grids in com-

putational chemistry packages is constant and the grid pruning is always

the same. Here, on the other hand, the size of the quadrature grid needs

to be constantly adjusted and the variation of the number of angular grid

points is done on the fly. The detailed description how is it implemented

in practice is presented in Appendix C.

To summarize, the adaptive real-space approach combines automatic
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adjustment of quadrature grids on two different levels: i) the grids are

stretched or compressed in the radial direction in order to follow the char-

acteristic local length scale of the kernel function and ii) the numbers of

radial shells and angular points are varied in order to avoid redundancy

in calculations when smaller grids are good enough to achieve sufficient

accuracy. In other words, the essence of this integration approach is to fo-

cus on evaluating the integrand of Eq. 3.2 at points that matter the most.

The adaptive real-space algorithm has been initially implemented as a

stand-alone program for post-processing calculations. This program has

been successfully applied for a number of applications [39, 40, 41, 42]

that include also Publication IV. Unfortunately, an a posteriori calculation

provides only the total energy, but not the Hellmann-Feynman forces. An

implementation of forces requires a self-consistent treatment of vdW-DF.

How to apply this algorithm for self-consistent calculations is explained

in Appendix E. The method has been implemented in electronic structure

codes SIESTA [43] and VASP [44]. The vdW-DF module within SIESTA

has been applied in Refs. [31, 45, 46, 47](including Publications I, II and

III) and a similar module within VASP has been used in Refs. [48, 49, 50,

51](including Publication V).
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4. Applications

4.1 Non-covalent interactions of molecules

Non-covalent interactions are essential to explain various phenomena es-

pecially in organic and biochemistry. For instance, processes such as pro-

tein folding and replication of DNA are controlled by both intermolecular

interactions with water and intramolecular interactions between parts of

a protein or a DNA macromolecule. Interactions with or within macro-

molecules are difficult to study. Thus, the applicability of a certain DFT

method can be assessed by considering smaller molecular units that con-

tain the same or similar functional groups. For this purpose, several

benchmark sets have been developed [10].

Qualities of the vdW-DF are studied in Publication I, where the method

is applied for the S22 set [10], which consists of complexes of small molecules.

This set contains cases where the binding energy is dominated by elec-

trostatic forces, dispersion or a combination of the two. Such a mixture

allows us to perform a quick test of a method for the main types of inter-

molecular interactions.

A particularly important question to ask in conjunction with the test cal-

culations is whether the original recipe for the vdW-DF presents a well-

rounded combination of approximations for the exchange and the corre-

lation. For a comparison, the revPBE (the original choice in Ref. [24])

and PBE [52] exchange functionals are both applied in the study. The

tests reveal that both selections follow the trends observed in the accu-

rate CCSD(T) calculations by Jurečka et al. However, it turned out as

well that the two variations of vdW-DF do not perform equally well for the

three different classes of complexes. The PBE exchange yields accurate

binding energies for the hydrogen-bonded dimers, while it significantly

overbinds the other complexes. The same time, the revPBE is fairly ac-
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curate for dispersion-bonded complexes, but significantly underestimates

the strength of the hydrogen-bond.

The important conclusion from Publication I is that a large portion of the

uncertainty in vdW-DF calculations comes specifically from the exchange.

Dion et al. [24], as they introduced the vdW-DF method, emphasized that

the most important requirement in this type of calculations is the absence

of binding due to the semi-local exchange. Publication I stimulated a dis-

cussion that allowed the departure from this point of view and arrived

at the conclusion that it is necessary to find a GGA exchange functional

that contributes to the interaction energy in a similar manner as the ex-

act exchange. Later on, vdW-DF has been revised and the adjustment

of the exchange has been one of the key features in the recent improve-

ments [28].

4.2 Physisorption of flat organic molecules

As nanotechnologies advance, organic molecules become increasingly im-

portant in the engineering of electronic devices. In attempts to decrease

the size of circuit elements and to make their manufacturing more cost-

efficient, organic molecules are considered as an alternative to silicon and

other inorganic materials. Although some applications, for instance, or-

ganic light-emitting diodes, have already reached the global market and

casual consumer, this industry still faces a number of challenges. In par-

ticular, it is important to understand details behind constructing a circuit

with organic elements in it. This typically involves self-assembly, which

has to be somehow controlled. Controlling such a process requires a de-

tailed (both qualitative and quantitative) understanding of phenomena

behind it.

A typical self-assembly process on a crystalline surface can be described

by the key features shown in Fig. 4.1. Molecules are deposited on a

cleaned and possibly also otherwise prepared surface. For any kind of

a self-organisation the deposited molecules are required to be mobile. For

instance, the ”weak” vdW interaction can keep the molecules firmly at-

tached to the surface, but it hardly resists lateral motion. The molecules

move then in a quasi-two-dimensional space, where they can meet each

other. An agglomeration starts if the interaction between the molecules

is attractive and sufficiently strong, which can be arranged via hydrogen
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Figure 4.1. Four stages of forming a self-assembled structure on a crystalline surface:
(a) a clean surface, (b) deposition of molecules on the surface, (c) diffusion
of molecules, (d) agglomeration of molecules into islands (two-dimensional
clusters).

bonding.

The described self-assembly process is determined by non-covalent in-

teractions and therefore it is difficult to investigate by means of (semi-

)local density functionals. In Publications II and III, it is shown that

PBE severely underestimates the binding of planar organic molecules

(melamine, NTCDA and PTCDA, shown in Fig. 4.2) to the KBr (001) and

Au (111) surfaces. The adsorption energies are very low and range from

-0.10 to -0.51 eV (Table 4.1). To appreciate it, these values can be inserted

into the Arrhenius equation for the reaction rate k

k = A exp(− Ea
kBT

), (4.1)

where Ea, kB, A and T are activation energy, Boltzmann constant, trial

rate (also known as the pre-exponential factor) and temperature, respec-

tively. Assuming A = 1012–1013 s−1, which is the typical magnitude of the

trial rate, and setting Ea equal to any of the above adsorption energies,

the typical desorption time at room temperature is 1/k � 1 s. The same

time it is known that these molecules are well-attached to the surfaces at

these conditions [53, 45].

In an attempt to confirm that the disagreement between experiment and

the DFT calculations can be explained by the neglect of the vdW interac-

tion, the vdW-DF is applied to the adsorption problem in Publications II

and III. The results summarised in Table 4.1 show that the vdW-DF recov-

ers the missing part of the binding energy and predicts a three- to ten-fold

increase in the adsorption energy as compared to PBE. Noteworthy, the

strength of the interaction between a surface and a molecule depends on

the size of the latter. The adsorption energies of melamine, NTCDA and

PTCDA on Au(111) relate as 1.4:1.0:0.7, while the numbers of their atoms
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Figure 4.2. Structure of studied molecules: Melamine(1,3,5-triazine-2,4,6-triamine),
NTCDA (naphthalene tetracarboxyldianhydride) and PTCDA (perylene-
3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride).

Table 4.1. Adsorption energies (eV) of flat organic molecules on the KBr (001) and Au
(111) surfaces. The number in parentheses corresponds to a vdW-DF(PBE)
calculation.

Molecule Substrate PBE vdW-DF(revPBE)

Melamine Au(111) 0.25 0.88

NTCDA Au(111) 0.10 1.31

PTCDA Au(111) 0.17 1.88

PTCDA KBr (001) 0.51 1.80(2.36)1

relate as 1.6:1.0:0.7. This observation is roughly in agreement with the

naïve picture that the vdW interaction can be described as a superposi-

tion of pair-wise atomic interactions. At the same time, the PBE adsorp-

tion energies do not show such a correlation.

In addition to the adsorption energy, the non-covalent forces can also

affect the diffusion dynamics on a surface. Particularly, the migration

energy for a PTCDA molecule on the KBr(001) surface is 0.4 or 0.3 eV de-

pending whether or not the vdW interaction is neglected or included in the

calculation. In both cases the height of the energy barrier is determined

by a well-structured distribution of charge on the surface of the alkali

halide. The opposite trend is observed on the Au (111) surface, where all

atoms represent the same chemical species and valence electrons are dis-

tributed almost uniformly. The calculated migration energy for PTCDA is

then only 0.05 eV regardless of the method used.

On both surfaces considered, PCTDA molecules are mobile at room tem-

perature and can form self-assembled structures. The first step of this

process is dimerisation, and it has been studied in Publication III. The

structures of the considered molecule dimers are shown in Fig. 4.3. In all

cases, the origin of binding is a hydrogen bond, but only the melamine
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Figure 4.3. Studied dimer structures.

Table 4.2. Dimer binding energies (eV) of flat organic molecules in the gas phase. Dimers
of NTCDA and PTCDA are labelled according to the nomenclature introduced
in Fig. 4.3.

Dimers PBE vdW-DF(revPBE) MP2

Melamine 0.48 0.42 0.49

NTCDA (D1) 0.06 0.18 0.19

NTCDA (D3) 0.16 0.28 0.28

PTCDA (D1) 0.23 0.38 0.45

PTCDA (D3) 0.25 0.38 0.35

dimer is held together by a strong hydrogen bond (N−H · · ·N), where

electrostatic forces dominate. The attraction in the NTCDA and PTCDA

dimers, in turn, is due to a weak hydrogen bond (C−H · · ·O), where ac-

cording to Ref. [54] the roles of the electrostatic and vdW components is

equally important. These considerations raise concerns that GGA func-

tionals are not suitable for this type of systems. To test this, PBE as

a representative of GGA has been applied for the structures along with

vdW-DF and MP2, the methods that are expected to provide a reasonable

benchmark.

The comparison of the dimer binding energies shown in Table 4.2 re-

veals that, indeed, the GGA method performs well for the intermolecular

interactions only in the melamine dimer. For the other molecules, the

strength of the binding is noticeably underestimated. Thus, the semi-

local approach is not applicable even for the molecules gas-phase. The

other two methods, the vdW-DF and MP2, yield similar, yet not identical
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interaction energies. This is not a surprise knowing the mild disagree-

ment between the two methods for the S22 benchmark set.

Finally, in self-assembly studies, it is important to know how the pres-

ence of a surface influences the interaction between molecules. This ques-

tion is addressed in Publication III, where the melamine dimer on the

Au(111) is considered. According to the vdW-DF calculation, the binding

energy obtained with respect to the isolated surface and two individual

melamine molecules is 2.08 eV. On the other hand, if the same quan-

tity is calculated using the numbers obtained for pairwise interactions

(melamine–melamine and melamine–Au(111)), nearly the same answer,

i.e. 2.18 eV, is obtained. This hints that the dynamics of the self-assembly

of melamine and the other two flat organic molecules on the Au(111) sur-

face can be studied by considering exclusively a two-dimensional pool of

molecules and neglecting the surface. On the other hand, the study of

the diffusion of PTCDA molecules on KBr(001) revealed a quite "bumpy"

potential energy surface with the migration energy of 0.4 eV, which is

comparable to the interaction energy within a PTCDA dimer. In this case,

the presense of the surface cannot be entirely neglected.

In conclusion, Publications II and III have shown the dominant role of

the dispersion interaction in the adsorption of the planar organic molecules

on the considered surfaces. Interactions between molecules are deter-

mined by hydrogen bonds, which are a complex combination of electro-

static, vdW and even covalent interactions. In structures with a weak hy-

drogen bond, the vdW component becomes increasingly important. This

component missed in PBE is recovered with the vdW-DF, which shows

similar trends in results as MP2.

4.3 Adsorption of phenol on silicon (001)

Attempts to improve electronic devices based on silicon are directed to-

wards reducing the size of circuitry and thereby lowering the power con-

sumption and making electronic devices faster and cheaper to manufac-

ture. The minituarisation, in fact, came so far that the surface effects

become increasingly important and the performance of the devices may

depend on the ways how the surface is protected. This is achieved by pro-

ducing semiconductor coatings and the prominent route is to functionalise

the surface by organic molecules. Moreover, organic substances exhibit a
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Figure 4.4. (2× 1) reconstruction of the Si(001) surface.

vast variety of physical and chemical properties that can complement reg-

ular silicon-based electronics with new or simply improved properties.

Organic chemistry provides an enormous stock of diverse molecules,

which are different in shape, size and chemical and physical properties.

In Publication IV, we have studied a particular case – the adsorption of

phenol on the Si(001)-(2 × 1) surface (see Fig. 4.4). However, the inter-

action of organic molecules with an inorganic semiconductor surface is

mainly determined by their constituent functional groups and phenol can

be considered also as a prototype for larger molecules with the phenoxy

group at one of its ends.

The Si (001) surface reconstructs to minimise the number of dangling

bonds, but even then it remains highly reactive. As a result, phenol

chemisorbs to it and even dissociates. This is not a stereotypical “weakly”

interacting vdW system, although, in principle, the long-range dispersion

forces can influence even covalently bound systems. For instance, John-

ston et al. have used this argument in Ref. [55] to explain why experiment

and GGA calculations disagree on which is the energetically preferable

chemisorption configuration of benzene on the Si(001)-(2×1) surface.

Keeping in mind that the accurate description of both covalent and non-

covalent interactions is important, the adsorption of phenol is considered

in Publication IV using a number of exchange-correlation functionals, in-

cluding vdw-DF. The adsorption energies obtained for a variety of struc-

tures are shown in Fig. 4.5. Regardless of the method applied, dissociation

is strongly favoured. Splitting off a proton (in structures labelled as D–

F in Fig. 4.5) or a whole hydroxyl group (C in Fig. 4.5) lead to a gain in

the energy of 1–3 eV. These results are consistent with the experimental

findings of Ref. [56], where dissociation of phenol was observed.

The phenol molecule in the several states (A, B, E and F in Fig. 4.5) takes

a lot of space on the surface, namely, it occupies two surface Si dimers. On

the other hand, after dissociation, the molecules can populate the surface
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Figure 4.5. Structures of phenol adsorbed on the Si(001)-(2×1) surface and the corre-
sponding adsorption energies per surface unit cell. Structures A–F corre-
spond the coverage of 0.25 molecules per one surface Si atom, while for struc-
tures G and H it is 0.5 molecules per one surface Si atom.

twice as densely (G and H in Fig. 4.5). In this case, adsorbed molecules

interact directly with each other and the type of the interaction depends

on the exchange-correlation functional applied. PW91 [57], PBE, revPBE

and B3LYP [58] predict a repulsion, while the vdW-DF – an attraction.

The source of the discrepancy is the inability of the former four functionals

to describe the vdW interaction. This deficiency does not affect the quali-

tative conclusion that, at high exposures to the phenol vapour, it is ener-

getically favourable to saturate each Si dimer by its own phenol molecule.

However, the highest surface coverage is unlike if the molecules interact

repulsively. Then regardless of the phenol vapour density and exposure

times, the outcome is a double dissociation of the molecules (F in Fig. 4.5)

that is the energetically preferable scenario at low surface coverages. On

the other hand, if the vdW interaction is included in the calculation the

highest surface coverage is possible to achieve at certain conditions.

The results summarised in Fig. 4.5 show a clear disagreement among

the DFT methods. The energies of each particular adsorption structure

are dispersed within 0.5–2.1 eV, which shows that there is still a long way

towards the quantitative computational surface chemistry. One of the

reasons why we are not there yet is the difficulty to handle the long-range

dispersion effects that reveal themselves even despite the strong covalent

nature of bonding.

While desorption energies of phenol on the Si(001)-(2 × 1) surface have

not been measured, an experimental study [56] has shown that at differ-

ent exposures of phenol vapour the adsorbed molecules undergo dissocia-
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Figure 4.6. Schematic of structural transformations leading to a separation of the hy-
droxyl group from phenol on the Si (001)-(2× 1) surface.

tion into hydrogen atoms and a phenoxy- groups(D and H in Fig. 4.5). This

conclusion leans on an interpretation of the X-ray photoemission spec-

troscopy (XPS) giving knowledge about chemical environment of atoms.

At first sight, the experimental data contradict results reported in Fig. 4.5.

However, the phenol chemistry on this surface is fairly rich, and there

are chemically inequivalent adsorption structures with certain similari-

ties among themselves. Thus, it is reasonable to question how well they

can be resolved via XPS. To understand this, their spectra were simulated

in Publication IV. It turned out that all structures with a hydrogen atom

dissociated from the phenoxy group (D–F and H in Fig. 4.5) yield nearly

indistinguishable spectra if the broadening of the lines is the same as in

Ref. [56]. Moreover, it turned out that structures with the separated hy-

droxyl group (C and G in Fig. 4.5) can, in principle, be present as a satel-

lite. Based on these computational results, the only firm conclusion that

can be deduced from the XPS experiment is the dissociation of phenol.

For a better insight, structural transformations of phenol on the Si(001)-

(2 × 1) surface are considered in Publication IV. Some of the considered

adsorption structures can be separated from others by high energy barri-

ers and hence would be unlikely to observe in a real-life experiment. The

kinetics of the transformations is determined by the Arrhenius equation

(see Eq. 4.1), where the key quantity is the activation energy. To deter-

mine it, a search for a transition state (TS) of corresponding reactions

has been performed using the adaptive nudged elastic band method as

described in Ref. [59].

As a phenol molecule approaches the surface, initially it becomes at-

tached non-covalently (physisorbed) in what is known as a precursor state.
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Figure 4.7. Schematic of structural transformations that lead to double dissociation of
phenol on the Si (001)-(2 × 1) surface. The sequence of structures is a gas-
phase phenol molecule → a precursor state → D → E → D → F (see also
Fig. 4.5).

In this case, saturation of dangling bonds is not involved and the adsorp-

tion energy in the precursor states is 0.2–0.7 eV, which is lower than for

any of the structures shown in Fig. 4.5. After the molecule is physisorbed,

it can either return back to the gas phase or promote the strength of its

bond with the surface from a weak vdW bond to the covalent one. Which

of the two processes dominates depends entirely on the corresponding ac-

tivation energies. In particular, a separation of a whole hydroxyl group

turns out to be very unlikely, since the desorption from a precursor state

requires 0.66 eV, whereas the dissociation energy is 0.99 eV, as illustrated

in Fig. 4.6. To give an intuitive meaning to the difference in these ener-

gies, it is instructive to insert it into the Arrhenius equation that yields

the ratio of reaction rates of 105 at room temperature. In other words, on

average only one molecule out of 105 overcomes such a dissociation barrier.

In a different precursor state, the phenol molecule aligns itself in a way

suitable for splitting the O–H bond. According to the TS calculations, this

type of dissociation requires less energy than desorption. This qualita-

tive difference in the energetics of the two different dissociation scenarios

clearly explains the XPS data of Ref. [56] that contain hints of a split-off

proton and does not prompt the presence a separated hydroxyl group.

The calculated potential energy surface landscape (shown in Fig. 4.7)

favours also a secondary dissociation of phenol. The corresponding en-

ergy barrier is as low as 0.39 eV, which can be easily surpassed at room

temperature. Consequently, double dissociation is expected to occur at
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least in conditions of shortage of the phenol vapour. If the surface is ex-

posed to a large dose of phenol, it is also possible that the time necessary

for the second dissociation is too long and uncovered Si atoms on the sur-

face rather bond with other molecules. As the vdW-DF calculations have

shown, the resulting interaction between phenol molecules on the surface

at high coverages is attractive and the formation of precursor states next

to previously adsorbed molecules would be energetically favourable. If

appropriate precursor states are occupied, the energetically inexpensive

cleavage of the O–H bond is expected to occur.

In conclusion, the calculations in Publication IV reveal the complexity

of the adsorption of phenol on the Si(001)-(2×1) surface. The previous in-

terpretation of the XPS data has been proved to be poorly justified and

determining the final adsorption state requires the analysis of kinetics.

The transition state calculations have shown two possible scenarios: a

double dissociation of phenol molecules and a single dissociation of the

hydroxyl group at the conditions of excess phenol. In the latter case, dis-

sociated phenol molecules populate densely the surface. Such an outcome

is possible due to the vdW attraction.

4.4 Self-interstitials in graphite

Graphite is a common example of an extended vdW-bound material. Its

structure consists of carbon layers that are held together by the dispersion

interaction, while the intra-layer phenomena are determined by strong co-

valent bonds of sp2-hybridised carbon atoms. The strength of these bonds

is so enormous that formation of intrinsic defects, vacancies and intersti-

tials, requires a relatively high energy. Specifically, the formation energy

of a vacancy–interstitial pair known as Frenkel pair is 14 eV [60]. Upon

recombination an energy of similar magnitude is released [61]. However,

this process can be triggered at certain temperatures. Knowing details of

such defect processes is important and an underappreciation of them can

lead to serious consequences such as the fire accident in the Windscale

nuclear reactor in 1957 [62].

A number of experimental studies on defects in graphite conducted in

1950–1960s contained measurements of annealed samples previously ex-

posed to irradiation. It was found that the energy is released at various

temperatures and the lowest one of them is 80 K [63, 60]. It was antic-
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Figure 4.8. Energetically preferable structures of single interstitials (left) and di-
interstitials (right). Atoms in the upper and lower layers as drawn in blue,
red and white respectively.

ipated then that this particular energy release is triggered by diffusion

of self-interstitials. These defects were pictured as free atoms confined

between atomic layers of graphite. Since the interstitials were considered

unbound, it was easy to relate them to the phenomena observed at 80 K –

the temperature that corresponds to the energy barrier of ∼0.1–0.2 eV.

This model has become questioned after interstitials have been exam-

ined using DFT. It turned out that, in the energetically preferable struc-

tures (shown in Fig. 4.8), interstitials are covalently bound to either one or

both adjacent carbon layers. Clearly, such interstitials cannot be mobile,

since any type of a migration would require then bond breaking, which is

energetically expensive and cannot occur at temperatures as low as 80 K.

It was concluded then that the diffusion requires much higher tempera-

tures and the low-temperature events potentially could be explained by

different processes, for instance, local defect rearrangements and basal

dislocation motion [61].

In Publication V, the question of the mobility of interstitials was read-

dressed, as the previous calculations provide just a fragmentary picture

of the potential energy surface. Particularly, the experience accumulated

in Publication IV shows that the knowledge of the energetic hierarchy of

stationary structures is not sufficient. To build a sound model, it may be

necessary to study also transition states of relevant structural transfor-

mations and previous papers do not contain an extensive study on these

matters. Moreover, sometimes DFT calculations were compromised by

the use of LDA, which is known to be especially inaccurate for chemical

reactions [12]. Another popular method, GGA, somewhat improves the

description of covalent bonds, but it misses another important aspect in

graphite – the vdW interaction. In Publication V, the interstitial problem

is considered using the vdW-DF method with the PBE exchange. Thus,

a relatively high accuracy for chemical reactions is inherited from GGA

without compromising the description of the vdW interactions. Structural

transformations are examined by searching for transition states using the
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Figure 4.9. Schematic roadmap of structural transformations of single interstitials in bi-
layer graphene.

(e
V
)

Figure 4.10. Schematic roadmap of structural transformations of di-interstitials in bi-
layer graphene.

nudged elastic band method combined with the dimer method [64, 65].

Due to computational limitations, structural transformations are con-

sidered only for interstitials in bilayer graphene. However, the obtained

information can be generalised to bulk graphite as well. The results of

calculations summarised in Figs. 4.9 and 4.10 show that the stable struc-

tures of single and di-interstitials are energywise well-separated from

meta-stable structures. It means that samples irradiated at low enough

temperatures contain different types of interstitials at the same time. For

instance, annealing to the lowest single interstitial state requires the ac-

tivation energy of 0.75 eV, which according to the Arrhenius equation

(Eq. 4.1) corresponds to the transition time of 1034 s at the 80 K tem-

perature!
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Figure 4.11. Structures of mobile interstitial species – grafted single interstitial (left),
crane di-interstitial (centre) and free dimer di-interstitial (right).

The analysis of the meta-stable interstitial structures shows that a few

of them are distinct from others by a low migration energy. Among the sin-

gle interstitials, this property is observed for the grafted interstitial (see

Fig. 4.11). For this interstitial the migration energy is 0.38 eV, which is

0.06 eV lower than that for an adatom on graphene. The difference reflects

the presence of steric effects in the bi-layer case. In other words, a grafted

interstitial takes a certain volume in the interlayer space and therefore

repels one of the adjacent carbon layers (the blue one in Fig. 4.11). The

equilibrium structure and energy are determined by a competition be-

tween this repulsion and the vdW attraction between the layers. This

conclusion explains why it is important to describe the vdW interaction

accurately even though the considered structural transformations are pri-

marily related to cleavage and creation of covalent bonds.

The migration energy for the grafted interstitial has been obtained for

a bilayer and should decrease for the bulk. Also, if zero-point vibration

effects are considered, it decreases additionally by 0.07 eV. Combining

these effects, the vdW-DF estimate for the interstitial migration energy

is 0.3 eV that is comparable to the range of 0.1–0.2 eV anticipated from

experiments.

The diffusion of the most mobile di-interstitial structures, the crane and

the free dimer (see Fig. 4.11), requires the activation energies of 0.28 eV

and 0.03 eV, respectively. The reason why the free dimer can migrate so

easily is the absence of chemical bonds that would link it to the adjacent

layers. An interstitial in this structure requires a little energy in order to

resettle into a much more comfortable position and it is questionable how

frequently can the free dimer occur directly upon irradiation. The same

time, the crane di-interstitial can be produced by a reaction between two

single interstitials and is also more likely to appear during irradiation.

In conclusion, the calculations in Publication V provide a comprehensive

picture of structural transformations of interstitials. The results provide

evidence that migration of interstitials can be responsible for the low-
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temperature events observed in experiment. The reason why this was not

previously deduced was the inability to recognise that bound (stable) and

mobile (metastable) interstitials can coexist in a wide temperature range.
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5. Summary

The van der Waals (vdW) interaction is an important and challenging

issue in computational materials science. To resolve it, new methods

emerge in the literature and one of the most prominent of them is the

van der Waals density functional (vdW-DF). This approach introduces a

truly non-local approximation to the correlation energy.

This Thesis is primarily devoted to an efficient implementation and ver-

satile applications of the vdW-DF method. In Publication I, the adaptive

real-space algorithm is introduced and applied for a benchmark set de-

signed to study the performance of the method for intermolecular inter-

actions. The calculations have revealed that the accuracy of the method

varies with the choice of exchange, which is not strictly prescribed for the

vdW-DF.

Publications II and III report on the application of the vdW-DF and the

algorithm for a study of adsorption of flat organic molecules on two dif-

ferent surfaces. The accurate description of the vdW interaction allowed

for explanation of the stability of the mobile molecules on the surfaces at

room temperature. The mobility, in turn, leads to the formation of self-

assembled structures, which are held together by weak hydrogen bonds

that are influenced not only by electrostatic forces, but also by the disper-

sion.

Publication IV presents a detailed discussion of the adsorption of phe-

nol on the Si(001)-(2×1) surface. Although this study is concerned mainly

with the dissociation of covalent bonds, the role of the vdW forces reveals

itself at high coverages of the surface. The vdW attraction enables a high-

density population of molecules on the surface, while methods that ignore

this type of interaction predict a repulsive behaviour. This result poten-

tially affects which of structures is observable after exposing the surface

to the vapour.
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Publication V contains a study on the questions of the relative sta-

bility and the mobility of self-interstitials in bulk graphite and bi-layer

graphene. These defects introduce distortions in the layered structures

of these materials, while the layers interact among themselves via vdW

forces. Hence application of the vdW-DF allowed us to obtain credible en-

ergetics that predicts a coexistence of different types of interstitials at a

wide range of temperatures. This result provides the evidence for the low-

temperature diffusion of interstitials that is the simplest explanation of

the low-temperature energy releases in annealing experiments.

More generally, this Thesis shows an example of how computational ma-

terials science advances due to evolving numerical algorithms rather than

growing computing power. The efficient algorithm proposed here allowed

for the study large-scale problems which would not have been tractable

using the original implementation of vdW-DF. With this success in mind,

I have a dream that one day many other sophisticated theories plagued

by high numerical complexity will become accessible for a wide range of

applications.
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A. Kernel function in the vdW-DF

The kernel function introduced by Dion et al. in Ref. [24] is defined via

the double integral

ϕ(d, d′) =
2

π2

∫ ∞
0

∫ ∞
0

a2b2W (a, b)T (v(a), v(b), v′(a), v′(b))dadb, (A.1)

where

T (w, x, y, z) =

[
1

w + x
+

1

y + z

] [
1

(w + y)(x+ z)
+

1

(w + z)(x+ y)

]
, (A.2)

W (a, b) = [(3− a2)b cos b sin a+ (3− b2)a cos a sin b

+(a2 + b2 − 3) sin b sin a− 3ab cos a cos b]/(a3b3),
(A.3)

v(a) = a2/(2(1− e−γa2/d2
)) (A.4)

and

v′(a) = a2/(2(1− e−γa2/d′2)). (A.5)

Dimensionless variables d = q0(r)|r − r′| and d′ = q0(r′)|r − r′|, relate to

D and δ used in Sec. 2.2.4 through linear relations D = (d + d′)/2 and

δ = (d − d′)/(d + d′). The kernel function is complicated and its frequent

evaluation using Eqs. A.1–A.3 is unpractical. Instead, it is convenient

to tabulate ϕ once and interpolate it whenever it has to be evaluated.

Interpolation is discussed in Appendix B, while the rest of this Appendix

is devoted to the numerical integration of Eq. A.1.

A careful inspection of the integrand F (a, b) = a2b2W (a, b)T (a, b) reveals

several length scale considerations. First, at large values of the variables,

F (a, b) decays as a power law that is scale-free, hence a quadrature on the

whole semi-infinite interval has to be applied. W (a, b) contains trigono-

metric functions with respect to both a and b. Second, it is important

then to have a detailed enough quadrature grid for each oscillation pe-

riod of 2π at least for meaningfully large values of the envelope function

of the integrand. Finally, T (a, b) contains two scales d and d′ that appear
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in the Gaussians of Eq. A.2. To summarise, F (a, b) has a number of im-

portant scales, which are difficult to take into account at the same time

and the validity of a direct application of the trapezoid rule and the Gauss

quadratures is questionable. On the other hand, these difficulties can be

taken care of automatically by adaptive integration routines available in

the Quadpack library[66].

0 2 4 6 8 10
0.278

0.280

0.282

0.284

0.286

Figure A.1. Function W (a, b = 1) computed directly using Eq. A.3 (solid line) and using
the Taylor expansion at small a (dashed line). In both cases floating point op-
erations are carried out in the double precision. The inset show the relative
error of direct evaluation of the function at different values of a.

The large-d and d′ asymptotics of the kernel function is well-known [24]

and the numerical integration procedure described here accurately re-

covers it. On the other hand, the small-d and d′ behaviour has been

derived and is scarcely mentioned in Ref. [67]. This is understandable,

since the integrand of Eq. A.1 has important features in the both ranges

0 < a, b < d, d′ and 0 < a, b < ∞. The problem becomes even more tricky

due to the numerical noise produced by the round-off errors in W (a, b).

As shown in Fig. A.1, the direct evaluation of W (a, b) is severely compro-

mised at small values of a and/or b. In order to avoid the round-off errors,

W (a, b) is Taylor-expanded in the problematic region. It allows to calcu-

late the kernel function accurately and to reveal its asymptotic behaviour,

which is shown in Fig. A.2. At small values of d and d′(or equivalently at

small values of D),

ϕ(D, δ) ∼ α(δ)− β ln(D), (A.6)

where α(δ) is some function and β is a constant. According to numerical

calculations β coincides with 2/π up to seventh sign for each considered δ.

The obtained asymptotic form of the kernel function agrees well with

the findings of Vydrov and Voorhis [67] and contradicts the graph of the

derivative of the kernel function acquired by Thonhauser et al. in Ref.[68].
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Figure A.2. Small D asymptotics of the vdW-DF kernel function at represented as a fam-
ily of lines corresponding to the range 0 ≤ δ ≤1.

Tests, however, show that, if an algorithm for evaluating Eq. 2.9 can han-

dle the behaviour of the kernel function at D = 0, the logarithmic singu-

larity itself has an insignificant role in real systems. Then, it is justifi-

able to store a table of D2ϕ(D, δ) values without extra resolution for small

D. This observation has a practical meaning, as the look-up table can be

rather compact.
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B. Interpolation

The algorithm described in Sec. 3 requires an efficient procedure to evalu-

ate the density n(r) at any given r. A calculation via one-electron orbitals

using basis functions is too slow and hence inappropriate regardless of

the type of the basis. Instead, it turns out to be much more practical to

interpolate charge densities precomputed on evenly-spaced grids. Elec-

tronic structure codes such as SIESTA and VASP employ either pseu-

dopotentials or projector-augmented waves and deal with smooth pseudo-

densities. It means that even a low-order polynomial interpolation can be

suitable for these purposes.

The simplest and fastest approach is the (tri-)linear interpolation. If

the function f(x) is known at the ends of the unity interval [0; 1], it can be

approximated as f(x) ≈ (1− x)f(0) + xf(1). Rewritten in a more compact

manner

f(x) ≈
∑

i∈{0;1}

A
(x)
i fi, (B.1)

with A(x)
0 = 1− x, A(x)

1 = x and fi = f(i). The uni-variate linear interpola-

tion is trivial to generalise to the tri-variate case

f(x, y, z) ≈
∑

i,j,k∈{0;1}

A
(x)
i A

(y)
j A

(z)
k fijk. (B.2)

Such an approximation is easy to implement and fast to run. Unfortu-

nately, the linear interpolation converges too slowly with respect to the

grid resolution. It also yields a continuous, but not smooth a function that

makes the linear interpolation useless if continuous derivatives are also

required. For the same reason, the Lagrange polynomial interpolation is

not suitable either.

Nevertheless, the smoothness of an interpolating function can be easily

arranged in one dimension. Assume, the second derivative f ′′i is tabulated

at grid points. Then, f ′′(x) can be approximated by a piecewise linear
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function or, specifically for the unity interval, as

f ′′(x) ≈ (1− x)f ′′0 + xf ′′1 . (B.3)

The double integration of Eq. B.3 and the knowledge of the function values

at the endpoints of the interval leads to

f(x) ≈ (1− x)f0 + xf1 +
(1− x)3 − (1− x)

6
f ′′0 +

x3 − x
6

f ′′1 (B.4)

and

f ′(x) ≈ −f0 + f1 −
3(1− x)2 − 1

6
f ′′0 +

3x2 − 1

6
f ′′1 . (B.5)

The same result rewritten in a more compact form reads as

f(x) ≈
∑

i∈{0;1}

(
A

(x)
i fi +B

(x)
i f ′′i

)
(B.6)

and

f ′(x) ≈
∑

i∈{0;1}

(−1)i+1
(
fi + C

(x)
i f ′′i

)
, (B.7)

where B(x)
i = ((A

(x)
i )3 − A(x)

i )/6 and C
(x)
i = (3(A

(x)
i )2 − 1)/6. Eqs. B.5 and

B.7 show that the smoothness of f(x) at the endpoints of intervals re-

stricts f ′′i . In practice, the second derivative is not given in advance and

has to be computed following the restrictions. As explained in Ref. [69],

a calculation of f ′′i requires solving a tridiagonal linear set of equations

with the number of unknowns equal to the number of tabulated function

values. This effort scales as O(N), but it has to be faced just once at the

initialisation phase and the computational complexity of each interpola-

tion event is O(1).

The most straightforward generalisation of the cubic spline interpola-

tion to the multi-variate case is described in Ref. [69]. The idea is to ap-

ply the uni-variate interpolation for each dimension, but this approach is

very expensive and hence is not suitable for heavy-duty applications. In-

stead, it is possible to follow a different strategy that also allows to obtain

smooth interpolation, but with a considerably smaller effort. Consider an

evenly spaced structured Nx × Ny grid, on which the function f(x, y) is

tabulated. Similarly to Eq. B.3, the function can be approximated

f ′′xx(x, y) ≈
∑

i,j∈{0;1}

A
(x)
i A

(y)
j f ′′xx(xi, yj) (B.8)

and

f ′′yy(x, y) ≈
∑

i,j∈{0;1}

A
(x)
i A

(y)
j f ′′yy(xi, yj). (B.9)
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Double integration of these expressions and inserting boundary condi-

tions lead to the spline interpolation formula

f(x, y) ≈
∑

i,j∈{0;1}

[A
(x)
i A

(y)
j f(xi, yj)

+B
(x)
i A

(y)
j f ′′xx(xi, yj)

+A
(x)
i B

(y)
j f ′′yy(xi, yj)].

(B.10)

The result does not contain cross-derivatives, which means that a calcu-

lation of f ′′xx(xi, yj) and f ′′yy(xi, yj) can be carried out separately for every

grid line along x and y. The effort to obtain all values of f ′′xx(xi, yj) and

f ′′yy(xi, yj) scales as O(NxNy) and it has to be faced once during the initial-

isation. An evaluation of f(x, y) requires O(1) operations although it is

more expensive than in the uni-variate case.

This approach is not equivalent to the bicubic spline interpolation de-

scribed in Ref. [69] neither effort-wise nor mathematically. The bicubic

spline polynomial of Ref. [69] contains xiyj with i, j ∈ {0, 1, 2, 3} – 16 terms

altogether, while Eq. B.10 contains only 12 of them, specifically, 1, x, y,

xy, x2, x3, x2y, x3y, y2, y3, xy2, xy3. Yet, it proved very useful in practical

applications. A generalisation to the tri-variate case contains 32 terms

instead of 64 in a tricubic polynomial and it reads as

f(x, y, z) ≈
∑

i,j,k∈{0;1}

[A
(x)
i A

(y)
j A

(z)
k f(xi, yj , zk)

+B
(x)
i A

(y)
j A

(z)
k f ′′xx(xi, yj , zk)

+A
(x)
i B

(y)
j A

(z)
k f ′′yy(xi, yj , zk)

+A
(x)
i A

(y)
j B

(z)
k f ′′zz(xi, yj , zk)].

(B.11)

51





C. Adaptive quadrature grids

The linear scaling of the adaptive real-space algorithm described in Sec. 3.2

makes it affordable for large applications, where the time spent on evalu-

ating Enl
c , εnl

c (r) and vnl
c (r) is just a small fraction of the entire DFT calcu-

lation. For smaller systems this is not the case and a vdW-DF calculation

can be several times more expensive than a GGA calculation for the same

system. The situation can be improved by varying the effort spent on each

point, where the correlation energy density and potential has to be eval-

uated. For example, if at some point r the electron density is very small,

say, smaller than some nthr, the energy density and the potential can be

set to zero without any harm to the overall accuracy. But it may occur

that nthr < n(r) < 10nthr, what to do then? The energy density cannot be

disregarded at such a point. On the other hand, it is clear that evaluation

of εnl
c (r) may be less accurate than if n(r) were ten times higher. Such

an example shows that computational expenses can be reduced if the size

of quadrature grid, namely, the number of radial shells and the order of

Lebedev’s quadrature are adjusted according to local accuracy require-

ments. In practice, the number of radial shells Nrad is selected according

to

Nrad = max{N0 + k ln
n(r)

n0
, N0}, (C.1)

where n0 = 1 a−3
0 , but N0 and k are empirically chosen parameters.

The effort spent on the angular integral over a sphere can be reduced

if the radius of the sphere and the distance between the grid points are

small, since the densities used in practical calculations are so smooth that

they can be accurately approximated by low-order polynomials. Contribu-

tions of high spherical harmonics are low in this case and the necessary

size of the angular grid can be estimated as

Nang ≥
R2

R2
0

, (C.2)

53



Adaptive quadrature grids

where R is the radius of a spherical shell and R0 is an empirical parame-

ter.
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D. Accuracy benchmarks

To validate the implementation of the adaptive real-space approach in the

VASP code, test calculations are performed and compared to the results

of Ref. [70]. The authors of that paper use their own real-space algorithm

embedded in an all-electron code and their own table of the kernel func-

tion. In other words, these two implementations are completely indepent.

The results of the test calculations are summarised in Fig. D.1, which con-

tains the interaction energy curves for the argon and methane dimers as

well as for the methane-benzene complex.

For all of the three studied complexes, the data obtained in the present

efforts and in Ref. [70] agree well, but do not coincide. The anticipated

source of discrepancies is the use of the pseudo-valence electron densities

in the present Thesis in contrast to the all-electron densities in Ref. [70].
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Figure D.1. vdW-DF2 [28] interaction energy curves for (a) argon dimer, (b) methane
dimer and (c) methane-benzene complex. Data from Ref. [70] are shown
for a reference. The separation distances d and geometries of monomers are
defined consistently with Ref. [71].
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E. Self-consistency and forces

The first self-consistent vdW-DF calculations have been reported a cou-

ple of years after the vdW-DF method was published [68]. Until then the

method was applied non-self-consistently (perturbatively) for a number

of applications. In fact, it is still applied as a post-correction if the Enl
c

integration routine is implemented using the expensive brute-force algo-

rithm, because obtaining self-consistency requires recalculating of εnl
c (r)

and vnl
c (r) several times. It makes the brute-force algorithm even more

expensive. With the emergence of faster integration algorithms, obtain-

ing self-consistent Kohn-Sham orbitals does not require an enormous ef-

fort anymore and there is no reason for performing vdW-DF calculations

non-self-consistently.

The exchange-correlation potential, which is a part of the effective po-

tential in the Kohn-Sham equations, is defined as

vxc(r) =
δExc [n(r)]

δn(r)
. (E.1)

In practice, when GGA is used, it is expressed as

vxc =
∂(nεxc)

∂n
−∇∂(nεxc)

∂(∇n)
(E.2)

or, equivalently,

vxc = εxc + n
∂(εxc)

∂n
−∇∂(nεxc)

∂(∇n)
. (E.3)

For instance, in the DFT codes SIESTA and VASP, the energy density εxc

and the derivatives ∂εxc/∂n and ∂εxc/∂(∇n) (or ∂εxc/∂|∇n|) are evaluated,

and then they are combined together to obtain the potential. This means

that if vnl
c could be presented in the form of Eq. E.3, a self-consistent imple-

mentation of the vdW-DF can exploit the already existing infrastructure

of the two codes.

To derive vnl
c , it is convenient to write Enl

c = Enl
c [n(r1), n(r2)]. Then, the

potential is still evaluated as vnl
c (r) = δEnl

c [n(r1), n(r2)] /δn(r), but one has
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to keep in mind relation

∂f(r1)/∂n(r) = δ(r− r1)∂f(r)/∂n(r). (E.4)

Inserting Eq. 2.9 into Eq. E.3 yields

vnl
c (r) =

1

2

∫∫
∂n(r1)

∂n(r)
ϕ(r1, r2)n(r2)d3r1d

3r2

+
1

2

∫∫
n(r1)ϕ(r1, r2)

∂n(r2)

∂n(r)
d3r1d

3r2

+
1

2

∫∫
n(r1)

∂ϕ(r1, r2)

∂n(r)
n(r2)d3r1d

3r2

− 1

2
∇
(∫∫

n(r1)
∂ϕ(r1, r2)

∂(∇n(r))
n(r2)d3r1d

3r2

)
,

(E.5)

where the sum of the first two terms transforms into 2εnl
c after Eq. E.4 is

applied. The derivative from the third term can be rewritten using the

chain-rule

∂ϕ(D(r1, r2),∆(r1, r2))

∂n(r)
=

∂ϕ(D(r1, r2),∆(r1, r2))

∂D(r1, r2)

∂D(r1, r2)

∂q0(r)

∂q0(r)

∂n(r)

+
∂ϕ(D(r1, r2),∆(r1, r2))

∂∆(r1, r2)

∂∆(r1, r2)

∂q0(r)

∂q0(r)

∂n(r)
,

(E.6)

where

D(r1, r2) =
q0(r1) + q0(r2)

2
|r2 − r1| (E.7)

and

∆(r1, r2) =
q0(r1)− q0(r2)

q0(r1) + q0(r2)
. (E.8)

The derivatives ∂ϕ/∂D and ∂ϕ/∂∆, in principle, are known. More specif-

ically, they can be stored in separate tables or can be computed from

the ϕ-table using the spline interpolation in the manner described in Ap-

pendix B. The other derivative, ∂q0(r)/∂n(r), is straightforward to obtain

from Eq. 2.11. Finally, using Eqs. E.4, E.7 and E.8, the remaining multi-

pliers of Eq. E.6 are obtained as

∂D(r1, r2)

∂q0(r)
=
δ(r− r1) + δ(r− r2)

2
|r1 − r2|, (E.9)

∂∆(r1, r2)

∂q0(r)
=

2(q0(r2)δ(r− r1) + q0(r1)δ(r− r2))

(q0(r2) + q0(r1))2
. (E.10)

To derive the last summand in Eq. E.5, it is necessary to repeat the steps

done in Eqs. E.6–E.10 with the only difference that ∂q0/∂n is replaced by
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∂q0/∂(∇n). The integration of the obtained expression leads to the final

answer

vnl
c (r) = 2εnl

c (r)

+
1

2

(
n(r)

∂q0(r)

∂n(r)
−∇

(
n(r)

∂q0(r)

∂∇n(r)

)
− n(r)

∂q0(r)

∂∇n(r)
∇
)

×
∫ (

∂ϕ

∂D

∣∣r− r′
∣∣+

∂ϕ

∂∆

4q0(r′)

(q0(r) + q0(r′))2

)
d3r′.

(E.11)

A careful inspection of the obtained expression for vnl
c shows that it has

the same form as Eq. E.3, which is the desired result. From the technical

point of view, Eqs. E.3 and 3.2 contain the same kind of integrals and an

evaluation of ∂εxc/∂n and ∂εxc/∂(∇n) required for obtaining vnl
c (r) does not

require any different numerical approach than that for εnl
c (r). In practice,

integrals of all the three terms are evaluated on a same quadrature grid

using the adaptive real-space approach.

The capability to evaluate the potential actually brings more than just a

self-consistent solution and a confidence of having a better justified total

energy. In a number of codes, including VASP and SIESTA, this capability

translates into the availability of Hellmann-Feynman forces [44, 43]. It

opens a road for a large number of applications that require a non-trivial

study of the potential energy surface ranging from a ionic relaxation to a

search for transition states relevant for diffusion and chemical reactions.
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