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We develop comparative results for ratio-based efficiency analysis (REA) based on the decision-making
units’ (DMUs’) relative efficiencies over sets of feasible weights that characterize preferences for input

and output variables. Specifically, we determine (i) ranking intervals, which indicate the best and worst efficiency
rankings that a DMU can attain relative to other DMUs; (ii) dominance relations, which show what other DMUs
a given DMU dominates in pairwise efficiency comparisons; and (iii) efficiency bounds, which show how much
more efficient a given DMU can be relative to some other DMU or a subset of other DMUs. Unlike conventional
efficiency scores, these results are insensitive to outlier DMUs. They also show how the DMUs’ efficiency ratios
relate to each other for all feasible weights, rather than for those weights only for which the data envelopment
analysis (DEA) efficiency score of some DMU is maximized. We illustrate the usefulness of these results by
revisiting reported DEA studies and by describing a recent case study on the efficiency comparison of university
departments.
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1. Introduction
The seminal paper of Charnes et al. (1978) has
spawned a growing literature on data envelopment
analysis (DEA) which offers numerous methods for
examining the efficiency of decision-making units
(DMUs) (see, e.g., Cooper et al. 2007). These meth-
ods are often employed in contexts where information
about the unit prices of input and output variables is
not readily available, but where it is still possible to
elicit subjective information about how valuable these
variables are relative to each other (Thompson et al.
1986, Allen et al. 1997; cf. Thanassoulis et al. 2004).
This is the case in contexts such as higher education,
health care, and technology management, among oth-
ers (see, e.g., Sarrico and Dyson 2000).
Technically, the Charnes-Cooper-Rhodes-DEA

(CCR-DEA; Charnes et al. 1978) computes efficiency
scores for the DMUs relative to an efficient frontier,
characterized by the DMUs that have the highest
efficiency ratio between the aggregate value of their
outputs and aggregate value of their inputs for some
feasible input/output weights. By definition, an
efficient DMU will have a score of one. For inefficient
DMUs, the score is typically less than one and serves
as a measure of how close to the efficient frontier
a DMU can be when its inputs and outputs are
aggregated with weights that are most favorable to this
DMU. However, a concern with these scores is that

they do not convey information about how the effi-
ciency ratio of the DMU compares with the efficiency
ratios of other DMUs for other input/output weights
even though other weights reflect relevant preference
information. This recognition has motivated the
development of cross-efficiency (CE) methods where
the efficiency score for every DMU is computed
based on the weights for which the efficiency of some
DMU is maximized (see Sexton et al. 1986, Doyle and
Green 1994). Yet the consideration of these weights
only does not show how the DMUs’ efficiency ratios
change relative to each other for all feasible weights.
A second concern with conventional efficiency

scores is that they can be sensitive to which DMUs
are included in or excluded from the analysis: for
instance, the introduction or removal of a single out-
lier may shift the efficient frontier drastically and thus
disrupt efficiency scores, which may be perplexing
to users (see, e.g., Seiford and Zhu 1998a, b; Zhu
1996). A third concern with conventional scores is
that they call for returns-to-scale assumptions, which
may be difficult to justify. In effect, these three con-
cerns can be addressed by focusing on pairwise one-
on-one comparisons of efficiency ratios among DMUs
because such comparisons (i) account for all feasi-
ble input/output weights, (ii) are less sensitive to the
presence of outlier DMUs, and (iii) do not necessi-
tate assumptions about what the set of production
possibilities is beyond the DMUs that are included in
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the analysis (see, e.g., Galagedera and Silvapulle 2003,
Dyson et al. 2001).
Motivated by the above considerations, we de-

velop efficiency results in response to the following
questions:
• What are the best and worst rankings that a

given DMU can attain in comparison with other
DMUs based on the comparison of DMUs’ efficiency
ratios for all feasible weights?
• Given a pair of DMUs, does the first DMU dom-

inate the second one (in the sense that the efficiency
ratio of the first DMU is higher than or equal to that of
the second for all feasible weights and strictly higher
for some weights)?
• How much more/less efficient can a given DMU

be relative to some other DMU or, more generally,
relative to the most and least efficient DMU in some
subset of DMUs?
The first question is partly motivated by the popu-

larity of ranking lists, as exemplified by the ranking
of “best” universities by the Shanghai Jiao Tong Uni-
versity (cf. Liu and Cheng 2005, see also Köksalan
et al. 2010). The resulting ranking intervals—defined
by the DMUs’ best/worst rankings over all feasi-
ble input/output weights—are robust, because the
integer-valued bounds of these intervals can change
at most by one when a single DMU is introduced or
removed. The second question establishes dominance
relations based on pairwise comparisons between two
DMUs at a time. The third question (which is related
to superefficiency; see, e.g., Andersen and Petersen
1993) yields efficiency bounds that provide informa-
tion about the relative efficiency differences among
the DMUs. All of these results can be employed in
the specification of performance targets. With more
preference information, the results become usually
more conclusive in terms of narrower ranking inter-
vals, additional dominance relations, and tighter effi-
ciency bounds. Furthermore, ratio-based results can
be presented even when the number of DMUs is
small, because the results are not computed rela-
tive to an efficient frontier for the reliable estima-
tion of which the number of DMUs would have to
large compared with the number of input and output
variables.
The rest of this paper is organized as follows.

Section 2 discusses earlier methods for ratio-based
efficiency analysis and their applications in selected
application domains. Section 3 formulates ratio-based
efficiency results, considers their uses in target set-
ting, and contrasts them with cross-efficiency analy-
sis. Section 4 illustrates these results in the context
of reported DEA studies and describes a case study
where they were employed in the comparison of uni-
versity departments. Section 5 concludes.

2. DEA Methods and Their
Applications

In the DEA literature, there are numerous meth-
ods for analyzing the relative efficiencies of DMUs
that transform multiple inputs into multiple outputs
(see, e.g., Cooper et al. 2007). Early approaches for
incorporating preference information in these meth-
ods include the specification of assurance regions
(Thompson et al. 1990) and cone ratios (Charnes
et al. 1990). Subsequently, relationships between DEA
models and multicriteria decision-making methods
have been explored extensively (Stewart 1996, Joro
et al. 1998, Bouyssou 1999). These relationships also
underpin the value efficiency analysis method (Halme
et al. 1999, Halme and Korhonen 2000, Korhonen
et al. 2002), which makes inferences about the DMUs’
value efficiencies with the help of an implicit value
function. Recent advances include approaches based
on the explicit construction of the decision maker’s
(DM’s) value function (Gouveia et al. 2008) and the
specification of context-sensitive assurance regions for
input/output weights (Cook and Zhu 2008).
Instead of seeking to survey DEA applications (see,

e.g., Cooper et al. 2007, Emrouznejada et al. 2008,
Avkiran and Parker 2010), we only provide some
pointers to selected DEA models in the three decision
contexts—higher education, technology management,
and health care—for which we provide numerical effi-
ciency results in §4.
First, higher education is an attractive domain for

DEA, because universities consume many inputs and
produce multiple outputs to which prices may be dif-
ficult to attach. As a result, DEA has been employed
extensively in higher education by treating univer-
sities, departments, research units, or even students
as DMUs. For instance, Ahn et al. (1988) analyze
the production behavior of higher education institu-
tions and compare the relative efficiencies of pub-
lic and private doctoral-granting universities in the
United States. Johnes (2006) discusses the role of
DEA in higher education and analyzes more than 100
higher educational institutions in the United King-
dom. Tauer et al. (2007) examine the efficiencies of
the 26 academic departments at Cornell University
when specifying performance targets. Korhonen et al.
(2001) establish efficiency scores for research units
at the Helsinki School of Economics and present
an approach for allocating resources to support the
attainment of higher aggregate efficiency. Sarrico and
Dyson (2000) describe a DEA-based planning tool for
the formulation of strategic options at the University
of Warwick.
Second, comparative analyses in technology man-

agement involve subjective preferences about the
inputs that are needed to develop and deploy tech-
nologies with the aim of generating desired outputs.
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For example, Shafer and Bradford (1995) compare
alternative machine group solutions based on DEA
efficiencies. Baker and Talluri (1997) provide deci-
sion support for screening robots based on cross-
efficiency analysis. Talluri and Yoon (2000) evaluate
robots using an extended cone-ratio DEA approach.
Eilat et al. (2008) integrate DEA models with a bal-
anced scorecard approach and evaluate research and
development projects in different stages of their life
cycle. Farzipoor (2009) supports technology selection
decision by developing a framework that captures
preferences through assurance regions and accommo-
dates both cardinal and ordinal information about
the DMUs.
Third, DEA models in health care give insights into

which DMUs are more efficient than others when
health indicators are viewed as outputs and when
inputs consist of health-care investments and possi-
bly contextual factors as well. For instance, Garcia
et al. (2002) analyze the efficiency of primary health
units and explore how sensitive the DEA results are to
the selection of output variables. Hollingsworth et al.
(1999) review DEA applications in health care with
a particular emphasis on the efficiency evaluation of
hospitals. In his comprehensive book, Ozcan (2008)
discusses uses of DEA models across a broad range
of health-care planning problems.

3. Comparative Results for
Ratio-Based Efficiency Analysis

3.1. Efficiency Ratios
Assume that there are K DMUs that consume M
types of inputs and produce N types of outputs.
The kth DMU (DMUk for short) consumes xmk ≥ 0
units of the mth input and produces ynk ≥ 0 units of
the nth output. The input consumption and output
production vectors are xk = �x1k� � � � � xMk�

T and yk =
�y1k� � � � � yNk�

T , respectively.
Preference information about the relative values

of inputs and outputs is captured by nonnega-
tive weights v = �v1� � � � � vM�T and u = �u1� � � � �uN �

T ,
respectively. These weights are assumed to sat-
isfy homogeneous linear constraints (cf. Podinovski
2001, 2005)

Sv = �v= �v1� � � � � vM�T �= 0 � v≥ 0�Avv≤ 0�� (1)

Su = �u= �u1� � � � �uN �
T �= 0 � u≥ 0�Auu≤ 0�� (2)

where Av and Au are coefficient matrices derived
from the DM’s preference statements about how valu-
able different amounts of inputs and outputs are.
These statements can be elicited with well-known
techniques for the specification of assurance regions
(see, e.g., Thompson et al. 1986, 1990); for instance,
if the DM states that one unit of output 1 is at least

as valuable as a unit of output 2 but not more valu-
able than two units of output 2, then the constraints
u2 ≤ u1 ≤ 2u2 must hold. If such statements are elicited
from several DMs, a group preference representation
for these DMs can be built by forming convex com-
binations of those weights that satisfy the constraints
of some DM (Salo 1995).
For any feasible input weights v ∈ Sv, the virtual

input of DMUk is vT xk =
∑M

m=1 vmxmk. Similarly, the
virtual output for u ∈ Su is uT yk = ∑N

n=1 unynk. We
assume that the virtual inputs and the virtual out-
puts are strictly positive for all feasible weights (i.e.,∑

m vmxmk > 0, ∀v ∈ Sv, and
∑

n unynk > 0, ∀u ∈ Su, for
all k= 1� � � � �K). This assumption holds, for example,
if all inputs and outputs have strictly positive weights
and if there is at least one input (output) that is con-
sumed (produced) by every DMU. It also holds if all
DMUs consume/produce some positive amounts of
all inputs/outputs. The assumption of positive virtual
inputs/outputs implies that the (absolute) efficiency
ratio (cf. Podinovski 2001) of DMUk, defined as

Ek�u�v�=
∑

n unynk∑
m vmxmk

� (3)

is well defined for any u ∈ Su�v ∈ Sv (see also Dyson
et al. 2001).

3.2. Ranking Intervals
For any feasible input/output weights, the DMUs
can be ranked based on their efficiency ratios (3).
The resulting rankings can change relative to each
other for different weights. We first determine what
is the best (highest) efficiency ranking that a DMU
can attain relative to other DMUs over the set of
input/output weights (1) and (2). For instance, this
ranking is three for a DMU if the least number of
other DMUs with a strictly higher efficiency ratio is
two. Similarly, we compute the worst (lowest) rank-
ing for a DMU. These two bounds establish a ranking
interval, which conveys information about the relative
efficiencies of the DMUs.
Toward this end, we define the sets

R>
k �u�v� = �l ∈ �1� � � � �K� � El�u�v� > Ek�u�v���

R≥
k �u�v� = �l ∈ �1� � � � �K�\�k� � El�u�v�≥ Ek�u�v���

which contain the indexes of those other DMUs
whose efficiency ratios are either strictly higher than
that of DMUk (for R>

k �u�v�) or at least as high as that
of DMUk (for R≥

k �u�v�). By construction, R>
k �u�v� ⊆

R≥
k �u�v�.
The corresponding efficiency rankings are defined

as r>k �u�v� = 1 + �R>
k �u�v�� and r≥k �u�v� = 1 +

�R≥
k �u�v�� (here, �R� denotes the cardinality of the

set R). For example, if the efficiency ratio of
DMUk is strictly higher than the efficiency ratios
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of all other DMUs for some �u�v� ∈ �Su� Sv�, then
r>k �u�v� and r≥k �u�v� equal one, because R>

k �u�v� =
R≥

k �u�v�=	. Yet these rankings treat ties differently:
if exactly two DMUs have same highest efficiency
ratio at �u′�v′� ∈ �Su� Sv�, then r>�u′�v′� ranks them
both as first, but r≥�u′�v′� ranks them as second.
The ranking interval for DMUk is now defined as

�rmin
k � rmax

k 	, where the best and worst rankings for
DMUk are given by

rmin
k = min

u�v
r>k �u�v��

rmax
k = max

u�v
r≥k �u�v��

and where the optimization problems are solved
over �u�v� ∈ �Su� Sv�. Both optimum solutions exist,
because r>k �u�v� and r≥k �u�v� assume values in the set
�1� � � � �K�.
Based on Theorems 1 and 2, the ranking interval

�rmin
k � rmax

k 	 can be determined from mixed integer lin-
ear programming problems where the weight sets are
closed and bounded by constraints (5) and (7), respec-
tively. In these and also later theorems, C denotes
a large positive constant. The proofs are in the
appendix.
If DMUk is CCR-DEA efficient, then for some feasi-

ble weights its efficiency ratio is higher than or equal
to the efficiency ratio of any other DMU, and thus its
best ranking in Theorem 1 will be one.

Theorem 1. The optimum of the minimization problem

min
u�v�z

1+∑
l �=k

zl

subject to
∑
n

unynl ≤
∑
m

vmxml +Czl�

l ∈ �1� � � � �K�� l �= k� (4)∑
n

unynk =
∑
m

vmxmk = 1� (5)

zl ∈ �0�1�� l �= k�

�u�v� ∈ �Su� Sv�

is rmin
k , the best (highest) efficiency ranking of DMUk.

Theorem 2. The optimum of the maximization problem

max
u�v�z

1+∑
l �=k

zl

subject to
∑
m

vmxml ≤
∑
n

unynl +C�1− zl��

l ∈ �1� � � � �K�� l �= k� (6)∑
n

unynk =
∑
m

vmxmk = 1� (7)

zl ∈ �0�1�� l �= k�

�u�v� ∈ �Su� Sv�

is the rmax
k , the worst (lowest) efficiency ranking of DMUk.

With the introduction of additional preference
information, the constraints on the feasible input/
output weights become tighter. In view of Theorems 1
and 2, such information may lead to narrower (but
not wider) ranking intervals.
In general, DMUs that are outliers in the sense

that their input/output profiles differ considerably
from what is consumed/produced by most DMUs are
likely to have wider ranking intervals. This is because
these outlier DMUs can have either good (high) or
bad (low) rankings at the extreme points of Su and Sv.
Conversely, DMUs whose profiles are more typical are
likely to have narrower ranking intervals.

3.3. Efficiency Dominance
Although ranking intervals provide information
about the relative efficiencies of the DMUs, they are
not well suited for the comparison of pairs of DMUs.
Specifically, even if two DMUs have overlapping
ranking intervals, it is possible that one of them has a
higher efficiency ratio (3) for all feasible input/output
weights.
To compare the efficiency ratios of DMUs on a one-

on-one basis, we build on concepts from preference
programming (see, e.g., Salo and Hämäläinen 1992,
2001) and define efficiency dominance between DMUs
as follows.

Definition 1. DMUk dominates DMUl (denoted
by DMUk �DMUl) if and only if

Ek�u�v� ≥ El�u�v� for all �u�v� ∈ �Su� Sv�� (8)

Ek�u�v� > El�u�v� for some �u�v� ∈ �Su� Sv�� (9)

If DMUk � DMUl, the efficiency ratio of DMUk

is at least as high as that of DMUl for all feasible
weights, and moreover, there exist some weights for
which its efficiency is strictly higher. By construction,
Definition 1 establishes a strict partial order that is an
irreflexive, asymmetric, and transitive binary relation
among the DMUs. This relation, however, may not be
total (i.e., it may be that neither DMUk � DMUl nor
DMUl � DMUk).
The dominance relation in Definition 1 can be deter-

mined based on the pairwise efficiency ratio

Dk�l�u�v�=
Ek�u�v�

El�u�v�
� (10)

By Lemma 1, this ratio is invariant subject to multipli-
cation of input/output weights by positive constants.

Lemma 1. Take any �u�v� ∈ �Su� Sv�, and let �u′�v′�
be vectors that are obtained from �u�v� by multiplying
them componentwise so that u′ = cuu�v

′ = cvv for some
cu > 0� cv > 0. Then, �u′�v′� ∈ �Su� Sv� and Dk�l�u�v� =
Dk�l�u

′�v′�.
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In view of Lemma 1, the ratio (10) remains invari-
ant even if weights are normalized through con-
straints such as

∑
n un = 1 and

∑
m vm = 1. After the

introduction of such constraints, the feasible sets Su
and Sv become closed and bounded. Because the ratio
Dk�l�u�v� is continuous in input/output weights, it
therefore achieves its maximum and minimum val-
ues, denoted by �Dk�l and Dk�l, respectively.

The relative efficiency ratio (10) is nonlinear
in weights �u�v�. Yet, by Theorem 3, this ratio
can be maximized and minimized through linear
programming.

Theorem 3. The optimum of the maximization (mini-
mization) problem

max
u�v

�min
u�v

�
∑
n

unynk (11)

subject to
∑
n

unynl =
∑
m

vmxml� (12)

∑
m

vmxmk = 1� (13)

�u�v� ∈ �Su� Sv� (14)

is the maximum (minimum) of Dk�l�u�v� over �Su� Sv�.

The optimization problems in Theorem 3 provide
upper and lower bounds on how efficient DMUk can
be relative to DMUl across feasible weights. For exam-
ple, if �Dk�l = 1�42, the efficiency ratio of DMUk can be
at most 42% greater than that of DMUl. Conversely,
if Dk�l = 1�10, the efficiency ratio of DMUk is at least
10% higher than that of DMUl. Thanks to Theorem 3,
the dominance structure can be computed efficiently
with linear programming. First, if the minimum Dk�l

is greater than one, DMUk dominates DMUl. Sec-
ond, if it is less than one, (8) is violated and domi-
nance does not hold. Third, if the minimum is exactly
one, the sufficiency condition (9) can be checked by
maximizing (11) subject to (12)–(14). If the resulting
maximum �Dk�l exceeds one, dominance does hold;
but if not, then DMUk and DMUl have the same effi-
ciency ratio (3) for all feasible weights, and there is
no dominance. Also, the transitivity and asymmetric-
ity properties of� can be exploited to further reduce
the number of pairs for which the dominance relation
must be explicitly computed.
A DMU is not necessarily dominated by another

DMU that has a higher CCR-DEA efficiency score. For
example, consider three DMUs, A, B, and C, that all
consume one unit of a single input and produce two
outputs so that A = �1�3�, B = �2�1�, and C = �3�1�.
For the weight information 1/3u1 ≤ u2 ≤ 3u1, there
are two CCR-DEA-efficient DMUs, A and C. Yet, for
feasible output weights such that u1/u2 > 2, the vir-
tual output of DMUB is higher than that of DMUA

so that DMUA does not dominate DMUB. Figure 1

Figure 1 The Efficiency Ratios for DMUs A, B, and C

0.5 1.0 1.5 2.0 2.5 3.0

0.5

0.6

0.7

0.8

0.9

1.0

u1/u2
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B
C

shows how the DMUs’ efficiency ratios change rela-
tive to each other for feasible output weights when
the highest efficiency ratio is normalized to one. For
example, the efficiency ratio of DMUC is higher than
that of DMUB for all weights so that DMUC domi-
nates DMUB. The ranking intervals are �1�3	 for A,
�2�3	 for B, and �1�2	 for C.

With the introduction of additional preference
information, new dominance relations are often estab-
lished. Furthermore, existing dominance relations are
preserved, except in the unlikely case where both
DMUs have the same efficiency ratio for all weights
in the revised feasible set.

3.4. Efficiency Bounds
The analysis of relative efficiencies can be extended to
situations where the efficiency DMUk is benchmarked
simultaneously with a group DMUL = �DMUl � l ∈ L⊆
�1� � � � �K�� consisting of several DMUs. In this case,
the ratios

Dk� L̄�u�v�=
Ek�u�v�

maxl∈L El�u�v�
=min

l∈L
Ek�u�v�

El�u�v�
� (15)

Dk�L�u�v�=
Ek�u�v�

minl∈L El�u�v�
=max

l∈L
Ek�u�v�

El�u�v�
(16)

indicate how efficient DMUk is relative to the most
and least efficient DMUs in the benchmark group for
different input/output weights. The maximum and
minimum values of (15) over feasible weights are
denoted by �Dk� L̄ and Dk� L̄, whereas �Dk�L and Dk�L are
the corresponding maximum and minimum values
of (16). By Theorems 4 and 5, these bounds can be
solved with linear programming. It is worth noting
that if the benchmark set L contains all DMUs, then
�Dk� L̄ is equal to the CCR-DEA score. If DMUk is not
contained in the benchmark set L, the maximum �Dk� L̄
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gives the superefficiency of DMUk relative to this set
of DMUs (see, e.g., Zhu 1996).

Theorem 4. Dk� L̄ = minl∈L Dk�l. �Dk� L̄ is the optimum
of the maximization problem

max
u�v

∑
n

unynk (17)

subject to
∑
n

unynl ≤
∑
m

vmxml� l ∈ L� (18)

∑
n

vmxmk = 1�

�u�v� ∈ �Su� Sv��

Theorem 5. �Dk�L =maxl∈L �Dk�l. Dk�L is the optimum
of the minimization problem

min
u�v

∑
n

unynk (19)

subject to
∑
n

unynl ≥
∑
m

vmxml� l ∈ L� (20)

∑
n

vmxmk = 1�

�u�v� ∈ �Su� Sv��

3.5. Specification of Performance Targets
All of the above results can be employed to specify
performance targets. For example, one can introduce
targets such that DMUk will be among (i) the R∗

k most
efficient DMUs for some feasible weights or (ii) the
R�

k most efficient DMUs for all feasible weights. These
two cases are addressed by Theorems 6 and 7 for
the case where efficiency improvements are sought
through radial increases in output production.

Theorem 6. Assume that R∗
k < rmin

k . Then, the maxi-
mization problem

max
u�v�z

∑
n

unynk

subject to 1+∑
l �=k

zl ≤R∗
k� (21)

∑
n

unynl ≤
∑
m

vmxml +Czl� l �= k� (22)

∑
m

vmxmk = 1�

zl ∈ �0�1�� l �= k�

�u�v� ∈ �Su� Sv�

has an optimum 
∗ < 1 such that �∗ = 1/
∗ gives the least
radial output increase for which the best ranking of DMUk

is R∗
k or better.

Theorem 7. Assume that R�
k < rmax

k . Then, the mini-
mization problem

min
u�v�z

∑
n

unynk

subject to 1+∑
l �=k

zl ≤K−R�
k� (23)

∑
m

vmxml ≤
∑
n

unynl +Czl� l �= k� (24)

∑
m

vmxmk = 1�

zl ∈ �0�1�� l �= k�

�u�v� ∈ �Su� Sv�

has an optimum 
∗ ≤ 1 such that �∗ = 1/
∗ is the infimum
of those radial output increases for which the worst ranking
of DMUk is R�

k or better.

Differences in Theorems 6 and 7 reflect asymmetric
discontinuities when rankings improve. For instance,
let there be three DMUs, A, B, and C, which all con-
sume one unit of a single input and produce yA = 1
and yB = yC = 2 units of a single output. Then, when
A doubles its production, its best possible ranking
jumps to one, but its worst possible ranking remains
three until its production is strictly greater than two.
Neither the best nor the worst ranking of A will
be exactly two, no matter how much it increases its
production.
An increase in the production of outputs by a factor

of �> 1 corresponds to a decrease in the use of inputs
by a factor of 1/� < 1, because∑

n un��ynk	∑
m vmxmk

=
∑

n unynk∑
m vm�1/�	xmk

�

Thus, radial output targets can be translated into cor-
responding requirements on the input side. Similarly,
the overall target �∗ can be factored into a radial out-
put target �u and a radial input target �v such that
�u�v = �∗, y′

nk = �uynk, and x′
mk = �1/�v	xmk.

Dominance relations, too, can be employed in tar-
get setting. For example, one may ask by how much a
DMUk that does not dominate DMUl should increase
its output to reach the threshold level beyond which
it starts to dominate DMUl. Based on Dk�l ≤ 1 in
Theorem 3, DMUk achieves the efficiency level of
DMUl for all weights when it increases its produc-
tion by �∗

l = 1/Dk� l. If the target is to ensure that
DMUk begins to dominate several DMUs contained
in the index set L, the threshold level for the required
increase is �∗ =maxl∈L �∗

l . One may also ask by how
much DMUk that is dominated by DMUl needs to
increase its production so as not to be dominated.
In this case, 1 ≤ Dl�k, and the threshold level for the
required increase is �∗

l = Dl�k. Even bounds for bench-
mark sets in §3.4 can be used in target specification.

3.6. Comparisons with Cross-Efficiency Analysis
In cross-efficiency analysis, every DMU is assigned a
single CE score using those weights for which the effi-
ciency of some DMU is maximized. By design, this
approach recognizes that different weights are rele-
vant in efficiency evaluation, in contrast to the stan-
dard CCR-DEA approach where the efficiency score
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for a DMU is determined using only those weights
that are most favorable to it (see, e.g., Doyle and
Green 1994).
Specifically, the DMUs’ cross-efficiencies are com-

puted from a square matrix �l�k� k� l= 1� � � � �K, whose
lth row �l�k = �E1�u

l� vl�� � � � � EK�u
l�vl�	 contains the

efficiencies of DMUs with weights �ul� vl�, which
maximize the efficiency of DMUl subject to the con-
straint that the maximum efficiency of any DMU is
one. If there are multiple optima, alternative rules
may be applied in weight selection. In the aggressive
formulation, for example, weights are chosen by min-
imizing the relative efficiency of the aggregate DMU,
which is formed by summing the inputs and outputs
of all the other DMUs. In the benevolent formulation,
the relative efficiency of the same aggregate DMU
is maximized. Once the weights �ul� vl�� l = 1� � � � �K
have been chosen, the cross-efficiency of DMUk is
computed as

CEk =
1
K

K∑
l=1

�l�k =
1
K

K∑
l=1

Ek�u
l�vl�� (25)

DMUs can be ranked based on their cross-
efficiencies. If there are no ties, DMUk has a unique
CE ranking that is equal to one plus the number
of those DMUs that have a strictly higher cross-
efficiency, i.e., rCE�>k = 1 + ∣∣�CEl � CEl > CEk�

∣∣. In the
case of ties, the CE ranking can drop to rCE�≥k = 1+∣∣�CEl �CEl ≥CEk, l �= k�

∣∣ if DMUk is assigned the worst
ranking among all the DMUs that have the same
cross-efficiency. Except for the possibility of ties, a
major difference between CE rankings and ranking
intervals in §3.2 is that CE rankings typically assign
a single ranking to each DMU. In contrast, ranking
intervals show all the rankings that DMUs can attain
across the full set of feasible input/output weights.
We draw attention to three concerns with cross-

efficiency analysis. First, the CE rankings of any two
DMUs may depend on what other DMUs are included
in the analysis. Indeed, Theorem 8 shows that when-
ever there are two DMUs that do not dominate each
other and whose efficiency ratios differ for some
input/output weights, then it is possible to intro-
duce additional DMUs so that the CE ranking of the
first DMU becomes better than that of the second. By
Theorem 9, the nondominance assumption is neces-
sary so that a DMU that dominates some other DMU
will have a higher CE ranking than the DMU that it
dominates.

Theorem 8. Assume that DMUk �� DMUl and
DMUl �� DMUk and ∃�u�v� such that El�u�v� �=
Ek�u�v�. There then exist DMUi� i = K + 1� � � � �K +K ′

such that CEk > CEl in the augmented set {DMUi � i =
1� � � � �K+K ′}.

Theorem 9. If DMUk � DMUl, then CEk ≥CEl.

The phenomenon addressed by Theorem 8 is
problematic because it means that cross-efficiency
analyses are, in principle, susceptible to purposeful
manipulation where the relative CE ranking of a non-
dominated DMU is altered by introducing appropri-
ately chosen DMUs. Here, there are parallels to the
contested rank reversal phenomenon where the intro-
duction of a new alternative to a multicriteria decision
problem changes the relative rankings of previously
analyzed alternatives. Rank reversals have aroused
plenty of controversy, and, for instance, they have
been widely regarded as a shortcoming of the ana-
lytic hierarchy process (Belton and Gear 1983; see also
Dyer 1990, Salo and Hämäläinen 1997).
A second concern is that the inequality in The-

orem 9 may not be strict, meaning that a domi-
nated DMU may have as high a CE score as the
DMU it is dominated by. For example, consider three
DMUs, A, B, and C, that consume one unit of a single
input and produce three outputs according to profiles
A = �3�3�2�, B = �3�2�2�, and C = �0�2�3�. Clearly,
A dominates B. If there are no constraints on output
weights, the efficiencies of DMUs B and C are maxi-
mized for weights uB = �1/3�0�0� and uC = �0�0�1/3�,
whereas DMUA achieves its maximum efficiency for
all convex combinations of weights uA�1 = �1/3�0�0�
and uA�2 = �0�1/3�0�. If the selection among the alter-
native optima is based on the aggressive formulation,
the value of the aggregate output vector uB+C = �3+
0�2 + 2�2 + 3� = �3�4�5� is minimized using output
weights uA�1 = �1/3�0�0�. In this case, the case the
cross-efficiency matrix becomes⎛

⎜⎜⎝
1 1 0

1 1 0

2/3 2/3 1

⎞
⎟⎟⎠ �

Here, the three rows contain the DMUs’ efficiencies
for weights uA�1�uB, and uC , respectively. The DMUs’
cross-efficiencies (25) are now obtained as column
averages �1+ 1+ 2/3	/3= 8/9=CEA =CEB and CEC =
�0 + 0 + 1	/3 = 1/3 = CEC , which show that DMUs
A and B have the same cross-efficiency although
DMUA dominates DMUB. An analogous conclusion
can be reached for the benevolent formulation by
replacing the output vector of DMUC by C ′ = �0�0�3�
and by choosing the output weights uA�1 = �1/3�0�0�
to maximize the virtual value of the aggregate output
vector uB+C ′ = �3�2�5�.
A third concern is that the CE ranking of a DMU

may lie outside the ranking interval �rmin
k ,rmax

k 	. For
example, consider three DMUs, A, B, and C, that pro-
duce a single output, yA = 26, yB = 19, and yC = 16,
and consume two inputs, xA = �13�9�, xB = �7�9�, and
xC = �16�1�. If there are no weight constraints, all
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three DMUs are efficient and achieve a DEA efficiency
of one for weights uk = 1/yk� k = A, B, C and vA =
�1/26�1/18�, vB = �1/7�0�, and vC = �0�1�, respec-
tively. With these weights, the cross-efficiency matrix
becomes ⎛

⎜⎜⎜⎜⎜⎜⎝

1
19
20

144
157

14
19

1
7
19

13
72

19
144

1

⎞
⎟⎟⎟⎟⎟⎟⎠
�

which yields the cross-efficiencies CEA ≈ 0�639 <
CEB ≈ 0�694<CEC ≈ 0�762. Thus, DMUA has the worst
CE ranking.
However, DMUA has the smallest efficiency ratio

only for weights �u�v� such that

EA�u�v�≤ EC�u�v� ⇐⇒ 26u
13v1 + 9v2

≤ 16u
16v1 + v2

⇐⇒ −1
2
v1 +

59
208

v2 ≥ 0� and

EA�u�v�≤ EB�u�v� ⇐⇒ 26u
13v1 + 9v2

≤ 19u
7v1 + 9v2

⇐⇒ 5
38

v1 −
63
494

v2 ≥ 0�

Multiplying the first inequality by 5/19 and sum-
ming up the inequalities gives −�11/208�v2 ≥ 0, which

Table 1 Efficiency Results for the Comparison of Robots

Robot Eff. rmin rmax Dominated by �Dk� L̄�
�Dk� L̄� CE FPI(%)

1 1 1 21 — �0�038�1�012� 0�58 72�41
2 0�90 3 24 14 �0�024�0�904� 0�48 88�28
3 0�53 7 23 11�15�19 �0�038�0�529� 0�30 76�28
4 1 1 27 — �0�004�1�100� 0�31 222�58
5 0�59 3 27 1�14�19 �0�001�0�592� 0�19 211�76
6 0�48 11 25 7�8�10�13�14�19�23�24 �0�017�0�482� 0�28 72�28
7 1 1 17 — �0�055�1�322� 0�70 42�86
8 0�78 5 15 — �0�063�0�783� 0�56 39�74
9 0�38 11 25 1�7�8�10�13�14�19 �0�029�0�378� 0�27 40�14
10 1 1 17 — �0�049�1�043� 0�70 42�86
11 0�67 3 19 19 �0�063�0�671� 0�42 59�84
12 0�10 18 27 1�3�7�8�10�11�13�14�15�16�19�23�25�26�27 �0�004�0�102� 0�06 70�61
13 1 1 15 — �0�061�1�091� 0�73 36�99
14 1 1 13 — �0�060�1�769� 0�82 21�95
15 0�61 3 22 — �0�038�0�613� 0�36 70�14
16 0�60 3 24 — �0�029�0�604� 0�34 77�50
17 0�40 17 26 3�7�8�10�11�13�14�15�19�23�25 �0�013�0�405� 0�19 112�92
18 0�37 12 25 1�7�8�10�13�14�19�25 �0�031�0�365� 0�26 40�47
19 1 1 10 — �0�064�1�021� 0�66 51�52
20 1 1 27 — �0�001�8�265� 0�34 194�12
21 0�85 2 25 — �0�023�0�852� 0�34 150�45
22 0�83 4 26 10�13�14 �0�005�0�829� 0�46 80�19
23 0�69 3 22 7�10 �0�039�0�694� 0�44 57�79
24 0�64 5 22 7�10�13�23 �0�036�0�636� 0�41 55�15
25 0�55 10 18 7�8�13�14�19 �0�054�0�553� 0�38 45�62
26 0�58 2 22 — �0�037�0�581� 0�36 61�40
27 1 1 25 — �0�014�3�880� 0�59 69�49

implies that v2 must be zero. But then the first
inequality gives v1 ≤ 0, violating the assumption that
v1 + v2 > 0. This proves that DMUA has the worst CE
ranking among the three DMUs although it is either
the most or the second most efficient DMU for all fea-
sible weights.

4. Applications of Ratio-Based
Efficiency Measures

We next illustrate uses of ratio-based efficiency mea-
sures by revisiting two reported studies and also by
describing a real case study where they supplied use-
ful insights.

4.1. Ratio-Based Efficiency Results for the
Evaluation of Robots

Baker and Talluri (1997) present an efficiency model
for screening 27 robots using velocity and load capac-
ity as outputs and cost and repeatability as inputs.
They do not elicit preference information about the
relative values of these input/output variables.
In Table 1, the CCR-DEA score of a robot is in

the second column, followed by its best and worst
efficiency rankings, a list of those robots it is dom-
inated by, and lower and upper bounds for the
robot’s efficiency ratio relative to the highest effi-
ciency ratio among all other robots over the set of fea-
sible weights. Here, the worst efficiency ranking rmax
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and the bounds Dk� L̄ show that for some weights the
efficiency ratios of even CCR-DEA-efficient robots are
quite low relative to the other robots. Moreover, the
bounds �Dk� L̄ show that CCR-DEA-efficient robots are
superefficient, meaning that for any one of them it
is possible to find feasible weights such that its effi-
ciency ratio is strictly higher than that of all other
robots. For example, the efficiency ratio of robot 4 can
be 1.1 times as high as the maximum efficiency ratio
of other robots.
The last two columns show the robots’ cross-

efficiency and so-called false positive index (FPI). The
FPI index (Baker and Talluri 1997) is an indicator of
how much the efficiency of the robot improves when
its efficiency ratio is evaluated using weights that are
most favorable to it rather than using also weights
that favor other robots. Thus, the smaller the FPI, the
less sensitive the efficiency of a robot is to the selec-
tion of weights.
There are 13 dominated robots that can be elim-

inated. Among the remaining 14 nondominated
robots, 4 and 20 can be the least efficient of all for
some weights, although they are efficient in the CCR-
DEA sense. In the same vein, robots 1, 15, 16, 21,
26, and 27—which have large FPI values in excess of
60%—can be among the seven least efficient robots
for some weights. Robots 7, 8, 10, 13, 14, and 19, in
contrast, are more robust and belong to the 17 most
efficient robots for all weights; they also have low FPI
values below 50%. Robots 14 and 19 have the best
ranking intervals. Robot 14 has a higher supereffi-
ciency value 1.769, whereas the ranking of 19 is never
below 10. In this way, dominance structures and rank-
ing intervals help identify nondominated DMUs like
robots 14 and 19 that are more efficient than others
across a broad range of weights. These results com-
plement cross-efficiencies and FPI indices, yet they are
based on a rigorous dominance concept and, in partic-
ular, the consideration of all feasible weights instead
of only those weights for which the efficiency of some
DMU is maximized.

4.2. Efficiency Comparison of Hospitals
Here, we revisit the example of Cooper et al. (2007,
p. 155) with 14 hospitals whose inputs consist of
nurses (x1) and doctors (x2), and whose outputs are
outpatients (y1) and inpatients (y2). In the first phase,
there is no preference information about the relative
values of these variables. In the second phase, assur-
ance regions for weights are introduced by stating
that (i) neither input can be more than five times as
valuable as the other and that (ii) neither output can
be more than five times as valuable as the other. These
statements correspond to the constraints 0�2v1 ≤
v2 ≤ 5v1 and 0�2u1 ≤ u2 ≤ 5u2.
Table 2 shows how the efficiency results change

because of this preference information. Initially,

hospitals H2, H3, H6, H8, and H10 are efficient in
view of their CCR-DEA scores. DMU H8 becomes
dominated when preference information is intro-
duced. In view of Table 2, DMU H10 appears more
efficient than others on several accounts, because (i) it
is among the three most efficient hospitals for all fea-
sible weights, (ii) all the dominated DMUs are dom-
inated by it, (iii) it has the highest superefficiency
(�Dk� L̄ = 1�04, i.e., for some weights it is up to 4%
more efficient than the next most efficient DMU), and
(iv) the bound Dk� L̄ = 0�98 means its efficiency ratio is
for all weights at least 98% of the highest efficiency
ratio among all DMUs.

4.3. A Case Study on the Comparison of
University Departments

This case study was carried out at a large technical
university consisting of 12 departments responsible
for research activities and educational degree pro-
grammes. The impetus for the study came from the
board, which asked the resource committee of the uni-
versity to consider alternative models for efficiency
analysis and resource allocation.
The outputs consisted of three-year departmental

averages in the university’s reporting system that
contained 44 outputs, structured under seven classes
(degrees and credits awarded, international publica-
tions, domestic publications, international mobility
of staff, other international scientific activities, other
domestic scientific activities, and student exchanges).
Statements about the relative values of these outputs
were elicited from 10 members of the resource com-
mittee using a spreadsheet tool. First, in each output
class, 10 points were associated with a reference out-
put (e.g., an MS degree), whereafter each respondent
was asked to assign points to the other outputs in
the same class. For instance, by giving 80 points to
a PhD degree the respondent could state that a sin-
gle PhD degree is as valuable as eight MS degrees.
Second, the respondent was asked to provide state-
ments about the values of these seven reference out-
puts through similar point allocations. From these
statements, the corresponding vector of normalized
weights was derived for every respondent. The feasi-
ble output weights consisted of convex combinations
of these weights, and thus contained the viewpoints
of all respondents.1

The two input variables were basic funding, which
is provided by the government and allocated to
the departments by the rector, and external funding,
which is acquired by research groups from external
sources. Only these two inputs were chosen because
most other inputs (e.g., annual person-years, office
space) are ultimately financed through these two

1 The original data are available from the authors upon request.
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Table 2 Results for Hospitals H1–H14 Without Preference Information (First Row) and With Preference Information 0�2≤ u1/u2� v1/v2 ≤ 5
(Second Row)

DMU Eff� rmin rmax Dominated by �Dk� L̄�
�Dk� L̄� �Dk�L�

�Dk�L�

H1 0�95 3 13 6 �0�75�0�95� �1�20�2�56�
0�93 6 11 2�3�6�9�10 �0�78�0�93� �1�32�2�15�

H2 1 1 10 — �0�80�1�06� �1�21�2�91�
1 1 7 — �0�83�1�02� �1�36�2�41�

H3 1 1 5 — �0�91�1�02� �1�45�2�72�
1 1 4 — �0�95�1�01� �1�58�2�36�

H4 0�7 11 14 1�2�3�6�7�8�9�10�11�12 �0�34�0�70� �0�71�1�27�
0�63 14 14 1�2�3�5�6�7�8�9�10�11�12�13�14 �0�40�0�63� �0�74�0�92�

H5 0�83 7 13 3�6�9�10 �0�59�0�83� �1�01�2�37�
0�82 7 12 2�3�6�9�10 �0�73�0�82� �1�16�2�03�

H6 1 1 6 — �0�91�1�08� �1�44�2�67�
1 1 5 — �0�91�1�00� �1�55�2�30�

H7 0�84 7 12 3�6�10�12 �0�56�0�84� �1�22�1�64�
0�8 10 12 1�2�3�6�8�9�10�11�12 �0�61�0�80� �1�27�1�53�

H8 1 1 12 — �0�66�1�00� �1�25�2�21�
0�87 6 11 3�6�9�10 �0�69�0�87� �1�31�1�81�

H9 0�99 2 10 10 �0�79�0�99� �1�26�2�87�
0�98 2 5 10 �0�90�0�98� �1�42�2�44�

H10 1 1 6 — �0�88�1�04� �1�41�2�88�
1 1 3 — �0�98�1�04� �1�56�2�48�

H11 0�91 5 11 3, 6 �0�69�0�91� �1�26�2�08�
0�85 8 10 2�3�6�9�10�12 �0�71�0�85� �1�32�1�79�

H12 0�97 3 10 3 �0�70�0�97� �1�40�2�03�
0�93 4 9 3�6�10 �0�75�0�93� �1�47�1�86�

H13 0�79 10 14 2�3�6�7�9�10�12 �0�38�0�79� �0�95�1�40�
0�74 13 13 1�2�3�5�6�7�8�9�10�11�12�14 �0�50�0�74� �1�09�1�35�

H14 0�97 3 14 3, 10 �0�43�0�97� �0�90�2�26�
0�93 4 12 3, 9, 10 �0�63�0�93� �1�16�2�00�

sources. Because the management of external fund-
ing involves more work, and because such funding
places constraints on its use, the respondents were
asked to state how much more “valuable” basic fund-
ing is compared with external funding. Most respon-
dents noted that basic funding is 1.25–2.00 times as

Figure 2 Efficiency Intervals for the 12 Departments
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valuable as funding from external sources (e.g., the
value of $100,000 of basic funding would be the same
as that of $125,000–$200,000 of external funding).
Based on Theorem 4, the efficiency bounds in

Figure 2 indicate the ranges within which the depart-
ments’ efficiency ratios vary relative to the highest
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Figure 3 Best and Worst Efficiency Rankings for the 12 Departments
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efficiency ratio among all departments. Specifically,
the upper bounds are the usual CCR-DEA efficiency
scores according to which there are three efficient
departments (A, J , and L), followed by the “nearly”
efficient department K (with an efficiency score of
0.97), then five departments with efficiency scores
in the range 0.60–0.90, and, finally, three inefficient
departments with scores less than 0.60. The lower
bounds show how low the departments’ efficiency
ratios can be relative to the highest efficiency ratio
over the set of feasible weights. Thus, for instance, the
efficiency ratio of department L is for all weights at
least 83% of the efficiency ratio of the most efficient
department.
The ranking intervals in Figure 3 complement effi-

ciency bounds. For instance, department L is among
the three most efficient departments for all feasi-
ble weights, whereas J and the CCR-DEA-inefficient
department K are among the four most efficient ones.
Department A is efficient, but its ranking drops to 7
for some weights, indicating that its efficiency is sen-
sitive to what input/output weights are employed.
Departments D, F , and H are the three least effi-
cient ones. Their ranking intervals show, for instance,
that for all weights these three departments are less
efficient than department G, although their efficiency
intervals overlap with that of G.
Dominance relations are shown in Figure 4, where

department X dominates Y if and only if there is
a directed path from X to Y . Thus, department L
dominates K, but K is not dominated by departments
A and J . Also, A does not dominate I , meaning that
for some weights the efficiency ratio of I is higher
than that of A even though its CCR-DEA efficiency is
lower than that of A. Moreover, department A dom-
inates fewer departments (5) than K (8), which also
indicates that the relative efficiency of A is more sen-
sitive to the choice of weights. Departments D, F , and

H do not dominate each other, but they are domi-
nated by all other departments.
The results in §3.5 can be applied to specify per-

formance targets. First, consider the three “midtier”
departments C, E, and I , whose rankings are in the
range from the fourth to the ninth most efficient. If
department C is challenged to become one of the three
most efficient departments for some feasible weights,
it needs to increase its output by 8.80%; and if it is to
be ranked as one of three most efficient departments
for all weights, it must increase it output by more
than 53.35%. Corresponding targets for departments
E and I are 6.80% and 10.72% (for some weights) and
42.65% and 47.97% (for all weights).
Similarly, the least efficient departments D, F ,

and H could be required to achieve a position
among the six most efficient departments. In this
case, department D would have to increase its out-
put by 25.97% to achieve such a position for some

Figure 4 Efficiency Dominance Relations Among the Departments

A

D,F,H

B

C,E

G

I

J

K

L



Salo and Punkka: Ranking Intervals and Dominance Relations for Ratio-Based Efficiency Analysis
Management Science 57(1), pp. 200–214, © 2011 INFORMS 211

weights. Moreover, it would have to increase its out-
put by more than 54.40% to secure this position for
all weights. Corresponding results for departments F
and H are 32.33% and 31.54% (for some weights) and
94.21% and 62.89% (for all weights).

5. Conclusion
We have developed ratio-based efficiency results
(ranking intervals, dominance relations, and effi-
ciency bounds) for comparing the relative efficien-
cies of DMUs for all feasible input/output weights.
Unlike conventional DEA efficiency scores or cross-
efficiencies, these results are robust in the sense that
they (i) reflect how the DMUs’ efficiency ratios change
relative to each other over the entire feasible set of
weights, (ii) tend to be insensitive to the introduc-
tion/removal of outlier DMUs, and (iii) do not neces-
sitate particular assumptions about what production
possibilities there are beyond the DMUs that are
included in the analysis. Furthermore, these results do
not exhibit rank reversals that may arise when rank-
ing DMUs with cross-efficiency analysis. These results
can also be employed to specify performance targets
for DMUs.
We have illustrated the usefulness of these effi-

ciency results by revisiting reported DEA studies and
by describing a case study on the comparison of uni-
versity departments. The encouraging feedback from
this case study, together with the applicability of our
efficiency results in many other contexts, leads us
to believe that these results are helpful across the
full range of decision contexts where ratio-based effi-
ciency comparisons are appropriate.
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Appendix

Proof of Theorem 1. Let the best ranking of DMUk

be attained at �u�v� ∈ �Su� Sv�. Then there exists L =
R>

k �u�v� ⊂ �1� � � � �K� so that El�u�v� > Ek�u�v�� l ∈ L and
Ek�u�v� ≥ El�u�v�� l �∈ L. Let v′

m = vm/�
∑

m vmxmk	 and
u′
n = un/�

∑
n unynk	. Then �u′�v′� ∈ �Su� Sv� and

∑
m v′

mxmk =∑
n u

′
nynk = 1.

For any l �= k, let zl = 1 if l ∈ L, and zl = 0 if l �∈ L. Then,
for any l �∈ L, we have

1≤ Ek�u�v�

El�u�v�
= Ek�u

′�v′�
El�u

′�v′�
=

∑
m v′

mxmk∑
n u

′
nynk

∑
m v′

mxml∑
n u

′
nynl

=
∑

m v′
mxml∑

n u
′
nynl

�

which gives
∑

n u
′
nynl ≤

∑
m v′

mxml. For l ∈ L, multiplying
zl = 1 by the large positive constant C implies that the con-
straint (4) is satisfied for l ∈ L too. Because 1 + ∑

l �=k zl =
1+ �L� = 1+ �R>

k �u�v�� = rmin
k �u�v�, the solution to the mini-

mization problem is not larger than the best ranking.
Conversely, let �u�v�z� be a solution to the minimiza-

tion problem. Let L = �l � l �= k�zl = 1�. Then introducing
zl = 0� l �∈ L into the first constraint in (4) gives

∑
n unynl ≤∑

m vmxml so that

Ek�u�v�

El�u�v�
=

∑
m vmxml∑
n unynl

≥ 1�

because Ek�u�v� = 1 due to (5). Thus, any l �∈ L
cannot belong to R>

k �u�v�. For l ∈ L, the inequality∑
n unynl ≤

∑
m vmxml ⇐⇒ Ek�u�v� ≥ El�u�v� cannot hold

because z is at optimum (otherwise, any such zl =
1 could be changed to zl = 0 without violating (4)
while reducing the value of the objective function);
hence l ∈ L ⊆ R>

k �u�v�. It follows that R>
k �u�v� = L and

rmin
k ≤ 1+ �R>

k �u�v�� = 1+ �L� = 1+∑
l �=k zl. �

Proof of Theorem 2. If the worst ranking of DMUk

is attained at �u�v� ∈ �Su� Sv�, there exists a subset L =
R≥

k �u�v�⊂ �1� � � � �K��k �∈ L such that El�u�v�≥ Ek�u�v�, l ∈ L
and Ek�u�v� > El�u�v�, l �∈ L. Let v′

m = vm/�
∑

j vmxmk	 so that∑
m v′

mxmk = 1 and u′
n = un/�

∑
n unynk	 so that

∑
n u

′
nynk = 1.

For any l �= k, let zl = 1 if l ∈ L, and let zl = 0 if l �∈ L. Then,
for any l ∈ L,

1≤ El�u�v�

Ek�u�v�
= El�u

′�v′�
Ek�u

′�v′�
=

∑
mu

′
nynl∑

mv
′
mxml

⇒ ∑
m

v′
mxml≤

∑
n

u′
nynl�

and thus (6) holds. For l �∈ L, multiplying �1− zl�= 1 by the
positive constant C implies that (6) is satisfied in this case
too. Now, 1+∑

l �=k zl = 1+ �L� = 1+ �R≥
k �u�v�� = rmax

k . Thus,
the solution to the maximization problem is at least as large
as the worst ranking.

Conversely, assume that �u�v�z� is a solution to the max-
imization problem, and let L= �l � l �= k�zl = 1�. For any l ∈ L
with zl = 1, the constraint

∑
m vmxml ≤

∑
n unynl implies

El�u�v�

Ek�u�v�
=

∑
n unynl∑
m vmxml

≥ 1�

because u and v satisfy (6)–(7); thus, L⊆R≥
k �u�v�. Because z

is at optimum, the inequality Ek�u�v�≤ El�u�v� cannot hold
for l �∈ L (otherwise, any such zl = 0 could be changed to zl =
1 without violating constraints while increasing the objec-
tive function). Thus, R≥

k �u�v� does not contain elements that
are outside of L. It follows that L = R≥

k �u�v� and rmax
k ≥

1+ �R≥
k �u�v�� = 1+∑

l �=k zl. �

Proof of Lemma 1. To prove that u′ ∈ Su, note that u ∈ Su
implies Auu ≤ 0 and, hence, Auu

′ = Aucuu = cu�Auu� ≤ 0;
similarly, v′ ∈ Sv. The last claim follows from

Dk� l�u
′�v′� = Ek�u

′�v′�
El�u

′�v′�

=
∑

n u
′
nynk∑

m v′
mxmk

∑
m v′

mxml∑
n u

′
nynl

= cu
∑

n unynk
cv

∑
m vmxmk

cv
∑

m vmxml

cu
∑

n unynl

=
∑

n unynk∑
m vmxmk

∑
m vmxml∑
n unynl

=Dk� l�u�v�� �
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Proof of Theorem 3. Choose �u∗�v∗� ∈ �Su� Sv� such
that Dk� l�u

∗�v∗� ≥ Dk� l�u�v�, ∀ �u�v� ∈ �Su� Sv�. Define v′

so that v′
m = v∗

m/�
∑

i v
∗
i xik	. By construction, v′ ∈ Sv and∑

m v′
mxmk = 1. Define u′

n = u∗
n�
∑

m v′
mxml	/�

∑
j u

∗
j yjl	. Then,∑

n u
′
nynl =

∑
m v′

mxml. The weights �u′�v′� satisfy constraints
(12)–(14), and the repeated application of Lemma 1 gives
Dk� l�u

∗�v∗� = Dk� l�u
∗�v′� = Dk� l�u

′�v′� = ∑
n u

′
nynk , proving

that the maximum of (11) over (12)–(14) is at least as high
as Dk� l�u

∗�v∗�.
Assume that the maximum of (11) is attained at �uo�vo�.

For these weights �uo�vo� ∈ �Su� Sv�, we have

Dk� l�u
o�vo�= Ek�u

o�vo�

El�u
o�vo�

=
∑

n u
o
nynk∑

m vo
mxmk

∑
m vo

mxml∑
n u

o
nynl

=∑
n

uo
nynk�

because the weights �uo�vo� satisfy (12)–(13). Thus, the max-
imum of Dk� l�u�v� over �Su� Sv� cannot be smaller than the
solution to the maximization problem in Theorem 3. The
minimization case can be shown analogously. �

Proof of Theorem 4.

min
u�v

Dk� L̄�u�v� = min
u�v

Ek�u�v�

maxl∈L El�u�v�

= min
u�v

min
l∈L

Ek�u� v�

El�u� v�

= min
l∈L

min
u�v

Dk� l�u�v�

= min
l∈L

Dk� l�u�v��

Let the maximum of (15) be 
∗ so that this optimum is
attained at �u∗�v∗�. There then exists some l∗ ∈ L such that
El∗ �u

∗�v∗� ≥ El�u
∗�v∗� ∀ l ∈ L. Choose v′ = v∗/�

∑
m v∗xmk	 so

that
∑

m v′
mxmk = 1. Also, choose a constant cu > 0 so that∑

n u
′
nynl∗ =

∑
m v′

mxml∗ for u′ = cuu
∗. For any l ∈ L, we have

1≥Dl� l∗ �u
∗�v∗�=Dl� l∗ �u

′�v′�= El�u
′�v′�

El∗ �u
′�v′�

=
∑

n u
′
nynl∑

m v′
mxml

so that the constraint (18) is satisfied by �u′�v′�. By construc-
tion, 
∗ =maxu�v Dk� L̄�u�v�=Dk� l∗ �u

′�v′�=∑
n u

′
nynk , which

shows that the maximum of (17) is at least as high as that
of (15).

Conversely, assume that the maximum of (17), 
 ′, is
attained at �u′�v′�, and choose l′ ∈ L so that the constraint
in (18) is binding (such l′ exists, for otherwise u′ could
be increased to improve the value of the objective func-
tion, which would be in violation of the optimality assump-
tion). Now,

max
u�v

Dk� L̄�u�v�≥
Ek�u

′�v′�
El′ �u

′�v′�
= 
 ′

so that the maximum (15) must be at least as high as that
of (17). �

Proof of Theorem 5.

max
u�v

Dk�L�u�v� = max
u�v

Ek�u�v�

minl∈L El�u�v�

= max
u�v

max
l∈L

Ek�u�v�

El�u�v�

= max
l∈L

max
u�v

Dk� l�u�v�

= max
l∈L

�Dk� l�u�v��

Let the minimum of (16), 
∗, be attained at �u∗�v∗�.
There then exists some l∗ such that El∗ �u

∗�v∗� ≤ El�u
∗�v∗�,

∀ l ∈ L, and 
∗ =minu�v Dk�L�u�v�= Ek�u
∗�v∗�/El∗ �u

∗�v∗�. As
in the proof of Theorem 4, use �u∗�v∗� in defining normal-
ized valuation vectors �u′�v′� such that

∑
m v′

mxmk = 1 and
El∗ �u

′�v′�= 1. The choice of l∗ guarantees that 1≤ El�u
′�v′�

so that constraint (20) holds for all l ∈ L. Because


∗ = Ek�u
∗�v∗�

El∗ �u
∗�v∗�

= Ek�u
′�v′�

El∗ �u
′�v′�

=∑
n

u′
nynk�

the minimum of (19) is at least as small as the minimum
of (16).

Assume that 
 ′, the minimum of (19), is obtained at
�u′�v′�. Choose l′ such that the constraint in (20) is binding
(such l′ must exist, for otherwise the assumption of opti-
mality would be violated). Then El′ �u

′�v′�= 1, whereas con-
straint (20) implies that El�u

′�v′� ≥ 1 for any other l ∈ L;
hence, El′ �u

′�v′�≤ El�u
′�v′�. It follows that

min
u�v

Dk�L�u�v�≤Dk�L�u
′�v′�= Ek�u

′�v′�
minl∈LEl�u

′�v′�
= Ek�u

′�v′�
El′ �u

′�v′�
=
 ′�

proving that the minimum of (16) is at least as small as the
optimum of (19). �

Proof of Theorem 6. Because u ∈ Su ⇒ cuu ∈ Su for any
cu > 0, there exists u ∈ Su so that the constraints (21) and (22)
are satisfied. The optimum 
∗ is attained at some weights
�u∗�v∗�, because v fulfills the normalization constraint and
assumes values in a compact set �v ∈ Sv �

∑
m vmxmk = 1�, and

u is maximized but bounded from above by constraint (22).
If the optimum 
∗ were equal to one, then according to
Theorem 1, DMUk could only reach ranking rmin

k and con-
straint (21) would be violated. Thus, 
∗ < 1.

For any feasible �u�v�z� that satisfy the constraints, the
constraint (22) gives zl = 0⇒ 1 ≥ El�u�v� so that El�u�v� >
1 > Ek�u� l� ⇒ zl = 1. By (21), there are therefore at most∑

l �=k zk other DMUs whose efficiency is higher than that of
DMUk. By (21), the best ranking of DMUk is therefore R∗

k or
better. By construction, 1/
∗ is the revised efficiency ratio of
DMUk.

For any 
 ′ > 
∗ and any feasible �u�v�, the optimality
of 
∗ implies that the constraint (21) will be violated when
zl are chosen by minimizing them so that (22) holds. But
then there will be more than R∗

k − 1 other DMUs with an
efficiency ratio that is strictly higher than that of DMUk,
meaning that the best ranking of DMUk is worse than R∗

k.
Similarly, if constraint (21) holds and 
 ′ > 
∗, con-

straint (22) is violated for some l′ �= k such that zl′ = 0
and El′ �u�v� > Ek�u�v�. We can assume that (21) holds
with equality, for else the violation of (22) for l′ could be
eliminated by setting zl′ = 1. Because El�u�v� > Ek�u�v�⇒
zl = 1 for the constraints that are satisfied, there are again
more than R∗

k − 1 other DMUs with a strictly higher effi-
ciency ratio, and thus DMUk does not attain the target
ranking R∗

k. �

Proof of Theorem 7. Because u ∈ Su ⇒ cuu ∈ Su for any
cu > 0, there exists u ∈ Su so that the constraints (23) and (24)
are satisfied. The optimum 
∗ is attained at some weights
�u∗�v∗�, because v fulfills the normalization constraint and
thus assumes values in a compact set �v ∈ Sv �

∑
m vmxmk = 1�,
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and u is minimized but bounded from below by
constraints (24).

According to Theorem 2, there exists a solution u�v�z′

such that
∑

m vmxmk =
∑

n unynk = 1,
∑

l �=k z
′
l = rmax

k − 1, and∑
m vmxml ≤

∑
n unynl + C�1 − z′l�. Solution u�v�z such that

zl = 1 − z′l ∀ l �= k is feasible because this substitution
yields directly the constraints (24) and also the constraint∑

l �=k zl = K − rmax
k ≤ K − R�

k − 1, whereby (23) is fulfilled.
Thus, 
∗ ≤ 1.

For any feasible �u�v�z�, the constraint (24) gives zl =
0 ⇒ El�u�v� ≥ Ek�u�v� so that Ek�u�v� > El�u�v� ⇒ zl = 1.
By (23), there are at most

∑
l �=k zk other DMUs whose effi-

ciency is lower than that of DMUk, and hence the worst
possible ranking is R�

k + 1 or worse.
We show that �∗ = 1/
∗ is the maximum increase in the

outputs of DMUk such that R�
k + 1 belongs to the rank-

ing interval of the revised DMU, DMUk� with xk� = xk,
yk� = �yk. For any increase greater than �∗, only better rank-
ings belong to the interval.

For any 
 < 
∗ and feasible �u�v�, the optimality of

∗ implies that constraint (23) must be violated if con-
straints (24) hold for all l �= k. But then the worst ranking of
DMUk� will be R�

k or better.
Conversely, if (23) holds and (24) is violated for DMUl′ ,

then El′ �u�v� < Ek��u�v� and zl′ = 0. Furthermore, the con-
straint (23) can be assumed to hold with equality, because
otherwise we could set zl′ = 1, and the constraint would
not be violated. This implies that the number of DMUs p
for which Ep�u�v� < Ek��u�v� is at least ��l ∈ �1� � � � �K� � l �=
k�zl = 1�� + 1= K −R�

k − 1+ 1= K −R�
k, and the ranking of

DMUk� must be R�
k or better.

Thus, for any �> 1/
∗, the ranking of DMUk� is R�
k or bet-

ter for all feasible �u�v�. The formulation thus provides the
infimum of the radial increases for which the worst ranking
is R�

k or better. �

Proof of Theorem 8. By assumption, Ek�u
′�v′� >

El�u
′�v′� for some �u′�v′� ∈ �Su� Sv�. Let constant M >

maxi=k� l�1/Di� L̄	, where L = �1� � � � �K�. Define DMUk′ and
DMUl′ so that yk′ = Myk�yl′ = �Dk� lMyl� xk′ = xk�xl′ = xl.
Then, (i) El′ �u�v� ≥ Ek′ �u�v� > Ei�u�v� for all i ∈ �1� � � � �K�,
and (ii) there exist �u′�v′� ∈ �Su� Sv� such that El′ �u

′�v′� =
Ek′ �u

′�v′� and for any such weights, Ek�u
′�v′� > El�u

′�v′�.
Consider DMUs DMUi, i ∈ �1� � � � �K� ∪ �l′� ∪ �K +

2� � � � �K+K ′� so that DMUi, i=K+ 2� � � � �K+K ′ are equal
to DMUk′ . Among these DMUs, �k′� k > �k′� l. Then, for a suf-
ficiently large K ′,

CEk −CEl

= 1
K+K ′

K+K′∑
i=1

��i�k − �i� l	

= 1
K+K ′

[ K∑
i=1

��i�k−�i�l	+��l′�k−�l′� l	+�K ′ −1���k′�k−�k′� l	

]

is positive, because
∑K

i=1��i�k − �i� l	+ �l′� k − �l′� l is bounded
from above by K+ 1. �

Proof of Theorem 9. Let �ui� vi�� i = �1� � � � �K� be the
weights that maximize the efficiency of DMUi in the
specification of the cross-efficiency matrix. Because DMUk

dominates DMUl, we have Ek�u
i�vi� ≥ El�u

i� vi� so that

�i�k ≥ �i� l. Summing this inequality over i = 1� � � � �K gives
CEk ≥CEl. �
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