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Abstract

This paper presents a method called Rank Inclusion in Criteria Hierarchies (RICH) for the analysis of incomplete

preference information in hierarchical weighting models. In RICH, the decision maker is allowed to specify subsets of

attributes which contain the most important attribute or, more generally, to associate a set of rankings with a given set

of attributes. Such preference statements lead to possibly non-convex sets of feasible attribute weights, allowing

decision recommendations to be obtained through the computation of dominance relations and decision rules. An

illustrative example on the selection of a subcontractor is presented, and the computational properties of RICH are

considered.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Methods of multiple criteria decision making

(MCDM) are widely employed in problems char-

acterized by incommensurate objectives. Numer-

ous successful MCDM applications have been

developed in fields such as energy policy, envi-

ronmental decision making and comparison of

industrial investment opportunities (see, e.g.,

Corner and Kirkwood, 1991; H€am€al€ainen, 2004;
Keefer et al., 2004). In MCDM applications, the

decision problem is structured by associating

measurable attributes with the objectives that are

relevant to the decision maker (DM). In most
methods––such as the Analytic Hierarchy Process

(AHP; Saaty, 1980) and value tree analysis (Kee-

ney and Raiffa, 1976)––the DM is also requested

to supply weights as a measure for the relative

importance of attributes.

In practice, the elicitation of precisely specified

attribute weights may be difficult. This may be due

to the urgency of the decision, lack of resources for
completing the elicitation process, or conceptual

difficulties in the interpretation of intangible

objectives (see, e.g., Weber, 1987). In group set-

tings, difficulties in determining attribute weights

for the group�s joint preference model may arise

from differences in the group members� level of

knowledge or their interpretation of what the

relevant objectives mean (H€am€al€ainen et al., 1992).
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However, complete information about attribute
weights is not always necessary in order to produce

a decision recommendation. Together with the

difficulties of producing a complete model specifi-

cation, this realization has motivated the devel-

opment of methods for dealing with incomplete

information in hierarchical weighting models (see,

e.g., Kirkwood and Sarin, 1985; Hazen, 1986;

Weber, 1987; Salo and H€am€al€ainen, 1992; Salo,
1995; Kim and Han, 2000). Even though these

methods differ in their details, they all (i) accom-

modate incomplete information about attribute

weights and possibly other model parameters as

well and (ii) provide more or less conclusive

dominance relations concerning which alternatives

are preferred to others.

In this paper, we extend the earlier literature on
incomplete preference information by allowing the

DM to specify subsets of attributes which contain

the most important attribute or, more generally, to

associate several rankings with a given set of

attributes. Resulting method––called Rank Inclu-

sion in Criteria Hierarchies (RICH)––generalizes

the use of ordinal preference information in attri-

bute weighting. In view of our theoretical and
computational results, we believe that the RICH

method is especially suitable for decision contexts

where only rather few and easily elicited preference

statements can be obtained before preliminary

decision recommendations must be pro-

duced. Also, inspired by positive experiences from

the deployment of internet-based decision aiding

tools (e.g., Web-HIPRE; see Mustajoki and
H€am€al€ainen, 2000; Lindstedt et al., 2001), we have
already proceeded with the development of a user-

friendly decision support tool for the RICH

method. This tool––entitled RICH Decisions––is

available free of charge to academic users (see

http://www.decisionarium.hut.fi; Li-

esi€o, 2002).
The remainder of this paper is structured as

follows. Section 2 reviews earlier approaches to the

analysis of incomplete information in hierarchical

weighting models. Section 3 considers the use of

incomplete ordinal information in the elicitation of

attribute weights and the properties of resulting

feasible weight regions. Section 4 presents a mea-

sure for the size of feasible regions, and Section 5

discusses the development of decision recommen-
dations. Section 6 summarizes results from a sim-

ulation study on the computational properties of

RICH. An illustrative example is given in Section

7, followed by concluding remarks in Section 8.

2. Earlier approaches to the analysis of

incomplete information

In an early contribution on the modeling of

incomplete information, Arbel (1989) discusses

how the precise articulation of preferences through

ratio statements can be extended to capture

incomplete information about the relative impor-

tance of attributes. He models incomplete prefer-

ence information through lower and upper bounds
on the relative importance of attributes. These

bounds correspond to linear constraints of linear

programming (LP) problems from which the lower

and upper bounds on the weight of each attribute

can be obtained.

The PAIRS method (Preference Assessment

by Imprecise Ratio Statements; Salo and

H€am€al€ainen, 1992) extends Arbel�s concepts to
attribute hierarchies in which lower and upper

bounds on the relative importance of attributes

define a region of feasible weights at each higher-

level attribute. Combined with possibly incomplete

score information, such ratio-based information is

processed by solving a series of hierarchically

structured LP problems, in order to obtain bounds

on the alternatives� overall values. The decision
recommendations are based on the (pairwise)

dominance criterion according to which alternative

xi is preferred to xj if the overall value of xi is

higher than that of xj, no matter how the weights

are chosen from the feasible regions. If the avail-

able preference information does not lead to suf-

ficiently conclusive dominance relations, the DM

is requested to supply additional preference state-
ments. PAIRS supports the consistency of the

preference model through so-called consistency

bounds which are presented to the DM before the

elicitation of each new preference statement.

Analogous to PAIRS in many ways, the pref-

erence programming approach of Salo and

H€am€al€ainen (1995) provides an ambiguity index
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which measures the incompleteness of a preference
model. Salo (1995) extends the preference pro-

gramming approach to group decision settings

where several decision makers can supply incom-

plete preference information about (i) how the

alternatives perform on the lowest-level attributes

and (ii) how important the attributes are to the

different DMs. These statements lead to linear

constraints so that value intervals and dominance
relations for the alternatives can be computed

from LP problems. The potential of this approach

has been explored in a study on traffic planning by

H€am€al€ainen and P€oyh€onen (1996), for instance.

The PRIME method (Preference Ratios

in Multi-Attribute Evaluation; Salo and

H€am€al€ainen, 2001) allows the DM to provide

preference statements through holistic compari-
sons between alternatives, ordinal strength of

preference judgments or ratios of value differences.

Like PAIRS, PRIME provides information about

the consistency of the DM�s preference statements

and dominance relations. Full support for PRIME

is provided by the decision support tool PRIME

Decisions which is available at http://

www.decisionarium.hut.fi. PRIME Deci-
sions employs value intervals and dominance

structures to show intermediate results to the DM.

It has been applied to the valuation of a high-

technology firm, among others (Gustafsson et al.,

2001).

Park and Kim (1997) give an extensive taxon-

omy of alternative ways to the elicitation of

incomplete preference information in hierarchical
weighting models. In particular, they distinguish

between the following statements:

1. weak ranking: fwi Pwjg,
2. strict ranking: fwi � wj P aig,
3. ranking with multiples: fwi P aiwjg,
4. interval form: fai 6wi 6 ai þ �ig,
5. ranking of differences: fwi � wj Pwk � wlg for

j 6¼ k 6¼ l,

where ai; �i P 0 8i. Furthermore, they consider

more general multi-criteria problems with incom-

plete probabilities, utilities and attribute weights.

Although these problems may involve non-convex

objective functions, approximate or even exact

solutions can often be obtained by solving a series

of LP problems.

M�armol et al. (1998) present an algorithm for

computing the extreme points of the region of

feasible attribute weights in two highly relevant

cases (i.e., linear inequalities and weight intervals).

They also examine the computational properties

of their algorithm and establish conditions for
introducing further linear relations which preserve

the structure of the feasible region. A similar ap-

proach is taken by Puerto et al. (2000) who utilize

the extreme points of the set of feasible weights in

the implementation of three decision criteria (i.e.,

Laplace criterion, Wald�s optimistic/pessimistic

criterion, Hurwicz criterion).

Kim and Han (2000) extend the methods of
Park and Kim (1997) to hierarchically structured

attribute trees. In their model, the DM can place

several kinds of linear constraints at any level of

the attribute tree. These constraints are processed

by an algorithm which can be invoked to obtain

upper and lower bounds for the value of an

alternative with regard to any attribute, subject to

the assumption that the DM�s preference state-
ments remain consistent.

Fig. 1 presents a schematic diagram on the

consecutive phases of the RICH method. In effect,

this method is analogous to many others (e.g.,

PRIME; Salo and H€am€al€ainen, 2001) in that the

DM can (i) interactively introduce new preference

statements or revise earlier ones, and (ii) obtain

tentative decision recommendations and informa-
tion about the completeness of the currently

available preference information. The key differ-

ence lies in the elicitation of attribute weights

which are in the RICH method characterized

through incomplete ordinal preference statements.

At any phase of the process, results on (i) the

alternatives� possible overall values, (ii) (pairwise)

dominance structure of the alternatives, (iii) deci-
sion recommendations and (iv) information about

the possible rankings of the attributes can be ob-

tained from LP problems. After examining these

results, the DM may either choose to accept one of

the decision recommendations or continue with

the specification of further preference information.

Except for the work of Park and Kim (1997)––

in which combinations of incompletely specified
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weights, probabilities and utilities are consid-

ered––a common feature of all earlier approaches

is that the region of feasible attribute weights is

convex and bounded by linear constraints. As we

next move to the consideration of incomplete

ordinal preference information, there is a signifi-

cant difference in that the resulting feasible region

may not be convex.

3. Formalization of incomplete ordinal information

Let A ¼ fa1; . . . ; ang be the set of relevant

attributes in the decision problem. The importance

of attribute ai is measured by its weight wi 2 ½0; 1�.
By convention, the attribute weights are normal-
ized so that they add up to one, i.e.,

Pn
i¼1 wi ¼ 1.

Alternatives are denoted by xj, j ¼ 1; . . . ;m. The
performance of the jth alternative with regard to

attribute ai is measured by its score viðxjÞ 2 ½0; 1�.
The overall value of alternative xj is given by

V ðxjÞ ¼
Pn

i¼1 wiviðxjÞ.

3.1. Weak orders, linear orders and rankings

Following several other approaches, we assume

that the DM makes statements about the relative

importance of attributes. These preferences are

captured through a relation � on the set A� A, in
the understanding that ai � aj if and only if

attribute ai is at least as important as attribute aj.
The relation is a weak order if it is comparable

(i.e., 8ai; aj 2 A either ai � aj or aj � ai, or both)
and transitive (i.e., if ai � aj and aj � ak, then

ai � ak). If this relation is also antisymmetric (i.e.,

9= ai; aj 2 A; ai 6¼ aj such that ai � aj and aj � ai),
it is a linear order. In this case, each attribute a 2 A
can be assigned a unique ranking rðaÞ 2 N ¼
f1; . . . ; ng such that ai � aj if and only if rðaiÞ <
rðajÞ. Thus, the ranking of the most impor-

tant attribute is one, that of the second most

important is two, and so on, until the least

important attribute is reached, the ranking of

which is n.
If � is a weak order, there is a possibility that

two or more attributes are equally important. In

Consistent ?

Add or adjust a

preference statement

no

Compute and display results
• possible rankings for each attribute
• value intervals
• dominance relations
• decision recommendations

Interpret results

no

yes

Acceptable ?

yes

Make a decision

Fig. 1. Phases in the RICH method.
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this case, the attributes A can be partitioned into
sets Að1Þ; . . . ;AðkÞ such that (i) ai � aj, aj � ai if
attributes ai, aj are in the same subset (i.e., 9AðlÞ
such that ai; aj 2 AðlÞ) and (ii) ai � aj, aj†ai for
any ai 2 AðlÞ, aj 2 Aðlþ 1Þ. Nevertheless, the

attributes can still be given rankings in rðaiÞ, rðajÞ
such that ai � aj whenever rðaiÞ < rðajÞ; but these
rankings are not necessarily unique because per-

muting the rankings of attributes which belong to
the same partition would lead to different rankings

which still fulfil the above condition. Whatever the

case, the ranking rðaÞ implies that rðaÞ � 1 attri-

butes are at least as important as the attribute a.
Formally, a rank-ordering r is a function from

the set of attributes A ¼ fa1; . . . ; ang onto the set

N . The set of all possible rank-orderings r is

denoted by R. Because each rank-ordering r is a
bijection, the attribute with the ranking k is given

by the inverse function r�1, i.e., ai ¼ r�1ðkÞ ()
rðaiÞ ¼ k. For example, if attribute a3 is the second
most important attribute, the ranking of a3 is

rða3Þ ¼ 2 and r�1ð2Þ ¼ a3.
While linear and weak orders correspond to

rank-orderings as indicated above, rank-orderings

can be used directly in the elicitation of incomplete
preference information. This can be helpful in

situations where the DM does not provide a linear

or weak order when considering the relative

importance of the attributes: for example, if

there are three attributes, the DM may state that

the most important one is either the first or the

second attribute, without taking a stance on which

one of the two is the most important one. Among
the six possible rank-orderings, four (i.e., r ¼
ðrða1Þ; rða2Þ; rða3ÞÞ ¼ ð1; 2; 3Þ; ð1; 3; 2Þ; ð2; 1; 3Þ or

(3,1,2)) are compatible with this statement which

rules out the remaining two (i.e., (2,3,1) and

(3,2,1)).

The above approach to preference elicitation

can be formalized through (i) an attribute set

I � A and (ii) a set of rankings J � N such that the
rankings of attributes in I belong to J (subject to

some qualifications discussed below). For in-

stance, the example above corresponds to I ¼
fa1; a2g and J ¼ f1g. Moreover, if I contains

several attributes while the only ranking in J is

one, it follows that the most important attribute

must belong to I .

The attribute set I and the set of rankings J
need not be equal in size. If the number of attri-

butes is at least as large as that of possible rank-

ings (i.e., jI jP jJ j), the specification of these two

sets is interpreted as the requirement that all

attributes whose rankings belong to J are in the

attribute set I . On the other hand, if there are

fewer attributes than rankings (i.e., jI j < jJ j), we
require that for each attribute in I , the corre-
sponding ranking is in the set J .

If a rank-ordering meets the above require-

ments, it is said to be compatible with the sets I and
J . For example, if there are three attributes and the

DM states that attribute a2 is either the most

important or the second most important attribute,

then we have I ¼ fa2g and J ¼ f1; 2g. The four

rank-orderings that are compatible with these two
sets are (2,1,3), (3,1,2), (1,2,3) and (3,2,1). For-

mally, rank-orderings that are compatible with an

attribute set I and a set of rankings J are defined as

follows:

Definition 1. If I � A ¼ fa1; . . . ; ang and J � N ,

the set of compatible rank-orderings is

RðI ; JÞ ¼ fr 2 Rjr�1ðjÞ 2 I 8j 2 Jg; if jI jP jJ j;
fr 2 RjrðaiÞ 2 J 8ai 2 Ig; if jI j < jJ j:

�

3.2. Feasible regions

Because the attribute weights are non-negative

and add up to one, they belong to the set

Sw ¼ w

(
¼ ðw1; . . . ;wnÞ

Xn

i¼1

wi

����� ¼ 1;

wi P 0 8i 2 N

)
: ð1Þ

The weight vector w 2 Sw is consistent with the

rank-ordering r if wi Pwj whenever rðaiÞ < rðajÞ.
Thus, the feasible region associated with r 2 R can

be defined as

SðrÞ ¼ fw 2 Swjwi Pwj

for any i; j such that rðaiÞ < rðajÞg: ð2Þ
For example, the feasible region implied by

r ¼ ð4; 2; 1; 3Þ is SðrÞ ¼ fw 2 Swjw3 Pw2 Pw4 P
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w1g. Fig. 2 illustrates the feasible region for
r ¼ ð1; 3; 2Þ.

The region that corresponds to RðI ; JÞ is defined
as the union of feasible regions that are associated

with compatible rank-orderings, i.e.,

SðI ; JÞ ¼
[

r2RðI ;JÞ
SðrÞ:

In general, for a given R0 � R, the corresponding

feasible region is defined as SðR0Þ ¼ S
r2R0 SðrÞ. For

example, Fig. 3 shows the feasible region associ-

ated with R0 ¼ fð3; 1; 2Þ; ð1; 3; 2Þg, based on the

statement that a3 is the second most important one

among three attributes (i.e., I ¼ fa3g, J ¼ f2g).
An important special case is obtained when the

DM specifies an attribute set I which contains the
p6 jI j most important attributes. For brevity, we

use SpðIÞ to denote the corresponding feasible re-

gion, SpðIÞ ¼ SðI ; f1; . . . ; pgÞ. In view of (1) and

(2), this region is

SpðIÞ ¼ fw 2 Swj9I 0 � I ; jI 0j ¼ p;

such that wk Pwi 8ak 2 I 0; ai 62 I 0g: ð3Þ
It immediately follows that SpðIÞ can be written as

SpðIÞ ¼
S

fI 0 jI 0�I^jI 0 j¼pg SpðI 0Þ. For example, Fig. 4

illustrates that in a case with three attributes,

S1ðfa1; a2gÞ can be built as the union of S1ðfa1gÞ
and S1ðfa2gÞ.

3.3. Properties of feasible regions

We next examine several interesting properties

of the feasible region based on attribute set I and

the rankings J . Proofs are in Appendix A, unless

otherwise stated.

w3

w2

w1

S((1,3,2))

(0,0,1)

(1,0,0)

(0,1,0)

w3 = w2

w3 = w1

w2 = w1 

Fig. 2. The feasible region for r ¼ ð1; 3; 2Þ.

w3

w2

w1

S((1,3,2))

S((3,1,2))

(0,0,1)

(1,0,0)

(0,1,0)

w3 = w2

w3 = w1

w2 = w1 

Fig. 3. The third attribute as the second most important one.
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The feasible region SpðIÞ may not be convex (see

Fig. 4). In fact, the feasible region is convex if and
only if the number of rankings p is equal to the

number of attributes in the set I ; this result is stated
in Theorem 1. Fig. 5 gives an example of the

set S2ðfa1; a2gÞ in the case of three attributes.

Here (and throughout this paper) ��� denotes a

proper subset.

Theorem 1. Let I � A and p6 jI j. Then SpðIÞ in (3)
is convex if and only if jI j ¼ p.

Theorem 1 holds also when I ¼ A. In this trivial

case, SpðIÞ ¼ Sw for p6 n, because knowing that

the p most important attributes come from the set

of all attributes does not contain any preference

information.

If two attribute sets I1, I2 are different but
contain equally many attributes (p), the two fea-

sible regions SpðI1Þ, SpðI2Þ––based on the require-

ment that the attributes in the sets I1, I2 are the p
most important ones––have disjoint interiors.

Lemma 1. If I1; I2 � A such that jI1j ¼ jI2j ¼ p and

I1 6¼ I2, then
intðSpðI1ÞÞ \ intðSpðI2ÞÞ ¼ ;:

For a given attribute set I and a set of rankings

J , the resulting feasible region is the same as that

defined by the complement sets of I and J . Taking
the feasible region in Fig. 4 as an example, the

statement that the most important attribute is a1
or a2 (i.e., Sðfa1; a2g; f1gÞ) is equivalent to stating

that attribute a3 is either the second or third most

important one (i.e., Sðfa3g; f2; 3gÞ).

Theorem 2. Assume that I and J are non-empty

proper subsets of A ¼ fa1; . . . ; ang and N , respec-

tively. Then

SðI ; JÞ ¼ SðI ; JÞ;
where I ¼ A n I and J ¼ N n J are the complement

sets of I and J .

Several comparative results about feasible re-

gions can be obtained. If there are more rankings in

J than attributes in I , then, as stated in Theorem 3,

increasing the number of attributes that are asso-
ciated with these rankings reduces the size of the

feasible region. Conversely, if there are more attri-

butes in I than rankings in J , reducing the number

of attributes in I makes the feasible region smaller.

Theorem 3. Let I1 and I2 be non-empty attribute

sets such that jI1j, jI2j < n and jJ j < n.

(a) If jI1j; jI2j6 jJ j, then I1 � I2 () SðI2; JÞ �
SðI1; JÞ.

S1({a2})

S1({a1})

w3

w2

w1

(0,0,1)

(1,0,0)

(0,1,0)

w3 = w2

w3 = w1

w2 = w1 

Fig. 4. A non-convex feasible region.

S2({a1,a2})

w3

w2

w1

(0,0,1)

(1,0,0)

(0,1,0)

w3 = w2

w3 = w1

Fig. 5. A convex feasible region.
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(b) If jI1j; jI2jP jJ j, then I2 � I1 () SðI2; JÞ �
SðI1; JÞ.

If there are fewer rankings in J than attributes

in I , increasing the number of rankings leads to a

feasible region that is a proper subset of the ori-

ginal one. Conversely, if there are more rankings

in J than attributes in I , the feasible region be-
comes smaller if rankings are removed from the set

J .

Theorem 4. Let J1 and J2 are non-empty sets such

that jJ1j; jJ2j < n and jI j < n.

(a) If jJ1j; jJ2j6 jI j, then J1 � J2 () SðI ; J2Þ �
SðI ; J1Þ.

(b) If jJ1j; jJ2jP jI j, then J2 � J1 () SðI ; J2Þ �
SðI ; J1Þ.

The above results can be applied to examine

how the feasible region SpðIÞ––based on the

requirement that the p6 jI j most important attri-

butes are in the set I––changes due to incremental

changes in the set I or the number p. That is, the
feasible region SpðIÞ becomes smaller if

1. the attribute set I is extended to contain a larger

number of the most important attributes; this

means that p becomes larger (i.e., in Theorem

4, the set J1 is extended to its proper superset

J2 � J1), or
2. some attributes are removed from I without

changing the number p; this means that the attri-

butes that are removed from I are not among the

p most important ones (i.e., in Theorem 3, the

set I1 is reduced to its proper subset I2 � I1).

The above results do not provide information

on how �large� the feasible regions are. We next

turn to this issue, in order to provide guidance for
eliciting statements which help reduce the size of

the feasible region.

4. Measuring the completeness of information

Definition 1 and Eq. (2) suggest that a measure

for the size of the feasible region SðI ; JÞ can be

based on the number of compatible rank-orderings
in the set RðI ; JÞ. An appealing property of such a

measure is that this number can be readily com-

puted, as shown by Lemma 2 (here, we use the

convention 0!¼ 1).

Lemma 2. The number of rank-orderings that are

compatible with sets I and J is

jRðI ; JÞj ¼
jIj!ðn�jJ jÞ!
ðjIj�jJ jÞ! ; if jI jP jJ j;
jJ j!ðn�jI jÞ!
ðjJ j�jI jÞ! ; if jI j < jJ j:

8<
:

Proof. If jI jP jJ j, there are
jI j
jJ j

� �
¼ jI j!

jJ j!ðjI j�jJ jÞ!

different ways of choosing jJ j attributes from I .
These jJ j attributes can be arranged in jJ j! ways
while the remaining ones can be arranged in

ðn� jJ jÞ! ways, implying that there is a total of

jIj!ðn�jJ jÞ!
ðjIj�jJ jÞ! different rank-orderings. If jI j < jJ j, the

proof is similar, with the roles of I and J inter-

changed. h

The above lemma suggests a measure which is

formally defined in the following theorem.

Theorem 5. Let PðRÞ be the power set which con-

tains all subsets of R. Then the function uð	Þ,
defined for any R0 2 PðRÞ as uðR0Þ ¼ jR0 j

n! , is a

measure which maps the elements of PðRÞ onto the

range [0,1].

Table 1 shows the size of the feasible region (as

measured by uð	Þ) for 10 attributes as a function of

possible combinations of jI j and jJ j. The feasible
region is smallest when (i) the attribute set and the

ranking set are of equal size and (ii) they both

contain (about) half as many elements as there are

attributes (i.e., jI j ¼ jJ j 
 n
2
). This means that

bisecting the attributes into two sets––one which

contains the n
2
most important attributes and one

which contains the remaining n
2
less important

attributes––effectively reduces the size of the fea-
sible region.

Lemma 2 and Theorem 5 can be combined to

obtain the following expression for the size of the

feasible region SpðIÞ.
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Corollary 1. For any I � A such that jI jP p,

unðRðI ; f1; . . . ; pgÞÞ ¼
jI j!ðn� pÞ!
ðjI j � pÞ!n! ¼

jI j
p

� �
n
p

� � :

The measure uð	Þ can be used for the purpose of
analyzing how the size of SpðIÞ changes when

attributes are removed from the set I . It turns out
that the resulting comparative change is larger, the

more attributes there are in I .

Lemma 3. Assume that the attribute set I2 is ob-

tained from the set I1; jI1j ¼ k > p by removing one

of the attributes in I1 (i.e., I2 ¼ I1 n fakg for some

ak). Then the size of the revised feasible

region SpðI2Þ, relative to the initial feasible region

SpðI1Þ, is

Qð1; k; pÞ ¼ uðRðI2; f1; . . . ; pgÞÞ
uðRðI1; f1; . . . ; pgÞÞ ¼

k � p
k

:

Proof. Corollary 1 leads to the quotient

Qð1; k; pÞ ¼ uðRðI2; f1; . . . ; pgÞÞ
uðRðI1; f1; . . . ; pgÞÞ

¼ ðk � 1Þ!ðn� pÞ!
ðk � 1� pÞ!n!

n!ðk � pÞ!
k!ðn� pÞ!

¼ k � p
k

: �

Lemma 3 can also be applied to examine

changes in the size of the feasible region when

several attributes are removed from the initial set

of attributes. That is, if the DM chooses to remove

l6 k � p attributes from I , consecutive application
of Lemma 3 gives

Qðl; k; pÞ ¼
Yl�1

i¼0

k � p � i
k � i

¼ ðk � pÞ!ðk � lÞ!
ðk � p � lÞ!k!

¼ k � p
l

� ��
k
l

� �
:

For example, if p ¼ 2 and the DM removes four

attributes from an initial set of seven attri-

butes, the revised feasible region is ½ð7� 2Þ!ð7�
4Þ!�=½ð7� 2� 4Þ!7!� ¼ ½5!3!�=½1!7!� ¼ 1=7 of the size

of the initial feasible region.

5. Computation of decision recommendations

The elicitation of preferences through the

specification attributes and corresponding rank-
ings would usually take place iteratively so that

each new statement is combined with the earlier

ones to obtain a reduced feasible region (see Fig.

1). The feasible regions implied by these state-

ments, i.e. intersections of the sets SðI ; JÞ, are un-

ions of elementary sets that correspond to

complete rank-orderings (i.e., SðrÞ for some r 2 R).
This has implications for the computational anal-
ysis of incomplete ranking information.

Table 1

Size of the feasible region (n ¼ 10)

jIj jJ j
1 2 3 4 5 6 7 8 9 10

1 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

2 0.2000 0.0222 0.0667 0.1333 0.2222 0.3333 0.4667 0.6222 0.8000 1.0000

3 0.3000 0.0667 0.0083 0.0333 0.0833 0.1667 0.2917 0.4667 0.7000 1.0000

4 0.4000 0.1333 0.0333 0.0048 0.0238 0.0714 0.1667 0.3333 0.6000 1.0000

5 0.5000 0.2222 0.0833 0.0238 0.0040 0.0238 0.0833 0.2222 0.5000 1.0000

6 0.6000 0.3333 0.1667 0.0714 0.0238 0.0048 0.0333 0.1333 0.4000 1.0000

7 0.7000 0.4667 0.2917 0.1667 0.0833 0.0333 0.0083 0.0667 0.3000 1.0000

8 0.8000 0.6222 0.4667 0.3333 0.2222 0.1333 0.0667 0.0222 0.2000 1.0000

9 0.9000 0.8000 0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000 1.0000

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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The development of decision recommendations
based on dominance relations and decision rules

does not presume that the feasible regions are un-

ions of the elementary sets SðrÞ; r 2 R. Thus, in

Sections 5.1 and 5.2 we only assume that the fea-

sible region S is some non-empty subset of Sw in (1).

5.1. Dominance structures

Following Salo and H€am€al€ainen (1992), domi-

nance relations for the alternatives can be estab-

lished on the basis of (i) the value intervals that the

alternatives can assume, subject to the requirement

that the attribute weights belong to the feasible

region, and (ii) the minimization of value differ-

ences between pairs of alternatives, as computed

from the pairwise bounds

l0ðxk; xlÞ ¼ min
w2S

½V ðxkÞ � V ðxlÞ�

¼ min
w2S

Xn

i¼1

wi½viðxkÞ � viðxlÞ�: ð4Þ

If the minimum in (4) is non-negative, the value of

alternative xk is greater than or equal to that of

alternative xl, no matter how the feasible weights

are chosen. In this case, alternative xk dominates xl
in the sense of pairwise dominance.

The computation of dominance relations does

not presume that precise score information is

available. For instance, if incomplete information

about scores is available as intervals, the minimi-

zation problem (4) can be solved by first deter-

mining attribute-specific pairwise bounds liðxk; xlÞ
from the minimization problems

liðxk; xlÞ ¼ min½viðxkÞ � viðxlÞ�:
These bounds can be inserted into (4) to replace

the bracketed differences. In hierarchically struc-

tured value trees with attributes on several levels,

the computation of pairwise bounds proceeds

from the lower levels towards the topmost attri-
bute (for details see Salo and H€am€al€ainen, 1992).

In many problems, it is plausible to require that

all attributes are essential in the sense that they

influence the alternatives� overall values. This can
be modelled by requiring that the weight of each

attribute is greater than some fixed lower bound

� < 1
n (i.e., wi P � 8i 2 N ): for example, if––for the

sake of convenience––the weight of each attribute
is required to be at least one third of the average

weight of an attribute, then � would be 1=½3n�.
With the requirement of lower bounded attribute

weights, the set Sw in (1) becomes

Swð�Þ ¼ fw ¼ ðw1; . . . ;wnÞ 2 Swjwi P � 8i 2 Ng:
ð5Þ

These constraints help reduce the size of the fea-

sible region so that dominance results for alter-

natives are more likely obtained. In a somewhat

different but analogous setting, Cook and Kress

(1990, 1991) consider the use of lower bounds on

weight differences so that the weight of attribute ai
with ranking rðaiÞ ¼ k exceeds the weight of the

attribute aj with ranking k þ 1 by a certain gap �;
in this case, the inequality wi � wj P � must hold.

5.2. Decision rules

Throughout the analysis, the DM can be offered

tentative decision recommendations based on dif-
ferent decision rules (Salo and H€am€al€ainen, 2001).
These rules are procedures for extrapolating a

decision recommendation from a preference spec-

ification which is not complete enough to establish

dominance results. Alternative decision rules in-

clude, among others, (i) the choice of an alterna-

tive with the largest possible overall value (i.e.,

maximax rule), (ii) the choice of an alternative for
which the smallest possible value is largest (i.e.,

maximin rule), (iii) the choice of an alternative

such that the maximum value difference to some

other alternative is minimized (i.e., minimax re-

gret), and (iv) the comparison of central values,

computed for each alternative as the average of its

smallest and largest possible values. Formally,

these decision rules can be defined as follows:

maximax : argmaxxi max
w2S

V ðxiÞ
� �

;

maximin : argmaxxi min
w2S

V ðxiÞ
� �

;

minimax regret : argminxi max
xk 6¼xi

max
w2S

½V ðxkÞ
�

�V ðxiÞ�
�
;

central values : argmaxxi max
w2S

V ðxiÞ
�

þmin
w2S

V ðxiÞ
�
:
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Because these decision rules are based on the

analysis of alternatives� overall values, the recom-

mendations depend on the scores (i.e., viðxjÞ). It is
also possible to offer decision recommendations by

choosing representative vectors from the feasible

region S without considering scores. Here, possi-

bilities include the computation of (i) central

weights, defined by normalizing the vector
w0

i ¼ maxw2S wi þminw2S wi, and (ii) the point of

gravity of feasible region S. Also, the use of equal

weights (i.e., wi ¼ 1=n) offers a benchmark against

which the performance of any decision rule can be

contrasted (Salo and H€am€al€ainen, 2001).

5.3. Computational issues

Because the feasible region SðI ; JÞ is not neces-
sarily convex, the computation of dominance re-

sults may lead to linear optimization problems over

non-convex sets. In principle, these problems can

be solved by branch-and-bound algorithms or

other suitable approaches (see, e.g., Taha, 1997). In

particular, if the DM states that the p most

important attributes are in the attribute set I ,
Lemma 1 implies that SpðIÞ can be decomposed into

jI j!=½p!ðjI j � pÞ!� convex subsets with disjoint inte-

riors. Each of these subsets could be dealt with as a

separate subproblem, allowing dominance struc-

tures and decision recommendations to be derived

by combining results from these subproblems.

Because the objective functions in the compu-

tation of value intervals, dominance structures and
decision rules are linear, solving these optimization

problems over the convex hull of the feasible re-

gion SðI ; JÞ leads to the same result as solving

these problems over the feasible region. This ap-

proach is not attractive, however, because the

determination of a minimal set of constraints

through which this convex hull is characterized

entails an additional computational effort.
An efficient approach to the determination of

dominance relations and decision rules can be

based on the realization that each feasible region

SðI ; JÞ is the union of the sets SðrÞ, r 2 RðI ; JÞ. By
construction, each such set is convex, and its ex-

treme points are related to the rank-orderings r as
stated in the following lemma (for the proof, see,

e.g., Carrizosa et al., 1995).

Lemma 4. Let r 2 R be a rank-ordering. Then the

extreme points of the feasible region SðrÞ in (2),

X ðrÞ, are

X ðrÞ ¼ extðSðrÞÞ ¼ w 2 Swj9k 2 f1; . . . ; ng s:t:

�

wi ¼ 1

k
8rðaiÞ6 k; wi ¼ 0 8rðaiÞ > k

	
:

Lemma 4 can be adapted to obtain the extreme

points of S�ðrÞ ¼ SðrÞ \ Swð�Þ:

extðSðrÞ \ Swð�ÞÞ ¼ w 2 Swj9k
�

6 n s:t:

wi ¼ 1� ðn� kÞ�
k

8rðaiÞ6 k;

wi ¼ � 8rðaiÞ > k
	
:

Based on this result, the extreme points can be

enumerated at the outset (on condition that the

number of attributes is not too large). Then, as the

DM supplies preference statements, the resulting

list can be shortened by removing those extreme
points that are not compatible with the DM�s
statements. At any stage of the analysis, value

intervals, dominance structures and decision rules

can be computed by inspection. For instance, the

pairwise bound for alternatives xk; xl is obtained

from l0ðxk; xlÞ ¼ minr2R0 minw2X ðrÞ
Pn

i¼1 wi½viðxkÞ�
viðxlÞ�, where R0 is the set of rank-orderings that

are compatible with the DM�s preference state-
ments.

6. A simulation study on the computational

properties of RICH

To examine the computational properties of

RICH, we carried out a simulation study in which
the number of attributes was n ¼ 5, 7, 10 and the

number of alternatives was m ¼ 5, 10, 15. The

attribute weights were generated by assuming a

uniform distribution over the set Sw. Because in

many cases it is realistic to assume that the weight

of each attribute is greater than some lower bound,

simulation results are presented for the case where
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this bound was � ¼ 1=½3n�, which seemed plausible
enough.

Following Salo and H€am€al€ainen (2001), scores

for the alternatives were defined under each attri-

bute by (i) generating random numbers from a

uniform distribution over [0,1] and by (ii) nor-

malizing the resulting numbers under each attri-

bute. This normalization was carried out through

a linear mapping in which the random number of
the best performing alternative was set to one and

that of the worst performing alternative was set to

zero.

Five thousand problem instances were gener-

ated for each problem type (as characterized by the

number of attributes (n) and alternatives (m)).
Each problem instance consisted of a full combi-

nation of weights and scores in an additive pref-
erence model. The alternative with the highest

overall value, i.e.,

argmaxxV ðxÞ ¼
Xn

i¼1

wiviðxÞ

will be referred to as the correct choice.

The simulation study was based on the follow-
ing preference statements:

• A: The DM specifies the most important attri-

bute only.

• B: The DM specifies the two most important

attributes (without taking a stance on which

one is more important than the other).

• C: The DM specifies a set of three attributes
which contains the two most important attri-

butes.

Even though other kinds of preference state-

ments are also worth studying, these three state-

ments are nevertheless indicative of different ways

of expressing incomplete preference information

through rank inclusion. The sizes of the respective
feasible regions (see Table 2) indicate that state-

ment B leads to a preference specification which is

more informative than statement A or statement

C. This is also in keeping with the theoretical re-

sults of Sections 3 and 4.

The preference statements––and corresponding

feasible regions of attribute weights––were derived

from the randomly generated weights as follows.

Starting from the randomly generated weight
vector w, the corresponding rank-ordering r was

first derived. For instance, if the simulated weights

of the five attributes were w1 ¼ 0:09, w2 ¼ 0:30,
w3 ¼ 0:18, w4 ¼ 0:20 and w5 ¼ 0:23, the resulting

rank-ordering was r ¼ ð5; 1; 4; 3; 2Þ.
For preference statement A, the feasible region

was set equal to S1ðfr�1ð1ÞgÞ. For preference

statement B, the feasible region was defined anal-
ogously as S2ðfr�1ð1Þ; r�1ð2ÞgÞ. For the third

preference statement C, the set of three attributes

was defined by taking the union of the two most

important attributes (i.e., r�1ð1Þ, r�1ð2Þ) and a

third attribute from the remaining n� 2 attributes.

This third attribute ai was selected at random by

assuming a uniform distribution over the set

N n fr�1ð1Þ; r�1ð2Þg, whereafter the feasible region
was defined as S2ðfr�1ð1Þ; r�1ð2Þ; aigÞ.

Results based on the above preference state-

ments were compared to those obtained on the use

of (i) equal weights (i.e. wi ¼ 1=n, 8i 2 N ) and (ii)

complete rank-ordering (where the feasible region

was set equal to SðrÞ \ Swð1=½3n�Þ). The compari-

sons were made using four decision rules (maxi-

max, maximin, central values and minimax regret)
in conjunction with two measures of efficiency, i.e.,

(i) the average expected loss of value relative to the

correct choice and (ii) the percentage of problem

instances in which the decision rule lead to the

identification of the correct choice. We also com-

puted the average number of non-dominated

alternatives that would remain after (i) the speci-

fication of the above three statements A, B, and C
and (ii) the use of complete rank-ordering infor-

mation.

Among alternative measures of efficiency, ex-

pected loss of value is arguably the most important

as it indicates how great a loss of value the

DM would incur, on the average, if he or she were

to follow a particular decision rule (Salo and

Table 2

Size of the feasible region

n A B C Complete

rank-ordering

5 0.200 0.100 0.300 8.33· 10�3

7 0.143 0.048 0.143 1.98· 10�4

10 0.100 0.022 0.067 2.76· 10�7
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H€am€al€ainen, 2001). For a given problem instance,
the corresponding loss of value is obtained from

LV ¼
Xn

i¼1

wi½viðx�Þ � viðx0Þ�;

where wi is weight of attribute ai, x� is the correct

choice and x0 is the alternative that is recom-

mended by a particular decision rule. In our sim-
ulation study, averaging these terms over the entire

sample lead to an estimate for the expected loss of

value.

In the simulation results, the use of central

values as a decision rule outperformed the other

decision rules, wherefore the results are presented

using this decision rule only (see also Salo and

H€am€al€ainen, 2001). In particular, an analysis of
the results in Table 3 supports the following con-

clusions:

• Among the three statements, statement B is the

most efficient and C is the least efficient one

with regard to all measures of efficiency. All

the three preference statements A, B and C give

better results than the use of equal weights.
• Changes in the number of attributes or alterna-

tives do not reveal consistent trends in the ex-

pected loss of value. In comparative terms,

statement A performs best when there are few

attributes and alternatives, while the opposite

holds for statement C. For preference statement

B and complete rank-ordering information,

changes in the expected loss of value are rela-
tively small across the full range of problems.

• The percentage of problem instances in which

the application of decision rules leads to the

identification of the correct choice tends to de-

crease as the number of alternatives or attri-

butes grows; this is because there is a higher

chance that some other alternative (i.e., other

than the correct choice) will be favored. The
share of problem instances where the correct

choice is identified increases with about 5%

units when complete rank-ordering information

is used instead of information about the two

most important attributes only (i.e., statement

B). For statement C, the corresponding differ-

ence is about 15% units.

• The percentage of non-dominated alternatives

decreases as the number of alternatives in-

creases. Increasing the number of attributes

leads to a larger number of non-dominated

alternatives. Statement B has the smallest per-

centage of non-dominated alternatives across

the entire spectrum of problems, because the

size of the feasible region is smallest for this
statement.

7. An illustrative example

To further exemplify the application of RICH,

we assume there is a main contractor who is about

to choose a subcontractor for an engineering
project at a construction site. The contractor

chooses among competing subcontractors on the

basis of five attributes: (i) ability to finish the

project on schedule (i.e., punctuality), (ii) quality of

work, (iii) overall cost of the contract, (iv) refer-

ences from earlier engagements with the respective

subcontractor, and (v) possibilities for introducing

changes into the subcontract. These attributes are
essential in the sense that the weight of each is

greater than a positive lower bound �, which in this

example is set equal to 1=½3n� ¼ 1=15 
 0:0667.
The main contractor invites tenders from three

potential subcontractors. Among these, the first

(x1) is a large firm which is punctual and offers its

services at a reasonable cost. The second one (x2) is
a small entrepreneur who has had difficulties in
completing the project tasks on schedule. The third

subcontractor (x3) is a medium-sized firm which is

in many ways similar to the entrepreneur, except

that it is more punctual.

Score information for the three subcontractors

is generated as follows. Using the first attribute

(i.e., punctuality) as a benchmark, the main con-

tractor assigns 1.00 points to the best performance
level and 0.00 to the worst performance level.

Then, scores reflecting incomplete information

about the subcontractors are generated using these

ranges as a point of reference: thus, for the first

attribute, the score of the large firm is given by the

interval [0.80,1.00] while the score interval for the

entrepreneur is [0.00,0.20]. For the other subcon-

tractors and attributes, scores in the [0.00,1.00]
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range are generated in the same way, recognizing
that this range is used in interpreting the attribute

weights (see Table 4). The subcontractors� scores
of are assumed independent, i.e., the performance

of a given subcontractor may assume all the scores

within its respective interval, regardless of the

other subcontractors� scores.
Assume that the DM confirms that the two

most important attributes are among the three first
attributes, i.e., punctuality (a1), quality (a2) and

cost (a3). Using the notation of Section 2, we have
p ¼ 2 and I ¼ fa1; a2; a3g so that the feasible

region is S2ðfa1; a2; a3gÞ. According to Lemma 2

and Theorem 5, the size of this region is

uðS2ðfa1; a2; a3gÞ ¼ ½3!ð5� 2Þ!�=½1!5!� ¼ 3=10, i.e.,

it covers 30% of the entire weight space Swð�Þ in

(5).

To derive dominance results, the pairwise

bounds l0ðxi; xjÞ in (4) are computed. Towards this
end, the pairwise bounds lið	; 	Þ are first computed

Table 3

Simulation results

n m Equal weights A B C Complete

rank-ordering

Expected loss of value

5 5 0.065 0.021 0.025 0.050 0.013

10 0.062 0.024 0.023 0.048 0.014

15 0.059 0.027 0.022 0.043 0.015

7 5 0.060 0.024 0.021 0.045 0.013

10 0.061 0.027 0.023 0.041 0.015

15 0.060 0.029 0.022 0.042 0.014

10 5 0.054 0.025 0.021 0.038 0.015

10 0.054 0.030 0.023 0.039 0.015

15 0.056 0.031 0.023 0.038 0.016

Percentage of correct choices

5 5 61% 76% 76% 64% 81%

10 53% 67% 70% 57% 76%

15 50% 62% 66% 55% 72%

7 5 60% 72% 75% 64% 81%

10 50% 63% 67% 57% 73%

15 47% 59% 64% 53% 72%

10 5 58% 70% 72% 64% 77%

10 49% 58% 65% 55% 71%

15 44% 54% 60% 51% 66%

n m A B C Complete

rank-ordering

Percentage of non-dominated alternatives

5 5 54% 53% 65% 41%

10 37% 36% 49% 26%

15 30% 27% 40% 19%

7 5 69% 62% 74% 46%

10 52% 46% 60% 30%

15 45% 37% 51% 23%

10 5 84% 75% 85% 51%

10 71% 61% 75% 35%

15 64% 53% 68% 28%
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with regard to each attribute (see Table 5). For

example, because the score intervals of the first

two subcontractors on the first attribute are

[0.80,1.00] and [0.00,0.20], respectively, the pair-
wise bound l1ðx1; x2Þ is 0.80) 0.20¼ 0.60.

Next, for each pair of subcontractors, the

weighted sum of pairwise bounds (4) is minimized

over the feasible region S2ðfa1; a2; a3gÞ which

consists of three convex sub-regions S2ðfa1; a2gÞ,
S2ðfa1; a3gÞ and S2ðfa2; a3gÞ. The results indicate

that the first alternative (large firm) is better than

the third (medium-sized enterprise), because the
value difference

P5

k¼1 wk½vkðx1Þ � vkðx3Þ� is positive
over the entire feasible region (see Table 6). No

dominance relations are obtained for the two first

subcontractors because the pairwise bounds

l0ðx1; x2Þ, l0ðx2; x1Þ are negative. Thus, the DM

would be asked to supply further preference

information, or to accept one of the recommen-

dations based on decision rules.

Further insights can be obtained by examining
the recommendations of three decision rules, i.e.,

maximax, maximin, and maximization of central

values. For the maximax criterion, the decision

recommendation is based on the comparison of

largest possible values for each subcontractor,

obtained as solutions to the linear problems

VmaxðxiÞ ¼ max
P5

k¼1 wkvmax
k ðxiÞ subject to the

requirement that w 2 S2ðfa2; a3gÞ and wi P 1=15,
i ¼ 1; . . . ; 5. The analysis is based on S2ðfa2; a3gÞ,
since elsewhere in the feasible region dominance

relations are already obtained. Similarly, the

minimum possible values are computed from

VminðxiÞ ¼ min
P5

k¼1 wkvmin
k ðxiÞ subject to the same

Table 4

Score intervals for the alternatives

a1 a2 a3 a4 a5

viðx1Þ [0.80,1.00] [0.70,0.90] 0.80 0.40 0.70

viðx2Þ [0.00,0.20] [0.50,0.70] [0.40,0.60] [0.20,0.60] [0.30,0.90]

viðx3Þ 0.60 [0.50,0.70] 0.60 [0.20,0.40] [0.30,0.90]

Table 5

Attribute-specific pairwise bounds

a1 a2 a3 a4 a5

min½viðx1Þ � viðx2Þ� 0.60 0.00 0.20 )0.20 )0.20
min½viðx2Þ � viðx1Þ� )1.00 )0.40 )0.40 )0.20 )0.40
min½viðx1Þ � viðx3Þ� 0.20 0.00 0.20 0.00 )0.20
min½viðx3Þ � viðx1Þ� )0.40 )0.40 )0.20 )0.20 )0.40
min½viðx2Þ � viðx3Þ� )0.60 )0.20 )0.20 )0.20 )0.60
min½viðx3Þ � viðx2Þ� 0.40 )0.20 0.00 )0.40 )0.60

Table 6

Pairwise bounds l0

S2ðfa1; a2gÞ S2ðfa1; a3gÞ S2ðfa2; a3gÞ Min

l0ðx1; x2Þ 0.060 0.093 )0.007 )0.007
l0ðx2; x1Þ )0.827 )0.827 )0.560 )0.827
l0ðx1; x3Þ 0.040 0.013 0.013 0.013

l0ðx3; x1Þ )0.373 )0.373 )0.373 )0.373
l0ðx2; x3Þ )0.520 )0.520 )0.387 )0.520
l0ðx3; x2Þ )0.187 )0.160 )0.253 )0.253
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constraints. Finally, central values for the three

subcontractors are obtained as the average
Vave ¼ ½VmaxðxiÞ þ VminðxiÞ�=2.

Table 7 indicates that the maximum possible

value for the large firm is greater than that for the

small entrepreneur (0.920> 0.689): thus, the large

firm would be recommended by the maximax rule.

The application of the maximin rule leads to the

same conclusion (0.649> 0.093). Because both

maximax and maximin rules support it, the large
firm outperforms the small entrepreneur according

to the maximization of central values as well.

Thus, it would be offered as a tentative decision

recommendation.

Finally, we illustrate sensitivity analyses by

assuming that (i) the DM states that quality and

cost are the two most important attributes and that

(ii) the DM wishes to know how large a weight the
first attribute (i.e., punctuality) should have to

establish a dominance relationship between the

first two alternatives. The revised feasible region

thus becomes S2ðfa1; a2gÞ, in which no dominance

relations between the two first alternatives were

obtained. The feasible region is now defined by

I ¼ fa2; a3g, J ¼ f1; 2g, the size of which is

uðS2ðfa2; a3gÞÞ ¼ 1=10, i.e., one third of the origi-
nal feasible region S2ðfa1; a2; a3gÞ. The question

about the lower bound for the weight of the first

attribute can be answered by maximizing w1, sub-

ject to the constraint that the value of the large firm

is not smaller than that of the small entrepreneur,

i.e., l0ðx1; x2Þ ¼ 0. Thus, we have a maximization

problem maxw1 subject to the constraints

l0ðx1;x2Þ ¼ 0:6w1 þ 0:2w3 � 0:2w4 � 0:2w5 ¼ 0, w 2
S2ðfa2; a3gÞ, and wi P 1=15 8i ¼ 1; . . . ; 5. The

solution to this problem is w1 
 0:0769, which

indicates that even a small increase in the lower

bound for the weight of the first attribute (i.e.,

punctuality) would ensure that the large firm be-

comes preferred to the small entrepreneur.

8. Conclusion

The elicitation of precise statements about the

relative importance of attributes can pose difficul-

ties in the development of multi-attribute decision

models. To some extent, these difficulties can be

alleviated by allowing the DM(s) to provide

incompletely specified rank-ordering information.
In a natural way, such information constrains the

attribute weights so that partial dominance results

can be obtained even in the absence of complete

preference information. An essential feature of

such an approach is that the application of decision

rules makes it possible to offer decision recom-

mendations even when dominance concepts do not

allow the most preferred alternative to be inferred.
Oneof the featuresof the proposedRICHmethod

is that the DMs need not submit preference state-

ments thatwouldbemore explicit thanwhat they feel

confident with. Thus, the DMs may remain ambig-

uous about their �true� preferences. This, in turn,may

lead to a decision support process which is more

acceptable from the viewpoint of group dynamics

than approacheswhere full preference information is
solicited and communicated among the group

members. For example, the decision recommenda-

tion can be produced under the assumption that the

most important attribute in the group�s aggregate

preference model is an attribute that is regarded as

the most important one by some group member.

From the viewpoint of applied work, the deci-

sion support tool RICH Decisions �––which
is available free-of-charge for academic users

at http://www.decisionarium.hut.fi––is

important because it provides full support for the

RICH method and thus enables the development

of case studies based on the proposed method.

Such studies will be instrumental in assessing the

benefits and disadvantages of incomplete ordinal

preference information in challenging decision
contexts, which in turn helps set directions for

further theoretical research.
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Appendix A

Proof of Theorem 1. �(�: Let k 2 ½0; 1�, choose any
w1 ¼ ðw1

1;w
1
2; . . . ;w

1
nÞ;w2 ¼ ðw2

1;w
2
2; . . . ;w

2
nÞ 2SpðIÞ,

and define wk ¼ kw1 þ ð1� kÞw2. We need to show

that wk 2 SpðIÞ. Because w1
i ;w

2
i P 0, it follows that

wk
i ¼ kw1

i þ ð1� kÞw2
i P 0. Likewise,

Pn
i¼1 w

1
i ¼ 1,Pn

i¼1 w
2
i ¼ 1 imply that

Pn
i¼1 w

k
i ¼

Pn
i¼1 ðkw1

iþ
ð1� kÞw2

i Þ ¼ k
Pn

i¼1 w
1
i þ ð1� kÞPn

i¼1 w
2
i ¼ 1. Fi-

nally, because w1
k Pw1

i and w2
k Pw2

i for all ak 2 I ,
ai 62 I , it follows that wk

k ¼ kw1
k þ ð1� kÞw2

k P
kw1

i þ ð1� kÞw2
i ¼ wk

i if ak 2 I , ai 62 I . Thus,

wk 2 SpðIÞ.
�)�: Assume that p < jI j and choose some I 0 � I

such that jI 0j ¼ p. Since jI j < n, there exists an

attribute ak 62 I . Put I1 ¼ I 0 [ fakg define the

weight vector w1 by letting w1
l ¼ 1=ðpþ

1Þ; al 2 I1;w1
l ¼ 0; al 62 I1. Next, choose attributes

ai 2 I n I 0, aj 2 I 0 and define the attribute set
I2 ¼ ðI 0 n fajgÞ [ faig [ fakg and define w2 by let-

ting w2
l ¼ 1=ðp þ 1Þ, al 2 I2, w2

l ¼ 0, al 62 I2. By

construction, w1;w2 2 SpðIÞ because they contain p
elements in I that are greater than or equal to all

the other elements. However, this is not true for

the vector w3 ¼ ð1=2Þw1 þ ð1=2Þw2 where w3
l ¼ 1=

ðpþ 1Þ;al 2 fakg [ ðI 0 n fai;ajgÞ;w3
l ¼ 1=ð2ðpþ 1ÞÞ;

al 2 fai; ajg;w3
l ¼ 0, otherwise. Thus, w3 contains

only p � 1 elements in I that are larger than the

other elements so that it does not belong to SpðIÞ,
which implies that SpðIÞ is not convex. h

Proof of Lemma 1. By assumption, there exist at-

tributes ak, al such that ak 2 I1 n I2, al 2 I2 n I1. Let
a > 0 and define the vector d so that dk ¼ a, dl ¼
�a, di ¼ 0, i 6¼ k; l. If 9w 2 intðSpðI1ÞÞ\ intðSpðI2ÞÞ,
then for some e > 0 the weight vectors w1 ¼ wþ ed
and w2 ¼ w� ed are also in intðSpðI1ÞÞ\ intðSpðI2ÞÞ.
In particular, since w1 2 SpðI2Þ, it follows

that wl � eaPwk þ ea ) wl � wk P 2ea > 0. Also,

since w2 2 SpðI1Þ, it follows that wk � eaPwl þ
ea ) wk � wl P 2ea > 0, in contradiction with the

earlier inequality wl � wk > 0. h

Proof of Theorem 2. The cases jI jP jJ j and

jI j < jJ j can be dealt with separately. First, if

jI jP jJ j and w 2 SðI ; JÞ, then w 2 SðrÞ for some

r 2 RðI ; JÞ. Thus, for some I 0 � I ; jI 0j ¼ jJ j we have
rðI 0Þ ¼ J . But then rðI 0Þ ¼ J . Since I � I 0, we have

rðIÞ � J and r 2 RðI ; JÞ. Second, if jI j < jJ j and

w 2 SðI ; JÞ, then w 2 SðrÞ for some r 2 RðI ; JÞ such
that rðIÞ � J . Because jI j < jJ j, there exists a set I 0

such that I � I 0; jI 0j ¼ jJ j and rðI 0Þ ¼ J . Thus we

have rðI 0Þ ¼ J . By construction, jI 0j ¼ jJ j and

I 0 � I so that r 2 RðI ; JÞ. This far it has been

shown that w 2 SðI ; JÞ ) w 2 SðI ; JÞ. Since I ¼ I ,
w 2 SðI ; JÞ ) w 2 SðI ; JÞ. h

Proof of Theorem 3. Item (a). �)�: If w 2 SðI2; JÞ,
there exists a rank-ordering r 2 RðI2; JÞ such that
w 2 SðrÞ and rðI2Þ � J . But since I1 � I2, it follows
that rðI1Þ � J . In addition, by Definition 1 this

implies that r 2 RðI1; JÞ and w 2 SðI1; JÞ. To prove

that SðI2; JÞ is a proper subset of SðI1; JÞ, we con-

struct a rank-ordering r0 such that r0ðI1Þ � J and

r0ðakÞ 62 J for some ak 2 I2, ak 62 I1 (such an order

exists because jJ j < n). Then r0 2 RðI1; JÞ, but

r0 62 RðI2; JÞ.
�(�: Take any w 2 SðI2; JÞ. Then there exists

some r 2 RðI2; JÞ such that w 2 SðrÞ and rðI2Þ � J .
Because SðI2; JÞ � SðI1; JÞ, it follows that

r 2 RðI1; JÞ and hence rðI1Þ � J . Now, if I1 6� I2,
there exists some ak 2 I1, ak 62 I2. Because ak 2 I1,
we have ik ¼ rðakÞ 2 J . Also, since jJ j < n, there is
some al such that il ¼ rðalÞ 62 J . By construction,

this al is not in I1 or I2. Next, construct the
rank-ordering r0 so that r0ðakÞ ¼ il, r0ðalÞ ¼ ik
and r0ðaiÞ ¼ rðaiÞ, 8i 6¼ k; l. Then r0 2 RðI2; JÞ
but r0 62 RðI1; JÞ. But this violates the as-

sumption SðI2; JÞ � SðI1; JÞ, leading to a contra-

diction.

Item (b): By Theorem 2, SðI ; JÞ ¼ SðI ; JÞ. Thus,
we have to prove that I2 � I1 () SðI2; JÞ �
SðI1; JÞ, which is equal to I1 � I2 () SðI2; JÞ �
SðI1; JÞ; but this follows from item (a) above. h

Proof of Theorem 4. Item (a). �)�: If w 2 SðI ; J2Þ,
then there is a rank-ordering r 2 RðI ; J2Þ and an

attribute set I 0 � I such that jI 0j ¼ jJ2j and

rðI 0Þ ¼ J2. Next, define the set I 00 ¼ fai 2
I 0jrðaiÞ 2 J1g. Because J1 � J2, we have jI 00j ¼ jJ1j
so that r 2 RðI ; J1Þ; hence w 2 SðI ; J1Þ as well.
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�(�: Assume that SðI ; J2Þ � SðI ; J1Þ. By Theo-
rem 2, this is equivalent to SðI ; J2Þ � SðI ; J1Þ. From
the assumptions it also follows that jI j6 jJ1j; jJ2j.
Choose a w 2 SðI ; J2Þ. There then exists a rank-

ordering r such that w 2 RðI ; J2Þ, i.e. rðIÞ � J2.
Since SðI ; J2Þ � SðI ; J1Þ, r 2 RðI ; J1Þ so that rðIÞ �
J1, too. Contrary to the claim J1 � J2, assume that

there is an ik such that ik 2 J1; ik 62 J2. Then the

rank-ordering associates ik with an attribute ak 2 I
(because rðIÞ 2 J1 and rðIÞ 2 J2Þ. Also, choose an

al 2 I and define il ¼ rðalÞ; by construction,

il 62 J1, il 62 J2. Next, define a rank-ordering r0 so
that r0ðakÞ ¼ il, r0ðalÞ ¼ ik and r0ðaiÞ ¼ rðaiÞ,
8i 6¼ k; l. Then r0 2 RðI ; J2Þ, but r0 62 RðI ; J1Þ, which
violates the assumption SðI ; J2Þ � SðI ; J1Þ.

Item (b): According to Theorem 2,

SðI ; JÞ ¼ SðI ; JÞ. Thus, we have to show that
J2 � J1 () SðI ; J 2Þ � SðI ; J 1Þ, which is equal to

J1 � J2 () SðI ; J2Þ � SðI ; J1Þ. This follows di-

rectly from item (a) above. h

Proof of Theorem 5. Clearly, uð;Þ ¼ 0. Assume

that R0 2 PðRÞ and that R1; . . . ;RM 2 R are disjoint

sets of rank-orderings such that R0 ¼ UM
i¼1 Ri. By

construction, the intersection of any Ri and
Rj; i 6¼ j is empty; thus, jR0j ¼ PM

i¼1 jRij, which

implies that uðR0Þ ¼ jR0 j
n! ¼

PM
i¼1

jRi j
n! ¼

PM
i¼1 uðRiÞ.

Finally, since the total number of different rank-

orderings is n!, we have uðRÞ ¼ 1. h
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