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Abstract
We study the connections of two different pathwise hedging approaches.
These approaches are BSV by (Bender et al., 2008) and CF by (Cont and Fournié,
2010, 2011). We prove that both approaches give the same pathwise hedges,
whenever both of the strategies exist. We also prove BSV type robust repli-
cation result for CF strategies.
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1 Introduction

This paper considers pathwise hedging of options. The pathwise approach for the
hedging problem is natural from the practical point of view. In practice, the agent
does not know the distribution of the underlying asset for sure even though she has
statistical information on the distribution. What she really observes for sure is the
path of the stochastic process. Hence, it is natural that the hedging decisions are
based on the observed path.

The aim of the paper is to study the relation of two different approaches on
pathwise hedging of path dependent options. First of the approaches is the robust
hedging approach by Bender-Sottinen-Valkeila (BSV), see Bender et al. (2008). In
their work they prove that the functional hedging is robust for a broad class of
strategies within a certain model class. The other approach is the pathwise calculus
of Cont and Fournié (CF), see Cont and Fournié (2010, 2011). This approach can be
used for obtaining pathwise hedges using the functional form of the path dependence
of certain financial derivatives.

In this paper we prove that when the CF type hedging strategy exists pathwise
for a continuous martingale, then one can prove a robust replication result analo-
gous to Bender et al. (2008). This means that the pathwise Black-Scholes hedging
strategies remain hedges also when a zero quadratic variation process is added to
the driving continuous semimartingale. The main message of the theorem is: assume
that for some regular enough non-anticipative functional F' and for a continuous
martingale X it holds that

Fi(X,) = Fo(Xo) + f: Vo Fs(Xs)dX (s),

where Fy(Xo) = EF;(X;), X, is the path of X up to time ¢, V,F is the vertical
derivative of F' and the integral is an It6 integral. Then it turns out that for all



processes Z with the same quadratic variation, we have the following representation
t
Fi(Z0) = Fo(Z) + f V. F,(Z,)dZ(s)
0

where the integral is understood in a pathwise sense.

We also prove the following result on uniqueness of non-probabilistic martingale
representation theorem: whenever both CF type and BSV type hedging strategies
exist in pathwise sense, then both of the strategies must be the same for all paths,
also in the non-semimartingale case. The theorem states roughly that if X is a
continuous square integrable martingale and

T T
L V., Fy (X)X (3) :fo 0(5, X(5), 91(5, X2), .. g (5, X))dX (5)

as Ito integrals, where V, F', the vertical derivative, is the CF type hedging strategy
and ¢ is the BSV type hedging strategy, then for all paths = with the same quadratic
variation as X and for all ¢ € [0, 7]

Jv Fy () da(s f¢ 5,2(5), 91(5, 23 ), -+ G5, 23))da(s).

This result motivates us to define the pathwise vertical derivative of a process with
respect to another process for broader class of processes than is done in Cont and Fournié
(2011).

In addition, we provide some examples on the robust replication strategies. It

turns out that in some cases it is more convenient to work with BSV strategies;
i.e. the cases where the hedging strategy is known explicitly for the reference model
(that is the semimartingale model with the same quadratic variation). On the other
hand, CF type approach is useful, when the hedging strategy is not known a priori
even in the case of the reference model.

‘We show how the models considered here can capture several stylized facts such
as different dependence structures or heavy tails. We give a table to point out, which
processes one can use for modeling, when the stylized facts are given.

The paper is organized as follows. In section 2 we introduce some notation used
throughout the paper and summarize the key results of the main references (Bender et al.,
2008; Cont and Fournié, 2010, 2011). In section 3 we state and prove our main re-
sults. In section 4.1 we present some examples on finding hedges for path-dependent
options. In section 4.2 we give examples on what kind of models are covered by this
approach.

2 Preliminaries

2.1 Notation

Let us fix > 0 and U < R be open. For A = R we denote by D([a,b], A) the space
of cadlag functions taking their values in A. By D([a, b]) we mean D([a,b],R). The
spaces of continuous functions are denoted by C([a, b], A) and C([a, b]) respectively.
By C* we denote i times continuously differentiable functions. Class C*7 contains
the functions that are i times differentiable w.r.t. the first variable and j times
differentiable w.r.t. the second variable. Let Cs([a,b]) = {x € C([a,b],U)|z(0) =
so} and Cs, = Cs, ([0, T1]).



For a path x € D([0, T]) we write 2(t) for the point values and z; = (2(u))ye(o,/]
for the restriction of the path to the interval [0,¢] < [0,T]. The same convention
applies to the stochastic processes where X (¢) denotes the value of the process at
time t and X; = (X (u))ue[o,1-

Let us denote by z;— the path on [0, ¢] defined by

2 (u) =x(u), wel0,t) and z_(t) = z(t—),
where z(t—) = limgy; z(s). Note that in general a;_ is not the same path as (z_); =
(2(u=)ueco

We denote by m = {0 = tg < t; <--- <t =T} a partition of the interval [0, T].

Let (7, )5y be a sequence of partitions of [0,T] s.t. the size of the partition

T B )
The quadruple (2, F, (F¢)te[o,r], P) is assumed to be a filtered probability space sat-
isfying the usual assumptions of completeness and right continuity of the filtration
(Ft)tefo,]-
Definition 2.1 (Quadratic variation process). A process (X (t))e[o,1] is a quadratic
variation process along the sequence (m,)%_, if Vt € [0,T] the limit

[(X](6) = lim > (X(t]) - X(t]1)°

tremnn(0,t]
exists a.s. and is continuous in t.

The integrals considered in the paper are pathwise forward-type integrals if not
mentioned otherwise. When the integrand is a vertical derivative, we will use the
so-called Follmer integral, which will be defined later. This integral is almost same
as the forward integral.

Definition 2.2 (Forward integral). Let t < T and (X(s))se[o,r) be a continuous
process. The forward integral of a process (Y (s))sefo,r] with respect to X along the
sequence of partitions (m,)w_q s

¢

[ y@axe -pm ¥ v - xe),
0 trem,n(0.t]

where the limit is assumed to exist a.s. The integral over the whole interval is defined

as

T ot
J;) Y(s)dX(s) = PTrTI"lJO Y (s)dX(s),

where the limit is understood in a.s. sense.

The sequence of partitions is assumed to be fixed and thus it is not included in the
notation. Note that analogously one can define forward integrals for deterministic
paths.

2.2 Robust replication and no arbitrage

This subsection is based on the results of Bender et al. (2008). In order to make the
comparison to the results of Cont and Fournié (2010) more transparent, we have
slightly changed the notation.

The following concept of full support means roughly that any path for a stochas-
tic process is possible.



Definition 2.3 (Full support). Process S has full support in Cs, if
supp (Law (St)) = Cs,-
The following is a conditional version of the previous concept.

Definition 2.4 (Conditional full support (CFS)). We say that process S has con-
ditional full support in Cs, w.r.t. filtration (F¢)sero,17 if

1. S is adapted to (Ft)iefo,r) and

2. for allt € [0,T) and almost all w € Q
supp (Law ((S(s))sefe.11Ft)) = Csea ([t, 7).

The concept of conditional full support was first introduced and studied in Guasoni et al.
(2008). By Pakkanen (2010), conditional full support property is equivalent to the
conditional small ball property of Bender et al. (2008).

Next we will define the concept of discounted market model.

Definition 2.5 (Discounted market model). A five-tuple (Q, F, S, (Fi)te[o,r], P) is
called a discounted market model if (0, F, (Ft)iefo, 11, P) is a filtered probability space
satisfying the usual conditions and S = (St)seo,1) s an (Fi)ie[o,r] progressively
measurable quadratic variation process with continuous paths starting from sq.

Let o : R — R be a continuously differentiable function of at most linear growth
s.t. 0 # 0 Lebesgue a.e. Now we can define a path space for the price processes.

Definition 2.6 (Space C, s,). Let fs be the unique solution to the ordinary differ-
ential equation

f@)=0o(f(z)), f(0)=s0.
Define the space

Co.s9 = {£5(0(-)) : 0 € C([0,T1),6(0) = 0}.

If we choose o(z) = ax, then f,(x) = spe®® and C, g, is the set of positive
valued functions starting at sg.
The model class that we will work with is defined as follows.

Definition 2.7 (Model class M, ). The model class M, corresponding to o is
defined to be the class of discounted market models satisfying the quadratic variation

property
d[S)(t) = o>(S(t))dt a.s.

and the following non-degeneracy property: P(S € Cys,) =1 and S has full support
in Cy,.

Now we will construct a reference model. The reference model corresponds to
the risk-neutral Black-Scholes model for general M,. Let (Q, F,P) be the canonical
Wiener space on [0,7], W be a Brownian motion and (F}")sejo,r] the filtration
generated by W. We will make the following assumption: the process

M) = e (=} [ G meawe - § [ @ wwene) ey

0



is well defined and a martingale under P. Now one can define a new probability
measure on (Q, FV) by

Q(A) = L M(T)dP, AeFY.

Now .

- 1
W) =W + 5 | oLV
0
is a Brownian motion under Q. The discounted price process is defined as
5(t) = fo(W(t)).

The reason for such a construction is that now S is a continuous martingale with
respect to measure Q. We call (€, F, 5, (F}V )01, Q) the reference model. For
more details, see Bender et al. (2008).

In the rest of the paper, we assume that o is such that the condition of equa-
tion (2.1) is satisfied. The standard Black-Scholes model as well as several stochastic
volatility models satisfy the condition (Bender et al., 2008).

The following definition is equivalent to the definition of hindsight factor in Bender et al.
(2008). However, the notation is slightly different.

Definition 2.8 (Hindsight factor). Let g : [0,T] x C, 5, — R. We say that function
g is a hindsight factor, if the following conditions hold.

1. g(tv 77) = g(tv”]t): Vi e [O,T],
2. g(-,n) is of bounded variation and continuous Vi € Cy s, .

3. There is a constant K s.t. Vf continuous

j F(s)dg(s,m) — j F(s)dg(s,7)
0 0

< K max, LF) I — il -

For example running minimum, maximum and average are hindsight factors.
Let us consider hindsight factors g1, ..., g, and a function ¢ : [0, 7] x R x R” — R.
Let us study strategies of the form

Cb(t) = ¢(tvs(t)7g1(t’ St)v"'vgn(tvst))' (22)

The wealth process corresponding to the strategy @ is

t
Vi (®,v0,S) = v + J D(u)dS(u),
0
where v is the initial capital.
Now we define smooth strategies that will be used as a starting point for the
definition of allowed strategies.

Definition 2.9 (Smooth strategy). A strategy @ of the form (2.2) is called smooth
if o€ C*([0,T] x R x R™) and there is a constant a > 0 s.t. ¥t € [0, T

Jt O (u)dS(u) = —a a.s.
0



The latter condition is the classical no-doubling-strategies (NDS) condition. It is
possible to relax the assumptions of smooth strategies. For example one can define
piece-wise smooth strategies.

Definition 2.10 (Piece-wise smooth strategy). Let 0 = so < $1 < -+ < sy =T
and
i [sj—1,8;]| xRxR"xR—R, j=1,...,J

continuously differentiable in the first n+2 variables and continuous in the last one.
Then

J
Z (sj—1,85] ¢] (t S( )a g1 (t7 St)7 ae 7971(1:7 St)> fj (Ss]v,l ))
is called a piece-wise smooth trading strategy, where & : Cy sy — R is continuous,
j=1,...,J.
The following definition of arbitrage is standard.

Definition 2.11 (Arbitrage). A strategy @ is an arbitrage strategy in the market
model (Qafr S? (‘Ft)te[O,T]7P) 7’f

Vr(®,0,5) >0 a.s. and P(Vp(®,0,5)>0)>0.
The following no-arbitrage theorem holds for smooth strategies.

Theorem 2.12 (No-arbitrage with smooth strategies). Let (2, F, S, (Ft)ieo,17, P) €
M, and let @ be (piece-wise) smooth trading strategy. Then ® is not an arbitrage
strategy.

There are also other no-arbitrage results in related setups, see Bender et al.
(2008), Bender (2011) and Coviello et al. (2011). The concept of wealth functionals
is needed when defining allowed strategies.

Definition 2.13 (Wealth functional). A wealth functional v for t € [0,T] is defined
as
v:[0,8] x Co.gp x CH([0,1] x R x R") > R

as the Ité formula would suggest

o(t,n, @) =ult,n(t), g1t ), -, gn(t, )
_ ZJ

- [ Zutrat .. ganar

P ), 91(rsny), -, gn(r,me))dg; (r,mr)
(/y]

- 5 J % (n 77(7’)7 g1 (7”, 777')7 s ,gn(r, 7]7-))0'2(77(7‘))d’7‘,

where

u(tzmaylw B 7yn) = J ¢(t7€7y17 .. 7yn)d€
S0

One of the most important classes of strategies in this paper is the class of
allowed strategies.



Definition 2.14 (Allowed strategies). A strategy ® is allowed for the model class
M if the following conditions hold.

1. There are hindsight factors gi,...,gn and a function ¢ € C1([0,T) x R x R™)
s.t.

D(t) = o(t, S(t), g1(t, 1), - -, gn(t, St)).

2. There exists a dense subset B  Cy s, and a functional F : B — R s.t.
Y(Q, F, S, (Fi)teo,r), P) € My it holds that P(S € B) =1 and ¥n € B it holds
that

limv(t,n,¢) = F(1),

and F' is continuous in B.

3. 3a >0 s.t. Vte [0,T]

Jté(u)dS(u) > —a a.s.
0

A robust no-arbitrage result holds for allowed strategies.

Theorem 2.15 (Robust no-arbitrage). Every model in the class M, is free of
arbitrage with allowed strategies.

In addition to the robust no-arbitrage result, there is also a robust replication
result for allowed strategies.

Theorem 2.16 (Robust replication). Let G be a continuous functional on Cy s, s.t.
G(S) can be replicated P-a.s. in the reference model (Q,F,S, (ft)tE[O,TLP) € M,
with initial capital vy and allowed strategy

(i)*(f) = ¢*(f7 S(t)vgl(t7 SZ)7 s 79n(t7 s't))
Then G(S) is replicable P-a.s. in every model (2, F, S, (Fi)ie[o,r], P) € Mo where
initial capital is vy and the replicating allowed strategy is given by

q)*(t) = ¢*(t7 S(t)vgl (t7 St)7 ce 7gn(tv St)):

which means that the replicating allowed strategies are functionals of the path of the
stock price, independently of the model.

The converse is also true: any functional hedge ¢* in some model (2, F, S, (Ft)tefo, 1], P) €
M, is also a functional hedge for the reference model.

The strategy ¢* is called the BSV type hedging strategy of functional G.

2.3 Functional change of variables formula

This subsection is mainly based on the articles Cont and Fournié¢ (2010, 2011)
and the PhD thesis Fournie (2010). They define the non-anticipative functionals
in higher dimensions but in the present paper we work in R.

Let (2, F, (Ft)tefo, 1], P) be a filtered probability space.



2.3.1 Calculus on path space
The concept of non-anticipative functionals is fundamental in the CF approach.

Definition 2.17 (Non-anticipative functional). A non-anticipative functional on
D([0,T1,U) is a family of maps F' = (Fy)efo,r) s-t. Fy : D([0,t],U) — R.

Now F can be seen as a functional on

v= | D(0,1,0).
t€[0,T]

For the measurability issues we refer to Cont and Fournié (2010).
Let « be a path on D([0,T],U) and 0 < t < t+h < T'. The horizontal extension
x,n € D([0,t + h],U) of a path 2, € D([0,t],U) is defined as

xpp(u) = x(u), wel0,t]
xep(u) =x(t), we (t,t+h].
Now we are ready to define the horizontal derivative.

Definition 2.18 (Horizontal derivative). The horizontal derivative of a non-anticipative
functional F at x € D([0,t],U) is defined as

Fyyn(xen) — Fy(x)

DiF(x) = lhl?(} W

if the limit exists. If the limit is defined for all x € W, then
DyF : D([0,4],U) >R, x> DF(x)

defines a non-anticipative functional DF = (DtF)te[O,T)~ This mon-anticipative
functional is called the horizontal derivative of F'.

Vertical derivative is another functional derivative concept for non-anticipative
functionals. Let h € R, ¢ € [0,T]. The vertical perturbation z € D([0,t]) of z; €
D([0,t],U) is defined as

2M(u) = x(u), wel0,t) and
() = z(t) + h.
For h small enough, 2} € D([0,t],U).
Definition 2.19 (Vertical derivative). The vertical derivative of a functional F at

z € D([0,t],U) is defined as

Fy(ah) — F

if the limit exists. If the limit is defined for all x € W, then
V.F:D(0,T],U) >R, =z~ V,Fi(x)

defines a non-anticipative functional V,F = (Vth)te[O,T]~ This non-anticipative
functional is called the vertical derivative of F.

Next we will present some continuity concepts for non-anticipative functionals.



Definition 2.20 (Continuity at fixed times). A non-anticipative functional (Fy),eq0,1)
is continuous at fized times if ¥Vt € [0,T]

F,: D([0,t],U) —» R
is continuous for the supremum norm.

The following metric is an extension of the metric induced by the supremum
norm for the paths that are not necessarily defined on the same interval.

Definition 2.21. Let T >t+ h >t >0, 2 € D([0,t]), 2’ € D([0,¢ + Rh]). Define

do(z,2') = sup |zgp(u) —2'(u)| + he
u€[0,t+h]

Left-continuity is another continuity concept for non-anticipative functionals.
Definition 2.22 (Left-continuous functionals). A non-anticipative functional F €
Fe if

vVt e [0,T],Ve > 0,Yxz € D([0,t],U),3n > 0,Vh € [0,¢],
va' € D([0,t — h],U),dy(z,2') <n = |Fi(z) — F_p(2)] <e
The elements of F° are called left-continuous functionals.

Analogously one could define right-continuous functionals F°. Next we define
boundedness-preserving functionals.

Definition 2.23 (Boundedness-preserving functionals). A non-anticipative func-
tional F' € B if for all compact K < U

3C > 0,Yt < T,Vz € D([0,t], K),|Fi(z)] < C.
The elements of B are called boundedness-preserving functionals.

Boundedness-preserving functionals satisfy the following weaker local bounded-
ness condition.

Definition 2.24 (Locally bounded functionals). A functional F is locally bounded
if
Vz e D([0,T],U),3C > 0,n > 0,Yt € [0, T],V2" € D([0,t],U), do (x¢,2") <
— !F,(x')| <C.

Let us define the class of two times vertically and once horizontally differentiable
non-anticipative functionals.

Definition 2.25 (CY2). The class CY? is defined as the set of mon-anticipative
functionals that are once horizontally and twice vertically differentiable Vt € [0,T)
and Yz € D([0,t],U) s.t.

1. DF continuous at fized times and
2. F,V,F,V2F e FP.

Functional change of variables formula is the key theorem of CF approach.



Theorem 2.26 (Functional change of variables formula). Let z € C([0,T],U)
s.t. © has finite quadratic variation along a sequence of partitions (7 )5y, where
M ={0=1ty <--- < ton) = T} and |m,| — 0. Set

k(n)—1
2 () = D, @) e, () + (T (1)
j=0

Let F e CY2([0,T)) and V2F,DF satisfy the local boundedness property. Then the
limit

k(n)—1 T
lim. D VeFu (e ) (@(ti) — x(t})) =¢J Vo F(2y)da(u)
w0 0

exists. The limiting object is called Féllmer integral. Furthermore, we have the fol-
lowing functional change of variables formula:

T T T
Fr(zr) =Fy(zo0) +J Dy F(xy)du + %J V2E, (z,)d[x](u) +J Vo Fy(xy)dz(u).
0 0 0
The Follmer integral depends on the sequence of partitions. However, the se-
quence is usually fixed and thus it is not included in the notation.
The main difference of the Follmer integral and forward integral is that in
Follmer integral the integrand is discretized before going to the limit. The Follmer
integral is only defined for the integrands that are of the form V,F,(x,).

2.3.2 Functional martingale representation theorem

The main reference in this subsection is Cont and Fournié (2011). Theorem 2.31 is
the starting point for obtaining functional hedges of CF type.

We define the following class of functionals that will be used in the context of
functional martingale representation theorem.

Definition 2.27.
C,? = {F e CY"*|F,DF,V,F,V2F € B}.

The following class of processes is used when obtaining functional martingale
representation theorem.

Definition 2.28. Let X be a continuous martingale. We denote by C;"z the set of
processes Y s.t. Y(t) = Fy(X;) almost surely for some F € (C;’Q.

Note that the representing functional ' does not need to be unique. Next we
define cylindrical functionals that are in some sense simple elements of (Cé’2.

Definition 2.29 (Cylindrical functionals). Let {0 = tg < t1 < -+ < t, = T}
be a partition of [0,T]. Let € > 0 and (f;)?_, continuous functions f; : U'T! x
[ti1,ti + €) — R satisfying Vi = 1,...,n and ¥2°,...,2°"1 € U the map (x,t) —
i@, 2t at) from U x [ti_1,t;] is CY2. Let also Vi = 2,...,n, fi(,t;) =
fic1(-,t;). Then the functional

Ft(‘rt) = Z 1(t,'_1,t,'] (t)ft(x(t0)7 R l’(t171),x(t),t)
i=1
is called a cylindrical functional.

10



Definition 2.30 (Cylindrical integrands). Let {0 =to <t; < - - <t, =T} be a
fized partition of the interval [0, T]. Let (f;)7—; be a sequence s.t. f; is a continuous
function of j arguments. Define a cylindrical functional

Fy(w) = D 1,y my (0 f(@(to), - a(ti—1)) (@(t) — 2(tj-1)).
The vertical derivative
VoF() = 3 f(alto)s o a(ti 1), () € FE AB

is called a cylindrical integrand.

Note that the vertical derivative of a cylindrical integrand is of the “cylindrical”
form.

Let X be a continuous martingale and (F* )iefo, 7] be the filtration generated
by X. Let H € F¥ s.t. E|H| < 00. And define Y (¢) = E[H|F{¥].

Theorem 2.31. IfY € C;’Q, then
T
Y(T)=EY(T)+ f V. Fi(X)dX (t),
0

where Y (t) = Fy(X;) and the stochastic integral is the Ito integral.

In this case V,F is called the CF type pathwise hedging strategy of functional
FT.

Theorem 2.31 is a pathwise martingale representation theorem, but for restricted
class of processes. The result can be generalized for more general class of processes
Y, but only in the weak sense.

First we need the definition of the following classes. In the following, X is a
continuous and square integrable martingale.

Definition 2.32. We call £L2(X) the Hilbert space of progressively measurable pro-
cesses ¢ s.t.

T
[61Z2(x) = E (L ¢2(3)d[X](S)> <.
We also define ‘
*(X) = {Y = fo o(s)dX (s)|¢p e EZ(X)}
equipped with the norm |Y|3 = E(Y (T)?).

The following space of test processes is needed, when we define vertical deriva-
tives with respect to processes.

Definition 2.33 (Space of test processes).
D(X) = C*(X) nT3(X)
is called the space of test processes.

Now we are ready to define the vertical derivative with respect to a process.

11



Definition 2.34. LetY € D(X) and Y (t) = Fy(X;). Then VxY € L2(X) is defined
as (VxY)(t) = Vo F,(Xy).

Note that the definition does not depend on the selection of F' (outside of an
evanescent set).

Theorem 2.35. The vertical derivative Vx is closable on I?(X). Its closure defines
a bijective isometry

Vx : I3(X) — L£L3(X)

pdX > 6,
0

where the stochastic integral is the Ité integral.

This means that Vx is the adjoint operator of the It6 integral.

3 Results

Let X be a continuous martingale with respect to its own filtration (FX )ee[0,17
Let H € L' be FX-measurable random variable and Y'(t) = E[H|FX]. If Y €
C;"2(X) s.t. Y(t) = Fi(X:) then by theorem 2.31 V¢ € [0,T] we have the following
representation

t
Y(t) =EY (1) + f V. Fy(X,)dX (s)
0
t
=Fp(Xo) +J Vo Fo(Xs)dX (s),
0
where the stochastic integral is the It6 integral.
Next we will show that the hedging result is robust in the model class M, for
the functional F'. The main differences to the martingale case are that the initial

value cannot be understood as an expectation and the stochastic integral is not an
1t6 integral but a Follmer integral.

Theorem 3.1. Let (O, F, X, (FX)eo.r), P) € My s.t. Y € Cy*(X) with Fy(X,) =
Y (t). Then for all (€, ﬁ Z(FZ)iefo, 1), B) € My and Vt € [0,T]

Fi(Zy) = Fo(Zo) + Lt V.F(Z)dZ(s), P—a.s.

where the stochastic integral is understood as a Follmer integral.

Proof. In the proof, the continuous martingale X will play the role of the reference
model.
By the change of variables formula, theorem 2.26, we have that

Fi(Z)) — Fo(Zo) = Lt Dy F(Z,)du + % J: V2F,(Z,)d[Z](u)
+ f VoFu(Z,)dZ (u),
0

where the last integral is understood in the Follmer sense.
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The proof proceeds by contradiction. Assume that there exists 0 < Q with
P(€Q1) > 0 such that

f DuF(Z,)du + % f V2FE(Z,)d[Z](u)] > € > 0
0 0

in ;. On the other hand, fP’(Z € Cyrs,) = 1. Thus 3z € C, 5, with quadratic
variation given by d[x](u) = 02 (x(u))du such that

f Dy F(2y,)du + %L V2 F,(x,)d[z](u)| > € > 0.

0

Let (2™)%_, < Cyp5, with d[z"](u) = o?(z"(u))du such that z™ — z in supre-

mum norm. We know that DF and V2F are continuous at fixed times and locally
bounded. Thus, by the dominated convergence theorem

t t
0 0
t 1 1
[ Dbt [ V2R,
0 0

Thus, each path @ € €; has a surrounding small ball By < C, ., and BS, = {z €
Bg|d[x](u) = 0?(x(u))du} such that

>

| perteian 5 [ ViRl

(3.1)

N

for ¢ € BL. By the full support property we obtain that P(X, € B}) = P(X, €
Bg) > 0. On the other hand by theorem 2.31

¢ 1t
J D F(X,)du + §J V2F,(X,)d[X](u) =0 P—a.s. (3.2)
0 0

Thus equations (3.1) and (3.2) imply that P(€2;) = 0, which is a contradiction.

Hence, the claim holds P — a.s. 0

The theorem above as well as theorem 2.31 can also be seen as pathwise Clark-
Ocone theorems. Another approach to pathwise Clark-Ocone formulas can be found
in di Girolami and Russo (2010, 2011).

Example 3.2. Let H = S(?X(t)dt. Then
¢
Y(t) = E[H|FX] = J X (s)ds + (T — )X (t) € C*(X).
0

Thus, the functional Fy(x;) = S(z) x(s)ds+ (T —t)x(t). It holds that D, F(x;) = 0 and
VoFi(z) =T —t. Hence,
T T
f Z(s)ds = TZ(0) + J (T — s)dZ(s),
0 0
where the stochastic integral is understood in the Féllmer sense.

The following example is from Fournie (2010). See the definitions for cylindrical
functionals and cylindrical integrands in subsection 2.3.2.
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Example 3.3. Let x be a continuous path and F; be a cylindrical functional s.t.
V.F is a cylindrical integrand. Then V2F = 0 and DF = 0 and theorem 2.26
implies that

Fy(ze) = Fo(zo) +f0 V., Fy () da(s).

Remark 3.4. What is a bit surprising in example 3.3 is that the conditional full
support property is not needed at all, when obtaining robust hedges. Thus the hedging
strategy is not only robust in the model class M, but for all quadratic variation
models. This is due to the special structure of the functionals.

Remark 3.5. Note that the cylindrical integrands are dense in £2(X), when X is
a continuous square integrable martingale, Fournie (2010, Lemma 5.1.).

Remark 3.6. Let us consider an option whose payoff depends on the end value of a
cylindrical functional whose vertical derivative is a cylindrical integrand. The robust
hedges for such options can be computed also using BSV approach. This is due to
the following observations: the cylindrical integrands are piecewise smooth strategies.
The robust hedging result of Bender et al. (2008) remains unchanged if we extend
the class of allowed strategies by replacing the condition 1. of definition 2.14 by
requiring that the strategy is piece-wise smooth.

For the proof of the theorem 3.8 we need a lemma analogous to Bender et al.
(2008, lemma 4.5).

Lemma 3.7. Let F € C,°. Then the mapping {x € Cy 5 |d[z](u) = 0*(x(u))du} —
C([0,T]), & — §, Vo F(xs)dx(s) is continuous.

Proof. Let (2)*_, = Cy.s, such that d[z"](u) = 02(z™(u))du be a sequence con-
verging to x in supremum norm. By the functional change of variables formula,
theorem 2.26, we obtain that

J Vo Fy(xs)da(s j Vo Es( z"(s)
2 1 ! 2 n n
=Fy(we) = Fy(at') V s(@s)dle](s) + 5 | VaFs(ay)d[a"](s)
0
¢
— J D F(zs)ds + f DsF(x})ds.
0 0
We know that F is continuous at fixed times. Thus Fy(z}') — Fy(x;). Functional

V2F is locally bounded and continuous at fixed times, and ¢ is a function of at
most linear growth. Hence by the dominated convergence theorem

f V2F,(x f V2F,(z™)o?(x"(s))ds
_,L V2 F, ()0 (x(s))ds = L V2 Fy(xs)d[z](s).

Recall that D, F is locally bounded and continuous at fixed times. Thus we obtain
by the dominated convergence theorem that

¢ ¢
f D F(z3)ds — J D F(xs)ds.
0 0

This completes the proof. 0
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The next theorem is one of the main results of the paper. The essential content is
the following: If the hedging strategies of both BSV type and CF type exist pathwise,
then the strategies must be the same in the sense of functionals of Cj s,. In some
sense this is a non-probabilistic version of the uniqueness part of the martingale
representation theorem.

Theorem 3.8. Let (0, F, X, (F{ )epo,17,P) € Mo be a discounted market model
s.t. X is a continuous and square integrable martingale. Let a claim H € .7:7{( s.t.
EH? < c0. Assume that H can be hedged using an allowed strategy

D(t) = o(t, X (8), 91 (t, Xo), ... gu(t, Xy)) € L2(X).
Assume also that Y (t) = E[H|FX] € D(X) s.t. Y(t) = Fy(X;) for F e (C;z. Then
Vo € Cy s, satisfying d[z](s) = 02 (x(s))ds and ¥t € [0,T]

j V. F(2,)d(s f 0(5,2(5), 91(5, T, -+ gu(s,2,))da(s).

PTOOf. Let us write wt(It) = (b(t? ‘T(t)7 g1 (tv l’t)., s 7gn(t7 .It))
The proof proceeds by contradiction. Assume that for some z € C, 4, satisfying
d[z](s) = o?(z(s))ds and for some ¢ € [0, T]

=e>0.

[[uteaacts) - [ v.rieass

0

W.lo.g. we can assume that ¢ < 7. Now we use CFS property, lemma 3.7 and
Bender et al. (2008, lemma 4.5) to obtain that

P ( L CUa(X)dX(s) % Lt VJ,Eg(Xs)dX(s)) ~0. (3.3)

On the other hand by the assumptions

T T
| vcepix - mr-gn - | VLR,
0 0

Now by the It6 isometry

Ef (s(X.) — Vo Fu(X,))% 0(X (5))ds = 0.

This implies that
Ys(Xs) = Vo Fy(Xs) P x Leb—a.s.

Thus for all ¢t € [0, 7]

(fws )X (s jVF ()):1,

which is a contradiction with equation (3.3). This completes the proof of the theo-
rem. g

Using the result of theorem 3.8, one can extend the pathwise vertical derivative
of a process by defining it as the hedging strategy in the BSV sense.

15



Definition 3.9 (Extension of the vertical derivative). Let (2, F, S, (Ft)ieo,17, P) €
Mg. Let Y be adapted to (Fy)iepo,r) 5.t for all t € [0,T] Y (t) can be hedged using
an allowed strategy

1/&(5'5) = ¢(57 S(S), g1 (57 5.5)7 cee 7gn(57 Ss))

i.e. there exists C' such that for all t € [0,T] it holds that
¢
V()= Ct [ a(SS().
0

Assume that for the reference model (Q,F, S, (ft)tE[O,T],]IN”) € M, it holds that
S € L2(P) and (S;) € L2(S). Then the pathwise vertical derivative of process Y
w.r.t. process S is defined as

(VsY)(s) = ¥s(Ss), s€[0,T].

The advantage of this definition is that the vertical derivative w.r.t. a process
can be understood in a pathwise sense. This may be an advantage when trying to
develop numerical methods for pathwise hedging of options using the functional
change of variables formula approach.

4 Examples

4.1 Asian options
The following is a continuation of example 3.2.
Example 4.1 (Continuous average). The continuous average can be represented

using the following non-anticipative functional

t

Fi(zy) = %L x(s)ds +

x(t).

Note that if X is a martingale, then also (Fy(X¢))ieo,17 95 @ martingale. Thus

T—1t

VwFt(l’t) = T

is a pathwise hedging strategy. In this case, V2F = 0 and DF = 0 and thus the
following integral representation holds for S even without the CFS property

1 (7 T s
ffo S(s)ds=S(0)+L ~2as(s).

Example 4.2 (Discrete average). The discrete average can be hedged using the
cylindrical functional

N
Fy(z) = Z Loy e fi(z(to), . a(tioa), z(t),t),

where




where t; = %, j=0,...,N. Now the deriatives of I are

N & N
VeFi(@) = g g(tfti,l)luﬂ,ti](t), V2F,(x;) =0, DF(x,)= EAQ
Hence, the following change of variable holds
1 U N (T
N+1;)$(tj) N+ 1J Z s—tj_q l(tj 17,]]( )dI(S)+N74r1J() z(s)ds.

This gives us hedging strateqy for the difference of discrete and continuous aver-
ages. Now combined with the hedging strategy for the continuous average, we get a
pathwise hedging strategy for the discretely sampled average.

Example 4.3 (Geometric Asian call). The hedging strategy for geometric Asian call
option is known explicitly in the Black-Scholes model. The hedging strategy depends
smoothly on the spot and on

¢

f log S(s)ds,

0
which is a hindsight factor with respect to the driving Brownian motion. Hence, the
BSV approach applies.

4.2 Mixed models

Let the price of an asset be modeled as
S(t) = exp (W (t) + o Z(t) + put),

where W is a Brownian motion, Z is a zero quadratic variation process, €,0 > 0
and p € R. Such a model is called a mixed model. Note that in general S is not a
semimartingale. However, the pathwise hedges of options depending on S are the
same as in the ordinary Black-Scholes model.

Several different stylized facts can be included in mixed models. For example long
range dependence can be considered in fractional Brownian motion (fBm) or frac-
tional Lévy process (fLp) models (Tikanméki and Mishura, 2011). Short range de-
pendence can be included in fractional Ornstein-Uhlenbeck process (fOU) (Kaarakka
2011) model. It is also possible to consider models with relatively heavy tails (frac-
tional Lévy processes). One can obtain arbitrary heavy tails with the following
integrated compound Poisson process (icP).

Example 4.4 (Integrated compound Poisson process). Let (), be the jump
times of a Poisson process and (Uy)7, be an i.i.d. sequence independent of (73)7; -
Assume that

P(Up>x) ~2®

for some a > 0. Now
oe)
- Ui
k=1
is a compound Poisson process with heavy tailed jumps. The integrated compound
Poisson process is defined as
t
= J Y (s)ds
0
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It is easy to see that Z has zero quadratic variation, tails of order =% and long

range dependence property.

If one needs heavy tails without long range dependence, one can consider for
example the following scaled integrated compound Poisson process (sicP).

Z(t) = eitjo Y (s)ds,

where Y is an icP with a > 2. Note that when o < 2 there is not any covariance
structure and thus it is obviously impossible to have short range dependence.

The properties of different Z are collected to the table 1. Note that any combi-
nation of long or short range dependence and heavy tails or all finite moments is

possible.
Property / Process Z fBm fLp foU icP sicP
Long/short range dependence | Long Long Short Long Short
Heavy tails No Y/N No Yes Yes

Table 1: Stylized facts that can be included in a mixed model.

Acknowledgements

I have been supported financially by Academy of Finland, grant 21245. I am grateful
to Esko Valkeila, Ehsan Azmoodeh and Lauri Viitasaari for their comments and
Harri Nyrhinen for example 4.4.

References

C. Bender. Simple arbitrage. Ann. Appl. Probab., to appear, 2011.

C. Bender, T. Sottinen, and E. Valkeila. Pricing by hedging and no-arbitrage beyond
semimartingales. Finance Stoch., 12(4):441-468, 2008.

R. Cont and D.-A. Fournié. Change of variable formulas for non-anticipative func-
tionals on path space. J. Funct. Anal., 259(4):1043-1072, 2010.

R. Cont and D.-A. Fournié. Functional Ito calculus and stochastic integral repre-
sentation of martingales. Ann. Probab., to appear, 2011.

R. Coviello, C. di Girolami, and F. Russo. On stochastic calculus related to financial
assets without semimartingales. Bulletin Scienses Mathématiques, 135:733-774,
2011.

C. di Girolami and F. Russo. Infinite dimensional stochastic calculus via regular-
ization. Preprint HAL: inria-00473947, pages 1-187, 2010.

C. di Girolami and F. Russo. Clark-Ocone type formula for non-semimartingales
with finite quadratic variation. C. R. Math. Acad. Sci. Paris, 349(3-4):209-214,
2011.

18



D.-A. Fournie. Functional Ité calculus and Applications. PhD Thesis, Columbia
University, 2010.

P. Guasoni, M. Résonyi, and W. Schachermayer. Consistent price systems and
face-lifting pricing under transaction costs. Ann. Appl. Probab., 18(2):491-520,
2008.

T. Kaarakka and P. Salminen. On fractional Ornstein-Uhlenbeck processes. Com-
mun. Stoch. Anal., 5(1):121-133, 2011.

M. S. Pakkanen. Stochastic integrals and conditional full support. J. Appl. Probab.,
47(3):650-667, 2010.

H. Tikanméki and Yu. Mishura. Fractional Lévy processes as a result of compact
interval integral transformation. Stoch. Anal. Appl., 29(6):1081-1101, 2011.

19





