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SUMMARY
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QUANTIFYING MARKET RISK IN MONTE CARLO WAY: CASE SAMPO LIFE

Objectives

The objectives of this thesis were to develop a Monte Carlo simulation and 
full valuation -based Value at Risk (VaR) system for Sampo Life, discuss all 
the necessary technical issues regarding the implementation and examine how 
to take full advantage of such a system in an asset management environment.

Data and research methodology

The VaR system was developed for Sampo Life, a major Finnish Life 
insurance company. The analysis considered about 50% of the whole portfolio 
and included equities, equity derivatives and bonds in 12 different currencies. 
To solve the dimensionality problem, equities were mapped with 4 different 
methods. For bonds, the whole cash flow matrix was used but individual zero- 
coupon yield curves were modeled with principal component analysis. Credit 
spreads for defaultable instruments were estimated using simple atheoretic 
approach. Several statistical test were utilized to test the statistical properties 
of financial time-series and conditional normality in particular. Two different 
variance/covariance estimators were also tested, namely moving averages 
(MA) and exponentially weighted moving averages (EWMA). To improve the 
convergence of the Monte Carlo simulation, a variance reduction technique 
called quadratic resampling was empoyed.

Results

The statistical test indicated that conditional normality is a reasonable 
assumption for time-series modeling, particularly with EWMA estimator 
which was favored also in the operational evaluation. The resulting VaR 
system performed very well for equities using industry index mapping for 
domestic and broad country indices for foreign assets. Equity mapping 
methods were considered highly sensitive to portfolio characteristics. For 
bonds, the credit spreads proved to be in need of more careful modeling 
whereas governmental instruments performed adequately. The developed VaR 
system was considered extremely useful basis for stress tests and for additional 
simulations concerning the efficiency of the asset allocation.

Key words
market risk, Value at Risk, Monte Carlo simulation, zero-coupon yield curve, 
principal component analysis, credit spread, bootstrapping, mapping, quadratic 
resampling
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Rahoituksen pro-gradu -tutkielma
Mikko Harju k24056-3 30.8.2000

QUANTIFYING MARKET RISK IN MONTE CARLO WAY: CASE SAMPO LIFE

Tavoitteet

Tutkielman tavoitteena oli kehittää Henki-Sammolle Monte Carlo - 
simulaatioon ja uudelleen arvottamiseen perustuva Value at Risk (VaR) - 
järjestelmä, käydä läpi tarpeelliset toteutukseen liittyvät tekniset
yksityiskohdat sekä tarkastella toimivan järjestelmän täysimittaista 
hyödyntämistä omaisuudenhoito-ympäristössä.

Lähdeaineisto ja tutkimusmenetelmät

VaR -järjestelmä kehitettiin suurelle suomalaiselle henkivakuutusyhtiölle, 
Henki-Sammolle. Case-aineistona käytetyt sijoitukset muodostivat noin 50% 
koko yhtiön sijoitusomaisuudesta ja koostuivat osakkeista, 
osakejohdannaisista ja joukkovelkakirjoista 12:ssa eri valuutassa. Osakkeiden 
kohdalla dimensionaalisuusongelmaan haettiin ratkaisua neljällä eri 
menetelmällä kun taas joukkovelkakirjat purettiin yksittäisiksi kassavirroiksi 
ja keskityttiin mallintamaan korkokäyriä pääkomponenttianalyysillä. 
Konkurssiriskisten instrumenttien korkomarginaalit mallinnettiin 
yksinkertaisella menetelmällä. Taloudellisten aikasarjojen tilastolliset 
ominaisuudet testattiin usealla testillä kiinnittäen huomiota erityisesti 
ehdolliseen normaaliuteen. Myös kaksi varianssi/kovarianssi -estimaattoria, 
liukuva keskiarvo ja eksponentiaalisesti tasoitettu, testattiin. Monte Carlo - 
simulaation konvergenssia pyrittiin parantamaan kvadraattisella 
jälleenotannalla.

Tulokset

Tilastollisten testien perusteella ehdollinen normaalius on järkevä oletus 
aikasarjojen mallinnuksessa, erityisesti eksponentiaalisen tasoituksen 
estimaattorilla. Kehitetty VaR -järjestelmä toimi osakkeiden kohdalla 
parhaiten kun kotimaiset osakkeet mallinnettiin toimialaindekseillä ja 
ulkomaiset positiot maakohtaisilla osakeindekseillä. Osakkeiden mallinnuksen 
todettiin olevan erittäin herkkä sijoitusportfolion koostumukselle. 
Joukkovelkakirjojen kohdalla riskipreemioiden mallinnuksen todettiin olevan 
liian yksinkertainen, riskittömät valtion instrumentit puolestaan toimivat 
mallikelpoisesti. Kehitetty VaR -järjestelmä todettiin erinomaiseksi pohjaksi 
stressitesteille ja lisäsimulaatioille.

Avainsanat
markkinariski, Value at Risk, Monte Carlo -simulaatio, nollakuponkikäyrä, 
pääkomponenttianalyysi, korkomarginaali, bootstrapping, mapping
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1 INTRODUCTION

1.1 NEED TO QUANTIFY RISK

Risk management means literally that we must manage risk, not to eliminate it. To be 

able to manage risk, we must know what are our exposures and what affects them. To 

aid the analysis, risk is usually divided into business, market, credit, liquidity, 

operational and legal risk. Of these, the market risk is certainly the easiest one to 

measure although it is not necessarily the most important source of risk. The focus of 

this thesis is on quantifying the market risk a financial institution faces. The case 

company, Sampo Life, is an institutional investor with a large, internationally 

diversified portfolio. As such, it is a good example of how difficult it actually is to 

measure risks and dependencies across asset classes or different instruments.

Looking back, the uncertainty within the financial markets has increased due to 

various reasons. In 1970’s, the collapse of Bretton-Woods pegged exchange rate 

system led to highly fluctuating currencies whereas the prominent Black & Scholes 

equation enabled the amazing growth in derivatives trading. In 1980’s, de-regulation 

and globalisation opened up unforeseen possibilities to diversify assets across the 

globe. In 1990’s, internet and the speed of information changed the industry into truly 

24-hour market. But as the possibilities have increased, so has the complexity of 

activities.

Fortunately, the preconditions for financial risk management are favorable nowadays. 

Some recent high profile financial disasters (e.g. Orange county, Barings, LTCM) 

have certainly made clear that it is worth to build up a robust risk management 

system. The simultaneous progress in financial theory and computer power have 

made it possible to actually calculate for example the market risk a financial 
institution faces.
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1.2 VALUE AT RISK

Ever since JP Morgan launched their RiskMetrics risk management product to the 

public back in 1994, the pace at which the Value at Risk methodology has been 

adopted within the financial industry has been staggering. Value at Risk (VaR) is 

defined as the maximum expected loss over a given time interval under normal 

market conditions at a given level of confidence (Jorion, 1997, xiii). As a risk 

management technique, it differs from traditional risk measures which mostly tell us 

how sensitive our position is to some underlying risk factor. VaR tries to tell us, how 

much we might loose in monetary terms with given probability. An earlier attempt to 

quantify market risk in similar way was suggested by Leibowitz and Henriksson 

(1989) in the context of portfolio optimization. They called their approach as shortfall 

risk.

There exist three fundamental approaches to calculate VaR: analytical, historical 

simulation and Monte Carlo simulation. Suppose that the return of portfolio has a 

density function f(r) and we are dealing at a level of confidence of 1-c. Then for a 

generic distribution, the probability to have a return less than r* is (Jorion, 1996, 88):

(1)
-100%

Assuming normally distributed returns, it can be shown that our VaR becomes 

(Jorion, 1996, 91):

VaR = ckjVmTo (2)

So, the VaR is simply a multiple of the standard deviation of the portfolio, a is an 

adjustment factor that is directly related to the confidence level. While very simple, 

the analytical method of calculating VaR applies only to well-diversified portfolios, 

which contain just a fraction of non-linear positions (e.g. options, bonds).
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In historical simulation, realized returns are used to approximate the future return 

distributions. It avoids two most common difficulties present in other approaches: the 

estimation of volatilities and correlations and distributional assumptions. However, as 

the drawbacks are huge in terms of data requirements and implicit assumptions, this 

method is considered inappropriate for the purposes of this thesis.

The third method, Monte Carlo simulation, is the most powerful way to calculate 

VaR. Its strength comes from flexibility: it can handle any kind of positions, 

instruments and assumptions. This is also the pitfall as the inherent model risk in 

Monte Carlo methods is huge. Section 3.1 gives a more thorough discussion on issue.

In financial literature, VaR has provoked an extensive discussion both for and against. 

For an excellent general discussion on VaR, see Duffie and Pan (1997). Beder (1995) 

highlights the fact that different calculation principles produce totally different 

results. Marshall and Siegel (1997) extend the analysis by showing how the 

RiskMetrics based estimates vary as the complexity of the portfolio grows. Jorion 

(1997a) writes in defense of VaR by clarifying some common misconceptions about 

the methodology. After all, VaR figure is just an estimate of the true risk and 

approximating heavily non-linear positions linearly is clearly inappropriate. Recently 

there have been some interesting papers regarding the use of VaR for other purposes 

than just reporting the market risk. Kupiec (1998) develops stress testing using VaR 

as a starting point, Ahn et al (1999) show how to minimize VaR using options and 

Dowd (1999a, 1999b) employs VaR in the context of portfolio management and risk- 

return analysis.

Despite the criticism and misuse, the Value at Risk is currently the most powerful 

technique to estimate the market risk a financial institution faces. It can be applied to 

every asset class and every instrument. The real strength of properly designed VaR 

system is that it can actually measure the total portfolio risk by taking account
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dependencies over asset classes. It is a common and consistent measure of risk. 

Traditional measures (e.g. deltas, durations) may be adequate when considering the 

positions in isolation. But ending up with a reliable VaR estimate for a huge multi- 

currency, multi-asset portfolio is really a challenge in itself.

1.3 OBJECTIVES OF THIS THESIS

This thesis considers Value at Risk in the asset management framework, case 

company for the analysis being Sampo Life, a Finnish life insurance company.

Objectives of this thesis are:

1) Create a reliable VaR-system for Sampo Life based on Monte Carlo simulation 

with full valuation

2) Discuss the necessary and important technical aspects in creating such a system

3) Examine how to take full advantage of such a system within the asset 

management framework

The resulting VaR-system should fulfill certain features. Particularly, it should:

1) Be as simple as possible (in relative terms) but above all, reliable. This means an 

extensive backtesting needs to be employed;

2) Include all the assets susceptible to market risk;

3) Report not just the plain VaR figure but also other relevant information and 

sensitivity analysis;

4) Utilize the existing facilities to the fullest extent (market information sources, 

accounting systems etc.);

5) Run on a common desktop environment (that is, in Excel).
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This list is utilized when making decisions on what methods to use to solve a 

particular technical problem.

1.4 STRUCTURE OF THE THESIS

Next, chapter 2 introduces the case company, Sampo Life. After a short company 

description, the main points of relevant legislation concerning the asset and risk 

management are laid out. Then are presented the company specific asset management 

principles and processes. The section, which describes the portfolio, explains also the 

selections on what to include in the VaR analysis. Section 2.5 reviews current risk 

management practices and evaluates their strengths and weaknesses. The last section 

is about what is the possible impact of building a VaR system into asset management 

environment and Sampo Life in particular.

Chapter three is all about methodologies. When building a Monte Carlo based VaR 

with full valuation, they are even more important than in delta-normal methods. This 

is due to huge model risk which is not always self-evident (e.g. relying on 

correlations to model dependencies). Each section in chapter 3 discusses all major 

alternatives and their strengths and weaknesses and explains why certain approach 

was selected to be the best in this context. Topics include basics of Monte Carlo 

simulation, dimensionality reduction techniques, price path generation, variance 

reduction techniques, parameter estimation, derivatives pricing, fixed income 

modeling and backtesting.

Chapter four lays out the empirical results of the developed VaR model. First, section

4.1 discusses simulation technical issues of convergence and variance reduction. The 

next two sections, 4.2 and 4.3, are intertwined as they consider the statistical 

properties of financial time-series and different variance-covariance estimators. Then,
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section 4.4 presents the results of different equity mapping techniques for various 

sub-samples of the considered equity portfolio. After that, the attention is turned to 

fixed income modeling in section 4.5, which consists of zero-coupon yield curve 

estimation, credit spread modeling and the efficiency of principal component 

analysis. Finally, the section 4.6 wraps up chapter and presents the backtesting results 

for the case portfolio.

After empirical results, chapter five summarizes the key findings of the thesis, draws 

conclusions and suggests some ideas for further investigation.
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2 CASE COMPANY, SAMPO LIFE

2.1 COMPANY IN BRIEF

Sampo Life is a Finnish life insurance company, which was formed in a merger 

between Nova Life Insurance Company Ltd. and Sampo Life Insurance Company 

Limited on 31st December 1998. Based on gross premiums written in 1999, the 

company was the second biggest player in the Finnish life insurance industry (Figure

1). Sampo Life’s gross premiums written amounted to FIM 3 218 million and the 

value of investment portfolio stood at FIM 23 836 million in the end of 1999. At the 

moment company employs about 220 people and the headquarters are located in 

Helsinki at Boulevard 56, in the former Sinebrychoff’s brewery. Sampo Life has no 

office network of its own, it rather utilizes the parent company’s premises.

Figure 1: Market shares in the Finnish life insurance industry, 1999

Verdandi, Liv-Alandia 
3% 2%

10%

Pohjola
18%

28%

However, the situation is about to change once again as the parent company Sampo 

Insurance Company pic and Leonia pic agreed in October 1999 on merger to form the 

first full-service financial services group in Finland. As a result, Sampo Life will
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merge with Leonia Life Insurance Company Ltd. in the end of 2000. The new Sampo 

Life becomes number one player in the market based on 1999 figures.

Within the whole insurance industry, life insurance business is the growth segment. 

This is because people are more and more interested on investment activities and 

interest earned from bank accounts are no longer tax free. Furthermore, for risk 

averse investor, the institutional feature of guaranteed interest rate is appealing 

combined with tax deduction possibilities. Based on this, the future prospects of 

Sampo Life seem to be favorable.

2.2 LEGISLATION

The main goal of legislation is to prevent insurance companies from ending up unable 

to fulfill their commitments. The main elements in the regulation of life insurance 

companies regarding their assets are solvency margin, solvency capital, the definition 

of coverage capital and the control of currency positions.

Solvency margin refers to the amount by which the company assets exceed its claims 

(Finnish Insurance Companies Act 11 §1). According to Instructions and regulations 

for domestic insurance companies prepared by the Ministry of Social Affairs and 

Health (MSAH), the minimum level for the required solvency margin is around 4% 

of the technical provisions (company’s debt to its customers). This margin must be 

achieved in every disclosed financial statements. Failing to comply with the rule does 

not immediately result in a ban to conduct insurance activities. Instead of that, the 

company must prepare a restructuring plan and be subject to further scrutiny by 

MS AH.
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Another measure used to control solvency is the solvency capital, which is the 

solvency margin plus equalization provision. Both these measures have been 

criticized for there is no strict mathematical reasoning behind them. These solvency 

measures were imported into the Finnish legislation from EU directives as a part of 

the harmonization process among EU membership countries. As such, both are quite 

vague and rarely limit the investment process unless the company is in dire straits.

Probably more important limitation from the viewpoint of asset management is how 

to cover the technical provisions. Technical provisions are company’s debt to its 

clients. According to the principle of protection (Finnish Insurance Companies Act 

12§), a (life) insurance company must be able to secure this debt momentarily. 

Company must maintain a coverage record, which lists the assets used to cover the 

technical provisions. The real problem is that not all assets may be used into this 

purpose. Statute given by MSAH divides the investment portfolio into asset classes. 

Each asset class may cover only a certain specified amount of technical provisions, 

for example bonds issued by the Finnish government or municipalities may cover 

100%, whereas the shares of publicly listed companies may cover only 50% of the 

technical provisions. Also liquidity is taken into account as only 10% of technical 

provisions may be covered with illiquid assets.

Currency issues are paid attention to in the legislation as well. The general principle 

is that technical provisions must be covered with assets in the very same currencies 

where the contractual claims have been made. Specifically, only 20% of the claims in 

certain currency may be covered with assets in other currencies. The emergence of 

the Euro area has reduced the effect of this rule but nevertheless, as the majority of 

the claims of Finnish life insurance companies are domestic, this rule must be taken 

into account. As USA and Japan are the worlds largest capital markets, the company 

may loose some important possibilities to improve returns and achieve diversification 

effects unless it has created sufficient surplus.
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While above rules appear strict, once the company fulfills the required solvency 

levels, all assets not used to cover these requirements are not regulated at all. 

Currently, Sampo Life has a very strong financial position. Technical provisions 

stood at FIM 5 643 million in the last financial statements, which exceeds the 

required minimum level by a factor of seven. So, at the moment the legislation does 

not in practical terms affect Sampo Life’s investment policy. From the risk 

management point of view, these regulations aim to guarantee the long-term survival 

of the company but the means are rather impractical. They for example ignore the 

portfolio theory by prohibiting the use of assets in other currencies to cover for 

technical provisions. At the same time, the legislation calls for companies to diversify 

their assets in order to reduce risk. This is somewhat inconsistent.

2.3 ASSET MANAGEMENT PRINCIPLES AND PROCESS

The basic framework for asset management in Sampo Life is laid out in Figure 2:

Figure 2: Asset management framework in Sampo Life

Laws, instructions and regulations

Investment policy

Investment decisions

Implementation

Board of Directors

Investment committee

Asset managers

Ministry of Social Affairs and Health

Laws, instructions and regulations were discussed in last section 2.2. At the company 

level, board of directors has the highest decision power. It decides on investment 

policy, risk capacity calculation principles, risk profile and asset allocation. As the 

board meets approximately only every six weeks, the decision power is further 

delegated to investment committee. It meets once a week to decide on tactical
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allocations and individual investments. These decisions are then carried out by asset 

managers on daily basis.

As a long-term investor, Sampo Life aims at good long-term yield on a risk-adjusted 

basis. However, the industry specific feature of guaranteed interest rate, which is 

3.5% p.a. at the moment, defines the lower limit that must be reached in the long run. 

In addition to that, the company policy aims at providing policyholders’ with-profits 

savings, before charges and taxes, a total return that at least matches Finnish Treasury 

Bond yields. This reflects the Principle of Fairness stated in the Finnish Insurance 

Companies Act (13 §3). Of course, owners of the company want their share of the 

profits too and from the company point of view, part of the profits should be used to 

increase the solvency margin. As a result, the long-term level of required return on 
assets is around 8.0 - 8.5%.

In the short run, focus is given to:

1) Preventing losses on mark-to-market investments

2) Improving the yield level with realizations and better deals

3) Compensating decreasing yield levels with derivatives and trading

4) Improving the yield level of illiquid assets

There are certain limitations considering the value of trades investment committee is 

allowed to decide upon but as such they rarely affect the daily operations. Although 

short run objectives call for active portfolio management, active trading is not 

considered as the solution. Positions are rather taken with derivatives than by selling 

and buying a lot of underlying assets, unless the whole position in question is to be 

liquidated. As a long-term investor, the portfolio of Sampo Life includes a lot of 

valuation differences and it would be unreasonable to realize them in search of short­

term profits.
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2.4 PORTFOLIO

In the beginning of the analysis (1.1.1999) the market value of Sampo Life’s portfolio 

stood at FIM 18 198 million. In the end of 1999 it grew up to FIM 23 836 million but 

part of the growth comes from written premiums which amounted to FEM 1 855 

million (net of claims paid). So, the net growth was FLM 3 783. Portfolio is 

reasonably well diversified in a geographical sense although the bulk of assets are 

located in Finland (69%). Assets are nominated in 22 currencies in 27 different 

countries. Figure 3 describes how assets are allocated according to broad asset 

classes.

Figure 3: Sampo Life’s investment portfolio 31.12.1999

Other investments 
Land and buildings 5 %

33%

As only market risk is considered, some unquoted portions of the portfolio are 

automatically left out from the analysis (lands and buildings, other investments). 

From the modeling point of view, the portfolio contains a wealth of different financial 

instruments: equities, equity options, warrants, equity index options and futures, 

commodity swap, money market instruments, straight bonds, floating rate notes 

(FRN), convertible bonds, forward rate agreements (FRA), index linked bonds, 

currency options, currency futures and forwards and deposits. Fortunately, most of
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the derivatives are plain vanilla, the only exotic ones being currency knock-in and 

knock-out options. This means that for the purposes of this thesis, all VaR 

calculations may be carried out with standard analytical formulas when valuing 

derivatives.

There were certain limitations for the VaR analysis regarding the portfolio. First, as 

the implementation requires a careful backtesting procedure to be carried out, the 

availability of data posed some difficulties. The starting point of the analysis was 

selected to bel. 1.1999, as the company did not exist before that in the present form. 

The emergence of the Euro area complicated the analysis sizeably, particularly for 

interest rates. In the prevailing situation, the centralized interbank money marketd 

determine short rates whereas the long-rates still exhibit country-specific effects. 

Therefore, all modeled Euro countries had the same short rates beginning 1.1.1999. 

Before that, short-rates were taken from market specific interbank quotes. For 

currencies, it was easy to obtain artificial quotes against euro before 31.12.1998 

because the conversion factors were known.

The biggest problem concerning the position data was that the company changed the 

accounting system it utilizes in the middle of 1999. As a result, data before that point 

was extremely difficult to obtain for the old system did not produce any decent 

reports. Furthermore, all derivatives were (some are still) handled separately in Excel 

files and position information had to be gathered manually. To keep the workload 

within reasonable limits, fixed income options, currency options and equity asset 

managers had to be removed from the analysis. Table 1 lists both the numbers of 

different instruments within the analysis as well as their market values and shares of 

total in the last two financial statements.
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Table 1: Information on modeled portfolio

Number of instruments:
Bonds Equities Equity

derivatives
Total

portfolio
-Minimum 34 210 15 -

-Maximum 68 225 48 -

-Median 47 220 34 -

-Different 109 317 197 -

Market cap. 4.1.1999 5 256 3 825 -69 18 198
Share of total 63,1 % 69,4 % 100% 49,5 %
Market cap. 31.12.1999 5 196 7 497 -51 23 836
Share of total 66,1 % 66,0 % 100% 53,0 %

For equities, the biggest portions left out were foreign asset managers, mutual funds 

and private equities. Discarded bonds were mostly totally illuiqid domestic issues of 

corporates or municipalities. Fortunately it is possible to include the omitted and 

mark-to-market elements with little effort after the foundations of the model are well 

established and position information easily available from internal systems. Should 

all mark-to-market instruments be within the analysis, it would include about 90% of 

the equities and bonds.

2.5 CURRENT RISK MANAGEMENT PRACTISES

Current risk management considers mainly ensuring the long-term survival of the 

company. The board of directors has defined a risk profile for Sampo Life based on 

the current risk capacity. This measure is defined as the amount by which the 

solvency margin exceeds the required minimum level. For calculations, each asset 

class is given a variability parameter, which is based on long-run average historical 

volatility and estimations on future development. Parameters for different asset 

classes are: equities 25%, bonds 4-5% (average duration), real estates 8% and money 

markets 0%.
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The total risk is calculated using a simple stress, which assumes that all markets 

plummet simultaneously an amount indicated by the variability parameter. So, to end 

up with a total risk figure, underlying market values of different asset classes are 

multiplied with corresponding variability terms. This total risk figure is then 

compared with the risk capacity to find out whether the level of market risk is 

acceptable. Total risk calculated may not exceed 75% of the risk capacity.

The risk profile definition includes maximum weights for each asset class. The 

purpose of these position limits is to guarantee optimum risk-return level in the long 

run. In the short run, investment committee is allowed to change the asset allocation 

in response to market movements. The positions are allowed to fluctuate even in 

excess of pre-specified maximum position limits according to fluctuation bands (+/- 

1.5-15% depending on asset class).

To assess the risk factors of the portfolio more detailed, nominal amounts are used. 

For equity portfolio, alternatives are sector and geographical allocations taking 

account the derivatives position. Derivative positions are valued using delta- 

approximation and assuming perfect correlations across different positions. The risk 

of fixed income instruments is calculated using the traditional modified duration. To 

give richer view, the figures of bond portfolio are also given according to credit 

classes and country and sector allocations. The amount of credit risk is calculated 

using yield-to-maturity spreads and bond prices.

So, the quantitative risk management clearly needs to be improved. At the moment, 

the total portfolio risk is expressed only in terms of market values according to broad 

asset classes and in the form of extremely simple stress test. Also the calculation of 
derivatives risk is overly simplified.
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2.6 SAMPO LIFE AND VAR

The investment committee is given authorities to adjust asset allocation in accordance 

with market fluctuations but it lacks the means to estimate the daily market risk 

across the whole portfolio. It is here, where a proper VaR system could impact the 

most. Although asset managers certainly have the feeling of the common volatility 

level in the market, it is prone to subjectivity and portfolio effects and derivative 

positions complicate things considerably. Of course, VaR figures could give valuable 

information for the board of directors as well as they are unlikely to watch the market 

as closely as asset managers do.

In general, VaR is most often discussed in the context of banks and brokers. Culp et 

al (1999, 1-2) argue VaR is not that well accepted in the institutional investment 

community as asset managers are typically in the business of taking risks. However, 

VaR is useful tool also for them as it may reveal whether the risks they are taking are 

those risks they want or need to be and think they are taking. Culp et al (1999, 14-22) 

consider four applications of VaR in the asset management environment: monitoring 

tool, what-if-modeling tool, risk targeting system and risk budgeting system. In 

addition to these, Monte Carlo simulation may provide interesting statistics as a by­

product of VaR calculations. A prime example is the modeling of zero-coupon yield 

curve with principal components, which could also be used for hedging purposes 

(Litterman and Scheinkman, 1991). For Sampo Life, the aim is to develop a more 

realistic stress test procedure than prevailing system. Another topic is to examine the 

efficiency and risk/retum structure of the asset allocation in the long-run. A good 

VaR system is sound basis for these applications.

Considering the size of the investment department, the main objectives for the VaR 

system were easy to define. It should be relatively simple, run in common desktop 

environment and report all additional information as well to be used in the asset 

management procedure. Portfolio was reviewed in section 2.4 and from that arises 

one important objective for the VaR system: assets must be mapped efficiently to
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reduce the dimensionality. In chapter 3, section 3.2 the issue is discussed in more 

detail and here we just need to conclude that with hundreds of different instruments, a 

straightforward implementation is right out of the question.

Reason to adopt Monte Carlo simulation with full valuation is based on the fact that 

the portfolio contains a lot of non-linear instruments. Although the VaR literature 

contains a wealth of papers, which deal with different approximation techniques for 

non-linearity, it is clear that full valuation is the most accurate method. As the 

duration of calculations is not the most important issue (within reasonable levels, of 

course), the full valuation is the method to choose.

As Value at Risk is defined as the maximum expected loss over a given time interval 

under normal market conditions at a given level of confidence (Jorion, 1997, xiii), the 

definition involves two arbitrarily chosen parameters: the time interval and the 

confidence level. When considering the target horizon, an institution need to assess 

the following (Dowd, 1998, 51): the liquidity of the markets in which it operates, the 

normal approximation, changes in the portfolio itself and the validation procedure. 

The liquidity factor might suggest a longer time horizon, especially when dealing 

with OTC or emerging markets. Time horizon should reflect the time it takes to 

orderly liquidate the whole position. Other factors suggest shorter horizons: normality 

works the better the shorter the time horizon, portfolio does not change too much and 

backtesting does not require too long history.

To be able to conduct an adequate backtesting and the use of normality assumption 

were seen as dominating factors here. Using time interval of one day, backtesting 

may be carried out using 355 observations and the zero-coupon yield curve may also 

be modeled with key-rates having normally distributed returns. As the bulk of the 

assets is invested in domestic instruments, the liquidity risk is a major concern but as 
such the liquidity factor was not modeled.
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3 METHODOLOGIES

3.1 MONTE CARLO SIMULATION

Scientists working for the United States Government to develop the atom bomb 

invented Monte Carlo simulation back in the 1940’s. Monte Carlo simulation inserts a 

probabilistic element into the non-probabilistic problem of estimating an integral. The 

dominant advantage of the method over classical numerical integration approaches is 

that the error convergence rate is independent of the dimension of the problem. As 

such, the method is perfect to proximate financial problems (and especially VaR 

related) where multidimensional integrals are frequent.

The basic process of Monte Carlo simulation for VaR analysis involves: 

-Specifying initial positions and re-valuation formulas

-Identifying the key-factors and choosing appropriate stochastic processes for them

-Estimation of input parameters

-Generation of random numbers

-Price path creation and position re-valuation

The inherent problem with Monte Carlo simulation to proximate VaR is the huge 

model risk. With large multi-currency portfolio, one encounters practically every 

basic instrument and derivatives product there exists as is evident from the section 

2.4. So, the modeling includes practically every issue that has been dealt with in the 

modem financial theory regarding financial markets. The issue is complicated by the 

fact that in many occasions, there is no right solution, only controversy and case 

examples. Therefore the results of Monte Carlo system must always be interpreted 

according to assumptions being made. But on the positive side, once the basic system 

is in place, it is very easy to experiment what the change in some assumption causes.
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Furthermore, there exists no instrument that Monte Carlo VaR could not (at least in 

theory) handle.

There is also a related technique called Quasi-Monte Carlo simulation. In this 

technique, random numbers are not even pseudo-random but created to fill certain 

domain as efficiently as possible and therefore achieving fast convergence (section 

3.6.3 gives more details about random numbers and section 3.7 discusses how to 

improve convergence). However, the gains from this method diminish as the 

dimensionality of the problem at hand increases. After some point, it is actually more 

efficient to use the normal Monte Carlo and pseudorandom numbers. For more on the 

subject, see Boyle, Broadie and Glasserman (1997, 1290-1302).

3.2 THE CURSE OF DIMENSIONALITY

The variance-covariance matrix, Z, is the key player in Value at Risk (VaR) analysis 

if we consider either the delta-normal or structured Monte Carlo approach. Historical 

simulation method does not require this matrix, as it is already included in the 

historical, realized returns. To estimate the variance-covariance matrix, we need 

estimates both on the variances of the instruments we hold and covariances between 

them.

However, as the number of instruments we hold grows, the number of parameters 

needed to estimate Z grows geometrically. If we hold n assets, we need to estimate n 

variances and n(n-l)/2 covariances, all in all n(n+l)/2 terms. In the case n=300, the 

number of terms needed to estimate would be 45 150. This results in enormous data 

requirements because we would like to have reliable estimates and at the same time 

ensure that the variance-covariance matrix is positively definite (Jauri, 1997, 192).
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The positive definite property guarantees that the correlations between assets make 

sense as a whole and all variances are positive (Jauri, 1997, 192). There are two 

preconditions that must be met to ensure the positive definite property. First, the 

number of observations used to produce estimates must be at least equal to the 

number of variables, preferably much more (if moving averages are used). Second, 

none of the included time series may be linearly correlated with other series or group 

of series (multicollinearity precondition). In other words, each series must have some 

independent movement of its own. (Dowd, 1998, 77)

The analysis of the portfolio already made clear that achieving low dimensionality is 

one of the most important aspects in the design process. Next sections discuss all 

major techniques to achieve this goal.

3.2.1 Equity-specific methods

3.2.1.1 Representative mapping

RiskMetrics’ representative mapping system for equities assumes that all stocks in 

any one country may be mapped to a broad stock index of the country in question. 

For this method to work, the portfolio in question should be reasonably well 

diversified because the systematic risk would then be the major source of the 

portfolio variance. If the portfolio contains positions which differ a lot from the 

index, then this method may produce inaccurate results. Dowd (1998, 82) describes a 

technique, which could be used if the case portfolio is imperfectly diversified.

Care must be exercised when selecting the relevant stock index. For example, here in 

Finland the problem with the representative approach does actually come from the 

fact that Nokia has so heavy weight in the HEX general index. If the portfolio is 

reasonably diversified, it most probably does not include over 60% of Nokia. That

24



would be both poor risk and asset management. Using the HEX portfolio index is 

somewhat a remedy as it restricts the maximum weight of any one stock to 10%.

But there is an alternative way to handle the mapping procedure, at least within one 

country. Instead of a broad stock index we could map the portfolio using industry 

indices. In case the portfolio deviates a lot from the general index, this should be a 

major improvement. Of course, in a multicurrency situation it would be hard, if not 

impossible due to currency issues, to construct the needed global industry indices. 

But again, if there were hundreds of stocks, even the use of industry indices in each 

country would provide a major improvement.

3.2.1.2 Diagonal model

Jorion (1997, 158) describes a diagonal model originally proposed by Sharpe (1964) 

in the context of stock portfolios. The model is:

Ri = ai +ß iRm +s i

^ t , ] = 0,£ ,E^Rm]=0,E (3)

So, the equation is familiar from the CAPM analysis but here it is used just to 

simplify the variance-covariance matrix, not to estimate expected returns. The 

variance of an asset i can be decomposed:

2
e ,i (4)

The covariance between two assets is:

(5)
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As a result, written in matrix notation, the variance-covariance matrix is:

X = ßßTcrl + Ds (6)

where ß is the beta vector and De is a diagonal matrix consisting of residual 

variances. This is the diagonal model, which reduces the number of parameters 

needed to estimate quite dramatically. For 300 assets, a full variance-covariance 

matrix would require 45150 estimates but the diagonal model requires only 601 (the 

betas, residual variances and the market variance). But it requires regression run on 

each asset to estimate the residual variance. Furthermore, the actual data requirements 

do not change for we need all the same data as when using the full X.

3.2.1.3 Beta model

The beta model is a further simplification of the diagonal model. The variance of our 

portfolio according to the diagonal model is:

Var(Rp) = wTXw = {wT ßßTw)cr2m + wTDew (7)

The latter term consists of w,2<7£f which will be very small when the portfolio is well 

diversified and has a lot of assets. So, the latter term converges to zero as the n 

(number of securities in the portfolio) increases. The variance of the portfolio 

therefore becomes:

Var (Rp) —> (wTßß Tw)crl (8)

This equation is the beta model and it reflects dependence on only one factor, the 

market return. In case of 300 assets, it requires only 301 estimations (the betas and 

the market variance) which make it very attractive. Jorion (1997, 228) gives some 

numerical examples on the accuracy of both these models but he considers only three 

assets and therefore it is no surprise that the beta model underestimates the “true”
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(full variance-covariance matrix) VaR whereas the diagonal model performs very 

well.

The beta model offers (at least theoretically) a way to reduce the number of needed 

estimations considerably but it has some important shortcomings. First, in the case of 

a multicurrency stock portfolio, what is market return and how we should treat 

currencies? One way would be to consider all processes converted into a common 

currency and to use some worldwide stock market index. Second, the method as such 

considers only stocks. But if we have other instruments (bonds, options, commodities 

etc.) and we would like to calculate total portfolio VaR, the solution does not work. 

Third, we still need a lot of data for the estimation procedure although we do not have 

to estimate so much parameters (unless betas are acquired straight from other 

sources). For these reasons, the beta model might be most suitable for only domestic, 

pure, well-diversified stock portfolios.

3.2.1.4 Issues in equity-specific methods

As is evident from the discussion above, the portfolio structure is about to affect 

significantly the results of the VaR estimation. Johansson et al (1999, 106) draw 

similar conclusions as they apply twenty different VaR models based on three 

forecasting techniques to three equity portfolios of increasing degrees of 

diversification. To obtain accurate risk estimates, the characteristics of the portfolio 

must determine the technique applied. Chapter 4 gives empirical evidence regarding 

the case portfolio and different equity mapping techniques.

3.2.2 Mapping cash flows

When bonds and other instruments with known nominal cash flows are decomposed, 

result is a huge amount of individual cash flows in different currencies, maturities and 

risk classes. This is true even for a relative modest portfolio in terms of different
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assets. Instruments, that can be mapped to individual cash flows include following: 

floating rate notes (FRN), forward rate agreements (FRA), interest rate futures, 

interest rate swaps, structured notes, currency forwards, currency swaps etc. (see 

Dowd (1998, 80-87) or Longerstaye et al (1996, 107-117)).

As all these cash flows need to be discounted in full valuation Monte Carlo for each 

iteration, methods have been developed to map these cash flows in various ways to 

ease up things. Three common methods are described in Longerstaye et al (1996, 

107-108): duration, principal and cash flow map. The duration map associates the 

market value of the bond at the time specified by its Macaulay duration whereas 

principal map allocates it to the maturity date. While very simple to implement, they 

are limited to only bonds and furthermore considered being too radical simplifications 

of reality.

The third alternative, which is also used by the RiskMetrics system, simplifies the 

structure by mapping individual cash flows into prespecified maturities (so-called 

RiskMetrics vertices, Longerstaye et al, 1996, 117). The procedure involves splitting 

all cash flows between the two closest RiskMetrics vertices. The procedure weights 

cash flows such that following conditions hold (Longerstaye et al, 1996, 188): market 

value, market risk and cash flow sign are preserved. The actual calculations required 

to achieve this are laid out in Longerstaye (1996, 119-120). The most serious problem 

with the algorithms is that as they include solving a quadratic equation, it is possible 
to have only imaginary roots.

Despite being rather complex, the RiskMetrics mapping procedure offers some 

insights on how to improve the VaR calculations. For example, suppose we have 

portfolio, which can be decomposed to 500 cash flows (in modeled portfolio, the 

number varied between 250 and 550). Now, if we run Monte Carlo simulation with 

50 000 rounds, we have to re-value 25 million cash flows. That is no trivial task. If
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we had a RiskMetrics system for, say, 3 different currencies, we could map all our 

cash flows to a maximum of 3*14=42 vertices (RiskMetrics system provides 14 

vertices for each country). Running 50 000 re-valuations require only 2.1 million 

calculations, which is only 8.4% of the original burden.

But the procedure is applicable only when considering cash flows which can be 

valued using the risk-free term structure. If portfolio contains corporate bonds or 

other instruments, which contain a credit spread over the risk-free term structure, the 

method fails. The credit spreads are discussed further in section 3.3, but as they play a 

significant role in the case portfolio, cash flows are not mapped in the RiskMetrics 

way.

3.2.3 Statistical methods to reduce dimensionality

It should be noted that with these statistical methods, data reduction is not in terms of 

how much data has to be collected, as all original variables are needed to form the 

inputs. Therefore they are no remedies for VaR analysis in terms of actual data 

requirements. The real benefits come from interpretation and further processing.

3.2.3.1 Principal components analysis

3.2.3.1.1 Definition

The basic idea in principal components analysis (PCA) is to form new variables 

(principal components) which are linear and uncorrelated (orthogonal) combinations 

of the original variables. The PCA requires either the correlation or the covariance 

matrix of the original variables as its input. Let the Z be the covariance matrix for 

variables X=[Xi,..,Xp]. The z'th principal component is (Mustonen, 1995, 57):

= е'Х = е,Л + ~t~ e pi X p. i = 1,.., p (9)
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where e¡ are eigenvectors. Geometrically, these linear combinations represent the 

selection of a new coordinate system obtained by rotating the original system with 

original variables as coordinate axes (Johnson and Wichem, 1982,362). As a 

statistical method, PCA’s objectives are data reduction and interpretation. If a 

substantial amount of the total variance in the data is accounted for by a few principal 

components, then we can use these for interpretational purposes or replace the 

original variables with them in further analysis.

3.2.3.1.2 Solution

The solution of PCA comes from the spectral decomposition of Z (for exact 

mathematical derivation, see Mustonen (1995, 57-63):

2 = EAET = VV0 + - + Лре(р)е(р); i = 1,.., p (10)

where A is a diagonal matrix of eigenvalues (Á¡>...>Áp>0) and E=[e<1),..,e(p>] is an 

orthogonal matrix composed of eigenvectors e(,), ...,e(p>. The first principal component 

is the one with the largest eigenvalue (Åi, also the variance of the component) and its

value is Yi=e(,)1X. Other principal components are formed analogously.

The foolproof way to actually calculate the eigenvectors and corresponding 

eigenvalues of symmetrical matrix (Z is symmetrical) is to use the Jacobi method. 

The idea behind the Jacobi method is to systematically reduce the quantity (Golub 

and Van Loan, 1989, 445):

off{A)= 25X (ii)
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i.e., to zero the off-diagonal elements (A denotes the matrix under scrutiny). This is 

done through a series of plane rotations of the form:

j(p,q,e) =

1 •• • 0 ■ .. 0 • 0

0 •• c .. s .. 0

0 •• ■ - s ■ .. c 0

0 • 0 • .. о • 1

(12)

where c and 5 are the cosine and sine of the rotation angle 0, so с2-кг=1. The basic 

procedure (Golub and Van Loan, 1989, 445) is (1) to choose an index pair (p,q) that 

satisfies 1 <p<.q<n, (2) computing a cosine-sine pair (c,s) such that

i
Cr

•§ c s T "aPP аря~ c s
YK Ьчч _ - s c аЯР аяя. -s c

(13)

is diagonal, and (3) overwriting A with B=JTAJ. While Golub and Van Loan (1989, 

444-459) lay out the mathematical foundations of the Jacobi method, a detailed 

application in C-language can be found in Press et al (1992, 463-469). It can be 

converted easily to run in the Excel’s Visual Basic environment.

3.2.3.1.3 Issues in principal component analysis

As a dimensionality reducing technique, the method is efficient if the first few 

principal components account for a large portion of the total variation. This can be 

assessed by examining the eigenvalues: the larger the first couple of them, the better. 

The efficiency of the PCA really boils down to correlations: if variables are 

orthogonal in the first place (correlations are zero) then each principal component
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would account for the same amount of variance. With high correlations, the method is 

really efficient. (Sharma, 1997, 75-76).

3.2.3.2 Factor analysis

3.2.3.2.1 Definition

The factor analysis (FA) is similar to the PCA but the differences are not trivial. In 

the FA, the variation of variables is divided into common and specific variation. 

Furthermore, with an orthogonal rotation, the aim is to create a simple structure for 

resulting factors to aid the interpretation of the results. In the FA, the question is not 

about explaining the most of the total variation with new variables but rather finding a 

hidden and low-dimensional structure using the correlations between original 

variables. (Mustonen, 1995, 75)

When considering p variables and r factors (r<p), the equation of the FA is:

Xt = fit + anF{ +... + airFr + £/,.; i = 1,.., p

Written in matrix notation, (10) becomes:

X = ju + AF + U (15)

where A is a p dimensioned factor matrix (factor loadings), F represents the r 

common factors and U=[Ui,..,Up] represents the specific factors. When the factors 

are uncorrelated, the covariance matrix of the original variables can be expressed as 

(Mustonen, 1995, 76):

Z = AAT + W2 (16)

where 4* is a diagonal matrix and its elements are the variances of specific factors.
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3.2.3.2.2 Solution

The simultaneous estimation of the factor loadings and the variances of specific 

factors is not a trivial task and it requires the use of some iterative procedure. Two 

common methods are the principal factor method (which is easily confused with the 

PCA) and the maximum likelihood method. The principal factor solution to factor 

analysis is a modification of PCA. As a result, the factor matrix A can be found by 

minimizing the following equation:

R - Y 2 - AA (17)

The method requires that we have some initial guess on specific variances ( 4*). Then 

the solution is found through an iterative process. First, we solve A using some 

assumption about 4^ and then we recalculate 4^ by: 4*=l-h2, where h2 is vector of 

squared sums of factor loadings (communalities). Then we use this result as a new 

input and calculate A again. The process requires few rounds to converge to a solution 

(Mustonen, 1995, 78).

In maximum likelihood method, the original variables are assumed to be from multi­

normal distribution N(n Z) where Z=AAT+ 4*. The following log-likelihood is then 

maximized:

log L(/¿,Z) = -y[/wlog(2tt) + rclog|X| + tr(z_1M)] (18)

Where n is the number of observations, p is the number of original variables and Mis 

a moment matrix calculated from the sample (Mustonen, 1995, 79).
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3.2.3.2.3 Factor scores

In the PCA, the values for principal components are obtained easily after the 

eigenvectors have been solved (equation (9)). The causality goes from original 

components to principal components and this is why the original variables are called 

formative indicators of the components. However, in the FA the variables are 

considered as functions of the hidden common factor(s) and the unique factors. Hence 

the variables are called reflective indicators. (Sharma, 1996, 128)

In VaR analysis, we are interested in the factor scores because we need them to 

estimate the variances and covariances with other variables in further analysis. The 

factor scores F cannot be directly solved from X=ju+AF+U. The solution is to 

employ a sort of a regression to find estimates for F by K(X-ju). The equation for К is 

(Mustonen, 1995, 90):

К = (ATx¥~2A + iylATx¥-2 (19)

3.2.3.2.4 Issues in factor analysis

The factor analysis requires the most in terms of computing power. As the solution 

methods require optimization and sophisticated algorithms, the FA is clearly the 

Black-Box approach of the alternatives considered. The maximum likelihood method 

may suffer from the same drawback as the conventional variance and covariance 

forecasts: it gives equal weight to all observations. The normality assumption in 

maximum likelihood estimation is also a drawback but it should be noted that in 

general, maximum likelihood estimation may be carried out with any probability 
density function.
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3.2.4 Selection criteria

Of the methods considered here, the representative mapping is by far the easiest 

method to implement and reduces also the actual data requirements by a sizeable 

amount. Should we add other asset classes into the analysis, this method has no 

problems to cope with the situation. In this thesis, all Finnish shares are mapped 

according to HEX industry indices. The empirical section provides evidence how 

misleading the use of HEX or HEX portfolio index might be. All the foreign equities 

are mapped to the relevant country index.

In VaR analysis, the statistical methods are found most useful when considering 

bonds. The yields are highly (although not perfectly) correlated (good for PCA) and 

highly homogenous (good for FA). Litterman and Scheinkman (1991) use utilize FA 

and conclude that movements in interest rates can modeled using just three factors: 

they interpret the factors as level, steepness and curvature (Litterman and 

Scheinkman, 1991, 57-58). Singh (1997) obtains similar results both for bonds and 

for some currencies. Bliss (1997b) points out that the statistical methods explain why 

single factor theoretical models for equity returns fail: equity returns are highly 

heterogeneous and contain a lot of individual variability. Jamsihidian and Zhu (1997) 

employ PCA in the context of scenario simulation and achieve quite remarkable 

results in terms of making the calculations more effective.

The selection criteria favor again the more simple approach, the PCA. FA is 

cumbersome to estimate, contains normality assumption and the underlying factor 

scores are more difficult to obtain. To illustrate the difference of these methods, both 

PCA and FA are used to estimate the £ of the Finnish equity portfolio. Results of FA 

were obtained using a statistical add-in for Excel, XLSTAT 4.2.
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3.3 ZERO-COUPON YIELD CURVE AND CREDIT SPREADS

3.3.1 Basic bond pricing equations

The estimation of a default-free zero-coupon yield is one of the major problems in 

finance. It stems from the fact that in practice we observe only prices for coupon 

bearing instruments although nowadays there exists also active markets for stripped 

instruments (namely in the USA). So, the zero-coupon yields must be derived from 

the prices of ordinary government bonds using some sophisticated method. The 

starting point is the simple bond pricing function (Bliss, 1997a, 5):

P]=fJCllS(t) = fiCile-’mi (20)
i=l i=1

where P is the price for bond j, m is the number of cash flows, C is the ith cash flow, t 

is the time to z'th cash flow, 5(t) is a discount function and y(t) is the corresponding 

discount rate function. The discount function is usually transformed into a discount 

rate curve by y(t)=-log[S(t)]/t, hence the exponential. Unfortunately, many market 

frictions affect the observable prices (bid-ask spreads, tax-clientele effect, liquidity 

premia etc.) so the equation does not hold exactly. This leads to an inexact relation 

such as (Bliss, 1997a, 5):

P, =/lc„,X')J+i, (21)

where / captures all relevant aspects about bond pricing and y(t) is fitted to minimize 

some function of the error term e(sum of bond pricing errors). The selection of an 

appropriate weighing scheme for errors must be solved also. Bliss (1997a, 9) suggests 

using the inverse of the duration of the issue. After deciding whether to fit discount 

function or discount rates directly, the next step is to decide on the functional form to 

be used in the approximation. The most commonly used alternatives are cubic splines 

(McCulloch, 1975), exponential forms (Nelson and Siegel, 1987) and piecewise 

linear method (Fama and Bliss, 1987).

36



3.3.1.1 Splines

McCulloch (1975) suggested the use piecewise polynomial functions (splines) to 

approximate the discount function. Intuitively, a polynomial spline can be thought of 

as a number of separate polynomial functions, joined smoothly at a number of so- 

called knot points. Splines are flexible enough to model any reasonable-shaped 

discount function, in fact they can be too flexible (Seppälä and Viertiö, 1996, 14). As 

the number of knot points are increased, the quality of the fit increases. The stability 

of the curve decreases simultaneously, which may lead to unstable implied forward 

rates. Furthermore, there are no clear-cut solutions on how to select the appropriate 

number of knot points and how to locate them.

3.3.1.2 Nelson-Siegel exponential form

Nelson and Siegel (1987, 475) suggested a parsimonious exponential form to model 

the implied forward curve as:

Í--
+ ßz

’\-
exp

'O'

, A .Л, < TJ.
(22)

where f(t) is the forward rate at maturity t and ßo, ßi, Д? and rare the parameters to be 

estimated. The estimation is done from the equation of the discount function:

ö(t) = exp\-1 До + (A + ßz {1 - exp ' A )t R 
- - ß2 exp

' лТ

l L x < A.JT , TJJ. (23)

This approach avoids the problem with knots inherent in spline-based models. The 

trade-off is the less flexible functional form and typically it fits the data less well. 

Literature contains a vast amount of extended specifications to increase the flexibility 

of this type of models.
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3.3.1.3 Piecewise linear method

This is by far the easiest method to approximate the discount rates: it is an iterative 

procedure where rates are defined recursively from the shortest instrument onwards. 

Among practitioners it is called bootstrapping for obvious reasons. Fama and Bliss 

(1987) appear to be first to publish an implementation of this method, they use it to 

extract forward rates from U.S. Treasury bonds. The resulting zero-coupon yield 

curve from bootstrapping contains as many key-rates as the number of issues used in 

the extraction process. Between the key-maturities, the relevant discount rates are 
found using a linear estimate:

y(t) = y(t0 ) + {y(tl ) - y(t0 t0 <t<t, (24)
*i 'o

3.3.2 Zero-coupons and VaR calculations

Zero-coupon yields are an essential element of any VaR calculations as they are used 

to price bonds and different derivatives. The choice between different methods is not 

an obvious one. Once again, it is not quite clear which method produces the best 

results. We never observe any zero-coupon yield curve, so comparisons are 

necessarily indirect. Bliss (1997a) and Deacon and Derry (1994) provide some 

insights into this issue. Bliss (1997a, 25-28) observes that while the Fama-Bliss 

approach produces most accurate results, it may suffer from over-fitting. The 

Extended Nelson-Siegel and cubic spline performed comparably to each other. 

Deacon and Derry (1994) provide no statistical comparisons but they emphasize the 

importance of the implied forward rate curve and the need to take market specific 

frictions into account. All in all, as Bliss (1997a, 28) puts it, term structure estimation 

is an art. Theory offers no unconditionally superior method to modeling.
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In the context of VaR, it is important to consider the shape of the implied forward rate 

curve. Otherwise the valuation of interest rate derivatives might produce awkward 

results. Mathematically, the discount function should be both positive and 

monotonically decreasing. The bootstrapping may not fulfill these preconditions 

should it suffer from overfitting. However, it has other attractive features when 

considering VaR calculations using Monte Carlo simulation and full valuation. For 

modeling purposes, we have to select some key-rates, which are then put through the 

PCA. When these principal components are simulated and sampled back to key-rates, 

the spline and Nelson-Siegel approach would require re-fitting for each iteration. 

Here bootstrapping and linear interpolation offer a major reduction in computational 

burden. The error weighing problem is also irrelevant as bootstrapping produces 

prices that equal the observed ones (Bliss, 1997a, 10). Simplicity is favored again and 

bootstrapping is utilized to derive default-free term structures for the purposes of this 

thesis.

3.3.3 Credit spreads

The risk of default complicates the pricing of corporate bonds considerably. In fixed 

income markets, credit spread refers to amount by which the corporate bond yield 

exceeds the yield of some suitable default-free bond (maturities are usually matched). 

These spreads convey information about the expectations on company’s possible 

bankruptcy but the picture is blurred due to for example debt seniority. Unfortunately, 

this information is scarce (particularly in Europe and in Finland) as there exists only 

few liquid corporate bonds compared to amounts issued.

The modeling of credit spreads gets difficult when we abandon the market convention 

of yield-to-maturity -spreads and start to consider an entire spectrum of default-free 

rates. The method used in this thesis is again as simple as possible. Using observed 

corporate bond price and derived zero-coupon yield curve, credit spread is defined as 

a constant rate, which is added to the zero, yields when discounting bond cash flows.
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It is constant over entire maturity but changes from day to day as interest rates evolve. 

The estimation requires the use of iterative procedure (e.g. Solver in Excel) similarly 

when calculating the normal yield-to-maturity. Approach is atheoretic but yields 

some interesting results as the empirical section later demonstrates.

In reality, the term structure of credit spreads is upward sloping, because subsequent 

coupon payments depend on each other. Thus, if the firm defaults the first coupon 

payment, all subsequent coupons are also defaulted on (Merton, 1974, 467). In 

literature, credit spreads are less discussed phenomenon as the topic depends also on 

the model used in bond pricing. Examples may be found in Merton (1974), Jarrow, 

Lando and Turnbull (1997) and Duffie and Singleton (1999). Litterman and Iben 

(1991) describe more practically oriented approach but the underlying assumptions 

are similar to more theoretical ones.

While all models mentioned above calculate reasonable credit spreads with different 

inputs and assumptions, they do not consider as such the variation of credit spreads 

over short intervals. The VaR estimates depend on the daily variation of credit 

spreads as they affect the pricing of corporate bonds. So, calibrating credit spreads 

using advanced model and assuming they remain constant is a faulty assumption as 

the empirical section demonstrates. Litterman and Iben (1991, 61) show how the 

generic credit spreads have evolved over time and conclude that even the best model 

can provide only a measure of credit risk implied by the market price. To model the 

change in corporate specific credit spreads over time, one would first need to extract 

historical implied spreads and examine what could be the key factors affecting them. 

The issue is very complex as it is about to depend on company, issue, industry and 

general macro events. Furthermore, in the case of sovereign bonds and bonds of 

unquoted firms, publicly available information is scarce.
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All in all, credit spreads call for careful modeling. The simple and atheoretic 

approach employed here is used rather to highlight the importance of the issue than to 

solve it. Due to enormous complexity of explicit modeling of credit spreads, the issue 

is out of the scope of this thesis.

3.4 DERIVATIVES PRICING

Derivatives pose a significant problem for VaR calculations. Unless there exists a 

closed form solution, each re-valuation would require an additional simulation within 

simulation for derivatives position. Obviously, at some point the computational 

burden would become infeasible although this method would produce the most 

credible VaR figures. Remedy could be some sort of a grid approach (Alexander, 

1998, 204), in which portfolio is revalued only at prespecified points. These grid 

points would be chosen to be representative of a wide but realistic set of underlying 

factor levels. The scenario simulation approach suggested by Jamshidian and Zhu 

(1997) is a specific application of this general idea.

In the case portfolio, derivatives constitute a sizeable (although time-varying) 

position. Almost all are standardized european options, futures or forwards. The only 

exceptions are currency derivatives, which include some knock-out options but as this 

asset class is not included in this analysis, this poses no problems. All european calls 

and puts are prized using the formulas laid out by Black and Scholes (1973, 644):

C = SN(d{ )- e~nKN(d2 )
P = e-r'KN(-d2)-SN(-di)

(25)

d,=

d2 =£/, -ojt
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where N(-) is the cumulative density function normal, S is the spot price of the 

underlying, К is the exercise price, r is the risk free rate, t is the time to maturity in 

years and cris the volatility of the underlying from now to maturity.

Forwards and futures are priced according to cash-and-carry principle. The pricing 

equation is (Jarrow and Turnbull, 1996, 46):

F - S * e‘*r' 1 0 °0 ^ (26)

where Fo is the futures/forwards price at time 0, So is the spot price of the underlying, 

t is time to maturity in years and r, is the risk-free rate for that period. This 

formulation ignores the expected dividend yield.

Unfortunately, it was quite impossible to obtain market data for options so the 

valuation was based totally on mark-to-model -approach. This should not affect the 

results too much for arbitrage reasons. The only deviation from reality is apparently 

the implied volatility, which may differ from the calculated estimate based on market 

data. The main point of the calculations was to give an approximation of the risk of 

the derivatives portfolio and to examine how it has affected the total equity risk.

3.5 THE ESTIMATION OF KEY PARAMETERS

Two type of estimators hold the key position in all VaR systems: the variability of 

financial time-series and their relations to each others. The variability is defined here 

in terms of variance and relationship structure in terms of covariances. Theory offers 

many alternatives to estimate the variance of financial time-series: random walk, 

long-term mean, moving average, exponential smoothing, regression models, the 

GARCH-family, stochastic variance and implied values from option prices. The issue 

is complicated by the fact that we must simultaneously model the entire multivariate 

distribution with covariances, which leaves us basically with three choices: moving
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averages, exponential smoothing and GARCH-models (Alexander and Leigh, 1997, 
52).

3.5.1 Moving averages

The л-periodic moving average estimate (or sample variance) at time T assuming zero 

expected return is simply equally weighted average of past squared returns:

r-i
(27)

For the covariance, the equivalent estimate is:

(28)

While very simple to estimate, this method has an obvious drawback: it gives an 

equal weight to all observations. For high-dimensional VaR-models, which require a 

long estimation period to achieve positive definite property, these estimates may 

become too insensitive. Furthermore, it assumes that the ”true” underlying variance is 

constant, fails to allow for volatility clustering and ignores dynamic information from 

the temporal ordering of observations (Dowd, 1998, 94).

3.5.2 Exponential smoothing

The JP Morgan’s RiskMetrics system utilizes an alternative, which should be an 

improvement over the sample variance: the exponentially weighted moving average 

(EWMA). Each observation is given a weight, which gradually decreases the more 

distant it is. The equations are (Longerstaye et al, 1996, 78, 83):

43



(29)à т =(l-A)^AMr,2
/=1

^7:1,2 =(l

/=1

The only parameter needed to estimate is X, which makes this model quite attractive. 

Actually, the EWMA-estimator is a special case of an IGARCH model, with constant 

set to zero and the sum of coefficients set to 1. RiskMetrics utilizes constant 1 (0.94 

for daily and 0.97 for monthly estimates) in all cases. For more on how the À was set, 

see Longerstaye (1996, 97-100).

Alexander and Leigh (1997, 52) point out that EWMA method creates positive semi- 

definite X only if the same smoothing constant is applied to all series. So, the 

accuracy of the method cannot be improved by separate parameter estimation. They 

mention also that because the effective number of days (À=0.94) used is only 74, 

models with more than 74 risk factors have X less than full rank. This should be 

considered as possible limitation for its use.

3.5.3 GARCH-family

This group of models takes a different approach to modeling time-series. The obscure 

term heteroscedasticity stands for changing variance, which refers to the empirical 

observation of volatility clustering in time series data. Engle (1982) was the first to 

propose this kind of model. His approach (ARCH) was later generalized by 

Bollerslev (1986) and ever since a growing number of variations has appeared in the 

literature. Here is presented only the GARCH(p,q) to illustrate the main properties of 

these models (Bollerslev, 1986, 309):
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(30)
я р

The most common variation is the GARCH(1,1), e.g. only one lagged error square 

and autoregressive term. The model parameters need to fulfill certain conditions, 

namely a)>0, cc,ß>0 and cc+ß<0. The size of these parameters determines the shape 

of the resulting volatility time series (Alexander,1998,137): large ß coefficient 

indicates that shocks to conditional variance take a long time to die out (persistent 

volatility); large a mean that variance is quick to react to market movements (”spiky” 

volatility). The constant œ determines the long-term average level of volatility to 

which GARCH forecasts converge.

In a multidimensional framework, things start to get really difficult. Consider just a 

simple bivariate case of GARCH(1,1) (Alexander, 1998, 145):

К +Mu-i
&2,t ~ ^2

°"l2,1 = «3 ^3^1,1-!£2,1-1

(31)

301,1-1°2,1-1 3V 12,1-1

The estimation requires the use of maximum likelihood method in which an 

assumption of conditional normality is (usually) made. Here one must careful if 

another distribution assumption is made when modeling the stochastic process to 

create price paths. It would be clearly inconsistent first to produce variance estimates 

using another distributional assumption.

3.5.4 Selection criteria

The accuracy of different variance forecasts is extremely difficult to assess for we 

never actually observe the ”true” variance. So, an indirect measure must be used for 

benchmarking but even the objective statistical evaluation procedures have produced
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conflicting results (see Alexander and Leigh (1997), Boudoukh et al (1997), 

Brailsford and Faff (1996), Dimson and Marsh (1990) and West and Cho (1995)). To 

summarize one should favor parsimonious models, avoid pre-test biases and base 

reasoning only on out-of-sample results (Dimson and Marsh, 1990).

In a multivariate environment, we must also ensure that our estimated variance- 

covariance matrix is positive definite. Otherwise portfolio variance might be negative. 

This calls for consistency in the estimation methods used: if we use moving average 

method to estimate variances, we must use it to estimate also covariances. This 

undermines especially the usefulness of GARCH-models, for it is notoriously 

difficult to estimate a multivariate model as the number of parameters needed to 

estimate grows exponentially with the number of covariances. Alexander (1998, 147- 

148) proposes an orthogonal GARCH-model in which the risk variables are first 

made orthogonal by PCA. Then, GARCH-model is applied to produce variance 

estimates for these new factors.

Again, simplicity is the rule and therefore moving average and EWMA-method are 

both assessed in empirical part. True variance for a given day is defined as squared 

return and two criteria are used: mean squared error (MSE) as a standard statistical 

measure and Kupiec likelihood ratio described in section 3.8 functions as an 

operational evaluation tool.

3.6 PRICE PATH GENERATION

3.6.1 Stochastic processes

For Monte Carlo simulation, the selected stochastic process determines the behavior 

of the simulated variables. For equities, the de facto method to simulate price paths is 

the geometric Brownian motion (GBM) described by the stochastic differential 
equation:
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(32)—- ¡udt + adz 
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where 5 is the underlying, ц is the drift, <ris the volatility and z-TVfO.Vt) is a standard 

Wiener process. Assuming log-normal returns, the discretized equation becomes:

(33)

The use of logarithmic returns instead of arithmetic ones eliminates one type of a 

model risk. In GBM with arithmetic returns, there is positive probability for returns in 

excess of -100%, which would mean negative prices.

For interest rates, the GBM is applicable only for really short-run simulations such as 

daily ones. In the longer run, interest rates tend to mean revert and this is not captured 

by the standard GBM. There exists a vast amount of different alternatives to model 

the mean reversion property of interest rates (see Alexander, 1998, 173-176). The 

issue with all mean reverting models is how to estimate the needed parameters to 

achieve the mean reverting property. As the focus in this thesis is on modeling the 

daily changes, the GBM with logarithmic returns is used also for interest rates.

3.6.2 Some pitfalls in time-series modeling

3.6.2.1 Normality assumption

Mandelbrot (1963) and Fama (1965) were the first ones to describe the common 

phenomenon about statistical properties of financial time-series: normality 

assumption does not seem to hold. Compared to normal, the empirical return 

distributions are peaked and have fat-tails. Statistically speaking, the return series 

have excess kurtosis and skewness. This is extremely bad news for VaR analysis as 

the interest is particularly on tail returns. Taking account the heteroscedastic variance, 

we must speak of conditional normality. It means that standardized distribution rather

47



than the observed returns are assumed to be normal. So, hereinafter testing normality 

refers to testing conditional normality.

There exists many ways to test the normality assumption in univariate environment, 

here are used x2"test> parametric Kolmogorov-Smimov -test and a quantile-to- 

quantile test. %2-test is based on frequency distribution of sample returns. These 

empirical observations are compared with theoretical ones to form the test statistic, 

which is x2-distributed. To test the normality assumption, we must first estimate the 

sample mean and variance. Then the sample is divided into suitable intervals and 

empirical observations are recorded along with ones based on normal distribution. 
Test statistic is formed as:

¿ - xM (34)
1=1 ei

where f¿ is the empirical frequency, e¡ the corresponding theoretical frequency, к is the 

number of intervals and n=k-r-1 where r is the number of parameters estimated. The 

null hypothesis Hq: F(x)=F0(x) is rejected if the test statistic exceeds x2a(w).

The Kolmogorov-Smimov -test is based on comparing the sample cumulative 

distribution function with the theoretical one. Two-sided test statistic is formed as:

Z) = max|F0(x)-S(x)| (35)

where Fo is the theoretical cumulative distribution and S is the empirical one. The 

resulting test statistic is compared to the critical value, which must be looked from the 

table. For large sample size, the critical value at ot=5% for two sided test is 

approximately 1.36/Vn. The null hypothesis Ho: F(x)=Fo(x) is rejected if the test 

statistic exceeds the critical value.
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One useful method to illustrate the distributional properties of time-series is the 

quantile-to-quantile (Q-Q)-plot. Along the X-axis are empirical observations in 

ascending order and along the Y-axis are the theoretical counterparts. As the 

empirical observations are estimates of the / fractile of the theoretical distribution, 

these implied/values are found by the following transformation (Fama, 1965, 52):

y = d-W (36)
n

These probability levels are then transformed to actual theoretical values using the 

inverse of the cumulative distribution function. Visually, the observations follow 

theoretical distributions if the plotted observations form a 45° straight line. More 

preferably, the linearity of the Q-Q plot can be assessed by calculating the correlation 

coefficient between the sample and theoretical quantiles. The null hypothesis Ho: 

F(x)=Fo(x) is rejected if the sample correlation coefficient does not exceed the critical 

value of 0.998 (depends on the sample size) at confidence level oc=5% (Sharma, 

1996, 377, 466).

Despite the problematic empirical evidence, the normality assumption is particularly 

useful when modeling multivariate distributions. The problem is not how to create 

uncorrelated random numbers with certain distributional properties but how to apply 

the desired correlation structure into them. There exists tests to examine the 

multivariate normality property but they rely on homoscedastic Z. This is 

problematic, for multivariate normality property is not guaranteed even if all marginal 

distributions satisfy univariate normality (Mustonen, 1995, 28). In addition to that, all 

possible linear combinations of underlying variables must be normally distributed. As 

suitable test does not exist, the multivariate normality is assumed to hold here.
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3.6.2.2 A utocorrelations

The independence of successive returns on individual time-series must be tested also. 

In the long run, cyclical fluctuations in economic activity may cause time-series to 

have some predictable components. In the short-run, the problem is apparently almost 

non-existent as the common observation for return series is that they follow random

T-k

(37)£ = 0,±1,±2,..±(Г-1)

walk (Fama, 1965, 80). For return series x¡...xt the kth autocorrelation is defined as:

To test whether the sample is autocorrelated, a Ljung-Box test is employed. Test 

statistic and hypothesis are:

(38)

H0:p{k) = 0

where s is fixed integer that denotes the number of autocorrelations tested. The 

practical maximum for s is around 774 but here the interest is especially on few first 

as the simulation is done only one-day forward.

3.6.2.3 Expected return

One common assumption is to assume zero expected return when modeling the short- 

run price movements. This is totally reasonable when returns are measured using the 

first log-property. When past returns are calculated using first log property, the mean 

return over any time-period is simply:

/*('o.O= log —
\Po)

(39)
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This is due to basic calculation rules concerning logarithms. As expected return 

depends only on the time window used (first and last observation), it would be rather 

unreasonable to model expected return this way. When modeling short-run (e.g. 

daily) returns, this is also well in line with the common assumption about asset prices 

following random walk. Jonon (1995, 510) finds that the zero expected return - 

assumption is unlikely to affect the estimation of variance. However, when building 

longer simulations, the expected return has very big impact on the outcome and 

neglecting it would be clearly a mistake. In the short-run, volatility is the dominating 

factor.

3.6.2.4 Market data

From the practical point of view, time-series modeling suffers from two problems: 

missing or unavailable data and unsimultaneous observations. Data availability is 

rarely a problem but the quality of the data may be substandard. Usually the data for 

given day simply do not exist due to lack of trades, but some times the reason is poor 

databases. There exists several statistical techniques to fill these holes (see Beder et 

al, 1999, 296-301) but in this thesis, holes were filled with previous price 

observation. In the Finnish equity market, the lack of daily trading is very frequent 

and when trades occur, the price level may change substantially. Also corporate 

bonds are subject to this problem. In fact, some papers had to be removed from the 
analysis due to data problems.

The time-zone issue complicates the estimation of covariances if the observations are 

recorded at very different times. In real (up and running) systems, it is easy to record 

observations at prespecified time but obtaining historical data to verify the accuracy 

of certain procedure is the problem. In this thesis, the only possibility was to use 

closing prices so the results must interpreted accordingly.
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3.6.3 Generation of random numbers

Ensuring randomness in Monte-Carlo simulation is crucial to achieve unbiased 

results. Random numbers may be classified into three categories based on their 

”randomness”:

1) True random numbers based on some physical process

2) Pseudorandom numbers generated by some deterministic algorithm

3) Quasi random sequences which are designed for example to fill certain domain

The generation of random numbers from deterministic grounds is as much art as 

science. A good pseudorandom number generator (PRNG) should have at least 

following features:

1) Generated numbers should be ”random enough” and have good distributional 

properties

2) Numbers should be uncorrelated

3) Long cycle (e.q. a lot of different random numbers)

4) Repeatable for testing purposes

5) Fast creation

For most people, the only familiar random number generator is the one found in 

Microsoft Excel. It may be adequate for some small scale testing but serious 

simulation is right out of the question. Therefore this study utilizes a powerful PRNG 

called Mersenne Twister (Matsumoto and Nishimura, 1998) which has a cycle of 
219937-1. In contrast, the cycle of Excel’s PRNG is only 215 or 32 768 (Excel 97) 

different random numbers. Furthermore, the Mersenne Twister is able to create a 623- 

dimensioned equidistribution, which makes it suitable also for large scale VaR- 

systems. Creators consider these properties to be the best among all generators ever

52



implemented. The source code for different platforms may be found on the following 

website: http://www.math.keio.ac.jp/~matumoto/emt.html

At the first stage, the PRNG’s produce uniformly (U~(0,1)) distributed numbers 

which have to be converted according to stochastic process used. In this study, the 

process is the standard geometric Brownian motion which requires normally 

distributed {N-(0,1)) numbers. The most popular and easiest way to convert U~(0,1) 

to N~(0,1) is the Box-Muller algorithm which converts a pair U1JJ2 to (Alexander, 

1988, 177):

Z, = ij- 2 log Ux cos 2nU2 (40)

Z2 = ■yJ-2\ogUl sin 27lU2

which are N~(0,1). However, the resulting Z/,Z2 are not genuinely independent 

(Alexander, 1998, 177) which calls for more sophisticated solutions. In this study, the 

transformation is handled by the inverse transformation method. Let Ф be the 

standard normal cumulative distribution and Ф"1 its inverse. Since Ф takes values 

between 0 and 1, Ф 1 is a function on the unit interval (0,1); and if U is uniform on the 

unit interval, then Ф''(£/) has the standard normal distribution (Alexander, 1998, 

178). Unfortunately, there exists no closed form solution to Ф"1 but it can 

approximated accurately by rational functions. This study utilizes an approximation 

algorithm for the standard normal cumulative distribution proposed by Moro (1995).

3.6.4 Creating correlated random numbers

So far the created random numbers are independent in all dimensions (IED, indepent, 

identically distributed). Next step is to modify these numbers to include the estimated 

variance-covariance structure. Methods to achieve this include Cholesky 

decomposition, spectral decomposition, Gram-Schmidt factorization and singular 

value decomposition (Mustonen, 1995, 193). As the E should be positively definite
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(otherwise it is not valid), the Cholesky decomposition is the most practical 

alternative to implement. For a rtxn matrix, the definition is:

A = LLT (41)

where L is either lower- or upper triangular matrix. Golub and Van Loan (1989, 139- 

149) give various algorithms to calculate A, but the general solution is (Rogers et al, 

1997, 96):

■f -I'*

if ti ^
~~Г aií ~ / JiJ ik

h¡ *=i j

i = l,..,n

j = i +1,/ + 2 ,..,n

(42)

Once the L is solved, it is used to multiply the random number vector Z to apply the 

structure of A.

The spectral composition involves calculating the eigenvalues and eigenvectors of 2, 

which is a much more complicated procedure. However, as the zero-coupon yield 

curves are modeled using the principal component analysis (see section 3.2.3.1), this 

technique is therefore also employed. Equation (10) defines the spectral 

decomposition and when we set X~N(0,Z) and Z~(0,I), the X are achieved by (Jauri, 

1997, 281):

X = e4Xz (43)

where £ is a matrix of orthogonal eigenvectors, A is a diagonal matrix of eigenvalues 

and Z is a vector of random numbers.
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3.7 VARIANCE REDUCTION TECHNIQUES

The problem with Monte-Carlo simulation is the slow convergence. Although the 

strong law of the large numbers guarantees that eventually the simulated values reach 

their ”true” levels, the computational burden might be excessive. The standard 

deviation of the estimation error falls as 1 Nn, where n is the sample size (Rogers and 

Talay, 1995, 22). So, to halve the statistical error we need to quadruple the sample 

size. Methods developed to reduce the sample variance include antithetic variables, 

control variates, stratified sampling, importance sampling and moment matching to 

name a few. Here attention is paid only to the moment matching technique. For a 

thorough discussion on other techniques, see Boyle, В roadie and Glasserman (1997, 

1270-1290).

Moment matching techniques adjust the created random numbers in a way that the 

empirical sample exactly fits the input data. One specific approach, which is utilized 

in this study, is the quadratic resampling proposed by Barraquand (1995). It adjusts 

the empirical first and second-order moments (mean and covariances) in the 

following way: let Zdenote the given covariance structure, ju denotes the given mean 

vector, Z are the created random numbers, S is the sample covariance matrix and E(Z) 

is the sample mean. Modified random numbers Y are achieved by applying the 

modification (Barraquand, 1995, 1887):

Y = H[Z - E(Z)] +¡u (44)

H = Jïy[s~l

As with all variance reduction techniques, which modify the created random 

numbers, the efficiency of this method boils down to how the final measured variable 

behaves. The quadratic resampling is supposedly several times more efficient than the 

brute force alternative (depending on the problem at hand) but it has some drawbacks 

too (Boyle, Broadie and Glasserman, 1997, 1277).
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3.8 BACKTESTING

For a casual observer, VaR may seem as a bulletproof answer to quantitative risk 

management when employed carefully. However, it is crucial to understand the fact 

that we never actually observe any realized VaR value after the event: the model 

forecasts an unobservable variable with unobservable variables (variances, 

covariances and zero-coupon yields). Furthermore, the model itself is subject to many 

errors (e.g. sampling errors, data problems, inappropriate models, poor assumptions, 

plain human error...) so the verification is not a trivial task (Dowd, 1998, 55).

The most obvious way to assess system performance is to investigate how often 

losses are realized in excess of the estimated VaR. If our confidence level were set to 

95%, we would expect excess losses to occur 5% of the time. The practical issue is 

how to tell if the realized frequency of such excessive losses is sufficiently different 

from the predicted frequency to be statistically significant.

Kupiec (1995) proposes a test according to which the probability of observing N 
failures in a sample of size T is governed by a binomial process of (l-p)T'NpN. 

According to Kupiec, the most appropriate test of the null hypothesis that p=p* 

(observed probability equals the one implied by the confidence level) is a likelihood 

ratio (LR) test given by:

M = -2 In [(l - /> *)r~" p *" 1+ 2 In l(l - -ff"" (ff 1 (45)

This test statistic is distributed as a chi-squared with one degree of freedom under the 

null hypothesis. The problem is the low power: it requires relatively long comparison 

sample period. Otherwise test has difficulty discriminating among flawed and correct 

models.
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4 EMPIRICAL RESULTS

This chapter presents the empirical results. First, attention is paid to convergence and 

variance reduction. Then come few statistical tests on time-series properties and after 

that, comparison of two variance and covariance estimators. Results for different 

equity mapping methods are followed by fixed income modeling section. Finally, 

backtesting results for the whole system complete the chapter. Results were 

calculated on 5 Pentium Ш workstations with 500 MHz CPU and 256 Mb memory. It 

took approximately 9 minutes to calculate a single VaR estimate with 50 000 

simulation rounds using one workstation. So, the total machine time for backtesting 

totaled to over 50 hours. The code needed to produce the estimates took about twenty 

pages.

4.1 CONVERGENCE AND VARIANCE REDUCTION

When presenting the VaR figures, the obvious question is how reliable are they? 

Leaving the model risk aside, the question with Monte Carlo simulation is how many 

simulation rounds are needed to achieve acceptable results. What is acceptable, must 

be defined in forehand and partly it depends on the problem at hand. Recent 

developments in computer power have diminished the importance of this question but 

as always, there exists some tradeoff between speed and accuracy. For this, the 

accuracy of the simulated VaR figures is assessed as in Boyle, Broadie and 

Glasserman (1997). The importance of reporting estimation error is discussed also in 

Jorion (1996).

The calculation of accuracy is fairly simple: we just calculate the same VaR figure 

with different random numbers to obtain a sample of estimates. Here the sample size 

was selected to be 500, to keep the computational burden at reasonable limits. As the 

calculations took 100 machine hours, a random date was selected for estimation 

purposes. Sample average, standard deviation, maximum and minimum were
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calculated for 1 000-50 000 rounds in 5 000 steps. Results for equity portfolio are 

presented in Appendix A both in monetary figures and as percentages of the 

underlying portfolio. Results for other portfolio combinations were derived also but 

the general analysis is just the same.

The general result is straightforward: quadratic resampling improves the quality of 

the VaR estimate in terms of reduced variation. The sample standard deviation using 

quadratic resampling is roughly 70% of the base case all the time. This is in line with 

the results presented in Boyle, Broadie and Glasserman (1997, 1279): the 

improvement factor with moment matching is essentially constant as sample size 

increases. The reduced standard deviation results in improved confidence interval 

(calculated assuming normality) and smaller difference of sample maximum and 

minimum and hence gives more accurate VaR figure. For there was no significant 

cost in terms of increased computing time to employ quadratic resampling, the 

method is utilized to derive the VaR figures for the purposes of this thesis.

What comes to the number of simulation rounds, even quite a modest amount (e.g. 5 

000 rounds) gives decent indicator of the risk level. However, Appendix A is a bit 

misleading in a sense that it gives the results of sample averages. In daily operations, 

it is possible to leave the system to calculate VaR estimates overnight but for 

backtesting purposes, it is just not possible to spend 100 machine hours per day to 

calculate 355 VaR estimates. Looking at the difference between sample maximum 

and minimum, even 50 000 simulation rounds with quadratic resampling produce 

difference of approximately 700 000 Euros (or 0.054%). As the backtesting was 

conducted based on percentages, VaR estimates were rounded up to two decimals 

(e.g. -2.45%). This was deemed adequate because even the realized portfolio returns 

may contain errors due to poor market data. In the real application, even 100 000 

simulation rounds are definitely not too much. Percentages were used because all 

portfolios have grown in size due to cash inflow and therefore the development of 

risk level in monetary terms over time is blurred by this effect.
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4.2 STATISTICS OF FINANCIAL TIME-SERIES

The autocorrelation issue is discussed first, for it may affect the normality tests in a 

serious way. All the results from statistical tests are presented in the Appendix B. The 

first column gives the value Ljung-Box Q and if the test statistic exceeds the critical 

value of approximately 3.8415 (ct=5%) the time series in question is deemed to be 

autocorrelated. For the majority of time-series, the Ljung-Box test poses no problems. 

However, some markets seem suffer from serious problems, namely the emerging 

markets, the entire Swedish fixed income market and the European money market. 

Using more strict confidence level (a=l%), the other notable exceptions are 

Norwegian krone and two Finnish industry indices.

While the Ljung-Box test shows that the autocorrelations for some series are 

statistically significant, the question is are they big enough to cause major problems 

in modeling. Fitting a simple one-lag autoregressive model to suspicious series 

reveals that for the most part, the coefficients are too small in magnitude (-0.13 - 

0.17) to be of major concern. Only Lithuanian general index, HEX forest index and 

one year European money market rate pose coefficients in excess of 0.2. Basically, 

one should first clear the time-series from serial correlation before any parameter 

estimations and simulations to assure sound results. In the light of these small and 
from the case portfolio point of view negligible (only very small positions) 

autocorrelation coefficients, all the time-series were used on as is basis.

Next the attention is paid to normality tests. The return observations were 

standardized using both an EWMA- and MA -estimate for variance and assuming 

zero expected return. Variance estimators were calculated using 120 days of price 

change information, which included also the final value to be standardized. For more 

on variance estimators in the VaR context, see section 4.3 below. As such, all 

subsequent results depend partly on the quality of the variance estimator. When 

calculating the theoretical quantiles, the assumptions were a variance of 1 and zero
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expected return. As the MA-estimate produced significantly worse results than 

EWMA, only EWMA results are reported in Appendix B. Corresponding MA results 

are mentioned in the analysis below.

The columns 2-5 give information on the statistics of the standardized observations. 

As can be seen, the zero expected return assumption seem to hold quite well although 

almost all series pose slightly positive figures whereas the variance is generally less 

than unity (for MA, variance tended to exceed unity). All series exhibit excess 

skewness and kurtosis, which indicates departure from normality. Average kurtosis 

across all series for MA estimates was ten times bigger than for EWMA method (4.08 

versus 0.41).

For the purpose of %2- and Kolmogorov-Smimov -test, the observations were ordered 

into 23 quantiles. The x2-test was not able to distinguish any departure from 

normality for EWMA method but for MA, 32 series indicated non-normality. The test 

was very sensitive to the selection of quantiles and was considered almost useless. 

The Kolmogorov-Smimov -test proved to be more consistent. For EWMA method, it 

indicated non-normality for 20 series and for MA, 36 series. Common features for 

these rejected series were either large excess skewness, kurtosis or variance much 

smaller than unity. The most stringent test proved to be the correlation test based on 

quantile-to-quantile -plots. This is no wonder as one observation forms one quantile. 

To illustrate different shapes of these plots, Figure 4 gives an example of European 3- 

month money market rate and Japanese yen using the EWMA method.
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Figure 4: Quantile-to-quantile -plot: EUR 3M and JPY
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Should the time-series be log-normally distributed, the plotted values should trace the 

45° straight line, which is drawn to aid in the analysis. When the tails of empirical 

distribution are longer than normality would suggest, the graphs in general take the 

shape of elongated S with the curvature at the top and bottom varying directly in 

relation to the size of so-called fat-tails. The EUR 3M is a prime example of non­

normality whereas the JPY behaves very nicely according to theoretical distribution.

As the VaR calculations involve precisely estimating the tail behavior of time-series, 

the results of Q-to-Q -test are troubling news. But again, using other distributional 

assumptions in multivariate environment is extremely difficult also. Fortunately, the 

confidence level of the calculated VaR figure may be a partial cure here. The question 

is, at what level do fat-tails start to dominate standard normal distribution. For this, 

the Q-to-Q -test was modified to calculate the correlation coefficient only for those 

observations that should be within the theoretical limits of-1.644 and 1.644. Whereas
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the basic Q-to-Q -test rejects 66 series out of 90 for the EWMA method and all for 

MA, the modified test rejects normality assumption only for 38 EWMA series and 67 
MA series.

All in all, the normality assumption appears to hold much better in the case of 

EWMA than MA estimates. In the basic Q-Q -test, EWMA method produced larger 

correlation coefficients in 97% of cases and 85% in the modified version. The 

modified Q-Q -test suggests that the conditional normality assumption is reasonable 

although notable exceptions do occur for some series.

4.3 VARIANCE AND COVARIANCE ESTIMATES

Although the conditional normality tests seem to favor EWMA methodology over 

MA, results need to be confirmed also for the case of predicting variances. Again, 

variance forecasts were calculated using 120 days of past return information. The 

comparison results are given in Appendix C. According to the conventional statistical 

measure, RMSE, the EWMA-estimator is better 57 times out of 90 compared to 33 

for moving average. But Alexander and Leigh (1997, 55) criticize this measure 

because it focuses on the accuracy of the center of the predicted returns distribution. 

On the other hand, VaR estimates need accuracy in the tails of the distribution and 

therefore some sort of an operational benchmark is needed. Alexander and Leigh 

(1997, 57) use the evaluation procedure given by the Bank for International 

Settlements (BIS) but for purposes of this thesis, it is considered unsuitable. Instead, 

the Kupiec likelihood-ratio approach is utilized and results are reported at the usual 

confidence level of a=5%.

The results were calculated for VaR 95% because at 99% level the distributional 

assumptions could affect the results significantly. Furthermore, as the sample size is 

only 355 days, the confidence interval of Kupiec LR for VaR 99% would be <8. So, it

62



would be unable to distinguish between overly conservative and appropriate models. 

At VaR 95%, the confidence interval for excess returns is 10<«<27. According to this 

operational benchmark, EWMA-estimator clearly outperforms the moving average 

method. EWMA-estimate fails to comply only in 5 cases whereas moving average 

produces 14 failures. The results are subject to sample size issue as the power of test 

statistic is generally poor. Figure 5 gives a graphical example of differences between 

the two competing estimators.

Figure 5: VaR 95% with two different variance estimators
8* -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------- Realized return
-------EWMA
------- MA
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4.4 EQUITY MAPPING

The results in this section are for time period of 1.7.1999 - 15.2.2000 (159 days). 

They served as preliminary stage in building the VaR system for Sampo Life and 

were presented more detailed in a working paper for the course Advanced Risk 

Management at the Helsinki School of Economics and Business Administration. The 

analysis includes only the Finnish portion of the portfolio but as such includes 69- 

80% of the total equity portfolio under consideration. The portfolio included from 79 

to 84 different companies within the time period, while the total number of different 

companies amounted to 92.

Results are presented for VaR level of 95% and the benchmark is the value calculated 

using the full variance-covariance matrix. At this stage, the analysis included no 

simulation but the use of equation (2) to calculate the VaR number. This way, the 

results are free from any random number sampling errors and give the most accurate 

information on the efficiency of different methods to recreate the original 2. PCA and 

FA were modeled with 16 components to facilitate comparison with the RiskMetrics 

mapping using industry indices (HEX has 16 industry indices). Furthermore, with 16 

components both methods achieved satisfactory explanatory levels

Results for the more statistically orientated methods are laid out first but a comment 

on beta estimation deserves attention. The normal OLS-regression suffers from 

similar problems as moving averages variance and covariance estimators. As evident 

from the section 4.2, they are too insensitive to new information. Therefore the betas 

are estimated using EWMA variance and covariance forecasts. So, Figure 6 gives the 

results for the beta method, PCA and FA along with the full 2.
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Figure 6: Equity VaR 95% with statistical mapping methods

---------Realized return
Full matrix

---------Beta
---------PC A
-------- FA

Results are well in line with the expectations. Both purely statistical methods are able 

to recreate the original Z very accurately, although the FA does marginally better job. 

Beta method clearly looses too much information. Even if the sample size is too small 

for any serious statistical conclusions, the Kupiec LR test anyway indicates that beta 

method provides inaccurate VaR forecasts at 95% level. The results of the test are 

presented in Table 2. Also PCA method is rejected but with only one outlier. 

Interestingly, FA performs better than the original Z.

Table 2: Kupiec likelihood ratio test for equity mapping methods
Method Full

matrix
Industry
mapping

HEX
mapping

HPI
mapping

Beta
method

PCA FA

Sample size 
Probability
Expected losses 
Excessive losses

159 159 159 159 159 159 159
5% 5% 5% 5% 5% 5% 5%
7.95 7.95 7.95 7.95 7.95 7.95 7.95

13 7 0 14 15 14 12
Kupiec LR, a=5% Confidence intervals for LR n=159): 3<LR (VaR 95%)<14

LR (VaR 95%)
xz

Decision rule

2.86 0.12 - 3.99 5.28 3.99 1.89
9.10 % 72.44 % - 4.58 % 2.16 % 4.58 % 16.91 %

Accept Ho Accept Ho Reject Ho Reject Ho Reject Ho Reject Ho Accept Ho
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The statistical methods as such succeed very well in recreating the original X but 

relatively large number of factors are required. As Bliss (1997b, 19) points out, the 

relatively moderate ability of a few linear factors to explain stock returns underscores 

the poor performance of specific stock return models. This is starkly in contrast with 

results below in section 4.5.3 for fixed income market where systematic movements 

cover for the most part of the variation.

However, all methods that use company specific observations are undermined by the 

lack of daily price observations, which is very usual phenomenon in the Finnish 

market. It is here where the RiskMetrics mapping is potentially very useful. Equity 

indices certainly have observations for each day but the difficulty lies in selecting the 

right index as Table 2 demonstrates. The case portfolio differs too much from the two 

major Finnish indices, HEX general and HEX portfolio index, to be reliably mapped 

to them. HEX general is overly conservative due to Nokia’s heavyweight whereas 

HPI and its 10% weight limit prove to be too restrictive. The solution is to employ 

more detailed mapping with 16 HEX industry indices. As can be seen above in the 

Table 2 and below in the Figure 7, industry mapping is able to catch variation even 

better (according to LR test) than the full X.
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Figure 7: Equity VaR 95% with RiskMetrics mapping

---------Realized return
— Full matrix
.......... HPI mapping
-------- HEX mapping
---------Industry mapping

So, to achieve good results with RiskMetrics mapping is a question of finding a 

suitable set of indices, which capture the key drivers of the equity portfolio risk. 

Table 3 below lists the set of country indices, which were used to find a suitable set to 

model the internationally diversified portion of the equity portfolio. These results 

were derived for the whole time period under consideration, 1.1.1999 - 31.5.2000 

(355 days).
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Table 3: RiskMetrics mapping for foreign equities

5% probability, p* 17.75 expected failures
355 sample size, T

Country Index Failures LR (VaR 95%) % Decision rule
Japan .N225 28 5.34 2.08 % Reject
Japan .N500 28 5.34 2.08 % Reject
Japan TOPX 29 6.35 1.17 % Reject
Germany .GDAXI 11 3.11 7.79 % Accept
Germany .NMDKX 4 16.13 0.01 % Reject
USA .SPC 28 5.34 2.08 % Reject
USA IXIC 6 10.89 0.10% Reject
USA .ОЛ 33 11.13 0.09 % Reject
Sweden .OMX 15 0.47 49.19% Accept
Norway .OBX 47 35.65 0.00 % Reject
Netherlands .AEX 34 12.49 0.04 % Reject
Italy .MIB30 16 0.19 66.49 % Accept
Switzerland .SSMI 23 1.50 22.05 % Accept
Denmark .KFX 24 2.10 14.76 % Accept
Spain .IBEX 38 18.59 0.00 % Reject
UK .FTSE 29 6.35 1.17% Reject
France .ЕСШ 21 0.59 44.12% Accept
Estonia .TALG 20 0.29 59.09 % Accept
Latvia .MCI 25 2.78 9.54 % Accept
Lithuania .LITIN 23 1.50 22.05 % Accept
Confidence intervals for LR (n=355): 10<LR (VaR 95%)<27

As such the results appear discouraging but the section 4.5, which presents the whole 

picture, shows how individual deficiencies may cancel each other out. So, while at the 

micro level results are poor, the aggregate figures are reliable. The reason for these 

discouraging figures is simply that the geographical portfolio composition is 

significantly different from the broad country indices. For the case portfolio, the 

major source of equity risk lies in Finland and the implementation of industry index 

mapping is really the key to success here.
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4.5 FIXED INCOME MODELING

4.5.1 Zero-coupon yield curve

Estimated zero-coupon yield curves were all well behaving and contained no 

suspicious observations. To illustrative how the term structures have evolved over 

time, Figure 8 presents the Finnish zero-coupon yield curve for three dates. Surface 

presentation would have been better but due to Excel’s insufficient capabilities the 

resulting graphs were inadequate. The Figure 8 demonstrates how the simple 

bootstrapping method is able to capture quite well the different shapes of the entire 

term structure.

Figure 8: Finnish zero-coupon yield curve for three dates

Time to maturity in years
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4.5.2 Credit spreads

Although the approach in this thesis to modeling credit spreads is atheoretic, they 

nevertheless contain information about the riskiness of the issuing companies. As a 

whole, the credit spreads have widened within the sample period. This, combined 

with the overall rising trend in riskless rates, has made the credit market quite a poor 

investment. To illustrate the time-varying nature of credit spreads, two issues are 

examined in greater detail. First, Sonera’s issue maturing at 16th April 2009 with an 

annual coupon of 4.625%. The loan was issued on 30th March 1999 and the amount 

outstanding is EUR 300 million. Second, UPM’s issue maturing at 1st October 2009 

with an annual coupon of 6.350%. The issue date was 21st September 1999 and the 

amount outstanding is EUR 250 million. Figure 9 depicts the development of the 

issue specific credit spreads for the time period 21.9.1999-31.5.2000 against the 

Finnish riskless term structure.

Figure 9: Estimated credit spreads for Sonera and UPM

1,25%

1,15%

1.05%

0,95%

0,85% ------UPM 6.350% 1.10.2009

------SONERA 4.625% 16.4.2009
0,75 %

0,65%

0,45%

0,35%
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The difference of credit spreads between Sonera’s and UPM’s loan is due to credit 

ratings. While Sonera’s rating is A+, UPM has only BBB+ according to Standards & 

Poor. For Sonera, the development of credit spread over time reflects the market 

situation where mobile operators are considered being riskier than before. This is due 

to auctions being held for third generation mobile phone licenses, which are regarded 

as overly expensive. The English auction was held in spring this year and Sonera’s 

credit spread started to increase simultaneously. At the same time, stock market 

turbulence reached high levels and Finnish government sold 1.5% of its Sonera stake 
on 7th March 2000 (12 million shares). After that, the share price has more than 

halved which partly indicates overvaluation and partly increased riskiness of the 

company.

The case of UPM reflects very clearly, how company specific issues affect the risk 

levels. Earlier in 1999, UPM had made a bid to buy a US forest company Champion 

with cash and stocks. Markets reacted negatively as the premium per share was 

considered too high. This led to deterioration of both UPM’s share price and the bid 

for Champion as it was partly paid with UPM’s stocks. Then on 25th of April the 

major US player International Paper (IP) made a competing offer which significantly 

exceeded UPM’s bid. As it took couple of days for UPM to reconsider their bid, there 

were no deals for the bond. Clearly, the risk level was about to change. After UPM 

did raise its offer, the credit spread soared for the company would have been overly 

indebted had it won the bid. Companies made bids for few rounds and finally IP 

stood out as a winner. The credit spread for UPM did not return to previous levels as 

company made clear, it was searching new potential buy-out candidates.

These two examples highlight how even these atheoretic credit spreads convey 

information about the company specific risk and how they evolve over time. As the 

section 4.6 makes it clear, some form of modeling is needed to capture this change in 

risk as it affects corporate bond prices in serious way. For UPM’s bond, the rise of 

credit spread from 80 basis points to 128 basis points meant a drop of over 4% in the
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clean bond price. At the same time, the clean price for the Finnish government bond 
maturing at 15th October 2010 rose 0.27%.

4.5.3 Principal component analysis

Next we assess the efficiency of the PCA in explaining the interest rate behavior. 

Based on results of Litterman and Scheinkman (1991) and portfolio characteristics, 

three principal components were used to model interest rates in five countries: 

Finland, Sweden, France, Germany and USA. Table 4 summarizes the findings for 

the sample period of 1.1.1999 - 31.5.2000 (number of day=355).

Table 4: The efficiency of principal component analysis with 3 components
Market

Explanatory power Finland Sweden France Germany USA
-Average 94.25 % 97.37 % 90.19% 95.04 % 92.41 %
-Maximum 98.24 % 99.24 % 97.11 % 98.36 % 95.72 %
-Minimum 86.39 % 95.22 % 83.56 % 89.56 % 86.79 %
Standard deviation 2.37 % 0.99 % 3.07 % 1.97 % 1.68%
Standard error 0.13% 0.05% 0.16% 0.10% 0.09%
Average first component 73.57% 79.97% 60.18% 68.14% 66.69%
Number of key rates 10 15 9 9 8

Results are clearly in line with findings of Litterman and Scheinkman (1991, 58) and 

Bliss (1997b, 20-21) despite the small differences in the modeling approach. 

Litterman and Scheinkman (1991, 57) fit the three component model using factor 

analysis to weekly excess returns (they use the generic overnight repo rate as true 

risk-free rate) on US Treasury bond market with eight key rates while Bliss (1997, 

18) examines monthly yields with ten key rates. The results presented in this thesis 

exhibit a bit lower explanatory power compared with earlier findings but this may 

very well be due to use of daily returns. Daily yield changes are likely to contain 

more idiosyncratic movements than returns over longer time span.
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Nevertheless, three principal components excel in explaining the entire term structure. 

The first component, which Litterman and Scheinkman (1991, 57) name as level 

factor, is able to explain the bulk of the variation although generally less than in 

earlier findings. According to Bliss (1997, 18), this explains why the traditional 

measure of interest rate risk, the Macaulay duration, is so successful. But the 

existence of three components also indicates why it is an incomplete indicator of risk: 

parallel movements are only part of the story. To better illustrate the time varying 

pattem of principal components, Figure 10 depicts the results for the Finnish market, 

which is the main source of interest rate risk in the case portfolio.

Figure 10: Principal components of the Finnish zero-coupon yield curve

.... ......Component 3

..........Component 2

-------- Component 1

So, it is quite clear that three principal components seem to do fine in explaining the 

variation of entire term structure of default-free zero-coupon yields. The real test is 

how the method succeeds in the context of VaR estimation.
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4.6 BACKTESTING

This section finally presents the results for the developed system as a whole. The total 

portfolio was first divided according to asset classes, into equities and fixed income. 

These classes were further assigned to sub-classes, domestic and foreign risk 

components for equities and government and corporate risk for fixed income 

securities. Equity derivatives were considered in the context of the whole equity 

portfolio to examine their effect on equity risk. Table 5 gives the backtesting results 

for Kupiec likelihood ratio. VaR estimates were calculated both for 95% and 99% 

confidence level although VaR 99% results are more difficult to verify. The 

confidence level for likelihood ratio test is the common ct=5%.

Table 5: Backtesting results for the whole system
Total

portfolio
Equity

portfolio
FIM

equities
Ex-FI M
equities

Equity
derivatives

Bonds Govt.
bonds

Corp.
bonds

Sample size (T) 355 355 355 355 355 355 355 355
Probability 5% 5% 5% 5% 5% 5% 5% 5%
Expected losses 17.75 17.75 17.75 17.75 17.75 17.75 17.75 17.75
Excessive losses 19 17 15 24 19 33 21 37
Probability 1 % 1 % 1 % 1 % 1 % 1 % ж 1% 1 %
Expected losses 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55
Excessive losses (n) 6 7 6 11 12 6 25
Kupiec LR, u=5% Confidence intervals for excessive losses (T=355): 10 <n <27 and n < 8

LR (VaR 95%) 0.09 0.03 0.47 2.10 0.09 11.13 0.59 16.98

x2 76.33 % 85.41 % 49.19 % 14.76 % 76.33 % ac9% 44.12 % aoo%
Decision rule Accept Hq Accept Ho Accept Hq Accept Ho Accept Hq Reject Hq Accept Ho Reject Hq

LR (VaR 99%) 1.41 2.64 1.41 2.64 10.14 12.54 1.41 56.03

x2 23.43 % 10.42 % 23.43 % 10.42 % a 15% aoi% 23.43 % aoo%
Decision rule Accept Hq Accept Hq Accept Hq Accept Ho Reject Ho Reject Ho Accept Ho Reject Ho

Looking at the total portfolio, the system appears to produce acceptable results both 

for VaR 95% and VaR 99%. At the VaR 95% level, the number of realized losses in 

excess of VaR estimate is very close to the predicted value. However, looking at the 

broad asset class level, VaR estimates for fixed income instruments seem to 

underestimate the true risk level. Equities perform very nicely as a whole and also
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both sub-classes are within the limits of the confidence interval. The reason for the 

system to produce acceptable results for the whole portfolio despite the fixed income 

failure, is that in monetary terms the equity risk dominates the fixed income risk 

significantly. In Euros, the equity VaR 95% is on the average eight times bigger than 

corresponding bond estimate, fluctuating from 3 to 17 times. This highlights the fact 

that nominal values (or market values) tell little about the risk levels of different asset 

classes.

For equities, it is also interesting to note that despite the rather problematic results for 

international equity mapping with country indices presented in section 4.4, the 

international equity portfolio as a whole behaves rather well. Individual errors cancel 

each other out as the international portfolio is rather well diversified. But it would be 

clearly misleading to report country specific VaR estimates based on this system. Of 

course, the estimates for domestic equities are robust due to more detailed 

implementation. They dominate the risk of equity portfolio as well because the 

majority of assets are Finnish (for the modeled portion of the equity portfolio, the 

portion is 74%). On average, the foreign equity VaR 95% is 25% of the domestic 

equity VaR, which is very close to the portion based on market values. However, the 

relation fluctuates very much as the currency risk affects the situation, too. The 

evolution of equity risk within the sample period is illustrated in Figure 11 below. 

The time varying nature of variance is evident: the recent turbulence in the stock 

market has raised the risk level of the equity portfolio significantly.

75



Figure 11: VaR estimates for equity portfolio
4.5%

2.5%
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..........VaR 99%

As the equity derivatives were solely marked to model, the results are not too 

surprising. Practically, they measure how the volatility estimate and the stochastic 

process used for the underlying instrument perform. As can be seen, the VaR 95% 

level is reasonable for reporting purposes but VaR 99% is way out of the confidence 

limits. From the viewpoint of asset management, more interesting information is how 

the derivatives have affected the equity risk. In Sampo Life, derivatives are mainly 

used for hedging purposes but quite often options are written in search of extra 

returns, too. Looking at the whole sample, the use of derivatives did not result in a 

major change of risk profile. At times, they actually increased the risk level quite 

sizeably.

Turning the attention back to the fixed income results, it is clear that credit spread 

need to modeled more carefully. Theoretical models do not necessarily perform any 

better than the simple atheoretic approach used in this thesis if they are only used to
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calibrate the credit spreads based on observed prices. Of course, also the zero-coupon 

yield curve should be modeled with different techniques to isolate possible errors in 

that procedure. But as the Figure 12 below and Table 5 above demonstrate, the 

bootstrapping method produces accurate results for default-free instruments. As such, 

it does perfectly well for VaR calculations of default-free instruments. Unfortunately, 

the risk inherent in credit spreads dominates the systematic risk for the case portfolio 

and therefore VaR for fixed income instruments is reliable only government bonds.

Figure 12: VaR estimates for government bond portfolio
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0.2%

0.0%

-0.4%

--------- Realized return

--------- VaR 95%

.............VaR 99%

To quickly test, what could be the effect of modeling credit spreads, an ad hoc 

procedure was used. When calculating the VaR estimates for corporate bonds, each 

credit spread was multiplied by factor of 1.10. This is of course totally unrealistic 

procedure but the aim was to test how an artificial ”confidence interval” would affect 

the results. Figure 13 lays out the results.
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Figure 13: Credit spread modeling
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As can be seen, the systematic risk is unable to fully explain the variation in corporate 

bond returns. The widening of credit spreads within the sample period affects the 

artificially created “confidence interval” as it tends to grow over time. Clearly, credit 

spread modeling should take into account the time-varying nature of this risk 

measure. Otherwise VaR system is not able to produce decent estimates on market 

risk of credit risky portfolio.
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5 SUMMARY AND CONCLUSIONS

This thesis has developed for Sampo Life a VaR system, which is based on Monte 

Carlo simulation and full valuation. As the financial literature demonstrates, the 

impact of VaR is not just in calculating the daily estimate on market risk. It serves as 

a basis for several applications which include stress testing, monitoring, risk-return 

analysis, hedging, asset allocation etc. Many authors argue that perhaps the biggest 

impact of VaR is it imposes a structured methodology for critically thinking about 

risk. Thus the process of getting to VaR may be as important as the number itself. For 

Sampo Life, future plans include developing a more realistic stress test and 

examining the efficiency and riskiness of the asset allocation in the long run.

In an asset management environment like Sampo Life where the business is risk 

taking on behalf of the customers, VaR may reveal whether the risks taken are those 

risks that are wanted or needed or even thought to be taken. Looking at the 

descriptive statistics of the case portfolio, it is evident that current risk calculation 

practices are inadequate. The biggest advantage of VaR figure as a market risk 

measure is, that it is common and consistent, takes account the portfolio effects and 

hence enables comparison of totally different positions. However, as the critics point 

out, the results may be highly dependent on the system employed. Therefore we must 

always interpret the VaR figures according to assumptions made in their calculations.

Looking at the empirical results, the importance of adequate backtesting cannot be 

over-emphasized. One should always experiment with financial time-series to find 

out how certain assumptions affect the outcomes. The usual assumptions about 

independent and log-normally distributed returns do not hold strictly but the whole 

VaR ideology is not about getting the most precise figures but getting an estimate of 

the risk. As the VaR calculations include so many unobservable elements (variances,
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covariances, zero-coupon yields, credit spreads and so forth), it is a bit surprising that 

in the end it works so well.

For equities, the characteristics of the case portfolio must determine the technique and 

model applied. The beta method is reasonable only for highly diversified portfolio 

whereas the purely statistical techniques are a bit too cumbersome due to highly 

idiosyncratic stock prices and extensive data requirements. On the other hand, 

RiskMetrics mapping method is sensitive to the selection of the index used in 

mapping. Using industry indices proved to be the best solution, which offered 

accurate results very easily. As equity derivatives were mark-to-model, the only 

meaningful result was to assess their impact on equity risk.

The starting point of fixed income modeling is the derivation of default-free term 

structure of zero-coupon yields from coupon bearing instruments. Again even the 

simplest model, bootstrapping, proved to be efficient way of extracting the 

unobservable elements from the prices of government bonds. Since the movements in 

bond prices are highly systematic, the principal component analysis with just three 

components was sufficient to model the entire zero-coupon yield curve. Resulting 

VaR figures for government bonds were within the acceptable limits according to the 

likelihood ratio test and visual examination.

However, the presence of default risk in corporate bonds complicates things 

considerably. The modeling of credit spreads to take account for this extra risk was 

atheoretic and simple: a constant rate over the entire term structure. Even this simple 

procedure was able to highlight how the company or industry specific issues affect 

the implied riskiness. Due to time-varying nature of credit spreads, backtesting results 

were disappointing as they also appeared to dominate the risk of whole bond 

portfolio. The need for a more careful modeling was proved with a simple ad hoc test, 

which essentially placed a small confidence interval for all credit spreads.
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Reviewing the objectives set in the beginning, the created system is reliable for 

equities and governmental securities. As such it is able to cover roughly 75% of the 

whole portfolio although the analysis here modeled it only partly. The relatively 

simple approach to modeling proved to be effective in calculating aggregate VaR 

figures. Furthermore, it forms a sound basis for additional applications such as stress 

testing.
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APPENDIX В: STATISTICS OF FINANCIAL TIME-SERIES

Ejung-BoxQ Skewness К urtosis Average Variance z2
Kolmogorov-

Smirnov

Basic

O-fo-O

Modified

Q-to-Q

.N225 3.206 -0.119 0.456 0.048 0.932 74 0.060 0.9964 0.9966

.N500 9.707 -0.279 0.293 0.108 0.976 59 0.078 0.9955 0.9973

•TOPX 0.315 -0.251 0.433 0.085 0.949 48 0.077 0.9955 0.9961

.OMX 1.183 -0.089 0.442 0.128 0.949 50 0.069 0.9966 0.9973

.GDA.X1 0.906 -0.143 0.146 0.070 0.928 55 0.063 0.9969 0.9964

.NMOKX 8.864 -0.244 0.012 0.085 0.985 56 0.072 0.9957 0.9949

.OBX 2.231 -0.077 0.427 0.085 0.881 60 0.072 0.9961 0.9976

.SPC 0.000 -0.156 0.081 0.023 0.962 55 0.032 0.9980 0.9991
• INK 0.039 -0.333 0.396 0.097 1.009 64 0.080 0.9933 0.9961

.DJI 0.279 -0.065 0.114 0.024 0.967 50 0.030 0.9978 0.9981

.AEX 4.293 -0.252 0.280 0.051 0.913 53 0.044 0.9957 0.9985

.MIB30 0.097 -0.095 0.424 0.046 0.954 55 0.035 0.9967 0.9989

.SSMI 2.034 -0.150 0.041 0.017 0.895 52 0.030 0.9982 0.9991
• KFX 3.325 -0.223 0.296 0.070 0.967 49 0.047 0.9966 0.9986
.IBEX 5.327 0.142 0.212 0.016 0.947 50 0.024 0.9981 0.9990
•FTSE 2.597 0.146 0.358 0.020 0.958 54 0.024 0.9962 0.9990
.Kill 5.099 0.200 0.255 0.104 0.950 47 0.063 0.9976 0.9984
•TALC 14.381 0.003 1.613 0.031 0.833 69 0.066 0.9881 0.9946

.Kid 13.626 0.197 0.080 -0.013 0.902 68 0.044 0.9974 0.9971

•EITIN 29.605 0.157 0.950 0.019 0.828 63 0.058 0.9927 0.9946

•EOX 1.442 0.204 0.310 0.124 0.979 47 0.063 0.9973 0.9988
TIPIN 3.153 0.248 0.118 0.122 0.972 57 0.080 0.9967 0.9977

•STOXX50E 5.505 0.205 0.238 0.095 0.951 53 0.075 0.9970 0.9968

TIEX 2.114 0.224 0.272 0.144 1.000 58 0.075 0.9967 0.9989
•STOXXE 3.552 0.330 0.006 0.093 0.942 63 0.080 0.9953 0.9955

TIEBI 0.148 0.121 0.314 0.035 0.911 54 0.052 0.9965 0.9954

.111.11 2.480 0.171 1.245 0.054 0.884 65 0.060 0.9930 0.9984

.HEIN 0.036 0.372 0.546 -0.055 0.886 47 0.058 0.9949 0.9981
TIECTI 1.589 0.030 0.951 0.039 0.904 53 0.061 0.9946 0.9980
.IIEC 0.945 0.236 0.290 0.066 0.874 57 0.058 0.9961 0.9978

•НЕЕ 1.080 0.377 0.175 -0.050 0.903 56 0.069 0.9946 0.9977

TIFIO 0.983 0.197 2.058 -0.044 0.819 63 0.080 0.9870 0.9965

TIEFT 18.762 0.010 0.301 0.044 0.936 62 0.046 0.9968 0.9967

TIEMI 5.637 0.249 0.415 0.024 0.895 55 0.043 0.9965 0.9971

TI FIT 0.213 0.275 0.977 0.033 0.945 70 0.049 0.9933 0.9980
.HETI 0.034 0.176 0.076 0.048 0.936 49 0.033 0.9980 0.9987
.HEME 0.565 0.293 0.477 -0.022 0.948 52 0.038 0.9958 0.9991
•HEOI 8.303 0.072 0.115 0.008 0.944 56 0.038 0.9970 0.9968

•HETE 1.954 0.229 0.322 0.145 0.991 58 0.089 0.9963 0.9986
II Eli) 3.908 0.036 0.085 -0.044 0.921 51 0.041 0.9979 0.9979

TIETR 0.412 0.091 0.430 -0.072 0.898 54 0.077 0.9979 0.9987
SEK 0.513 0.092 0.179 -0.084 0.918 46 0.047 0.9987 0.9996
NOK 8.038 0.536 0.446 -0.053 0.860 57 0.077 0.9913 0.9942

GBP 0.868 0.230 0.270 -0.088 0.961 52 0.069 0.9973 0.9980
J PY 2.254 0.034 0.041 -0.101 0.948 40 0.055 0.9990 0.9987
C HF 2.606 0.294 1.026 -0.025 0.887 56 0.052 0.9930 0.9981
l'SI) 0.545 0.164 0.075 -0.106 0.980 57 0.060 0.9977 0.9984

Boldface indicates the rejection of null hypothesis



APPENDIX В: CONTINUED
Kolmogorov- Basic Modified

l.jung-Box Q Skewness kurtosis Average Variance Z" Smirnov Q-to-Q Q-to-Q II
FIM 2Y 0.4335 41.123 0.074 0.097 0.954 45 0.049 0.9985 0.9992
FIM 3Y 0.9487 41.018 -0.204 0.099 0.929 41 0.044 0.9991 0.9991
FIM 4Y 0.0962 41.066 41.131 0.075 0.949 49 0.047 0.9985 0.9987
FIM 5Y 0.0040 -0.091 -0.211 0.075 0.929 48 0.052 0.9984 0.9987
FIM 8Y 0.2304 -0.085 -0.014 0.071 0.938 55 0.049 0.9983 0.9991
FIM 10Y 0.0543 -0.084 -0.186 0.068 0.930 50 0.035 0.9987 0.9996
FIM 11Y 3.9543 0.025 0.622 0.057 0.929 58 0.066 0.9956 0.9976
SEK 3M 6.9282 0.158 2.166 -0.018 0.852 109 0.106 0.9799 0.9882
SEK 6M 4.9400 0.048 0.999 0.019 0.911 64 0.055 0.9922 0.9950
SEK 1Y 3.0482 0.128 1.041 0.054 0.877 81 0.083 0.9917 0.9941
SEK 2Y 7.0143 -0.135 0.318 0.065 0.915 54 0.058 0.9976 0.9984

SEK 3Y 11.3715 -0.140 0.379 0.070 0.915 54 0.049 0.9977 0.9987

SEK 4Y 12.9333 -0.180 0.144 0.070 0.926 53 0.047 0.9980 0.9983

SEK 5Y 11.3981 -0.148 0.108 0.062 0.939 48 0.052 0.9979 0.9987

SEK 6Y 9.1156 -0.141 0.019 0.056 0.948 53 0.041 0.9982 0.9993

SEK 7Y 7.3867 -0.101 -0.107 0.053 0.959 45 0.030 0.9982 0.9994

SEK 8Y 8.4653 -0.155 -0.135 0.049 0.968 49 0.035 0.9978 0.9991

SEK 9Y 8.2925 -0.140 -0.168 0.044 0.973 50 0.038 0.9978 0.9992

SEK10Y 8.2991 -0.156 -0.077 0.046 0.973 59 0.033 0.9976 0.9991

SEK 15Y 9.9237 41.111 -0.202 0.032 0.971 45 0.027 0.9984 0.9993

FRF 3Y 0.1348 0.275 0.530 0.083 0.926 61 0.052 0.9957 0.9967

FRF 6Y 0.9592 -0.016 0.264 0.069 0.924 57 0.052 0.9979 0.9987

FRF 9Y 0.0836 0.049 -0.002 0.074 0.926 58 0.055 0.9981 0.9972

FRF 15Y 0.0029 0.115 -0.003 0.061 0.922 59 0.049 0.9982 0.9985

FRF 20Y 0.0395 0.048 0.042 0.042 0.924 48 0.032 0.9991 0.9997

FRF 30Y 6.1794 0.058 -0.200 0.035 0.933 47 0.024 0.9989 0.9994

EUR 3M 6.6072 0.237 7.824 0.073 0.585 354 0.218 0.9080 0.9703

EUR 6M 29.0712 0.671 4.222 0.165 0.732 234 0.187 0.9427 0.9562

EUR 1Y 20.0526 0.503 2.447 0.156 0.806 168 0.142 0.9675 0.9732

DEM 3Y 1.3239 0.168 -0.057 0.081 0.945 49 0.035 0.9982 0.9982

DEM 6Y 0.1824 0.054 0.150 0.077 0.914 51 0.046 0.9981 0.9977

DEM 7Y 0.2663 0.147 0.014 0.071 0.913 54 0.041 0.9977 0.9975

DEM 8Y 0.1223 0.141 0.092 0.072 0.933 51 0.041 0.9987 0.9986

DEM 20Y 0.7149 0.236 -0.100 0.043 0.939 57 0.032 0.9962 0.9978

DEM 30Y 0.0431 0.018 -0.219 0.029 0.942 53 0.030 0.9983 0.9988

USD 3M 0.0326 0.036 0.141 0.068 0.916 67 0.046 0.9979 0.9971

USD 6M 0.0697 0.330 1.036 0.123 0.849 79 0.092 0.9889 0.9929

USD 1Y 0.8502 0.540 1.377 0.106 0.804 92 0.097 0.9871 0.9932

USD 2Y 0.0958 -0.046 0.117 0.117 0.847 73 0.108 0.9985 0.9980

USD 5Y 1.2919 -0.046 0.014 0.089 0.888 52 0.080 0.9978 0.9968

USD 8Y 2.6950 0.149 -0.001 0.069 0.896 50 0.049 0.9985 0.9988

USD 10Y 0.2420 0.194 0.147 0.083 0.938 43 0.047 0.9981 0.9991

USD 30Y 0.3988 41.157 -0.166 0.043 0.965 53 0.041 0.9971 0.9972

Boldface indicates the rejection of null hypothesis

90



APPENDIX C: COMPARISON OF VARIANCE ESTIMATORS

<;da\i

NMDKX

OBX

SI4

IXIC

DJI

AEX

Ml ИЗО

SSMI

kl X

IBEX

USE

ECU I
TALC

KKI
IITIN
FOX

IIP1Y
STOXX50E

HEX

S'lOXXE

16

22 19 0.5015 0.5024

22 17 0.3642 0.3633

14 17 0.3835 0.4233

22 19 0.3627 0.3774

18 27 1.2371 1.2782

16 14 0.3530 0.3876

21 17 0.3054 0.3053

24 21 0.8952 0.9363

21 19 0.2833 0.2855

17 18 0.2936 0.3137

21 23 0.3454 0.3659

18 16 0.2198 0.2506

22 20 0.2239 0.2399

21 18 0.3942 0.4115

21 20 0.2070 0.2110

20 17 0.2897 0.2997

16 12 0.9138 0.9324

15 12 0.2221 0.2746

16 11 0.2689 0.3123

19 18 0.6633 0.6862

19 20 0.4293 0.4428

20 20 0.3211 0.3313

19 18 1.1319 1.1695

21 18 0.3370 0.3472

18 11 0.8255 0.8335

16 11 3.0191 2.9798

16 13 0.2960 0.2933

16 13 0.5206 0.5220

15 9 0.3436 0.3605

14 14 0.4897 0.5081

14 8

15 16 1.0157 1.0156

13 9 0.3713 0.3728

16 19 1.4184 1.4225

18 16 ШПЯвЕШШ Ш\ЪМкШ
18 15 0.9700 0.9838

19 15 1.8360 1.8608

21 18 1.6614 1.7175

19 21 0.2587 0.2616

16 13 0.3430 0.3450

19 13 0.0305 0.0340

12 9 Mt IM,У

21 18 0.0584 0.0592

24 18 0.1606 0.1598

19 16 0.0093 0.0098

26 27 0.0709- 0.0699

15 16 0.2022 0.2023

16 16 0.2271 0.2313

21 20 0.1898 0.1913

16 17 0.1678 0.1689

14 15 0.1591 0.1613

20 21 0.3114 0.3101

17 12 0.5188 0.5151

17 13 0.1794 0.1817

16 13 0.2456 0.2475

16 18 0.2602 0.2615

15 14 0.2446 0.2456

16 13 0.2254 0.2259

16 14 0.2204 0.2205

16 16 0.1959 0.1973

15 16 0.1934 0.1946

18 17 0.1915 0.1931

18 18 0.1853 0.1865

17 18 0.2107 0.2121

19 19 0.1665 0.1661

14 12 0.4352 0.4352

14 13 0.2983 0.2980

14 13 0.1759 0.1737

12 13 0.2088 0.2063

17 11 0.1407 0.1394

19 17 0.1540 0.1543

7 4 1.0462 1.0362

9 9 0.3163 0.3125

8 9 0.2708 0.2673

14 15 0.2853 0.2868

15 15 0.2546 0.2552

15 16 0.2015 0.2016

16 17 0.1929 0.1931

17 19 0.1460 0.1469

13 18 0.1370 0.1377

15 10 0.1599 0.1894

7 6 0.1421 0.1672

7 7 0.2493 0.2497

12 7 0.1276 0.1402

15 11 0.1800 0.1853

12 8 0.2125 0.2145

13 11 0.3721 0.3707

21 тг~ ÖT5Ü9 U. 1496

HEM 7V 

DEM 8V 

DEM 20X 

DEM 30V 

ESD3M 

ESD6M 

ESI) IV 

HSD2V 

USD 5 Y 

ESD8V 

ESI) HIV 

ESI) 3(0

For excess returns, boldface indicates rejection (u=5%) 

For RMSE, boldface indicates better estimator

91


