
HELSINGIN KAUPPAKORKEAKOULU

TESTING FOR FRACTIONAL NOISE IN FINANCIAL TIME SERIES

Helsingin
Kauppakorkeakoulun

KIrlasto

•9-^3

Taloustieteiden kvantitatiivisten menetelmien 
pro gradu -tutkielma 
Sampsa Kiiski 
Kevät 2000

Kansantaloustieteen laitoksen

laitosneuvoston kokouksessa 19 / 5 2000 hyväksytty
arvosanalla Erinomainen (90 p.)_____________________________
professori Antti Kanto lehtori Tapani Lehtonen



TIIVISTELMÄHELSINGIN KAUPPAKORKEAKOULU 
Taloustieteiden kvantitatiiviset menetelmät 
Pro gradu -tutkielma 6.4. 2000
Sampsa Kiiski

FRAKTIONAALISEN KOHINAN TESTAUS RAHOITUSAIKASARJOISSA

Fraktionaalista коЫпаа on tutkittu huomattavasti viime aikoina, koska sitä 
hyödyntämällä voidaan kasvattaa eräiden yleisesti käytettyjen stokastisten 
differenssimallien tarkkuutta tikeissä ja pitkäkestoisissa aikasarjoissa. Tässä 
tutkielmassa testaamme useilla estimointimetodeilla fraktionaalisen kohinan 
esiintymistä Helsinki HEX 50, Shanghai SHX All Share ja Standard & Poor’s 500 
osakeindeksien päivätuotoissa, sekä U.S. Federal Funds Rate -koron 
kuukausittaisissa muutoksissa. Tulokset osoittavat tilastollisesti merkitsevästi näiden 
aikasarjojen muodostuvan fraktionaalisesta kohinasta, todentaen myös tätä 
vastaavan pitkän aikavälin riippuvuden.

Klassinen yksinkertainen differointi ei näin ollen ole riittävä kyseessä olevien 
rahoitusaikasarjojen stationarisoimiseksi. Stationarisointi on sen sijaan suoritettava 
käyttäen fraktionaalista differenssiä, joka vastaa kyseessä olevan sarjan 
fraktionaalista integroituvuusastetta. Vain fraktionaalista difierointia käyttäen on 
mahdollista estimoida harhattomasti myös lyhyen aikavälin riippuvuus. Estimoimme 
yhtäaikaisesti sekä pitkän että lyhyen aikavälin riippuvuutta käyttäen stokastista 
autoregressiivistä fraktionaalisesti integroitunutta liukuvan keskiarvon 
ARFIMA(p,tif,<7) -mallikategoriaa, jolla on saavutettu parempi ennustustarkkuus 
kuin vastaavilla yksinkertaisesti differoiduilla malleilla.

Avainsanat: tilastotiede, aikasarja-analyysi, stokastisuus, stationaarisuus,
integroituvuus, fraktionaalinen, differenssi, estimointi, osakeindeksi, tuotto
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TESTING FOR FRACTIONAL NOISE IN FINANCIAL TIME SERIES

Fractional noise has recently been an active research subject, since it provides 
improved accuracy for certain stochastic difference models of long and dense time 
series. Utilizing several estimation methods, we test for fractional noise in the daily 
Helsinki HEX 50, Shanghai SHX All Share, and Standard & Poor’s 500 stock index 
returns, and the monthly U.S. Federal Funds Rate changes. The results show 
statistically significantly that these time series are composed of fractional noise, and 
verify the corresponding long term dependence.

The classical simple difference is therefore not adequate for stationarization of these 
financial time series. Instead, stationarization needs to be performed with the 
fractional difference equal to the fractional order of integration of the series under 
consideration. Only when the series are fractionally differenced, the short term 
dependency can be unbiasedly estimated. We estimate simultaneously long and 
short term dependency using the stochastic Autoregressive Fractionally Integrated 
Moving Average ARFIMA(p,i/,ç) class of models, which has been shown to attain 
higher forecast accuracy compared to the corresponding simply differenced models.

Keywords: statistics, time series analysis, stochastic, stationarity, integration, 
fractional, difference, estimation, stock index, return
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1. Introduction

A significant amount of time series research has recently concentrated on long memory 

along with fat tailed distributions, chaotic behaviour, and other forms of nonlinearities. 

These types of time series models are inclined for extraction of additional useful 

information, since the more traditional techniques do not account for such ‘anomalies’ in 

a straightforward manner.

In this master’s thesis, we apply fractional differencing methods to test for fractional 

noises, or long memory, in both time and frequency domain for three stock market 

indexes and a short term interest rate series. The final model includes parameters for 

both short and long range dependence. The returns from daily closing prices of Standard 

& Poors 500, Helsinki Stock Exchange HEX 50, and Shanghai Stock Exchange SHX 

indexes, and the monthly average of US. Federal Funds Rate are considered for periods 

from five to forty-one years. A brief description of the model follows in the next three 

paragraphs. In the rest of the introductory chapter, we characterize the research problem 

more throughly, and review some recent research papers. Chapter two considers 

statistical characteristics of standard types of stationary time series processes, and some 

special characteristics of economic and financial time series, and shortly reviews 

spectral analysis. The connection between noise stationary series and long memory is 

illustrated. The third chapter describes the frequency (spectral) and time domain 

estimators and tests. Estimation results showing significant long memory effects follow 

in chapter four.

We look at the univariate model x = where x is the time series realization, / is

the specified functional form including both the possible mean and trend functions and 

the function for their residual, t is time observed at regular intervals, и is the remainder 

error term, and в is the parameter vector to be estimated. For/and 0 , we are interested 

in the Autoregressive Fractionally Integrated Moving Average ARFIMA(p,ùf,ÿ) class 

and its difference parameter d. Long memory, the significant long-run autocorrelations,
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is accounted for by the fractional d. d is estimated using a binomial series expansion, or 

spectral regression of power on frequency on a frequency band which includes only long 

wavelengths. The decay of the theoretical autocorrelations can be hyperbolic in the 

ARFIMA class, it is not restricted to the more quickly fading exponential decay of the 

widely used ARIMA class with integer order of integration. For fractional d, the order of 

integration is non-integer and allows for variance that does not necessarily scale with the 

square root of time, и are assumed to form a white noise sequence, expected to be more 

pure than the sequences resulting from the ARIMA class due to extraction of the 

additional information content, t is equally spaced time, including only business days.

We consider fractional Brownian motion, henceforth fBm, as the fundamental fractional 

noise process. fBm is a direct generalization of standard Brownian motion, which occurs 

when d = 0. The process is persistent with positive long-run correlation for d> 0, and 

antipersistent with negative long-run correlation for d < 0. fBm needs to be differenced 

d times to attain stationary. There are many other fractional noise processes, e.g. a

generalized fBm where the difference is defined as (1 -2uB + B2)d, where also и is a 

parameter, to account for regular sine fluctuation superimposed on the hyperbolic 

autocorrelation of the basic fBm. Recently, fBm has become a basis for an increasing 

number of derived processes.

fBm has peculiar dimensional characteristics. Where a regular Brownian motion 

meandering in a plane would eventually fill the plane densely, a persistent or 

antipersistent fBm would leave considerable ‘holes’ in the coverage. This results in non­

integer, or fractal dimensions for fBm processes. The determination of d and the 

approximation of the fractal dimension D can be viewed as equal problems in this light. 

While not essential for determination of d, the dimensional concept is outlined in chapter 

two to provide further insight to the properties of fBm and the test statistics derived from 

dimensional considerations.
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1.1 Level, Difference, Or Noise Stationarity

It is mandatory to reach a ‘high degree’ of stationarity in the course of statistical 

modelling of economic or financial time series. The stochastic mechanism which creates 

the sequence of values is unchanging in a stationary series. When the observed time 

series does not statistically depart from its proposed governing rules, its statistical 

properties can be inferred with the appropriate confidence. In this section, we describe 

different forms of stationarity corresponding to certain typical time series characteristics.

Following Mills (1996), we consider an empirically observed time series, a particular 

realization of a stochastic process. The process is assumed to be ergodic, i.e. the sample 

moments of long enough but finite stretches of the particular realization approach their 

population values, when the length of the realization approaches infinity. It is possible to 
deduce the unknown parameters of a probability distribution from a single realization 

only if the process is ergodic, but it is not possible to test the validity of the ergodicity 

assumption from a single realization. It is usually sufficient to define the index set of the 

stochastic process to be the length of the realization, (1,7), so that the probability space 

consists of a Г-dimensional distribution of random variables Xt, t = 1,...Г, from which 

the realization x, is drawn.

It must noted that this Г-dimensional distribution tends to reduce to a drastically lower 
dimension due to the statistical dependencies in the series. Indeed, each fragment of a 

continuous series has to start from the coordinates of the previous one. With the 

stationarity assumptions assigning similar characteristics to the Г dimensions, the 

dimensionality of the observable path in practice is finally reduced to more than one but 

less than a few.

The ideal strict stationarity assumes that the rules governing the stochastic process are 

such that all sets of joint probability distributions are the same regardless of which time 

point is considered the starting point of the realization. It applies to all moments, which 

are assumed to exist to as high an order as necessary. As a complete characterization of
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all these moments would require T + 7(7 — 1) / 2 parameters, further simplification is 

necessary. Hence, the rules are assumed to produce constant mean and variance, and 

autocovariances and autocorrelations dependent only on the time difference of the 
bivariate distributions in question. If the Г-dimensional distribution is jointly normal, or 

if the current value is generated by a linear combination of previous values of the 

process itself and possibly the current and past values of other related processes, the 

expectations of the first and second moments characterize the process completely. Then, 

the stationarity concept is called covariance stationarity, weak stationarity, or second- 

order stationarity.

While many regular phenomena especially in the natural sciences can be adequately 

represented by covariance stationary linear or linearized processes, there are some 

typical features frequent in economic and financial time series requiring other forms of 

representations; various forms of apparent nonlinear trends, near cyclical behaviour, and 

sudden periods of large fluctuations both in mean and variance among others. Over a 

short time span, a series may be stationary around a linear approximation. Often, long 

time periods have to be considered, and the nonstationarities become evident.

Some commonly used methods of reducing such nonstationary characteristics are mostly 

supported by particular knowledge of the series under inspection, and judgement over 

which characteristics to include or exclude is necessary. For example, application of the 

logarithmic transformation, a specific treatment of statistical outliers, and estimation and 

removal of a polynomial and/or trigonometric time trend or a combination of these 

procedures can render the residual covariance stationary. We call this, informally, level 

stationarity. If nonstationarities remain, or as an alternative altogether, it is possible to 

test if the series is integrated of first or rarely of second degree, denoted I(<f) with d = 1 

or d - 2, by considering the appropriately differenced series instead. The logarithmic 

transformation and statistical outlier treatment are applied when necessary. The process 

is then difference stationary.
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However, assuming that a series is difference stationary, i.e. has a unit root, may not be 

the most realistic possibility. Nearly always second differencing and sometimes even 

first differencing increases the estimated overall variance, or causes the spectral density 

to approach zero near the zero frequency, or both. These are signs of overdifferencing. 

In addition, the memory of a series with a unit root is not infinite with distinct 

characteristics differentiating it from other series. Instead, the series is the running sum 

of the past shocks without any damping factors. Thus, the effect of a shock at a time 

point is retained as is, or independently, to all following periods and consequently all 

autocorrelations approach one as T approaches infinity.

The process behind the unit root is Brownian motion. Brownian motion fills the plane 

densely, and its sample paths are continuous. However, the prices in markets are 

discontinuous and may jump over some values especially when expectations change, so 

a process which does not fill the plane as uniformly as Brownian motion could have 

advantages. If a subset of the plane filled by the process is regular enough, it is possible 

to determine the fractal dimension and also the fractional difference precisely related to 

that subset. Other drawbacks for Brownian motion include the behaviour of the sample 

variance of observed economic or financial series. When different subsamples are 

considered, they may have variances of different orders of magnitude, often due to a few 

outliers. Often the variance does not stabilize in the long run. The power spectrum 

suggests that the variance is extremely large. If a flat spectrum can be attained by taking 

the difference, the unit root assumption may hold. Often the differenced series still 

shows somewhat higher or lower power in the low frequencies compared to the high 

ones, and in this case it is clear that some other process would better represent the series.

Unit root tests such as Dickey-Fuller consider the hypothesis of difference stationarity 

versus level or trend stationarity, preferably extended to allow for short-run serial 

correlation which considerably relaxes the strict independency of total randomness. Still, 

these tests are not completely satisfactory as they may behave suspiciously with regard 

to the time span of the data. It has been observed that more frequent data does not 

increase the power of the test much, but a longer time span does (Mills, 1996). This 

ought not to occur in a level or difference stationary process. Such time dependency
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could be well explained by a long memory process, not by an infinite or nonexistent 

memory process.

Another related issue is the thick tails and a sharp peak at the mean, frequently observed 

in distributions of many financial and in some economic series. The basic normally 

distributed white noise process and its integrated random walk trail do not have such 

characteristics. It is natural that the cause for the departures from normality may depend 

not only on another form of distribution such as Student’s i or a stable distribution 

applying at each time point regardless of the specified functional form of the levels or 

differences, but also on the endogenous dynamics of the process. Fractional Brownian 

motion can produce also non-normal trails even though the increments can be 
conveniently interpreted as white noise, which could be normally distributed. Other 

distributions of the increments are not considered in this paper, although the R/S statistic 

and the spectral estimators in section four can accommodate various forms of 

distributions of the observed time series, as they do not require particular distributional 

assumptions for the observed series in order to estimate the parameters; the maximum 

likelihood (ML) estimator is also able to estimate the parameters with slightly more 

involved theoretical difficulties. Slight biases can be shown to occur as a side effect of 

these properties.

In the frequency domain, different time distances are transformed to different 

wavelengths, and periodic time dependencies are visible in an uneven distribution of 

power among the wavelengths in the frequency spectrum. White noise has even power 

in all wavelengths, whereas pink noise has more power in the short wavelengths and 

black noise in the long wavelengths. Various methods have been devised to ‘denoise’ a 
process into a white noise from pink or black noise. The process is then noise stationary. 

When the removal of a seasonal peak over some wavelengths, or the corresponding 

more common time-domain procedure produce stationarity, the process is seasonally 

stationary, which is in a way a subset of other forms of stationarity. An overview of 

time-evolving spectrums, another alternative for a noise stationary process, is given in 

Priestley (1989).
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It is notable that the stochastic trend can be much ‘more’ stochastic compared to integer 

differencing. Parameters for deterministic trends may still be necessary, if the stochastic 

trend estimated by the fractional differencing parameter is not sufficient to make the 

series stationary, given this type of model is needed for some purpose. In addition, more 

detailed statistical information around the deterministic trend can be obtained. Seasonal 

differencing in addition to fractional differencing may be necessary if the scaling of the 

long memory does not coincide with seasonals.

The noise stationarity associated with a fractionally differenced series is necessarily of a 

narrower character than the stationarity associated with a level or difference stationary 

series, especially when considering comparison of more than one series. Not only an 

integer 0, 1, or 2, the order of integration of the series and their cointegration may be 

non-integer. The simultaneous use of such economic or financial series demands special 

attention to avoid misjudgment. Fractionally cointegrated processes can be conveniently 

analyzed in the frequency domain, but they are beyond the scope of this paper.

1.2 Long Memory And Fractional Noise

We consider a long memory process to have hyperbolically decaying autocorrelations or 

impulse response weights, or equally, hyperbolically shaped logarithmic power spectrum 

in which case the concept is called fractional noise. The effect of significant hyperbolic 

autocorrelations over long time distances allows for a broader range of behaviour by 

compressing or boosting the effects of the conventional exponentially decaying short- 

run autocorrelations. The hyperbolic decay of fBm and the fractional difference is well 

in line with the typical spectral shape of an economic variable observed e.g. in Granger 

(1966). After trends in mean and seasonal components are removed, the logarithmic 

power spectrum appears like a hyperbola. In many cases, the overall hyperbolic shape is 

quite clear even with trends and seasonalities included, and the definition of long 

memory can be extended to cover such processes. Furthermore, long memory captures 

mean reverting type behaviour, although it is not necessary to assume a stable mean for 

long memory. Over long time horizons, mean reversion generally occurs in stock returns 

and many other financial and economic time series, whereas over short time horizons
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they are positively correlated. Short memory processes are generally modelled with lags 

over the positively correlated part only.

For a discrete time series process x, with autocorrelation function pj, a general 

definition of long memory is

lim YN->ao
j=-n

be divergent. In terms of the spectral density, this corresponds to unbounded low 

frequencies. The more specific definition is that all processes are long memory if their 

autocovariance function yk is of the following type for к large:

Yk E(k)k2H-2

where 5(к) is some slowly varying function at infinity and H is the Hurst exponent in 

the range 0 < H < 1. A slowly varying function becomes asymptotically a constant; a 

common one is the logarithm. Hyperbolic distribution has Pr(f/ > 0) = да, but it often 

suffices to assume that the variance is at worst very large instead of infinite.

In contrast, short memory processes have finite variance cr2 = limr^œ 

and

Sr(/-) = -U§x,^->ß(r)
<tvv ы

the normalized and scaled partial sum BT{r) of x,, up to the integer part of rT, 

asymptotically converges in distribution to standard Brownian motion B(r) for all 

r e [0,1]. This also illustrates the property that for all time periods at all starting points, 

scaling a short memory, white noise series by the square root of time retains constant
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variance. For long memory processes, the scaling factor will be different from the square 

root in order to retain similarity for all r.

Additionally, Mandelbrot (1982) claims that the hyperbolic distribution has advantages 

for data quality considerations. In many cases, data is composed through various 

collection and preparation methods, and often several steps of estimations or are 

performed. It is possible that such data may have the underlying true distribution and an 

unspecified filter on top. Asymptotically hyperbolic distributions are very robust with 

respect to a variety of filters. Conversely, scaling invariance demands an asymptotically 

hyperbolic distribution for many common transformations.

Another possibility for long memory is a deterministically chaotic process, where a 

strange attractor is generating the data. This type of behaviour is often observed in 

nature, and it may not be uncharacteristic of events at a trading floor. As all points of a 

deterministic process are correlated, long memory will be observable in the realization, 

although the series may appear essentially unpredictable. In this case, predictions would 

be have an asymptotic sense only, since already in the short run the process itself loses 

predictability quickly. Different locations on the attractor may imply very different short 

run realizations, and even very small measurement errors are critical. Furthermore, 

empirical measurements are ineffective if the length of the attractor cannot be clarified. 

In practice, it is difficult to be certain whether the attractor is strictly strange, but the 

approximate case remains valid due to the shadowing lemma, which states that within a 

small neighbourhood s from the observed series, there will be an exact orbit with the 

same statistical properties. While the shadowing lemma provides justification for 

inference from a single realization, it allows the determination of certain dimensional 

characteristics such as the Lyapunov exponents and even the rescaled range statistic, 

which aid in assessing the validity of long memory assumptions and give information on 

the appropriate lengths of the time intervals used for parameter estimation. The largest 

Lyapunov exponent provides an estimate of the average information loss in forecasts, 

but it is currently not a readily estimable statistic.
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1.3 A Fractal Market Hypothesis

Peters (1996) hypothesized that the stock market has several intrinsic time scales in the 

form of different investment horizons, corresponding to the scaling properties behind 

fractional Brownian motion or a multifractal process. When investors have different 

time horizons, they keep the market liquid by definition: as a three-hour investor 

observes a high-risk event at the scale of, say, 6<r, the same event is minuscule to a 

three-year investor who determines the event scale with respect to the average three-year 

market and/or stock volatility which is of different order than the three-hour volatility. If 

the three-hour investor is forced to liquidate, the three-year investor will buy the shares 

if the drop has been large enough to expect gains during the longer time scale. Only if all 

investors have short-run time horizons as a result of lost confidence in the long-run 

information, the market loses liquidity and may experience large erratic movements. A 

complete characterization of the different horizons may require a time-evolving 

multifractal structure, but the average scaling in time detected by fractional noise may be 

a reasonable approximation.

The same principle could be generalized to other securities and markets as well. 

Furthermore, autocorrelation is frequent in market prices and in economic fundamentals, 

and can be expected to be observable in individual agent’s behaviour as well. Several 

authors have showed that independent autoregressive processes produce a fractionally 

integrated aggregate process, for example Granger (1980). Linden (1999) constructs a 

ARFIMA-related aggregated process from AR(l)-processes with uniform distribution. 

Thus, fractional processes may be expected to be a rule rather than the exception due to 

the heterogeneity of the background forces driving the observed processes.

1.4 Recent Research On Fractional Differencing

A selection of the growing literature on fractional differencing is shortly reviewed here 

without explicit clarifications of the terminology; these follow in the next chapters. 

Brock and de Lima (1996) give an overview of theoretical and practical findings on
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nonlinear modelling including long memory. Baillie (1996) throughly reviews fractional 

differencing.

There exist several alternative estimators for the fractional difference. Li and McLeod 

(1986) consider aspects of ML estimation for fractional differencing. Fox and Taqqu 

(1986) develop a Whittle-type estimator for approximate MLE to avoid the increase in 

computation time from second derivative checks in the exact MLE. This estimator and 

its variants approximate the ML reasonably well (Taqqu and Teverovsky, 1998). Baillie 

and Chung (1993) present a conditional sum of squares estimator which approximates 

the MLE well in moderate and large samples. Chen et al (1994) estimate the fractional 

differencing parameter by various standard lag windows, and note a tendency for smaller 

mean square error but a larger bias compared to frequency band of the periodogram used 
by Geweke and Porter-Hudak (1983). Cheung and Diebold (1994) compare approximate 

frequency domain ML to Sowell’s exact time-domain ML and suggest that in practical 

application with the presence of unknown mean, the efficiency of the frequency domain 

ML is good especially in medium or large sample sizes, while the efficiency of time 

domain ML with estimated mean is still somewhat higher.

Taqqu and Teverovsky (1997) examine cases of misleading estimates from rescaled 

range analysis due to a jump in the mean or a slow trend; they find that a method with 

differenced variance is able to correct several situations. In addition, they find long 

memory in the number of bytes and packets transmitted during 10 ms intervals over an 

Ethernet monitoring system. Taqqu and Teverovsky (1998) examine the robustness of 
several estimators with simulations. Some estimators are similar to the R/S analysis but 

concerned mainly with the variance instead of range and variance. Also, various stable 

distributions with infinite variance are implemented. They find variance-type estimators 

and Whittle frequency domain estimators to be relatively robust with respect to 

deviations from Gaussian series. In addition, non-zero AR and MA components are 

found to have strong effect on all estimators, requiring correct specification. Chong and 

Lui (1999) study the asymptotic bias of an estimator based on the partial autocorrelation 

function finding that the estimator is not attenuated in usual cases of measurement error. 

Koop et al (1997) discuss Bayesian analysis with ARFIMA models.
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Robinson (1995) considers multivariate frequency domain regression. Robinson and 

Hidalgo (1997) derive central limit theorems, asymptotic normality and л1/2 -consistency 

for multivariate frequency domain GLS, and consider FGLS and NLS as well. A limit 

theory for a non-Gaussian quasi-maximum likelihood is derived in Hosoya (1997). 

Martin and Wilkins (1999) develop a framework for indirect estimation of ARFIMA and 

vector ARFIMA (VARFIMA) models.

Gil-Alana and Robinson (1997) apply Robinson’s tests allowing fractional integration to 

an extended macroeconomic data set, the predecessor of which was used in the Nelson 

and Flosser (1982) paper suggesting the 1(1) hypothesis for macroeconomic series 

instead of the deterministic trend hypothesis prevailing at the time. Gil-Alana and 

Robinson find that the 1(1) hypothesis is neither adequate, but different 1(d) alternatives 

depending on the series and distributional assumptions give better results. They 

conclude that consumer prices and money stock are the most nonstationary series, 

followed by GDP deflator and wages, and unemployment rate followed by industrial 

production are closest to stationarity. Diebold and Rudebusch (1989) found long 

memory in real US per capita GNP. Delgado and Robinson (1994) apply various 

estimators to 1939-1991 Spanish monthly general price index and find it to be integrated 

of order 1.3-1.4. Chambers (1998) finds long memory in UK macroeconomic series, and 

also notes some differences in the performance of fully parametrized and semi- 

parametrized periodogram estimators. Using various ARFIMA-GARCH models, 

Mazaheri (1999) finds the implied convenience yield for petroleum and petroleum 

products to be driven by a mean reverting long memory process.

Blasco and Santamaría (1996) find some evidence of long memory in the Spanish stock 

market. Barkoulas et al (2000) find long memory in the Greek stock market in weekly 

returns index, and also note that for large stock markets there has been little or no 

empirical evidence of long memory. In other mímeos, Baum and Barkoulas find that 

weekly returns do not show long memory, whereas daily returns of the same period may 

show long memory. Slight long memory is found in the Canadian stock market by 

Beveridge and Oickle (1997).
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Baillie and Bollerslev (1994) find the forward exchange premium of five major 

currencies to be well described by a long memory process. Hauser et al (1994) find little 
evidence of long memory in seven major exchange rate series. Significant GARCH(1,1) 

effects with parametres summing to one are found in the variance. Hauser et al conduct 

also Monte Carlo experiments to investigate the determination of long memory with 

simultaneous conditional heteroskedasticity. They find that heteroscedastic series may 

be erroneusly interpreted as long-term dependent, and vice-versa to a smaller extent. 

Some tables for critical values for the distribution of d are given, showing higher 

departures from the asymptotic distribution of a white noise series as the GARCH 

parameter values increase. Breidt et al (1998) find long memory in stock market 

volatility using a long memory stochastic volatility (LMSV) model based on 

incorporating ARFIMA in a standard stochastic volatility model. A further recent 

development to this direction is the combined ARFIMA-FIGARCH model.

Seasonal fractional integration is considered in Porter-Hudak (1990) and Silvapulle 

(1995). Some evidence for improvement compared to the usual seasonal ARMA is 

obtained.

Soofi (1998) tests for fractional cointegration in purchasing power parity among 9 

OPEC countries, using the GPH estimator to measure fractional integration of an Engle- 

Granger type cointegrating vector. For four countries, monthly exchange rates and CPI 

are found fractionally cointegrated. Tse (1998) tests the effect of GARCH on fractional 

cointegration with simulations.

Gray et al (1989) (with a 1994 correction) extend the fractionally differenced process 

(1 -B)d to a Gegenbauer process (1-2иВ + В2)я allowing explicit presentation of 

periodic or quasi-periodic long-term dependencies through various forms of sinusoidal 

fluctuations in the autocorrelation function. In the spectrum, there is a peak at the 

Gegenbauer frequency. Chung (1996) conducts Monte Carlo experiments on 

Gegenbauer ARMA (GARMA) and ARFIMA series, and detects long memory and 

persistent 9-year cycles in the US Wholesale price index with a GARMA model.
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Sutcliffe (1994) obtains better forecasting results with ARFIMA compared to ARIMA 

using e.g. the airline data from Box and Jenkins (1976).
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2. Fractional Brownian Motion Processes

2.1 Deviations From White Noise And Martingales

The Wold decomposition, a fundamental theorem in time series analysis, states that 

every weakly stationary stochastic process can be expressed as a stationary noise process 

through a linear combination, or a linear filter, of a sequence of uncorrelated random 

variables. The fundamental noise process is the white noise, a sequence of uncorrelated 

random variables a, with distribution properties

E(a,) = 0,
Var(a,) - E(o2 ) = cr2 < °o,
Cov(a,, a,_k ) = E(a,a,_t) = 0 V к Ф 0.

The linear filter representation is x, = a, + фха,_х + ф2а,_2 +..., У^”_лф] < °°. The sum

of the squared ф -weights is assumed to be bounded, which is in this case equal to 

assuming that x, is second-order stationary, the variance is finite, and all moments exist 

and are independent of time origin. Sometimes the absolute ф -weights are required to 

converge, which is a stronger assumption e.g. for minimizing the absolute mean 

deviations.

If the aim in modelling a univariate time series is to produce optimum linear forecasts, 

this objective has been reached when a linear transformation is found that reduces the 

series to white noise. Such transform is unique for a linear process. When at and a,_k 

are independent for к 0, the process is a pure white noise. It cannot be forecast from 

its own past whereas the non-independent white noise cannot be forecast linearly. If a 

nonlinear process is reduced to a white noise process through a linear transformation, the 

transform is not necessarily unique. (Granger and Watson 1984)
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It seems likely that the more strictly pure the empirical white noise sequence is, the 

smaller the number of further transforms capable of achieving an even more pure white- 

noise sequence. The strictness is not well measurable in our empirical setting especially 

with the nonlinear functional forms, but less unexplained variance, and less serial 

correlation are the necessary ingredients as usual. Independency is proxied by 

correlation in the time domain, and equivalently by power in the frequency domain.

Cramer’s extension of the Wold decomposition theorem represents time series through a 

combination of a measurable trend with the noise process. In the stochastic differential 

equation

dx, = ц(хк\k < t)dt + <j(xk\k < t)dMt

x, is a random process endogenously determined firstly by the time-dependent process 

ju(xk;k<t)dt, the expected ‘instantaneous’ change in x, if there is need for one. The 

second term consists of the predictable process cr(xk;k </), the ‘instantaneous’ standard 

deviation, which is driven by a martingale M analoguously to a forcing function of a 

dynamical system

(а(х)*Щ= fa(xk)dMk
t=o

so that

dE(a(xk )*M), = a(x)f dE(M ),.

Martingale processes allow the sequence of independent random variables to be 

nonstationary, relaxing the assumption required by a white noise process. The combined 

process cr(xk )dM, which produces the unexpected change, is also martingale. (Karr, 

1990)
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When M is standard Brownian motion, the differential equation represents the Itô 

process. Fractional Brownian motion can be fitted into the differential equation to more 

accurately describe the time series. Then, the motion generating noise process is either 

pink or black if there are short-run or long-run dependencies, respectively. It is more 

convenient to define the motion generating noise process white as usual, and transfer the 

statistical deviation from white noise to erßm (xk ) instead of replacing M with it. The 

increments still converge to a stationary sequence. The observable trail is nonstationary 

but not martingale, since the sequence resulting from the changed process a^ (xk )dMt 

is more persistent or antipersistent than pure white noise.

Mandelbrot (1971) notes that under long-run dependence in mean, perfect arbitraging 

may not be possible as it would not be difficult to identify promising assets with rescaled 

range analysis or some other method and deteriorate the effect quickly. In order for long- 

run dependence to remain, the process of identifying and arbitraging should then create 

further long memory characteristics which remain similar throughout the time series 

path along with the fundaments such as business cycles.

2.2 Spectral Representation of a Stochastic Process

In spectral, or harmonic analysis, a periodic function is analyzed with its Fourier series, 

and a nonperiodic function with the analoguous Fourier integral. The Fourier series of a 

function/(x) is defined as х/2а0 +(a, cosx + 6, sinx) + (a2 cos2x + 62 sin2x) + .... f(x) 

is required to be continuous except for a finite number of discontinuities and to have a 

finite number of maxima and minima. The real and complex Fourier representations can 

be obtained and manipulated via the identities sin(dr + b)- sin a cos 6 + cosa sin 6 and

sine = (e'c -e~'c)/2i.

The argument of a time series, assumed equally spaced, is transferred to the circular 

range [0,2tt] . For convenience, we assume the series to have odd length. The spectral 

decomposition of the series can then be obtained by composition of a number of 

harmonic functions Ая sin(T/ + (px), where amplitude AÅ is the maximum displacement
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at a frequency, phase (p is the displacement of the zero point of the wave along the time 

scale, and Я is some angular frequency defined in radians as Я = 2я/д. The frequency 

/д measures cycles per unit time, fx = 1 / rA. The period, гл, is the number of time 

units required for a complete cycle in radians. (Koopmans 1974)

Henceforth, we refer to Я as frequency and drop the subscripts when they are not 

essential. The time scale can be expressed in radians as Э = Я/ + (p, so for t = 1 , a

complete period г can occur JT times. Taking cp = 0, each point t of the time series, 

t units apart, is traversed by the harmonic sin(2^i / r). The frequencies Irrt / r are 

called, accordingly, the harmonic frequencies. It can be seen that the points traversed by 

shorter-wavelength harmonics 2Я, ЗЯ, 4Я,... also belong to a longer ‘base’ wavelength 

Я.

In the spectral representation of a continuous stochastic process, there is an infinite 

number of harmonic frequencies, which have normally distributed, uncorrelated 

amplitude functions with constant common variance, also continuous. As the spectrum is 

symmetric with respect to the zero frequency in the same manner as autocorrelations, it 

suffices to restrict attention to [0,;г]. The spectral representation (Cramer’s 

representation) is (Harvey, 1982)

x, = |м(Я)созЯ/<7Я + |г(Я)зтЯ/б/Я. 
о о

Cycles longer than n are aliased to frequencies with a shorter period, possibly creating 

some inaccuracies in the harmonic functions. In time domain estimation, the possible 

inaccuracy from significant autocorrelations longer than n units apart becomes 

decomposed in a different manner. Equally, the series cannot be sampled more 

accurately than the unit time interval, and any shorter cycles, should they exist, are also 

aliased.
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In practice, the spectral density is obtained via the discrete Fourier transform. The series 

is represented as a linear function of a finite number of harmonic frequencies so that all 

points in the series are traversed. Fast Fourier transform algorithms are commonly used 

to reduce computing times. The discrete amplitude parametres are the Fourier 

coefficients. The energy, or ‘covariance’, at each frequency can be conveniently shown

with the squared Fourier coefficients as p(Å) = м(А)2 + v(A)2. (Harvey 1982)

The theoretical autocovariance function y(r) can be decomposed into the spectral 

density /(A) as

1 f °o ^
/(A) = — у0+2^у(т) cos Лт

2яг V ы

assuming y0 is finite. If x, is white noise, /(Я) - а2 /2л. The convenient complex 

spectral density is /(А) = (2;г)-' ¿7(г)е,Лг ; for each A, eaz =cos(Ar) + zsin(Ar) 

represents a harmonic oscillation in r. y(r) can be obtained from /(A) as 

y(r)= je~Urf(Ä)dÄ, or y(r) -2|/(A)cosAtí/A . (Harvey 1982)
-n 0

In addition to sampling, the estimation of the harmonics is delicate. The periodogram 

obtained from the squared Fourier coefficients is the most straightforward estimator, but 

different windows, frequency band shapes, or an averaged band are generally considered 

necessary for better estimators (Koopmans 1974). Some leakage from one frequency to 

another is unavoidable due to side lobes and other such features resulting from operating 

with superimposed trigonometric functions. “Care has to be taken in estimating the 

spectrum since it seems that it is impossible to have an unbiased and consistent 

estimate” (Granger, 1990), which seems a natural property of wave decomposition.
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As the periodogram is a linear combination of the autocovariances, the sum over all 

frequencies is equal to the variance of x, when it is defined. This is more clear in the 

notation

I(Aj) =
2 тт i=i 2тт

2>, ■x)e 1
i=i

(Kanto, 1983). The periodogram is an unbiased estimator of the spectral density, since 

their ratio is ~ x2 ■ The variance of the periodogram equals /2(Л;) for / = и,

Хфп , and 2/2(тг), Л = тг, not dependent on T, so the periodogram is not consistent. 

The properties are asymptotic for a series which is not white noise. The frequency 

domain estimators aim to achieve better consistency by utilizing an appropriately chosen 

bandwith which slowly decays to zero as T approaches infinity.

Between time and frequency domain, there is a one-to-one correspondence in terms of 

the time distances and wavelengths. Usually, both approaches yield similar results but 

the other may be better suited for certain applications due to its computational or 

theoretical properties.

2.3 Dimensional Properties of Fractional Noise

This section discusses dimensional interpretations of some estimators and tests, 

providing some additional insights to the characteristics of fBm. As fBm adjusts itself 
for the scaling properties of the series under consideration, it introduces a modification 

in the coordinates, which causes fBm to have a fractal dimension distinct from the 

fractal dimension of the standard Brownian motion.

When attempting a statistical measurement, it is essential that the frame of reference, 
roughly the dimension where the object is to be measured, is orthogonal enough. For 

example, the angles of a triangle on a plane always sum to 180°. Moving one integer 

dimension up to the surface of a sphere, the angles of a triangle sum to more than 180°
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and up to 270° depending on the relative scale of the triangle and the sphere. Then it 

becomes necessary to ask, which frame of reference is meaningful for measurement 

without prior knowledge, if orthogonality depends on the scale of the frame? If the 

triangle itself is a statistical object and its orthogonal properties are to be measured, how 

is it possible to differentiate between the object and its frame of reference at all? One 

answer is the scaling dependence, which has been empirically shown to occur in many 

natural phenomena. When the orthogonality of statistical measurements on the object at 

different scales within the frame is retained, the highest dimensional one of such frames 

is the correct one. Viewed this way, it is not possible to separate the object from its 

frame of reference, since the frame is inherent in the stable scales of the object.

There are several possible dimensional definitions and associated transformations which 

concentrate on different aspects of the process to be measured. Whichever is the most 
suitable for the problem at hand, could be in practice designated as the effective 

dimension of an object. If the dimension is non-integer, it is called a fractal dimension. 

The concept of a fractal and the fractal dimension have not been exactly defined (e.g. 

Mandelbrot 1997). The elementary ingredients of a fractal object are one or more 

repeating patterns, which appear similar when magnification is increased or decreased 

by a suitable amount. Often the surface of a fractal object is not smooth.

For example, a wiffle ball is not a complete three-dimensional ball since it is full of 

holes. It does not occupy the whole of the volume of its circumference, preventing other 

objects from interference within its circumference. On the other hand, it cannot be 

completely represented in two dimensions either since it is a ball. Thus, its effective 

dimension is a fractal dimension between two and three. The embedding dimension is 

three; it is the space which is spanned by the circumference, the next higher integer 

dimension from the effective dimension.

In this paper, we hold a working definition which roughly classifies a time series a 

fractal if it is not level stationary, and the relative strengths of the autocorrelations are 
invariant with respect to a contraction or expansion of the series by a certain time scale. 

This definition assumes the series is a unifractal where scaling properties remain similar
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throughout all resolutions. It encompasses both ffim and standard Brownian motion with 

short memory such as an AR(l)-model. Cases where the time series realization is a 

multifractal, having several fractal realizations or differently repeating patterns 

superimposed, or different stationary processes superimposed, are not considered.

A traditional mathematical approach to evaluating the area of a planar shape is to cover 

the shape with small squares arranged along planar coordinates, and then calculating the 

sum of the sides of the squares raised to the power D = 2. Following Cantor and 

Minkowski, Carathéodory extended this approach and the ideas of ‘length’ or ‘area’ in 

1914. The reliance on the planar coordinate axis should be avoided, since it already 

implies that the planar shape is two-dimensional. The shape can instead be imbedded in 

a three-dimensional space, and covered by balls. Then the approximate contents or 

‘volume’ of the object can be computed by adding the circular shapes together. If the

shape is planar, the area would be ^яр2 since the balls reduce to discs. In the general

case with a d-dimensional shape, the hypervolumes of d-dimensional balls of radius p 

are computed as 'Yji{d)pd , where n(d) = ^ is the volume of a ball with unit

radius. (Mandelbrot 1982)

The 1919 Hausdorff dimension forms a theoretical basis for dimensional calculations in 

non-integer dimensions. There is a number of practical applications of the Hausdorff 

dimension. Unless otherwise noted, the following descriptions draw on Peitgen et al 

(1992), which includes theoretical discussions as well.

The pointwise dimension, or mass dimension, is approximated by Hôlder exponent aH. 

aH is applied in R/S analysis as the Hurst exponent (Mandelbrot 1997). Disks Br(x,y) 

of various radiuses r are centred on a point (x,y) on the object to be measured. The 

probability of visits of the attractor (the trail of the process) to the disk, p(Br(x,y)), is 

taken to be proportional to a power of the radius, p(Br(x,y)) ос c ■ ra", so that the 

Hôlder exponent can be computed as
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ан = limr-»0
fa/d(B,(x,y))

lnr

If the same exponent holds for all points, the object is likely to be unifractal. If the 

exponent varies for different points, it is multifractal.

The correlation dimension measures the correlation between points on the attractor. For 

a single observed series of length T, an m-history with a sufficiently large number of 

lags (m > 2T +1) is used to represent the series in an embedding dimension which

includes all dimensions of the attractor. The (Euclidean) distance of two points X"' and 

X"- is compared to a predefined distance e in order to see if the two points are ‘close’ 

or ‘correlated’. If the distance between the two points is smaller than s , the function 

H(u) is set to 1, otherwise to 0 in the correlation integral

ся.(*)=-^-££4чк-*;||) i*j 
1 —1 /=1 7=1

C„M) =
/ ->oo

(Brock et al 1996). In practice, after computing the results for a range of m and £ , it is 

possible to obtain the scalar correlation dimension by first determining the slope of the 

regression of lnC„,(f) on ln¿r for each sufficiently large m. As m increases, the slope 

will converge to a constant (in case of most fractals) which is equal to the correlation 

dimension Dc. (Greedy and Martin 1994)

Lyapunov exponents are measures of average attraction and average repulsion to all 

possible directions over the realization of a process. They can be used to distinguish a 

deterministically chaotic process from a stochastic process; a positive first Lyapunov 

exponent indicates that nearby orbits are moving apart which is a characteristic of a 

chaotic attractor. A negative first exponent would imply that nearby orbits converge and 

the process is stabile.
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There exist as many Lyapunov exponents as there are dimensions in the object. The 

Lyapunov exponents are ordered so that A, > A2 > A3 >.... The sum of all Lyapunov 

exponents is negative, characterizing how fast area, volume, or hypervolume shrinks 

towards the attractor. As xn+1 = /(x„ ) is iterated with two nearby starting points x0 and 

u0 with an initial error E0 = x0 - u0, after n iterations the error will be 

En = un - x„ = c"(x0 + £0) — c"Xq = c"f?0, and the respective error ratio is defined as

cn

E E E _ E
The error ratio can be written as a product —- = —— • ” 1 •... • —. Taking logarithms,

£0 £„-> ^»-2 ^0

dividing by n, and noting that c" is a derivative of the process,

Inc = lim—V In
Jk-1

=-£inl/'(xA_i)i
n k=1

Letting n —> oo, the Lyapunov exponent is defined as

A(x0) = li^7¿ln|/'(x*_i)| •

A small error in an initial point x0 will be scaled by the factor ex on the average in each 

iteration. The largest Lyapunov exponent measures the average rate of loss of predictive 

power; if e.g. A(x0) = 1, and the initial condition is measured to the eighth significant 

decimal, the chaoticity causes all information to be lost in eight iterations (Greedy and 

Martin 1994). This requires representation of the exponent with base 2 logarithms.

The Lyapunov dimension is defined as
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1=m+b~i2X’ Ея* -° ’
\Лт+11 Ы *=!

which is the point where the cumulative sum of the Lyapunov exponents linearly 

interpolated to form a continuous line is equal to 0. Lyapunov exponents can 

theoretically be computed for a high-dimensional, e.g. 10-dimensional object without 

much change in their rather statistical accuracy, although they are in general not as 

precise as the other dimensions mentioned here.

2.4 Fractional Brownian Motion And 1/2 Noises

The differences between the scaling properties in trails of standard and various fractional 

Brownian motions have been summarized already by Leibniz (quote from Mandelbrot 

1982):

“I have diverse definitions for the straight line. The straight line is a curve, any 
part of which is similar to the whole, and it alone has this property, not only 
among curves but among sets.”

Fractional Brownian motion processes were introduced by Mandelbrot and others in the 

1960’s, following Hurst’s findings on the dependence of the river Nile in the 1950’s.

The properties of standard and fractional Brownian motion are asymptotic. Standard 

Brownian motion B(t) maps from a linear time scale through a white noise process to the 

observable Brown trail. A realization of B(t) produces a sequence t of independent 

normally distributed increments so that

Pr((B(t + At) - B(t))/\At\" < x)~ jV(0,1)

where H is fixed to !4, which is ‘straight line’ with a specific similarity property: at least 

the first and second moments of its distribution are independent of time when rescaled

by the square root of time as t~U2B(At) , for all time distances At (Mandelbrot, 1982). It
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could be then expected that after At, the expected value of the function has changed by

■y[Ât j ■ This scaling property is often assumed to hold without checking if the correct 

rescaling factor is t~U2B(At) or some other Г"B(At).

The process observable in the trail of discrete Brownian motion is also known as the 

random walk, x, = x,_, + s,. The mean of the random walk is E(x,) = E(x0), which 

satisfies the first requirement of weak stationarity since it is constant over time when x0 

is fixed as usual. The process is non-stationary since the variance is not constant at a 

finite limit; Var(x,) = ter2 and Cov{x,, x,_r ) = |t - r|cr2. It is 1(1), since

Ax, = x, - x,_, = £,, which is the stationary white noise process. Notably, Brownian 

motion is nowhere differentiable (with a probability of one). The properties hold almost 

surely almost everywhere.

The spectral representation of a Brownian motion could be called the circle-to-line 

Brownian motion, or a random Fourier-Brown-Wiener series. White noise has a flat 

power spectrum, which is not dependent on the frequency A under consideration. This 

could be expressed as being proportional to A0. The spectrum of the trail of Brownian 

motion is proportional to A"2, which is again a special case related to the non- 

stationarity.

Fractional Brownian motion BH(t) agrees better with the special characteristics in 

financial and economic series than the standard Brownian motion, and it can well 

account for the typical spectral shape. It is defined to have variable inherent scaling 

character as outlined in the dimensional properties section. The properties given here are 

from Mandelbrot (1982). Fractional Brownian motion has 0 < Я < 1, and cases with 

H Ф х/г are properly fractional. Now the sample correlations satisfy

£((5„U + A')-S„('))2)=M2"
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so that the variance scales at faster or slower instead of the same pace as the square root

of time; in the discrete case J'l ^ x, is o^T11 j for any 0 < H < 1. The spectral density is

proportional to r2H-'. The process is everywhere continuous and nondifferentiable like 

standard Brownian motion.

The line-to-line fBm can be obtained from the line-to-line standard Brownian motion by 

application of the Riemann-Liouville fractional integral or differential of order H - /2 

as

bh( 0 =
i

г (tf + x)
Í«' -s)H~ydB(s)

The integral is divergent, but increments such as BH (t) - BH (0) converge. The 

increments are fractional noise when the process is properly fractional. When the order 

of integration is H - ]/2 > 0, the transform is a fractional form of integration, because it 

increases the smoothness of the function. When the order is H - /2<0, irregularity 

increases which is a characteristic of differentiation. The definition is strongly 

asymmetric in t, and when the process ought to be reversible for stationarity 

considerations, Mandelbrot (1982) proposes a symmetric definition

v /2/ V—со /

In the frequency domain, ordinary integration of a nonperiodic function corresponds to 

multiplying the Fourier transform by 1 / Я . The Fourier transform has to be defined for 

the nonperiodic function in question, but the representation can safely be assumed to 

hold for the series we are concerned with. Fractional integro-differentiation multiplies

the Fourier coefficients by {MX)"+y so that the spectrum of the fractional Fourier-

Brown-Wiener series becomes proportional to (1/Я)2<//+^> = Å~2H~X. The spectral
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exponent Å~B is thus B = 2H -1, -1 < B < 1. In the estimators, the task is to find the 

proper amount to subtract from or add to the moduli of the Fourier coefficients at low 

frequencies.

Mandelbrot (1982) suggests a ‘most straightforward procedure’ to compute the 

fractional Brown line-to-line function as first to compute the circle-to-line function, and 

then to discard it except for a small portion corresponding to a small subinterval 

0 < t < t' (/* has to tend to 0 as H —> 1 ), and finally to add a separately computed low 

, frequency component. The specification of the included frequencies is crucial, since 

changing the arguments of the hyperbolic shape near zero results in very large changes 

in ordinates, and the area of interest, the next higher frequencies, could be easily 

outweighed in estimation.

The long-run correlation of fractional Brownian motion does not vanish, contrary to 

standard Brownian motion. This enables the estimation of a long memory parameter. By

setting BH(0) = 0, and defining the past increment as BH(t) and the future increment as

фцрв'ЛО)
Ф„«))г)
уМ(К (0 - B-„ (Q)1 ))-2e((bh (Q)2 )

(2t)2H-t2H 
lt2H

-г2""’-!

For H > y2 the correlation is positive and the series is persistent (in the case of an 1(1) 

series the correlation equals 1). For H <'/2, the series is antipersistent with negative 

long-run correlation. (Mandelbrot 1997)
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The fractal dimension of fractional Brownian motion is Dßm -2-H (in terms of the

fractional difference parameter, d = H ~y, Dßm -\y2-d). In addition to the ability to

distinguish processes of different orders of integration, the fractional Brownian motion 

process is an important simplification since it is invariant with respect to fractal 

dependencies in the time scale and thus seems not necessarily to introduce error when 

applied to a process driven by a fractal time scale such as trading time. Standard 

Brownian motion is not invariant to these considerations. (Mandelbrot 1997)

The circle-to-line fBm converges to a continuous sum for all H > 0. Below H = 0, or 

below D = 1, both the circle-to-line and line-to-line functions are not defined. Above 

H = 1, or D = 2, the sum is differentiable. There is no upper limit for integration on the 

frequency domain, but the time domain function is only defined up to /7 = 1. It is 

possible to extend the definition by integer differencing the series under consideration 

before applying the fractional difference.

2.5 Fractional Difference

The continuous time fractional noise process has to be discretized in order to fit it into 

observed discrete data. Two modelling approaches exist, the ‘actual’ fractional noise 

from fBm and the fractional difference. Fractional difference can be shown to 

approximately result from fractional Brownian motion processes, and they represent 

equal processes for d = H — y2 (Geweke and Porter-Hudak, 1983).

At first, Mandelbrot (later with Van Ness) defined discrete time fractional noise so that 

its correlation function is the same as the correlation function of the process of unit 

increments of fBm, ABH (t) = BH (/) - BH (t -1),

n -COiV.lt + r -2|*Г +M"')
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for some C > 0, X < Я < 1. As к-> oo, yk = СЯ(2Я - 1)|£|2<// 11. The spectral density 

of this process is due to Jonas (Geweke and Porter-Hudak, 1983)

/(¿) =
(2*) 2H+2

Г(2Я + l)sin(^)4sin21 £ И +
2л-

-2H-1

Hosking (1981) defines the discrete analog starting from the definition of fractional 

noise as the (x/2 - Я)th fractional derivative and discretizes the derivative, which results 

in a simpler model valid for a larger range of Я. The fractional difference operator AJ is 

defined for any real d > -1 by binomial series as

k= 0 V*7
(-B)k =1 -dB- d(l-d)B2_d(\-d)(2-d)

2! 3!
B3

The fractionally differenced white noise process is weakly stationary for d </2 (or 

Я < 1, since d-H~y2) and invertible for d>-/2 (or Я > 0). The infinite order 

autoregressive representation is

+£> ’*=0
Y(k-d) 

T{-d)T{k +1)

The infinite moving average representation, or the Wold decomposition, is

k=0

в - I I j -1 + d _ Г(к + d) 
k 1 los^ j r(d)F(k +1)

The cumulative impulse response is as usual. Expressions for autocorrelations are
7=0
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-TT j-l + d _ Г(£ + с/)Г(1 — d)
Pk-i losys* j_d - Y(k-d + 1)T(¿)

The impulse response weights, the infinite autoregressive coefficients, and 

autocorrelation coefficients decay hyperbolically and monotonically to zero for large к.

This can be shown using Stirling’s approximation Г(к + а) /Г(к + b) & ka~b, giving 

фк « cxkd~'
ek « c2k-d~x
Pk * c,k2d-'

for some constants ci. The power spectrum is

fW
= —fisin—

2n ^

2.6 The Autoregressive Fractionally Integrated Moving Average Process

With the fractional difference at hand, the ARFIMAfød,#) process can be defined as

l-L)d(x,-M) = 0(L)el

incorporating both short and long range dependence in the same equation. The roots of 

ф(к) and 0{L) lie outside the unit circle and s, is white noise as usual. The process is 

covariance stationary for -0.5 <d < 0.5 and mean reverting for d < 1. For d > 0.5 the 

process has infinite variance.
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For high lags the decay of the autocorrelations is hyperbolic, as the ARMA part of the 

process is negligible. The impulse response weights can be obtained by first differencing 

x, so that

(1 - L)x, = (1 - L)'~d A(L)e,
<p(L)

к

The impact of a unit innovation after к units of time for xl+k is then 1 + A¡ .
7=1

The spectral density function is

/(©) =t- l-e -a 1-2 d

(2|l-cos(Â)|) 2d

„2 ( ^^
For low frequencies, /(Л) « —

2 л
СУ 0(1)) ,-27

V^(l)y
Л . The spectral density is infinitely

differentiable at all frequencies except zero (Baillie 1996). This is a characteristic of a 

fractal process.
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3. Estimators And Tests

We apply two tests, the KPSS and the BDS tests in order to detect nonlinear departures 
from linearity. The KPSS test was originally devised for unit root testing, but was found 

to be able to assess more general situations also. A number of other tests for similar 

purposes exist, but these are widely known and often used in the course of testing for 

long memory. The R/S statistic is also considered as a test as it is not suitable for very 

accurate parameter estimation.

Estimation of the largest Lyapunov exponent to test for chaos was attempted with an 

application of Peters (1996) of the Wolf et al algorithm. The process was slow, and 

initial results from two series using several parameter values showed no convergence of 

the highest Lyapunov exponent. If valid for a number of parameter ranges, this result 

would imply that the series were not chaotic - however, we cannot make such 

conclusion based on a small number of runs with short series. As Gwilym et al (1999) 

among others point out, the algorithm is very sensitive to noise in the data, and this 

drawback is especially troubling with noisy economic and financial data having a much 

smaller than desirable number of data points. Gwilym et al (1999) apply also a more 

recent method by Dechert and Gencay, which has better properties with noisy data. The 

method utilizes a three-layer neural network with user selected number of inputs that 

correspond to the embedding dimension, and sigmoid activation functions. Gwilym et al 

extend the method to contain several hidden layers. Jacobian matrixes for each 

individual node are utilized in computing all Lyapuov exponents. One run of 

computations with 1-10 layers with a single input took 24 hours of CPU time on a Sun 

SparcCentre 2000 with eight processors. Armed with a Pentium 233 MMX, we decided 

not to pursue the Lyapunov computations further.

The estimation of an ARFIMA process can proceed along two lines. Analoguously to 

regular differencing, the fractional difference can be first estimated with a 
semiparametric frequency domain estimate, which preferably does not include a full 

parametrization of the logarithmic periodogram or other global assumptions of the 

spectral density of the process. The estimated fractional difference is taken by
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multiplying the Fourier transform of the series x, by (l-e , the inverse Fourier 

transform is computed from the resulting series, and the ARMA parameters are 

estimated from the resulting series. The steps are iterated until convergence. A drawback 

of this two-stage method is that no published results exist for distributions of the second- 

stage parameters. Some Monte Carlo studies show that the distributions may be rather 

different from the conventional ones. With respect to the original series, the R/S statistic 

is distribution-free, and so are the three frequency domain estimators; in x = /(/, и; в) , 

semiparametric methods estimate в consistently when the distribution of и is unknown 

but/is specified (Cosslett, 1990). Most of the complicated derivations for expressions of 

variances for the semiparametric estimators have assumed normality for simplicity, 

although it is not necessary for all results (e.g. Lobato and Robinson 1996). 

Semiparametric estimators are not as efficient as a correctly parametrized parametric 

estimator.

The other possibility is parametric estimation in the time domain, in general with the 

maximum likelihood estimator or its approximations. However, the accuracy of ML 

depends on the correct estimation of the mean and the correct order of the AR and MA 

polynomials, and ML also relies on the normality of the error u. The estimates are still 

consistent for non-normal distributions.

Smith et al (1997) compare the bias and misspecification in estimating the ARFIMA 

model with simulations using three estimators used also here; Geweke - Porter-Hudak 
semiparametric estimator, Robinson’s averaged periodogram estimator, and Sowell’s 

maximum likelihood estimator. They find that the ML outperforms the other two 

estimators in terms of bias and mean square error both in the short-term and long-term 

parameter estimates. The biases may easily cause misspecification with formal model 

selection criteria. Even when the misspecification biases of the ML are taken into 

account, the worst-case scenario for the ML is found to have the smallest bias. In 
addition, Taqqu and Teverovsky (1998) stress the importance of correct specification 

with all types of estimators they examine. Thus, we favour the ML estimator with 

several specifications applied to each series under inspection, and use the other 

estimators mostly with a purpose to obtain supporting evidence for the ML.

34



3.1 R/S Statistic

The R/S statistic was originally proposed by Hurst in an 1951 paper when he was 

studying the fluctuations of the river Nile. The sample sequential range R(t,s) is 

defined as (Brock and de Lima, 1996)

f

R{t,s) = max
Os* Si V

Í

-min
0 <k<s

x; + -
s

s

fc-*;))) 

(cxj))

for a time series X, and any arbitrary time interval [/,/ + s]. X' = ^Xu with X'0 = 0.
И—1

Each sample range is divided by its standard deviation,

S(t,s)
( s VIX,
V*=i y

and the rescaled range statistic is

R/S = R(t,s) 
S(t,s)

which is convenient to estimate by regressing \n(R(t,s) / S(t,s)) on ln(s) and a 

constant. The variance of the series is assumed constant within the time intervals of 

different lengths, but may vary between them. The slope of the regression is an estimate 

of H. Mandelbrot has shown that R/S converges asymptotically almost surely for series 

with infinite variance. However, the estimate may be very much biased if short memory 

is present in the series. In general, R/S is biased towards 0.7 (Taqqu and Teverovsky,
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1998). Davies and Harte (1987) conclude that it is hard to see how one could be 

expected to differentiate between fractional Gaussian noise from short memory such as 

AR(1) with R/S without a very long series. Computing the R/S from the residual of an 

autoregressive short memory filter may help to reduce the bias. Peters (1994) proposes 

that the variance of H is 1 IT for Gaussian IID series, and provides some simulation 

results.

The V statistic for the R/S statistic was also proposed by Hurst.

y
*

For the random walk, plotting the V statistic against 1п(л) would produce a horizontal 

line. When the series is persistent, the square root standardization is not sufficient and 

the line has positive slope. In the antipersistent case, the slope is negative. The statistic 

provides a clearer graphical interpretation than the R/S, for which such fluctuations are 

less pronounced when plotted against ln(n). In a properly fractal series, the scaling 

continues indefinitely, and both R/S and V have constant slope. However, if there are 

proper cycles, periodic or nonperiodic, which are not caused by intermittent fractal 

trends, the constant upward slope falls when correlation over the cycle is exhausted. In 

this manner, the longest absolute or average cycle length can be approximated even in a 

chaotic process. (Peters, 1994)

It is still possible to qualitatively distinguish between random changes and fractional 

Brownian motion by scrambling the filtered series to break the correlation structure, 

which should result in a random walk with H -]/2 (e.g. Peters, 1994). In general, the 

R/S statistic is to be considered only an indicator of the possibility of long memory, and 

further examination is necessary.

The modified R/S statistic is presented in Lo (1991). Instead of the usual sample 

variance, Lo uses the Newey-West heteroscedasticity and autocorrelation consistent 

variance estimate
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SXU)2=-¿(A;-X)2 +-¿®/4 ¿(Л -x)№-7-X)
n Tz7 >1 v*=y+|

where ú) A q) are weights of a Bartlett window, coAq) = 1---- -—, q <n. q should be
7 g + l

large enough to include all ‘large’ autocorrelations in the estimator. Asymptotic results

show that for a larger q the test size decreases as power increases. The sample mean X

is taken over the whole series as is the modified R/S statistic also. In the notation of the

original R/S, the modified statistic is expressed as

000 =
Щ,п)
S(\,n)

This statistic shows usually less evidence of long memory compared to the original R/S 

statistic. This may be intuitively attributed in part to the statistic taken at once over the 

whole series, although the biasedness of the original R/S is likely to be more important. 

The result is still strongly dependent on the choice of q and additional conditions and 

small sample properties remain sensitive to short memory effects. This estimator is not 

utilized in the estimation, as it has been shown to have similar properties to the original 

R/S statistic on one hand, and to the level stationary KPSS test on the other.

3.2 KPSS Test

Kwiatkowski, Phillips, Schmidt, and Shin (1992) test the null hypothesis of short 

memory deviations from a deterministic linear time trend as opposed to the alternative of 

trend or 1(0) stationarity using a Lagrange multiplier test. The series y, is assumed to be 

generated by the process

y, =i// + # + zn t = 1,2,...,Г
z, =rt+ £,
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(in the more intuitive notation of Lee and Schmidt (1996)). The deviations from the 

trend, z,, are assumed to consist of a random walk rt = rM - v, with r0 = 0 where v,

are iid with mean 0 and variance cr]. s, is a stationary short memory process allowing 

z, to asymptotically converge to the standard Brownian motion. The null hypothesis is 

then H0 : a] - 0, under which z, = s, and the series y, is trend stationary short 

memory. A special case of £ = 0 which assumes the series yt is stationary around a 

level у/ is considered as well.

The statistic under the null is computed as follows. A regression is run on 

yt = у/ + Ç(t) + s and the residuals s, are assumed to have long run variance <j] 

estimated by the Newey-West estimator as

s1 (/) = r' ¿ e] + 27"' ¿ (f (s, /) ¿ e,e,_,
/=1 J=1 /=$+1

ïF(j,/) = l- —

For the estimator to be consistent under the null, the lag truncation parameter / —> oo as 

T —» oo ; it is customary to use / = о(г1/2). Then, the KPSS statistic is

Hr = r-2t
/=1 s\l)

Sf=Yjej,t = \,...,T
>i

The level stationary KPSS statistic г)и uses the residuals e, - у,-ÿ (a regression on an 

intercept only). The test is conducted as an upper tail test. Under the null of z, = s, is 

short memory, the KPSS test statistic r¡T is distributed as a so-called second order 

Brownian bridge. Kwiatkowski et al (1992) provide tabulations of the upper tail critical 

values. rjT is o(l) under the null and o(T/I) under the unit root alternative ( Az, is short 

memory). Similar results apply for the statistic Lee and Schmidt (1996) show that

38



the KPSS test is consistent against stationary long memory processes where the order of 

integration d e (- x/2, ]/2), d * 0.

3.3 BDS Test

Brock, Dechert, Scheinkman, later with LeBaron (see Brock et al 1996), devise a test for 

detecting a chaotic data generation process using the correlation dimension. The BDS 

statistic has been found to be consistent against several different types of departures 

from the IID (independent and identically distributed) null hypothesis. The altenative 

hypothesis is not specified, and the statistic has been in wide use in testing different 

nonlinear specifications. The BDS statistic

Т,„Л£)

is distribution free and converges in distribution to N(0,1). Tw n = C,„ „ (s) - C, „ (s)'", 

where C represents the correlation integral, and Vm n is computed from

\V2 = m{m - 2)C2m~2(K-C2) + Km -C2'"

+2§(C27'(К"’4 - C2m-2j )-mC2""2 [к - C2 ))

where К and C are also dependent on the distance s . See Brock et al (1996) for a more 

complete derivation which is lengthy to be included here; the essential idea relies on the 

convergence of the correlation integral as noted in the previous chapter.

3.4 Geweke - Porter-Hudak Semiparametric Estimator

Geweke and Porter-Hudak (1983) estimate the fractional differencing parameter from 

the log spectrum
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ln(/(2)) = ln °-7,( 0)
2 л

f
-tifln 4 sin2

V
+ ln fM)

/Д0)

where /(A) = (cr2/2Tr)(4sin2 A)‘'/„(A) and /,(Я) is the spectral density of the 

stationary linear process ut in (1 - B)d x, - u,. The logarithmic periodogram can be 

written as

, Л '
4 sin —

2
+,жС„4Ц

/ДО) /W)

The second term on the RHS is considered in the OLS regression as the explanatory 

variable with the slope coefficient - d, and the third term is negligible when only the 

low frequencies having power similar to the zero frequency are considered. The 

regression intercept consists of the first term along with the mean of the last term. The 

last term is the regression disturbance, which is assumed asymptotically IID with a 

distribution of Gumbel type. Its asymptotic mean is the negative of Euler’s constant, - 

.57721... and the variance is л116.

The regression is run over the range of / = g(T). g(T) is the highest frequency
Z rri X 1 {

used, and it should be chosen so that lim g(T) - oo , lim —---- = 0, and lim---------= 0
7'—>oo T —>oo 'J1 T—>co g(T)

in order to achieve asymptotic normality of the distribution and consistency of the slope 

estimator also in the presence of autocorrelation. In practice, little is known of the

optimal choice of g(T). The usual Vf has been suggested, and also experimenting 

with the regression so that the residual variance is approximately л216. An a priori 

view of the shortest cycle length in actual time to be considered long memory could be 

used when possible.
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Robinson has shown that the estimator is asymptotically consistent for d <0.50, but 

only if some very first ordinates are truncated also. However, the small sample 

properties may still be seriously affected by short memory (Brock and de Lima, 1996).
var(j)= o(g(7)"' ), which may cause the second-stage short memory parameters to be 

seriously biased. Clifford and Ray (1995) also note the bias of the estimator especially 
for non-stationary series.

3.5 Robinson’s Gaussian Semiparametric Estimator

Robinson (1995) develops the statistical properties of an approximate frequency domain 

Gaussian likelihood estimator, proposed by Kiinsch. The process xnt = !,...,« is 

assumed covariance stationary. The long memory assumption is

Л->0 + , where G e (0, со), H e (0,1). The Fourier transform and 

periodogram are defined without correction for an unknown mean, as the correction only 

affects Яу and the computations involve only Я; = 27g In, j = l,...,m (with m <]/2n).

The objective function

f Я2яч ^

m
е(0,Я)=1х ln

is minimized with the likelihood

H = are min In
\m >1 у m 7=1

1 »I z x

where —^Я2я~1/(Я; ) is the estimator G(H). G (distinct from G(H)) and H denote
™ >i

any admissible parameter values, as the estimate is not defined in closed form. The 

closed interval of H is defined as 0 = [Д,, Д2], 0 < Д, < Д2 < 1. The interval can be
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arbitrarily close to 0 and 1, or it can be chosen if prior knowledge exists. For example, if 
the spectral density does not approach zero at the zero frequency, the lower limit can be

set to Д, = Уг .

Robinson (1995) includes lengthy proofs of weak consistency and asymptotic normality. 

Some related Monte Carlo experiments are conducted in Cheung and Diebold (1994). 

The assumptions for weak consistency are as follows: a regularity condition

4-1п/(Я) = 0(Г‘), A->0 +
UÅ

is required. In the Wold representation, the innovations are assumed to form a square- 

integrable martingale difference sequence that satisfies a homogeneity restriction but is 

not required to be strictly stationary. The last assumption is

1 m— +-----> 0, n —>oo
m n

since m must tend to infinity for consistency but at a slower rate than n in order to create 

a neighbourhood of zero frequency that slowly degenerates to zero as the sample size 

tends to infinity. This causes the estimate to lose some efficiency with respect to a 

theoretical parametric model; on the other hand, x, need not be Gaussian and the whole 

range of 0 < H < 1 is applicable. Selection of m is left to user. The conditions for 

asymptotic normality are stronger and require x, to be fourth-order stationary.

3.6 Robinson’s Averaged Periodogram Estimator

Robinson (1994) and Lobato and Robinson (1996) discuss estimation of H e(/2,1) with 

averages over bands of equally spaced discrete periodogram frequencies in a 

neighbourhood of zero frequency, instead of the logarithmic frequencies used e.g. in the 

GPH estimator. When logarithms are used also on the frequency axis, they move most of
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the frequencies towards the right end of the axis, which can be shown to have a 

considerable, possibly problematic effect on the regression estimates.

The estimator is based on

F(A) = m = Ån 
2 n

where [.] denotes integer part and n is the number of observations, x, is assumed to be a 

linear process consisting of martingale differences that satisfy certain regularity 

conditions and the band decays to zero in the same way as above when sample size 

increases.

The theoretical band F(T,„), assumed now continuous, is able to detect long memory as

+F(Ä)=\mde CT2-2 H

2-2 H
Т->0

The estimator is

_!_ln ÈkKl

21пЯ Нк)

for a user-chosen q e (0,1).

Lobato and Robinson (1996) derive the limiting distributions, where x, is assumed 

Gaussian. For H e (X,%) , the distribution is normal and for H e (%,1) nonnormal and 

the estimator is biased also asymptotically. Therefore, the estimator is stated to appeal 

principally in the normal range, for which optimal q is tabulated with respect to H. There 
exists also an optimal choice of m. Monte Carlo simulations are employed to study the
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estimator’s sensitivity to m and q with a Gaussian process having fractional noise 

autocovariance. Smaller m = 32 shows increasing negative skewness and leptokurtosis 

compared to m - 64. Negative skewness and leptokurtosis are stronger for higher H in 

all cases, q = x/2 or smaller is found reasonable for the whole range of H, and a stronger 

deterioration for q = 0.8 in case of small H.

3.7 Sowell’s Maximum Likelihood Estimator

Sowell (1992) presents the MLE of the ARFIMA(p,<i,qr) class. The autocorrelation 

function is

ru =°"2Z^ÆEy--<9»-c(^^p+»-m- k> ¿j )
y=l n=0 ш=0

where Яу is the /th root (assumed distinct) of the autoregressive polynomial ф(Ь'), and

Åj Й t1 - PiPj )n U ~ P* )
/=1 *=1

k*i

C{w,v,k,p) = G(w,v,k)(p2p F(v + k, 1;1 -xv + k;p) + F(w - &,1;1 - v-k;p) 
F(l-w-v)F(v + å:)

G(w,v,k) =
F(l-w + Â:)r(l-v)r(v)

Doornik and Ooms (1996, 1999) give an alternative representation which they utilize in 

their application:
ч p

Y k =<jle XX (d,p +k- i, Pj ),
*=-»7=1

А = ÊsAk,.
Л=Ы

m
PjW-pMpj-P,
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where

C(d,h,p) T(l-2d) (d)h

[г(1-<оГ O-A
[plpF(d + h, 1;1 -d + h;p) + F(d-h,l;\ -d-h;p)-l]

F(a,\;b;z) = Y^-zi,
tup),

(u)i = u(u + l)(u + 2) • • • (w + / -1), (w)0 =1

The Levinson algorithm is used in the computations to reduce the computer memory 

storage requirement from j2 to j during computations of the concentrated likelihood 

function. The common residual variance is concentrated out by writing Q = Rcr?.

Differentiating and maximizing with respect to a] leads to a2 = Г 'х'R x, and the 

concentrated log-likelihood is

t, <d, ф, в)=-1 in(2*) -1 - i in|R| -1 Цг-v R-'x]

For the maximization, the constants are removed to obtain

f
max

4

Maximization is carried out using BFGS with numerical derivatives. Stationarity is 

imposed for each iteration step by rejecting parameter value combinations where

d < -5 or d > 0.49999, and/or some autoregressive root \p\ > 0.9999 .
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4. Results And Conclusions

4.1 Estimation Results

The stock market series are logarithmic and first differenced unless otherwise required. 

The interest rate series is only differenced. The conventional manner is to use the 

logarithmic differenced series, but we felt the unlogged case is worth studying as well, 

since there is no clear theoretical justification for logarithms when concerned with the 

economic interpretation of the effects of changes in interest rates. All series look 

nonstationary in the logarithmic graphs, and all of them show the typical spectral shape. 

In addition, HEX, S&P 500, and Federal Funds Rate seem to have a declining first 

differenced spectrum. The periodograms in the figures are limited from top and bottom. 

Only SHX seems stationary after taking the first difference.

The KPSS test, frequency domain and R/S estimations were carried out with RATS 

packages contributed and updated by various authors. BDS test was undertaken with 

Dechert’s software. Estimation of the ARFIMA models was conducted with Ox 

ARFIMA 1.0 package.

The tests conducted before estimation (Table 1) clearly confirm the nonstationarity. The 

conventional Dickey-Fuller unit root test detects a unit root - or an approximate one - in 

all cases, and the AR(1) estimates for the Jarque-Bera test are very close to one. The J-B 

rejects normality, as all series have a sharp peak at the mean and noticeable 

leptokurtosis. KPSS also suggests that a linear trend is not enough for modelling these 

series.

We follow suggestions in Gwilym et al (1999) in computing the BDS test. We assign the 

value 1 for the ratio e 1er of the diverging distance to the (estimated) standard deviation 

of the series. Although other values such as 0.5, 1.5, and 2 are often used, they tend to 

produce similar results. The embedding dimensions vary from 2 to 6; 6 is very much of 

an upper limit for any validity of the computations with these sample sizes. The BDS 

test accepts the IID hypothesis for the differenced SHX and Federal Funds Interest Rate.
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This may be somewhat surprising, but the estimations show that at least in the case of 

SHX, the series simply has a large variance, and possible long memory is intermingled 

with offsetting short memory. The smaller sample sizes (see Table 2) and the sparsity of 

the monthly Fed Funds series may have an effect on the accuracy of the test. For HEX 

and S&P 500, BDS rejects the IID except for the embedding dimension 2. But as the 

other embedding dimensions are considered, the test rejects IID on average. In the low 

embedding dimension, a significant part of the process may still be interpreted as linear 

- assuming that the process fits in the low dimension, of course.

A = Accept,
R = Reject

Normality Unit Root Stationarity + 
short memory

IID

J-B
AR(1)

residuals

D-F Augm.
10 lags 

linear trend

KPSS
1 -4 lags 

linear trend y/n

BDS Diffs 
Emb. D 2-6 

s/a = 1
HEX R A R 2A, 3-6 R
S&P 500 R A R 2A, 3-6 R
SHX R A R A
Fed Funds R A R A

Table 1. Tests before estimation.

Furthermore, Bartlett’s cumulative periodogram test for white noise (see figures 1-4, top 

right comers) shows that after differencing, there is still a significant amount of power 

accumulating already in the very beginning of the series, except for SHX. After 

estimating and taking the fractional difference (in the middle graph of the right-hand 

side), the periodogram at the low frequencies is reduced to white noise. This still leaves 

power in the high frequency, transforming the series to pink noise instead. Only after 

including suitable AR and MA parameters in the complete ARFIMA model, the series 

are reduced to white noise (the graph in the bottom right corner), which is also 

confirmed by the test statistic.

The parameter estimates in table 2 show that HEX, S&P 500, and the Federal Funds 

Rate are all fractional noises with stronger case for HEX and Federal Funds Rate, and a 

weak but significant case for S&P 500. SHX appears to be 1(1), except when the short- 

run parameters are estimated, long memory becomes visible. However, the Federal
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Funds Rate series is problematic, since it has only monthly observations. In table 2, The 

first number under the estimator is the estimate for d — 1 with the significant ones in

boldface. The standard deviation is given under d — 1, and the proposed degree of 

integration follows. The estimators give similar results in general. The V statistic plots 

for all differenced series are nearly straight lines with upward slopes, indicating that 

fractional noise is present, and the scaling continues throughout without a single average 

cycle length for some approximate, complete cycle measurable within the sample period. 

Although in Federal Funds Rate series there is a slight drop in the angle of the line at 
long wavelength, it still continues to clearly slope upwards.

We apply the estimators to the differenced series, as the properties of even those 

estimators that can handle level series in theory deteriorate quickly as d increases. The 

results for the spectral estimators are reported for the band parameter 0.5, which uses

Vr available ordinates for estimation. This is customary; other bands give results that 

vary according to the shape of the spectrum, but it has been found in simulation studies 

that the value 0.5 is reliable compared to other ones. For the AVPER (Robinson’s 

averaged periodogram estimator), we use q- 0.5. Our results with changes in the 

bandwidth still classify the series, except SHX, as fractional noises.
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HEX
Logarithmic
Differences

870201-
971230

N=2757

R/S GPH GSE AVPER ML
.647
.002

1(1.15)

.145

.101
1(1.15)

.090

.069
1(1.09)

.023

.699
1(1.02)

.128

.016
1(1.13)

d-1 =.077 (.019)

ML ARFIMA(l,rf,l): 1(1.08) ф = -.462 (.116)
Ô =.575 (.102)

SP500
Logarithmic
Differences

620702-
971213

N=8937

R/S GPH GSE AVPER ML
.586
.001

1(1.09)

.064

.072
1(1.06)

-.010
.051

1(0.99)

.002

.720
1(1.00)

.060

.009
1(1.06)

d-1 = -.030 (.012)ML ARFIMA(0,í/,1): 1(0.97) „ 4 ’
в =.150 (.015)

SHX
Logarithmic
Differences

911507-
963112

N=1381

R/S GPH GSE AVPER ML
.597
.003

1(1.10)

-.004
.123

1(1.00)

.020

.082
1(1.02)

-.000
.722

1(1.00)

-.002
.020

1(1.00)

d-1 = .066 (.033)
ML ARFIMA(1 Д0): 1(1.07)

ф =-.111 (.041)

Federal Funds 
Rate
(monthly)

5701-
9812

N=503

R/S GPH GSE AVPER ML
.782
.007

1(1.28)

-.048
.170

1(0.95)

-.050
.107

1(0.95)

.123

.604
1(1.12)

.255

.049
1(1.26)

d-1 = -.232 (.092)

ML ARFIMA(l,i/,l): 1(0.77) ф =.372 (.136)
в = .278 (.078)

Table 2. Parameter Estimates.

An interesting feature of the results is that the degree of integration changes notably, 

when the AR and MA parameters are introduced. Several ARFIMA specifications were 

tested, and the most parsimonious, significant one was chosen among other possible 

alternatives. To detect all departures from white noise it is necessary to compromise 

between the high and low frequencies in accuracy and specification, and it seems that
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estimation of d alone is not sufficient. The actual order of integration is thus not very 

precise, and perhaps there is even no unique d. Even more accurate estimates could be 

considered - however, at the expense of a relatively convenient and parsimonious 

representation and at the risk of introducing additional estimation problems.

The Dickey-Fuller and KPSS tests for the residuals (table 3) show that the order of 

integration could be considered adequately determined by fractional differencing. The 

series are still not normally distributed, so additional measures need to be explored to 

reduce the sharp peaks and leptokurtosity of the series. The BDS accepts now the IID 

hypothesis also for embedding dimension 3 for HEX and S&P 500, indicating that the 

estimation process removed a large part of the nonlinearities and dependencies, but also 

notes that dependencies remain in the higher dimensions.

A = Accept,
R = Reject

Normality Unit Root Stationarity + 
short memory

IID

J-B D-F Augm.
10 lags 

no trend

KPSS
1-4 lags 
no trend

BDS
Emb. D 2-6 

e/a = 1
HEX R R A 2-3 A, 4-6 R
S&P 500 R R A 2-3 A, 4-6 R
SHX R R A A
Fed Funds R R A A

Table 3. Tests on ARFIMA residuals.
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6.26232

Ln HEX

Cumulative Periodogram White Noise Test 
Bartlett's (B) statistic = 4.61 Prob > В = 0.0000

0.00

Diff Log HEX

Cumulative Periodogram White Noise Test 
Bartlett's (B) statistic = 0.60 Prob > В = 0.8596

Figure 1. HEX
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6.89141

3.97949

Ln SPSOO Log Periodogram Cumulative Periodogram White Noise Test 
Bartlett's (B) statistic = 3.33 Prob > В = 0.0000

i.bo
0,d,0 Residuals, SPSOO

Figure 2. S&P 500



Cumulative Periqdqgram White Noise Test

Diff Log SHX

6.90776 -

Ln SHX Log Periodogram

0.00 - 0.00

DifT Ln SHX Log Periodogram

Cumulative Periodogram White Noise Test 
Bartlett's (B) statistic = 1.24 Prob > В = 0.0924

O.d.O Residuals, SHX

Cumulative Periodogram White Noise Test 
Bartlett's (B) statistic = 0.42 Prob > В = 0.9946

0.00

1,d,0 Residuals, SHX

Figure 3. SHX
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Fed Funds Rate

Cumulative Periodogram White Noise Test 
Bartlett's (B) statistic = 4.62 Prob > В = 0.0000

0.00

Diff Fed Funds Rate

Fed Funds Rate Log Periodogram

0.00

f *?$>

Cumulative Periodogram White Noise Test 
Bartlett's (B) statistic = 3.05 Prob > В = 0.0000

0.00 -

0,d,0 Residuals, Fed Funds Rate

Diff Fed Funds Rate Log Periodogram Cumulative Periodogram White Noise Test 
Bartlett's (B) statistic = 0.71 Prob > В = 0.6925

1,d,1 Residuals, Fed Funds Rate

Figure 4. Federal Funds Rate
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4.1 Conclusions

We test for fractional noises in four financial time series with various estimators. 

Fractional noise has a significant amount of low frequency power, and dependencies over 

long time horizons excert a notable effect on the behaviour of the time series.

The tests confirm that the simple difference does not render the studied series stationary. 

The nonstationarities are more intricate than what is classically assumed. We attribute the 

nonstationarities to fractional noise, and estimate the corresponding fractional difference 

for stationarization. Without fractional differencing, short memory parameters such as the 

commonly used autoregressive and moving average parameters are erroneously estimated 

due to the nonstationarities which remain after simple differencing.

We find that the HEX daily closing return series is a strong fractional noise. We find a 

weaker but significant amount of fractional noise in the S&P 500. According to initial 

tests and estimates, the Shanghai SHX all share index returns appear first-order 

integrated. After specifying simultaneous short memory, significant long memory 

becomes visible. The changes in the U.S. Federal Funds Rate also appear as fractional 

noise, but the estimates are not very precise possibly due to the monthly sampling 

frequency.

In estimation and testing, we rely on the maximum likelihood estimator, which is 

consistent for the model despite of departures from normality of the increments. The 

frequency domain estimators give similar results, and additionally, show some evidence 

for further nonlinear characteristics which are also captured by some of the linearity and 

normality tests employed. The ARFIMA(p,tif,g) model specification with simultaneous 

long and short range dependency is able to reduce all fractional noise series to white 

noise, and it parsimoniously, although not necessarily uniquely, represents the significant 

fractional noise characteristics.
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