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Tiivistelmä

Tutkimuksen kohteena on luottolaitosten vakavaraisuussääntely yleisesti sekä erityisesti 
sen mahdollinen kehittäminen käyttämällä hyväksi luottoriskimalleja. Muutaman vii­
meksi kuluneen vuoden aikana eräät suurimmat kansainväliset liikepankit ovat kehittä­
neet luottoportfolioidensa luottoriskin mittaamiseen malleja, jota ovat pitkälti analogia 
markkinariskien mittaamiseen aikaisemmin kehitetyille Value-at-Risk -malleille. Viime 
vuoden aikana pankkien edustajat tekivät esityksiä voimassa olevien vakavaraisuussään- 
nösten korvaamiseksi säännöksillä, jotka sallisivat pankkien käyttää puheena olevia mal­
leja vakavaraisuuslaskennassa.

Tutkimuksen toisessa luvussa selvitetään voimassa olevan vakavaraisuussääntelyn sisäl­
töä. Esitys perustuu Baselin pankkivalvontakomitean antamaan suositukseen vuodelta 
1988 ja siihen myöhemmin tehtyihin muutoksiin. Voimassaoleva sääntely useimmissa 
kehittyneissä teollisuusmaissa Suomi mukaan lukien perustuu mainittuun suositukseen. 
Suosituksen säännökset kohdistuvat ennen muuta luottoriskeihin, mutta kuten tässä lu­
vussa osoitetaan, ne ottavat puutteellisesti huomioon erot luotansaajien luottokelpoi­
suudessa. Lisäksi käytetyn laskentamenetelmän vuoksi luottosalkun hajauttaminen ei 
vaikuta vakavaraisuuslaskennan tulokseen. Näiden puutteiden mahdolliset vaikutukset 
pankkitoimintaan esitetään lyhyesti luvun lopussa.

Tutkimuksen kolmas luku käsittelee luottoriskin mallintamista. Esityksessä keskitytään 
niin sanottuihin "bottom-up" Iuottoriskimal leihin, koska niiden katsotaan toistaiseksi 
olevan menetelmiltään edistyneimpiä. Luottoriskin mallintamisen tavoitteena on esti­
moida luottosalkun luottotappioiden todennäköisyysjakauma, jotta tarvittava riskipää­
oma voitaisiin allokoida luottoriskin kattamiseksi. Luvussa esitetään luottoriskin mallin­
tamisen vaiheet, erilaisissa malleissa eri vaiheissa tehdyt käsitteelliset valinnat ja mal li n- 
tamisoletukset sekä parametrien estimointimenetelmät. Esitys perustuu pääosin Federal 
Reserve Board in ja Baselin pankkivalvontakomitean julkaisemiin raportteihin pankeissa 
sisäisessä käytössä nykyisin olevista luottoriskimalleista.

Tutkimuksen neljännessä luvussa tarkastellaan nykyisiin malleihin liittyviä puutteita sil­
mälläpitäen lähinnä niiden hyväksikäyttöä vakavaraisuussääntelyssä. Keskeisimmäksi 
puutteeksi osoittautuu asianmukaisen historiallisen datan puutteesta johtuvat yksinker­
taistavat mallintamisoletukset eri malleissa. Niiden vaikutuksia mallintamisen tuloksiin 
ei toistaiseksi vielä tunneta, eikä erilaisten mallien tulosten testaamiseen ole vielä ole­
massa yleisesti hyväksyttyjä menetelmiä. Näyttääkin siltä, että vaikka angloamerikkalai­
set pankkivalvojat ovat periaatteessa suhtautunut suopeasti I uottoriski mal leih in, nykyi­
siin malleihin liittyy senlaatuisia puutteita, ettei sääntelyä voida lähiaikoina tältä osin 
kehittää.

Avainsanat
Luottoriski, vakavaraisuussääntely, luottoriskimal I it
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Chapter I

INTRODUCTION

"A credit risk model cannot replace a banker's judgment. Models don't manage."

Tom de Swaan, a member 
of the managing board of ABN 
AMRO Bank and Chairman of the 
Basle Committee on Banking Super­
vision.

1 Subject of the study

This master thesis discusses the regulatory framework to access capital for 

credit institutions, especially commercial banks, and potential regulatory 

uses of banks' internal credit risk models. Credit risk associated with de­

fault is usually assumed as the most significant risk incurred by banks (see 

e.g., Anttila 1996, Bessis 1998, and Niemelä 1999). First, credit risk is 

paramount in terms of the importance of potential losses. Secondly, banks 

are themselves borrowers with high levels of leverage. Unexpected reali­

zation of credit risk have destabilized, de-capital ¡zed and destroyed banks 

quickly. For that reason, regulatory capital standards are almost entirely 

addressed to credit risk. Consequently, the focus of this study is also on 

credit risk charges and credit risk modeling.

Before going on, it is worth clarifying why there is then any need to im­

pose credit risk (or any other risk) capital charges on banking institutions, 

and not on other institutions? Simply because they are regarded as differ­

ent i.e., banks collect deposits and play a key role in the payment system.



Deposits are usually insured, but still governments always act as a guaran­

tor for credit institutions, and as a lender of last resort. Capital plays the 

role of a buffer against future, unanticipated losses, and in some sort par­

ticipates in the privatization of the burden that would otherwise be born 

by the government in case of a bank failure. In addition, fixed-rate deposit 

insurance creates, by itself, the need for capital regulation because of the 

moral hazard and adverse selection problems that it may generate. Under 

current regime, insured banks have an incentive to take more risk, since 

fixed-rate deposit insurance is like a put option sold by government to 

banks at a fixed premium, independent of the riskiness of their assets. 

This option increases in value when the bank's assets become riskier. Fur­

thermore, as deposits are insured, there is no incentive for depositors ei­

ther to cautiously select their bank. Instead, depositors may be tempted to 

look for the highest deposit rate, without paying enough attention the 

banks' creditworthiness (See Anttila 1996; Niemelä 1999).

In the banking universe, credit risk arises from various types of instru­

ments including loans and loan commitments, bonds, receivables, letters 

of credit as well as market-driven instruments (e.g. swaps and forwards). 

Credit risk is, loosely speaking, the risk that customers default, that is fail 

to comply with their obligations to service debt. The Dictionary of Finan­

cial Risk Management (G. Gastineau et al, NY: Frank J. Fabozzi Associ­

ates, 1996) defines more accurately the different components of credit 

risk as follows:

(1) Exposure to loss as a result of default on a swap, debt, or other 
counterparty instrument;

(2) Exposure to loss as a result of a decline in market value stemming 
from a credit downgrade of an issuer or counterparty;

(3) A component of return variability resulting from the possibility of 
an event of default; and
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(4) A change in the market's perception of the probability of an 
event of default, which affected the spread between two rates or 
reference indexes.

Credit risk management has evolved dramatically over the past decade in 

response to a number of secular forces that have made its measurement 

and management more important than ever before. Altman and Saunders 

have listed these forces (1998):

(1) A worldwide structural increase in the number of bankruptcies
(2) A trend toward disintermediation by highest quality and largest 

borrowers
(3) More competitive margins on loans
(4) A declining value of real assets and (thus collateral) in many mar­

kets
(5) A dramatic growth of off-balance sheet instruments with inherent 

default risk exposure, including credit risk derivatives

In response to these forces academics and practitioners alike have re­

sponded by:

(1) Developing new and more sophisticated credit-scoring/early- 
warning systems

(2) Moved away from only analyzing the credit risk of individual 
loans and securities towards developing measures of credit con­
centration risk (such as the measurement of portfolio risk of fixed 
income securities)

(3) Developing new models to price credit risk (such as the risk ad­
justed return on capital models) and

(4) Developing models to measure better the credit risk of off- 
balance sheet instruments.

Specifically, within the past two years, important advances have been 

made in modeling credit risk at portfolio level (2). Modeling methods 

build on the same statistical techniques employed by the Value-at-Risk 

(VaR) approach for measurement of market risks (see e.g. Jauri 1997). 

Large U.S. commercial banks, like Bank of America, Citibank and SBC
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Warburg Dillon Read, have spent heavily to develop models for measur­

ing the credit risk of their large and middle-market customers portfolios 

(see Figure 1 below). The modeling approach, referred as "bottom-up" 

approach by Jones & Mingo (1998), attempts to quantify credit risk at the 

level of each individual credit facility based on an explicit evaluation of 

the financial condition of the underlying customer and the structure of 

credit facility. Then, to measure credit risk for the portfolio as a whole, the 

risks of individual facilities are aggregated, taking into account diversifica­

tion and correlation effects.

Figure 1: Overview of risk measurement sys­
tems

Credit risks Market risks Operating risks

• Historical charge-off volatility

Top-Down Methods
(common within consumer and 

small business units)

Aggregative Models
(“top-down" techniques, generally a 

to broad lines of business)

• Peer analysis

• Historical cash flow volatility

Structural Models

2. Definition of credit loss
• Default Mode (DM)
• Mark-to-Market (MTM)

3. Valuations of loans

4. Treatment of credit-related optionality

I. Internal credit ratings

Bottom-up Methods
(standard within large corporate business units)

Building Blocks

5. Parameter specification/estimation

6. PDF computation engine
• Monte Carlo simulation
• Mean/variance approximation

7. Capital Allocation Rule

Source: Jones & Mingo (1998)

Banks use their internal credit risk models in estimating the economical 

capital needed to support their credit activities. Internal capital allocations 

are the basis for estimating the risk-adjusted profitability of various bank
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activities, which are used in evaluations of managerial performance and 

in determinations of managerial compensation (see e.g. Matten 1996). Of 

course, credit risk models and economic capital allocations have been 

incorporated into risk management processes, including risk-based pric­

ing models, the setting of portfolio concentration and exposure limits, and 

a day-to-day credit risk management.

Besides strictly internal credit risk models, there are two banks that have 

gone public. Credit Suisse Financial Product has released CreditRisk + , 

which is free and can be downloaded from Internet. The model uses an 

analytic approach on the default rates associated with particular rating 

levels, the volatility of those default rates and a sector analysis. The basic 

mathematics it uses are similar to those used in insurance. The second 

well-known model is CreditMetrics data model published by J.P. Morgan 

& Co. The model uses Monte Carlo Simulation because its loss distribu­

tions are calculated from the probabilities of credit migration and the 

probabilities are correlated. Unlike CreditRisk + , CreditMetrics is only a 

methodology and dataset. Additional software is needed to run the 

model. Both the banks obviously assume that when their customers begin 

to use their models, demand for their credit derivative expertise will 

grow. Furthermore, there is a third well-known credit risk model, KMV 

developed by the consulting firm KMV Corporation and Stephen Keal- 

hofer (see Kealhofer 1998).

The underlying idea of this thesis is based on the following two proposals: 

In March 1998, the Institute for International Finance Inc. (IIF) released a 

report recommending that regulatory capital framework should be refined 

to recognize banks' internal credit risk models for regulatory capital pur­

poses. Similarly, the International Swaps and Derivatives Association
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(Isda) published detailed proposals in March 1998 to try to persuade 

banking regulators to allow banks and other financial institutions to use 

credit risk models to calculate regulatory capital requirements. Both the 

organizations want a new regulatory framework which differentiates be­

tween high-quality and high-yield loan portfolios and which reward those 

banks which seek to manage their credit exposures with lower regulatory 

capital.

2 Purpose and scope of the study

The purpose of the study is two-fold. First, to provide insight into the cur­

rent risk-based capital regulation and the current state-of-the-art in the de­

sign of credit risk models. Secondly, to investigate the key challenges in­

volved in potential regulatory uses of banks' internal credit risk models. 

The literature analyzing regulatory capital standards e.g., in Finland, is by 

far sparse despite the obvious importance of the topic. A correct meas­

urement of the risks of insolvency is extremely important to banks' man­

agers, shareholders, and unsecured creditors, as well as to the insuring 

authorities.

In fulfillment of the above purpose, the rest of the study is organized as 

follows: Chapter 2 examines the current regulatory capital measurement. 

The chapter presents the main features of legislation suggested by the Ba­

sle Committee on Banking Supervision and implemented by banking 

regulators in several countries. In Finland, the Credit Institutions Act (Laki 

luottolaitostoiminnasta 1607/93; referred in the following as LIL) in force 

also follows the Basle Committee's guidelines. In addition, the inherent 

flaws of the current regime are presented briefly.
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Chapter 3 gives an overview of the current credit risk modeling practices. 

As stated above, for the time being, the banking industry has made the 

greatest conceptual advances in "bottom-up" credit risk modeling and the 

chapter therefore focuses only on the "bottom-up" models. Information 

on current internal credit risk models is primarily obtained from the fol­

lowing two sources:

(1) Federal Reserve System Task Force on Internal Credit Risk Models, 
referred in the following as the "Fed Task Force", published a re­
view of modeling practices at twelve large U.S. banking organiza­
tion and two non-bank securities firms in May, 1998.

(2) The Models Task Force of the Basle Committee on Banking Super­
vision, referred in the following as the "BIS Task Force", published 
a survey of modeling practices at 20 banking institutions located in 
10 countries in April, 1999.

Chapter 4 presents conclusions regarding the potential model-based ap­

proach to calculating credit risk capital requirements. The main body of 

the conclusions is based on the articles and papers published by the rep­

resentatives of Federal Reserve Bank of New York and the report of the 

Models Task Force of the Basle Committee on Banking Supervision. Con­

tinental European regulators have been more skeptical about the pros­

pects for credit risk models so far (Taylor 1998). Finally, the fourth chapter 

also provides a summary of this study.
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Chapter 2

CREDIT RISK CAPITAL CHARGES IN THE BIS FRAMEWORK

3 Background of the BIS framework

The underlying structure of all bank capital adequacy regulations 

throughout the G10, and some non-G10 countries including Finland, rely 

on principles which were laid out in the "International Convergence of 

Capital Measurement and Capital Standards" document, published in July 

1988, and referred to in the following as the "Accord". The Accord was 

initially developed by the Basle Committee on Banking Supervision, and 

later endorsed by the central bank governors of the G10 countries. The 

regulatory guidelines established in the Accord are also known as the 

"BIS framework" since the Committee meets four time a year, usually in 

Basle, under the patronage of the Bank for International Settlements (BIS). 

When drafting the Accord, the Committee had two overriding objectives: 

first, "the new framework should serve to strengthen the soundness and 

stability of the international banking system"; and secondly, "the frame­

work should be in fair and have a high degree on consistency in its appli­

cation to banks in different countries with a view to diminishing an exist­

ing source of competitive inequality among international banks" (see the 

Accord 1988).

Considering the stability of international banking system, the Accord de­

fined two minimum standards for meeting acceptable capital adequacy 

requirements: assets to capital multiple and a risk-based capital ratio. The
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first standard is an overall measure of the bank's capital adequacy. The 

second measure focuses on the credit risk associated with specific on- and 

off-balance sheet asset categories. This second measure is a solvency ra­

tio, known as the BIS ratio. It is defined as a ratio of capital to risk- 

weighted on-balance sheet assets plus off-balance sheet exposures, where 

the weights are assigned on the basis of counterparty credit risk. At the 

time the Accord was drafted, the use of differential risk weights to distin­

guish among broad asset categories represented a truly innovative ap­

proach to formulating prudential regulations. The risk based rules also set 

the stage for the emergence of more general risk-based policies within the 

supervisory process. However, since 1988, banking and financial markets 

have changed considerably.

4 Division between banking and trading book

In April 1995, the Basle Committee issued a consultative proposal to 

amend to the initial Accord, known as "Amendment to the Capital Ac­

cord to Incorporate Market Risk". The final version of the proposal will be 

referred to in the followings as the "Market Risk Amendment". It requires 

banks to measure and hold capital to cover their exposure to market risk 

associated with debt and equity positions located in the trading book, and 

foreign exchange and commodity positions in the both the trading and 

banking books.

According to the Market Risk Amendment, market risk encompasses both 

"general market risk" and "specific market risk". General market risk re­

fers to changes in market value of on-balance sheet assets and off-balance 

sheet instruments resulting from broad market movements, such as 

changes in the level of interest rates, equity prices, exchange rates, and
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commodity prices. Specific market risk refers to changes in the market 

value of individual positions due to factors other than broad market 

movements like liquidity, exceptional events, and credit quality.

The trading book is defined as the bank's proprietary positions in financial 

instruments, which are intentionally held for short term trading, and/or 

which are taken on by the bank with the intention making profit from 

short term changes in prices, rates and volatilities. All trading book posi­

tions must be marked-to-market or marked-to-model every day. For mar­

ket risk purposes, a bank may include in its measure of general market 

risk certain non-trading instruments that it deliberately uses to hedge trad­

ing positions.

The initial Accord still applies to non-trading items both on- and off- 

balance sheet. Market risk must be measured for both on- and off-balance 

sheet traded instruments. However, on-balance sheet traded instruments 

are subject to market risk charges only, while off-balance sheet deriva­

tives, like swaps and options are subject to both market risk and credit 

risk capital charges. Consequently, the bank's overall capital requirement 

is the sum of (see the Market Risk Amendment):

(1) Credit risk capital charge, which applies to all positions in the 
trading and banking book, but excluding debt and equity traded 
securities in the trading book, and all positions in commodities 
and foreign exchange; and

(2) Market risk capital charge for the instruments of the trading book 
on-, as well as off-balance sheet.

It is worth noting that market risk regulation in the Europe Union e.g., 

here in Finland (see LIL 5a §; RATAm 106.12), is primarily based on the 

Capital Adequacy Directive (CAD), adopted by the European Commission 

in 1993. The directive has been effective since January 1996, two years
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before the Market Risk Amendment applies. In many ways, the new BIS 

framework nevertheless follows the CAD rules. For instance, the "trading 

book" concept is very similar. Contrary to the CAD rules, the Market Risk 

Amendment however gives an important role to banks' internal VaR 

models. Banks have the choice between their own internal models and 

the standard model proposed by the Market Risk Amendment to deter­

mine market risk related regulatory capital. Instead, such internal models 

are not specifically provided for in the CAD (see Dale 1996; cf. RATAm 

106.12 Appendix 3).

5 The risk-weighted amount used to compute the BIS ratio

In determining the BIS ratio, it is necessary to consider both the on- 

balance sheet items as well as specific off-balance sheet items. The BIS 

framework carries risk-weighted categories as to which all on-balance 

sheet items are allocated. These items are valued at their historical book 

values. Off-balance sheet items are first expressed as a credit equivalent 

and then are appropriately risk weighted by counterparty, see Section 6 

below. The total risk-weighted amount is the sum of the two components: 

the risk-weighted assets for on-balance sheet instruments and the risk- 

weighted credit equivalent for off-balance sheet items. Table 1 gives the 

risk capital weights by asset categories, and Table 3, in Subsection 6.2, 

shows the weights which applies to credit equivalents for off-balance de­

rivative positions by the type of counterparty (cf. LlL 76 §; RATAm 106.7).
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Table 1 : Risk capital weights by broad on- 
balance sheet asset category

Risk
weights

Asset category

0 % ■ Cash
■ Claims on central governments and central banks denominated in national cur­

rency and funded in that currency
■ Other claims on OECD central governments
■ Claims collateralised by cash or OECD central government securities or guaran­

teed by OECD central governments.
20 % ■ Claims on multilateral development banks and claims guaranteed by such bank

■ Claims on banks in the OECD and loans guaranteed by OECD incorporated 
banks

■ Claims on banks incorporated in countries outside the OECD (with a residual 
maturity of up to one year), and, claims guaranteed by the same banks

■ Claims on non-domestic OECD public sector entities, and claims guaranteed by 
such entities

■ Cash items in process on collection
50 % • Loans fully secured by mortgage on residential property that is or will be occu­

pied by the borrower or that is rented
100 % ■ Claims on the private sector

■ Claims on banks incorporated outside the OECD with a residual maturity of over 
one year

■ Claims on commercial companies owned by the public sector
■ Premises, plant and equipment and other fixed assets
■ Real estate and other investments
■ Capital instruments issued by other banks (unless deducted from capital)
• All other assets

The assignment of various groups of assets to particular risk-weight cate­

gories inevitable represent "rather broad, unspecific, regulatory judge­

ment" (Norton 1994). Clearly, the BIS risk weights do not reflect some 

very obvious determinants of credit risk, such as differences in credit 

quality across commercial loans, concentrations of risk in a specific asset 

category or to particular obligator, industry, or region and covariances 

among values of financial instruments. Some empirical studies have ana­

lyzed the correspondence of risk weights with actual risk (see e.g., Avery 

& Berger 1991 and Cordell & King 1995). They indicated that the corre­

spondence is indeed relatively loose.
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6 Calculation of the credit equivalent for off-balance

SHEET EXPOSURES

6.1 The Case of Non-derivative Exposures

Non-derivative off-balance sheet items are converted to credit equivalents 

by multiplying the nominal principal amounts by a credit conversion fac­

tor. Conversion factors depend on the nature of the instrument, as shown 

in Table 2.

Table 2: Credit conversion factors for non­
derivative off-balance sheet exposures

I Conversion
factor

Off-balance sheet exposure

100 % ■ Direct credit substitutes, e.g. general guarantees of indebtedness, bank accep­
tance guarantees and standby letter of credit serving as financial guarantees 
for loans and securities

■ Sale and repurchase agreements and asset sales with recourse, where the 
credit risk remains with the bank

■ Forward asset purchases, forward deposits and partly-paid shares and securi­
ties, which represent commitments with a certain drawdown

50 % ■ Certain transaction -related contingent items
■ Note issuance facilities and revolving underwriting facilities
■ Other commitments with an original maturity of over one year

20 % ■ Short-term, self-liquidating trade-related contingencies
0 % ■ Other commitments with an original maturity of up to one year, or which 

could be unconditionally cancelled at any time

The resulting credit equivalents are weighted according to the type of the 

counterparty exactly as on-balance sheet instruments, see Table 1 above 

(cf. RATAm 106.7).

6.2 The Case of Derivative Positions

The Accord recognizes that the credit risk exposure of long dated finan­

cial derivatives fluctuates in value, and estimates this exposure both in 

terms of the current marked-to-market value, plus a simple measure of the 

projected future risk exposure. Calculation of the BIS risk-weighted 

amount for derivatives proceeds in two steps. The first step involves com­

puting a credit equivalent amount, which is sum of the current replace-
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ment cost when it is positive (and zero otherwise), and an add-on amount 

that approximates future replacement cost. The second step involves 

computing a risk-weighted amount. It is simply derived by multiplying the 

credit equivalent amount by a counterparty risk-weighting factor given in 

Table 3 (cf. RATAm 106.7).

Table 3: Counterparty risk weighting factors 
for derivative off-balance sheet exposures

Risk weights Type of Counterparty
0% OECD governments

20 % OECD banks and public sector entities
50 % Corporate and other counterparties

The current replacement value of a derivative is its marked-to-market 

value or liquidation value, only when it is positive. The add-on amount is 

computed by multiplying the notional amount of the transaction by the 

BIS required add-on factors, as shown in Table 4.

Table 4: Add on factors by the type of underly­
ing and maturity

Residual Ma­
turity

Interest Rate Exchange 
Rate and 

Gold

Equity Precious
Metals

Other Com­
modities

One year or 
less

0 % 1 % 6% 7% 10 %

Over one 
year to five 

years

0.5 % 5 % 8 % 7% 12 %

Over five
years

1.5 % 7.5 % 10 % 8 % 15 %

In the table, interest rate contracts include single currency interest rate 

swaps, basis swaps, forward rate agreements and product with similar 

characteristics, interest rate futures and interest rate options purchased. 

Exchange rate contracts, in turn, include gold contracts, which are treated 

the same way as exchange rate contracts, cross-currency swaps, cross­

currency interest rate swaps, outright forward foreign exchange contracts, 

and currency options purchased. Equity contracts based on individual
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Equation 1

stock as well as equity indices, precious metal contracts and contracts on 

other commodities include forward, swaps and purchased options.

6.3 Netting of Derivatives

In 1995 the initial Accord was modified to allow banks to reduce their 

credit equivalent when bilateral, legally enforceable netting agreements 

are in place (see the Treatment of the Credit Risk Associated with Certain 

Off-balance-sheet Items). The new BIS formula for add-on amounts is:

add on amount = notional amount x add on factor x (0.4 + 0.6 x NPR)

where add-on factors are the same as in Table 4. NPR denotes the net 

placement ratio, which is replacement cost when positive, divided by the 

gross replacement cost calculated as before, without taking account net­

ting. That is, the sum of the positive replacement cost for the transactions 

covered by the netting agreement. Thus, the new formula either does not 

allow for complete offsetting even if netting agreement is in place. The 

above calculations are done by counterparty, and then the counterparty 

risk weight applies to derive the risk-weighted amount.

7 Regulatory capital and the BIS ratio

The main feature of the legislation suggested by the Basle committee is 

the minimum capital level of risk-based capital-to-asset ratio. As a protec­

tion against credit risk, banks are required to maintain a capital amount of 

at least 8% of the total risk weighted assets calculated as shown in the 

previous sections. However, capital, as defined by the Committee, is 

broader than equity capital. The BIS rules assign regulatory capital items 

to two tiers: core capital (Tier 1) and supplementary capital (Tier 2). The
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Equation 2

Equation 3

total capital of a bank comprises sum of core capital and supplementary 

capital, minus required deductions and limits as presented in Table 5 (see 

the Accord and cf. LIL 73 § and 75 §).

Table 5: Regulatory capital

+ Tier 1 ■ Fully paid common stock
■ Non-cumulative preferred stock
■ Disclosed reserves (reserves by appropriations of retained earnings, 

other surplus such as share premiums, retained profit, general and legal 
reserves)

- Deductions ■ Goodwill
+ Tier 2 ■ Undisclosed reserves

■ Revaluation reserves
■ General provisions and general loan loss reserves
■ Hybrid debt capital instruments
■ Subordinated term debt

Deductions ■ Investments in unconsolidated subsidiaries engaged in banking and 
financial activities

■ Banks' holdings of capital issued by other banks of deposit -taking insti­
tutions

. Limits ■ General loan loss reserves are limited to a maximum of 1.25 % of risk
weighted assets

■ Subordinated term debt instruments may be included within Tier 2 capi­
tal only to a maximum 50 % of the Tier 1 capital.

■ Tier 2 capital included in total capital is limited in amount to WO % of 
Tier 1 capital

= CAPITAL

As the BIS risk-based capital rules limit capital counted to Tier 2 capital to 

be no more than Tier 1 capital, the minimum capital levels can also be 

defined as:

Tier 1-Deductions
------------------------------------> 4%
Total Risk Weighted Assets

Tier 1 - Deductions + Tier 2 - Deductions - Limits nn, 
-----------------------------------------------------------------> 8%

Total Risk Weighted Assets

At the time the Accord was drafted, little empirical work existed to sup­

port either the minimum capital levels or the risk weights included the 

BIS framework. In many respects, the proposals of the Basle Committee
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are however in accordance with the model presented by Kim and San- 

tomero (1988). They used the mean-variance model and concluded that 

e.g. simpler financial leverage is ineffective means to limit the insolvency 

risk of banks. They argued that under such circumstances banks reshuffle 

assets toward riskier ones when a capital ratio is tightened. They sug­

gested that risk-related capital regulation is potentially more effective, but 

they also noticed that the weights must be chosen optimally to be "theo­

retically correct". The Basle Committee justified its proposal on more 

pragmatic grounds:

(1) "It [the risk weight approach] provides a fairer basis for making in­
ternational comparisons between banking systems whose struc­
tures may differ,

(2) It does not deter banks form holding liquid or other assets which 
carry low risk, and

(3) It allows off-balance-sheet exposures to be incorporated more eas­
ily into the measure."

Since 1988, some academic studies have evaluated the effectiveness of 

the BIS ratio's accuracy in classifying solvent and insolvent bank. The 

findings of e.g., Jones and King (1995) as well as Niemelä (1999) indicate 

that the risk-based capital ratio is actually a poor and unreliable indicator 

for troubled banks. First, credit risk is not the only determinant in failure 

prediction, and secondly, credit risk may be poorly measured by the BIS 

ratio.

8 Further considerations

It is said that the Accord was designed for "a stylized (or simplified) ver­

sion of the banking industry at the end of the 80s" and tends to be some­

what "rigid in nature" (Swaan 1998 and Norton 1994). On the other
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hand, such elements have enabled the BIS framework to be widely appli­

cable and that have contributed to greater harmonization. There is never­

theless a growing realization that the Accord, in spite of the above 

amendments, may be no longer up-to-date and needs to be modified. 

Moreover, the weaknesses of the current regime are not mere of aca­

demic or regulatory interest but have very real implications for banking 

businesses, as discussed briefly below.

Market participants argue that the current rules have a distortive effect on 

credit risk pricing, as the BIS risk weights do not fully reflect differences 

between degrees of default risk, different seniority of instruments or dif­

ferences in the term of an exposure. Indeed, there seems to be some em­

pirical evidence indicating that, at least to some extent, the relative regu­

latory capital cost of each type of instrument is influencing spreads and 

distorting the market pricing of credit risk (Isda 1998). The fact that riskier, 

higher-return business can be undertaken at the same "regulatory capital 

cost" also provides an incentive to lend to lower quality credits, as the 

relative return appears more favorable (see also Nishiguchi et al 1998).

As discussed above, the current regime ignores totally diversification ef­

fects. Therefore, market participants believe that the current capital ratios 

send an inaccurate and distorted signal to markets, causing perverse in­

fluences on a bank's relative funding costs, credit rating and share per­

formance (Isda 1998). This is because regulatory capital ratios still play an 

important part in market perception of a bank relative to its peers; stock 

analysts, rating agencies, market commentators, investors and the press 

focus on the BIS ratio as a headline indicator of financial soundness.
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Finally, it is highlighted how the current rules may have a distortive effect 

on risk management in general. Since they fail to recognize portfolio di­

versification and offsetting short credit risk positions, except in very lim­

ited circumstances, they inhibit credit risk hedging, through e.g., the use 

of credit derivatives, and provide no incentive to develop modeling tech­

niques, which measure credit risk on a portfolio basis.
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Chapter 3

BOTTOM-UP CREDIT RISK MODELING

9 The relationship between PDF and allocated economic

CAPITAL

Before discussing credit risk modeling techniques, it is useful to describe 

how in practice these models are used within banking institutions' inter­

nal capital allocation systems. Internal capital allocations against credit 

risk are based on a bank's estimate of the probability density function 

(PDF) for credit losses. Various credit risk modeling techniques do this by 

different means but the goal is the same; to estimate PDFs. A risky portfo­

lio is, loosely speaking, one whose PDF has a relatively long, fat tail - 

where there is a significant likelihood that actual losses will be substan­

tially higher than expected losses, shown as the left dotted line in Figure 

2. In the figure, the probability of credit losses exceeding the level X is 

equal to the shaded area under the PDF to the right of X.

The estimated capital needed to support credit risk exposure is generally 

referred to as its "economic capital" for credit risk (Jones & Mingo 1998). 

The process for determining this amount is analogous to VaR methods 

used in allocating economic capital against market risks. Specifically, the 

economic capital for credit risk is determined in theory so that the prob­

ability of unexpected credit losses exhausting economic capital i.e., the 

probability of insolvency, is less than some "target insolvency rate". In 

practice, the target insolvency rate is usually chosen to be consistent with
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the bank's desired credit rating for its own liabilities (the Fed Task Force 

1998; the BIS Task Force 1999). For example, if the desired rating is AA, 

the target insolvency rate might equal the historical default rate for AA- 

rated corporate bonds. According to a rule of thump used by practitio­

ners, this rate is about three basis points (Gordy 1998). Consequently, 

such a bank ought to hold capital against credit loss equal to the 99.97th 

percentile value on the cumulative distribution of portfolio losses. Capi­

talization sufficient to absorb up to the 99.50th percentile value of losses 

in turn would be consistent with a BBB-rating (Gordy 1998).

Figure 2: Relationship between PDF and allo­
cated economic capital

Probability Density Function 
ot Losses (PDF)

Allocated Economic Capital

Expected Losses

Losses

Within capital allocation systems, a critical distinction is made between 

expected credit losses and the uncertainty of credit losses. It is generally
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assumed that it is the role of reserving policies to cover expected credit 

losses (the Fed Task Force 1998; the BIS Task Force 1999), while it is role 

of equity capital to cover credit risk, or the uncertainty of credit losses. In 

Figure 2, for a target insolvency rate (the area shaded under the PDF to 

the right of X), the required economic capital equals the distance between 

the two dotted lines. The area under the PDF to the left of expected losses 

should be covered by the loan loss reserves.

As indicated, economic capital allocations for credit risk are based on two 

extremely critical inputs: the target insolvency rate and the estimated PDF 

for credit losses. Therefore, two banks with identical portfolios may have 

very different capital allocations for credit risk, owing to difference in 

their attitudes toward risk taking, as reflected in their target insolvency 

rates, or owing to differences in their methods for estimating PDFs as re­

flected in their credit risk models.

10 Planning horizon and definition of credit losses

Bottom-up credit risk modeling procedures are driven importantly by an 

underlying definition of credit losses and the "planning horizon" over 

which such losses are measured. The banks reviewed by the Fed/BIS Task 

Forces generally employ a one-year planning horizon and what Jones and 

Mingo (1998) refer to as either a default-mode (DM) paradigm or a mark- 

to-market (MTM) paradigm for defining credit losses.

For the time being, the DM paradigm appears to be the most common 

approach to defining credit losses, and e.g. CreditRisk+ also relies on this 

approach. It is sometimes called also a "two-state" approach because only 

two outcomes are relevant: non-default and default. If a loan does not de-

22



fault within the planning horizon, no credit loss is incurred; if the loan 

default, the credit loss equals the difference between the loan's book 

value and the present value its net recoveries. There are several possible 

definitions of default depending on the particular bank. A loan may be 

deemed to be in "default" if the loan is classified "substandard", if pay­

ments are past due, if the loan is placed on non-accrual status, or if recov­

ery proceeding are initiated. Typically, default nevertheless arises if the 

obligor becomes unable to meet its payment obligations and the loan is 

placed non-accrual status (the Fed Task Force 1998). The DM paradigm 

can be thought of a representation of traditional "buy and hold" lending 

business of banks. Under this approach, secondary loan markets are re­

garded as not sufficiently developed to support a full mark-to-market ap­

proach to risk measurement.

The MTM paradigm generalizes the DM approach by recognizing that the 

economic value of loan may decline even if the loan does not formally 

default. According to the Fed Task Force, few U.S. banks used the MTM 

framework (1998), but at the banks surveyed by the BIS Task Force, 

MTM-type models seem to be more common (1999). Furthermore, many 

practitioners believe the industry is likely to evolve from DM-based risk 

models for the banking book to the more general MTM-based models 

over the coming years. The earliest popular model J.P. Morgan's Credit- 

Metrics can also be regarded as an MTM-model.

The MTM paradigm is "multi-state" in that "default" is only one of several 

possible credit ratings to which a loan could migrate. In effect, the credit 

portfolio is assumed to be marked to market or, more accurately, "marked 

to model" as further discussed below. For example, the value of a term 

loan typically would employ a discount cash flow methodology, where

23



the credit spreads used in valuing the loan would reflect the market- 

determined term structure of credit risk spreads for loans of that grade. A 

credit loss under the MTM paradigm is defined as an unexpected reduc­

tion in the portfolio's value over the planning horizon due to deteriora­

tions in credit ratings on the underlying loans or a widening of credit risk 

spreads in financial markets.

11 Valuations of loans and risk factors

Under both the loss paradigms, the estimation of the current portfolio's 

PDF involves estimating (1) the portfolio's current value and (2) the prob­

ability distribution its future value at the end of the planning horizon. 

Consequently, model-builders are required to define how the current and 

future values of each credit instrument are determined at the beginning 

and end of the planning horizon. In addition, model-builders are required 

to specify the risk factors that determine each of the types of credit events 

leading to a change in the value of an instrument. In practice, these op­

erational modeling details are however dependent on the specific con­

cept of credit loss.

This section reviews the loan valuation processes and the specification of 

the risk factors under both the paradigms. To simplify the review, it is as­

sumed that the bank's exposure level is known with certainty at the be­

ginning of the planning horizon. Specifically, the credit portfolio is as­

sumed to consist only of fixed-rate term loans and that each customer has 

only a single loan. For many types of credit instruments, such as lines of 

credit and derivatives, a bank's credit exposure over the planning horizon 

is not known with certainty. The treatment of such instruments is dis­

cussed briefly in Section 12.
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11.1 Valuations within the DM Framework

The current and future values of loans in the DM paradigm are defined in 

a manner consistent with the underlying two-state notion of credit losses. 

Typically, for a simple term loan, the current value is measured as its 

book value at beginning of the planning horizon (see e.g. CreditRisk + : A 

Credit Risk Management Framework 1997, the Fed Task Force 1998, and 

the BIS Task Force 1999).

Under the DM paradigm, the future value of the loan depends only on 

whether or not the borrower defaults during the planning horizon. If the 

borrower does not default, the loan's future value is normally taken to be 

its book amount at the end of the planning horizon as well. Neither 

changes in credit risk spreads nor downgrades short of default affect the 

future values of non-defaulting loans within DM-type models. On the 

other hand, if the borrower defaults, the future value is usually measured 

as the loan's book value minus the present value its net recoveries, as fur­

ther discussed in Subsection 11.3 below.

11.2 Discounted contractual cash flows approach

Within the MTM framework, the most common valuation approach ap­

pears to be discounted contractual cash flow methodology that is often 

also associated with J.P Morgan's CreditMetrics framework (see also the 

Fed Task Force 1998). To illustrate the methodology, suppose the credit 

portfolio consists N customers, where current credit rating of the cus­

tomer / is g,. The number of applied rating grades is denoted C, and 

grades / through G-7 are non-default states, and grade G stands for a de­

fault. The loan to the customer i has a contractual coupon payment of C, 

per period until maturity in period M„ at which point the final payment 

(principal plus coupon) equals the sum of C, and P,.
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Equation 4

(J

Equation 5

The current value of an individual loan to the customer / can be pre­

sented as the present discounted value of its contractual cash flows:

[l+r, +R,(g,)] [1+r, + R,(g,)][i + f2 + R2(g,)] fl[i + rk +Rk(g,)]
k=1

The discount rate for period A: equals the sum of the forward risk-free rate 

implied by the yield curve, denoted rk; and for each credit rating grade, 

the market-determined risk premium for deflating period-к contractual 

cash flows of gfrated obligors, denoted Rk(g¡).

Consistent with the determination of current values, the future values of a 

non-defaulting loan can be calculated as the present discounted value of 

its remaining contractual cash flows. Consequently, the future value of a 

non-defaulting loan to the customer / as of the end of planning horizon is 

given by:

V, =
l + r2 +R2(§¡\

+
l + r2 +R2{§¡\ l + r3 +R3Vy,

+ ...+ C,+P,
n[l + rk+R„(g,)]
k=2

In the equitation, a hat (A) over a variable indicates that it is endogenous, 

Le. dependent on other variables, and its value is taken as of the end of 

the planning period. Specifically, the discount rates can be different from 

those used in determining the value at the beginning of the planning ho­

rizon either because the loan's credit rating may have changed or be­

cause the term structure of credit spreads on loans of a given rating may
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have changed. In the equitation, ~Rk(~g) denotes the market-determined 

risk premium for obligators rated "g„ where both the risk premium and 

the credit rating are endogenous variables measured as of the end of the 

planning horizon.

Although the discounted contractual cash flow approach is easily under­

stood and implemented, it is not fully consistent with modern finance 

theory. Under the approach, loans to two identically rated borrowers re­

ceive the same discount factors, even if the two borrowers are not equally 

sensitive to the business cycle or other systematic factors. Accordingly, 

the discount factor for the customer / should include an idiosyncratic 

component, which affects only that individual customer. Within the cur­

rent generation of credit risk models, this component is usually ignored 

meaning that credit risk spreads are assumed to depend only on the obli­

gors credit rating.

11.3 Future Values of Defaulted Loans

The discounting of contractual cash flows is not appropriate for modeling 

the end-of-period values of defaulted loans. Instead, under both the loss 

paradigms, the decline in the economic value of a defaulted loan relative 

to its book value is typically determined as the book value, B¡ times a loss- 

rate-given-default (LGD). That is, the future value of a defaulted loan V, is 

given its recovery rate, equal to one minus the LCD:

Equation 6

4=6,(1-100,)

The sophistication of current modeling methods for LCDs seems to vary 

considerably across banks (see the Fed Task Force 1998 and the BIS Task 

Force 1999). LCDs may be treated as random variables whose values are
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uncertain as of beginning of the planning horizon. For example, LCDs 

may be assumed to equal the sum of a fixed average loss rate, L and a 

zero-mean random error term ~ /,:

LGD = L + 7i

A tilde (~) over variable indicate that it does not depend on other vari­

ables i.e., it is regarded as exogenous. Contrary to such models, in some 

models, LCDs are treated as deterministic and known in advance.

11.4 Credit Rating Migrations

11.4.1 Ratings Transition Matrix

Within the credit risk models reviewed by the Fed/BIS Task Forces, the 

likelihood of a credit facility migrating to another credit risk grade over 

the planning horizon is frequently represented through a "ratings transi­

tion matrix" similar to that J.P. Morgan's CreditMetrics matrix depicted in 

Table 6. Given the borrower's current credit rating, the probability of mi­

grating to another grade is shown with intersecting cell. In Table 6, for 

example, the likelihood of а В В B-rated loan migrating to single-B within 

one year would be 0.32%. Since under the DM paradigm only rating mi­

grations into the default state lead to changes in the values of loans, only 

the last column of matrix would be relevant representing the expected 

default frequency (EDF) of a particular grade.

Table 6: Sample Credit Transition Matrix

(Probability of migrating to another rating within one year, percent)

Current
Credit
Rating

AAA AA A BBB BB В CCC Default
AAA 87.74 10.93 0.45 0.63 0.12 0.10 0.02 0.02
AA 0.84 88.23 7.47 2.16 1.11 0.13 0.05 0.02
A 0.27 1.59 89.05 7.40 1.48 0.13 0.06 0.03
BBB 1.84 1.89 5.00 84.21 6.51 0.32 0.16 0.07
BB 0.08 2.91 3.29 5.53 74.68 8.05 4.14 1.32
В 0.21 0.36 9.25 8.29 2.31 63.89 10.13 5.58
CCC 0.06 0.25 1.85 2.06 12.34 24.86 39.97 18.60
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Credit rating transition matrices are usually based on the historical migra­

tion frequencies of publicly rated corporate bonds, as in Table 6. How­

ever, probabilities in transition matrices are typically statistically 

"smoothed" in order to attenuate the effects of sampling variation in the 

actual migration patterns of corporate bonds (see CreditMetrics-Technical 

Document 1997). For modeling default/rating migrations, the banks re­

viewed by the Fed/BIS Task Forces have adopted either a reduced-form 

approach or a structural approach.

71.4.2 Structural Models

As exemplified by the CreditMetrics modeling framework, under the 

structural approach the model-builders typically posit some explicit mic­

roeconomic model of the process determining defaults and rating migra­

tions of individual customers. To illustrate, for a given customer /, a rating 

migration from g to “g, may assumed to depend on the future realization 

of a customer-specific random variable, "a migration risk factor", denoted 

~ v„ representing the change in that borrower's financial condition over 

the planning horizon. Specifically, for a credit rating system with G 

grades:

Equation 7

G-l

G

if v,
if vÁ9i) ^ V,

if VGJg,) < v,

otherwise

- Vfy,)

- v2(g,)

where for a customer / having a credit rating of g„ the V,(gi),..../Vc(gA) de­

note the threshold levels of ~v, that trigger rating downgrades or up­

grades. Consequently, for a grade-4 facility a value of ~v, less than or
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equal to V,(4) would imply a future credit rating of grade-1, a value 

greater than V,(4) but less than or equal V2(4) would imply a grade-2 and 

so forth. Of course, only migrations to "default" are relevant for DM-type 

models.

As within CreditMetrics, the change in the value of obligor's assets in rela­

tion to asset value thresholds V is often assumed to determine the change 

in its credit rating over the planning horizon (the BIS Task Force 1999). 

For example, given an obligor's current credit rating e.g., equivalent to 

BBB, an extremely large positive change to its net worth might corre­

spond to an upgrade to AAA, while an extremely large negative realiza­

tion might generate a downgrade to default. Mathematically, the asset 

threshold levels are appropriately scaled so that the probability of any 

borrower migrating to another grade agrees with the assumed rating tran­

sition matrix (see CreditMetrics-Technical Document 1997).

71.4.3 Reduced-Form models

In contrast to structural models, reduced-form models typically assume a 

particular functional relationship between borrowers' expected default 

rate/migration matrix and so-called background factors. These back­

ground factors may represent either (a) observable variables, such as indi­

cators of macroeconomic activity, or (b) unobservable random risk fac­

tors. Under this approach, it is not necessary to explicitly estimate the 

means and variances of the underlying migration risk factors if a mean- 

variance methodology (see Subsection 14.1 below) is used to approxi­

mate the PDF. Rather, the model-builder must estimate each loan's prob­

ability of default.
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An example of the reduced-form approach is the CreditRisk + modeling 

framework where defaults are assumed to be driven entirely by a vector 

of К "risk factors" x= (xu...xK). Conditional on x, defaults of individual ob­

ligors are assumed to be independently distributed Bernoulli draws. The 

conditional probability p,(x) of drawing a default for obligor / is a function 

of the rating grade g of obligor /, the realization of risk factors x, and the 

vector of "factor loadings" (wiU...,wiK) which measure the sensitivity of 

obligor i to each of the risk factors. CreditRisk+ specifies this function as:

Equation 8

К
р-(х) = рд,Ехл*ы

where pg/ is the unconditional default probability for a grade-g obligor, 

and the x are positive-valued with mean one. The intuition behind this 

specification is that the risk factors x serve to "scale up" or "scale down" 

the unconditional pg/. A high draw xk (over one) increases the probability 

of default for each obligor in proportion to the obligor's weight wik on that 

risk factor; a low draw of xk (under one) scales down all default probabili­

ties. The weights wik are required to sum to one for each obligor, which 

guarantees the E[p¡(x)] = pgl.

11.5 Changes in Credit Risk Spreads

Under the MTM paradigm, for purposes of modeling future values, 

changes in the risk-free yield curve are not treated as random credit 

events. Changes in the yield curve are normally set equal to the market 

expectations implied by the current risk-free term structure. Instead, it can 

be assumed that for a given credit rating g, changes in the credit risk 

spread for period k, are random:
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Equation 9

^(g)=R*(g)+?*(g), for к = \,2,...,м

where M is the longest maturity of any loan and ~ zk(g) denotes a random 

risk factor. However, modeling changes in credit risk spreads appears to 

be in a very early stage of development, as discussed in Section 13.3 be­

low.

11.6 Summary of Loan Valuations and Risk Factors

The preceding presentation has emphasized three types of "credit events" 

that can lead to a change in the value of a loan. The credit loss for a sin­

gle term loan reflects the combined influence of the risk factors, which 

correspond to (1) the random variables affecting rating migrations (only 

migrations to "default" are relevant for DM-type models); (2) the random 

variables affecting the loan's LCD; and within MTM-type models, (3) the 

random variable affecting credit risk spreads.

12 TREATMENT OF CREDIT RELATED OPTIONALITY

12.1 Lines of Credit

In contrast to simple term loans or bonds, for many instruments a bank's 

credit exposure is not fixed advance, but rather depends on future (ran­

dom) events. One important example of such exposure risk or, in other 

words, "credit-related optionality" is a committed line of credit, where the 

borrower is allowed to draw on those lines whenever he wants to, de­

pending on his needs and subject to a pre-defined credit limit. Optionally 

reflects the fact that drawdown rates tend to increase as a borrower's 

credit quality deteriorates.
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Within current credit risk models, the credit-related optionality associated 

with a committed line of credit usually is represented by treating the 

drawdown rate as a known function of the customer's end-of-period 

credit rating (The Fed Task Force 1998 and the BIS Task Force 1999). The 

method can be illustrated considering a one-year line of credit that is 

completely undrawn at the beginning of the planning horizon. Condi­

tional on the customer's credit grade at the end of the planning horizon, 

the assumed end-of-period drawdown rate would be based on the aver­

age historical drawdown experience of customers having that future 

grade. The future value of the line would then be calculated as if the line 

were a loan equal to the assumed conditional drawdown.

Within the DM-type models, a simpler approach is often employed. The 

undrawn credit facility is converted into a "loan equivalent exposure" 

(LEE) to make it comparable to a term loan (The Fed Task Force 1998). 

The loan equivalent exposures are assumed independent of customer's 

credit quality. Ideally, the loan equivalent exposure should be calculated 

as the expected drawdown under the line in the event the customer were 

to become insolvent by the end of period. Within the CreditRisk+ model­

ing framework, it is suggested that a committed line of credit is usually 

drawn down totally prior to default and the exposure at risk should there­

fore be assumed to be full nominal amount (CreditRisk +: A Credit Risk 

Management Framework 1997).

12.2 Derivatives Exposures

Credit-related optionality also arises with products outside traditional 

lending operations. In derivative transactions, such as interest rate and 

currency swaps, equity derivatives, FX derivatives, etc., the source of un­

certainty is not the customers' behavior but lies in market movements.
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That is, counterparty exposure changes randomly over the life the con­

tract, reflecting changes in the amount by which the bank is "in the 

money".

The current exposure of various derivative positions can be assessed by 

identifying the market-to-market values of positions and applying the 

above modeling techniques to assess the probability of loss, but assessing 

potential future exposure introduces further complications. Essentially, 

this is because future exposure will vary as changes in relevant market 

rates e.g., interest rates, levels of equity indices etc., effect the value of 

portfolio of deals with any individual counterparty. Moreover, future ex­

posure is likely to correlate with counterparty default likelihood, and ex­

posure will be affected by the extent to which legally enforceable netting 

arrangements are in place. Finally, exposure anyhow changes over time 

as deals mature and roll off.

Ideal counterparty risk modeling would involve establishing a distribution 

of possible losses that not only looks at default and recovery rates of indi­

vidual names and combinations of names, but also at the volatility of the 

size of the underlying derivative exposure. To treat derivative products in 

full detail, it would be necessary to develop an integrated model of credit 

and market risk. Such integrated models are still evolving. For example, 

CreditMetrics specifies only a procedure for calculating plain-vanilla in­

terest rate swap values and treats those instruments consistent with way 

bonds and loans are treated. In addition, credit derivatives can be incor­

porated in the CreditMetrics modeling framework (see CreditMetrics- 

Monitor 1998). Neither CreditRisk+ nor CreditMetrics can handle non­

linear derivative products as options and cross-currency swaps.
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So far credit-related optionally arising from derivative transactions is gen­

erally incorporated into credit risk models by associating with each de­

rivative instrument a non-random loan equivalent exposure (LEE), which 

equals the instrument's current market-to-market value plus an add-on 

future exposure. To set these add-ons, banks employ standard tables that 

approximate the volatility of different market factors which drive their de­

rivative portfolios (Isda 1998). This approach seems to be quite similar to 

the current Basle add-ons approach, except that more sophisticated sys­

tems have many more market factor assessed than is the case under the 

Basle add-on matrix (Isda 1998). Instead of the standard tables, at some 

banks reviewed by the Fed/BIS Task Forces derivative contracts' LEEs are 

calculated as some variant of the amount by which the bank is expected 

to be "in the money" on that contract over the planning horizon, based 

on simulations using the bank's trading account VaR models.

13 Parameter specification and estimation

The most challenging aspect of the credit risk modeling is the calibration 

of model parameters. In principle, to measure credit risk for a portfolio as 

a whole, each risk factor's joint probability distribution with all other risk 

factors should be specified. Reflecting the longer term nature of credit cy­

cles, even in the best of circumstances where parameter stability can be 

assumed, many years of data, spanning multiple credit cycles, would be 

needed to estimate joint default/rating migration probabilities, correla­

tions, and other key parameters with adequate precision (Altman- 

Saunders 1998).

Unfortunately, at the banks reviewed by the Fed/BIS Task Forces, data on 

historical loan performance have been warehoused only since the inn-
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plementation of their economic capital allocation systems, within the last 

few years at best. Owing to such data limitations, the current generation 

of model specification practices tends to involve several crucial simplify­

ing assumptions and considerable judgment, as further discussed herein.

13.1 Correlation among different types of risk factors

From the classic portfolio theory, the overall uncertainty around a portfo­

lio's rate of return depends on its systematic risk. Similarly, in the context 

of long-term credit portfolios, uncertainty around expected credit losses 

depends on co-movements in loan values arising from their dependence 

on common influences. Under the MTM paradigm, the systematic risk 

may reflect four types of correlations among risk factors that potentially 

could contribute to co-movements in loan valuations:

(1) Correlations between risk factors affecting credit migrations, espe­
cially those corresponding to borrowers operating in related mar­
kets, like the same geographic region or industrial sector;

(2) Correlations between risk factors determining LCDs;
(3) Correlations between risk factors driving changes in the term struc­

tures of credit risk spreads; and
(4) Cross-correlations among the risk factors affecting rating migra­

tions, LCDs and credit spreads.

Of course, only three types of correlations are relevant within DM-type 

models: correlations between borrower defaults, correlations between 

LCDs, and cross-correlations among defaults and LCDs.

Although critically important, at least in theory, correlations among ran­

dom variables are difficult to estimate reliably with relatively short histori­

cal sample periods. Therefore, the builders of existing credit risk models 

have imposed pretty restrictive assumptions on the correlations among 

the risk factors. Essentially, nearly all current models assume zero correla-
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tion between risk factors of different type. The risk factors affecting 

changes in credit ratings are assumed to be independent of those affecting 

changes in credit risk spreads, which are assumed to be independent of 

those affecting LCDs. Model-builders typically focus on specifying the 

probability distribution for each type of risk factor separately from the 

others. In fact, according to the Fed/BIS Task Forces' findings, within vir­

tually all credit risk models the only correlation effects considered at pre­

sent are the correlations between default/credit migrations of different cus­

tomers.

13.2 Risk Factors Affecting LCDs

The availability of historical loss data dictates the degree of complexity 

and choice of methodology in modeling LCDs. In practice, the loss in the 

event of default is dependent on numerous factors such as the type of de­

fault, the seniority class and collateral status of the debt, and the context 

at the time of default. As expected, historical recovery rate statistics indi­

cate that there is indeed significant variation in the level of loss, given the 

default of an obligator, as illustrated in Table 7. To make this estimation 

problem manageable, within the current generation of credit risk models, 

LCDs are typically assumed to depend only on a limited set of variables 

characterizing the structure of a particular credit facility. These variables 

may include the type of credit product, its seniority, collateral and coun­

try of originator.

Table 7: Recovery rates by seniority class

Seniority class and security Mean (% of face value) Standard Deviation (%)
Senior secured bank loans 71.18 21.09
Senior secured public debt 63.45 26.21
Senior unsecured public debt 47.54 26.29
Senior subordinated public debt 38.28 24.74
Subordinated public debt 28.29 20.09

I Junior Subordinated public debt 14.66 8,67
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Source: CSFP (1997)

As referred in Subsection 11.3 above, in some models LCDs are treated 

as deterministic, while in other models they may be treated as random. In 

the latter case, the probability distribution for each LCD may be assumed 

to take a specific parametric form, such as that of a beta distribution 

within the CreditMetrics modeling framework. Generally, models assume 

LCDs (after controlling for seniority, collateral, etc.) to be independently 

and identically distributed over time and across borrowers, and hence no 

systematic risk due to LCD volatility. Furthermore, zero correlation 

among the LGDs is often assumed even across obligations of the same 

borrower.

According to the surveys of the Fed/BIS Task Forces, outside the con­

sumer and small business lending areas, an individual bank's historical 

data generally can provide very little information with which to estimate 

LCDs. Unfortunately, especially for middle-market and large corporate 

loans, the number of defaulted loans with in an individual bank's histori­

cal database is typically too small to allow the probability distribution of 

LCDs for any particular type of loan to be estimated adequately. Conse­

quently, for a given set of facility characteristics, the underlying parame­

ters of the probability distribution for LG Ds are typically inferred judg- 

mentally by pooling information from several sources. Along with their 

own databases on historical loan losses, the banks reviewed by the Task 

Forces pooled data e.g., from trade association reports and publicly avail­

able regulatory reports; consultants' proprietary databases on the LCDs of 

their clients; and publicly available rating agency studies on the historical 

LCDs of corporate bonds.
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13.3 Risk Factors Affecting Changes in Credit Risk Spreads

Due to a lack of extensive databases on secondary market yields, this area 

is still in an early stage of development. It appears to be difficult to obtain 

reliable credit spread data, even for more developed bond markets. Credit 

spreads between the yield of an obligation and that of a risk-free bond do 

not typically correct for differences in liquidity (the BIS Task Force 1999). 

In fact, some studies have begun to question the efficiency of bond mar­

kets, and hence the utility of estimates of default probabilities based on 

the term structure of credit spreads as well.

Owing to the data limitations, virtually all current applications of MTM- 

type models treat the term structure of the credit spreads fixed and known 

over the planning horizon. Within the current version of CreditMetrics, 

for example, the risk factors affecting changes in credit risk spreads actu­

ally are set to zero for purposes of modeling future values. When appro­

priate historical data is available, non-parametric approaches may how­

ever be used to estimate the joint probability distribution of future 

changes in credit risk spreads. The Fed Task Force identified (1998) one 

such procedure that involves constructing, for each credit rating grade, a 

database of historical term structures of credit risk spreads. The joint 

probability distribution of future spreads is then estimated using a with-in 

sample Monte Carlo simulation procedure.

13.4 Risk Factors Affecting Changes in Credit Ratings

As referred above, the current generation of credit risk models generally 

relate the process determining the customer defaults or rating migration to 

two types of parameters: (a) for each customer, the expected default fre­

quency (DM-type models) or rating matrix (MTM-type models), and (b) 

across customers, the correlation among defaults and rating migrations.
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Two types of procedures are generally used to estimating these parame­

ters: actuarial-based methods and equity-based methods (see the Fed Task 

Force 1998 and the BIS Task Force 1999).

13.4.1 Estimation of EDF/Rating Transition Matrices 

Actuarial-based methods are used to calibrate expected default frequen­

cies (EDF) or rating transition matrices in both structural and reduced-from 

models. The basic approach involves using historical data on the default 

rates of borrowers to predict EDFs and rating migrations for customers 

having similar characteristics.

As presented in Section 11.4.2, in the case of structural credit risk models, 

EDFs/rating transition matrices are not actual parameters used in specify­

ing models. The actual parameters represent the means and variances as­

sociated with the underlying migration risk factors. They together with the 

thresholds define upgrades and downgrades. However, in general, there 

is a one-to-one mapping between the two sets of parameters and, in prac­

tice, actuarial-based methods calibrate the latter by "reverse-engineering" 

them from the former. Likewise, in reduced-from models, the underlying 

model parameters are typically calibrated to be consistent with estimated 

EDF/transition matrices for individual assets or pools of assets.

One actuarial approach utilizes formal credit scoring models to predict 

EDFs/ rating transition matrices. While some of the banks reviewed by the 

Fed/BIS Task Forces have developed their own in-house credit scoring 

models for their corporate customers, others purchase credit scores from 

external vendors. Owing to a lack of historical data on loan performance, 

it is often assumed that credit transition probabilities among the underly­

ing risk factors for corporate loans are identical to those for similarly rated
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corporate bonds, as in Table 6 above. Techniques for estimating borrower 

default models as such seem to be well researched within the economic 

literature, but data availability tends to be the critical limiting factor.

A second actuarial approach involves grouping borrowers into discrete 

"risk segments" based on observable characteristics. Within any risk seg­

ment, all obligors, and the stochastic properties of their underlying migra­

tion factors, are assumed to be statistically identical, and hence all cus­

tomers in the same risk segment would assumed to have the same 

EDF/transition matrix. For large corporate customers, it is possible define 

risk segments on the basis of factors such as the borrower's internal credit 

rating, size, country and industrial sector. Given the assumption that all 

borrowers within a segment have the same EDF/rating transition matrix, 

models typically attempt to estimate parameters from average historical 

rating migration data of borrowers in that segment. In practice, data avail­

ability severely limits the length of time over which such an average can 

be calculated.

Equity-based method, most often associated with the option theoretic 

model of Merton, is used exclusively for estimating the EDFs and the 

credit migrations of large and middle-market business customers within 

structural models. This technique uses publicly available information on a 

firm's liabilities, the historical and current market value of its equity and 

the historical volatility of its equity to estimate the level, rate of change 

and volatility of the economic value of the firm's assets. In addition, for 

analytical convenience, customers' asset values are usually assumed to be 

jointly normally distributed. Thereby, under the assumption that the de­

fault occurs when the value of a firm's assets falls below its liabilities, ex­

pected default probabilities can be inferred from the option models. Al-
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ternatively, using a approach pioneered by Kealhofer (see e.g. 1998) and 

KMV Corporation, it is possible to calculate the number of standard de­

viation the current value is away form the default threshold, termed the 

"distance to default". Given a firm's estimated distance to default its EDF 

is calculated as the historical default frequency for firms having that same 

distance to default, derived from a proprietary KMV database on the his­

torical default experience of publicly rated businesses.

13.4.2 Interdependence between Defaults/Rating Migrations 

Within both structural and reduced-form models, the interdependence 

between defaults and/or rating migrations is a key determinant of a portfo­

lio's PDF. Structural models parameterize this interdependence in terms 

of the correlations among customers' migration risk factors, i.e. usually 

customers' asset values or net worth positions. In the context of reduced- 

form models, the interdependence between customers' defaults and/or 

rating migrations in turn reflects the assumed or estimated process relating 

observable and unobservable background factors to EDFs or credit rating 

transition matrices. To extent that two obligors are sensitive to the same 

set of background factors, their default/migration probabilities will move 

together. The effects of interdependence may be modeled at the level of 

either individual credit exposures or pools of relatively homogenous ex­

posures.

An actuarial method here is an extension of the above risk segmentation 

approach to estimating EDFs/transition matrices, and is used in calibrating 

correlation parameters in both structural and reduced-form models. 

Within each risk segment, borrowers are assumed to be statistically iden­

tical. Given the EDF for a particular risk segment, mathematically there is 

a one-to-one relationship between the variance of the risk segment's de-
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fault rate and the correlation of the risk factors associated with the loans 

in that risk segment. An estimate of the default correlation among the 

loans is often reverse-engineered from an estimate of the historical vari­

ability of the risk segment's aggregate default rate. This procedure in­

volves two stages. In the first stage, the means, variances and covariances 

of aggregate default rates are used to estimate default or migration correla­

tions between loans of various types. In the second stage, correlations be­

tween migration factors are inferred from the default correlations gener­

ated in the first step (see CreditMetrics - Technical Document 1997). A 

broadly similar reverse engineering method can be used to infer risk fac­

tor correlations between borrowers in different risk segments from the his­

torical covariance between the annual aggregate default rates for those 

risk segments. The relationship between default correlations and migra­

tion risk factors is further discussed e.g. by Chunsheng Zhou (1997).

Under the equity-based method, used solely within structural models, it is 

usually assumed that underlying migration risk factors for each borrower 

equals the underlying value of the firm's asset, as noted earlier. Conse­

quently, in principle, an estimate of the correlation can be calculated di­

rectly from estimates of firms' historical asset values. In practice, however, 

some vendors have observed such estimates tend to be quite unstable. To 

mitigate this problem, KMV econometrically averages that asset value cor­

relations across the customers within various risk segments, defined in 

terms of the borrower's industry and country, any possible other charac­

teristics (see Kealhofer, 1998).
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14 Economic capital estimation

14.1 PDF Computation

Once the parameters of the credit risk model have been specified, the 

portfolio's probability density function generally is computed by one of 

two methods: Monte Carlo simulation or approximations using a mean- 

variance methodology.

The Monte Carlo techniques employed in credit risk modeling are essen­

tially identical to those used within VaR models in the trading book (see 

Jauri 1997). A Monte Carlo simulation procedure typically involves the 

following steps in the context of credit risk modeling (see, e.g. Nishiguchi 

et al 1998 and CreditMetrics - Technical Document 1997). A simulation 

is employed to create scenarios corresponding to a possible "state of the 

world" at the end of the planning horizon. The "state of world" is just the 

credit rating of each of the obligors in the portfolio. For each scenario, the 

credit portfolio is revalued to reflect the new credit ratings (assuming that 

the risk factors affecting in credit spreads are set zero). If loss-rates-given- 

default (LCDs) are not treated as deterministic, each default scenario fur­

thermore requires an independently generated LCD. Given the large 

number of possible future portfolio values generated in these steps, the 

simulation technique results in an estimated PDF whose shape is consis­

tent with the parameters of the underlying credit risk model.

The mean-variance methodology aims only to generate the first two mo­

ments of the distribution, i.e. its mean and standard deviation. The gen­

eral shape of the PDF remains implicit in the model. Often the PDF is as­

sumed to take the shape of a beta or, in some instances, even normal dis­

tribution having a mean and standard deviation identical to the estimated
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mean and standard deviation of the portfolio's credit losses. However, 

neither above distribution may be strictly consistent with the other as­

sumptions and parameters of the model. Observed credit losses are mark­

edly non-normal. They are typically skewed toward large losses, and lep- 

tokurtic meaning that, for a given mean and standard deviation, the prob­

ability of large losses occurring may be substantially greater than would 

be the case if the distribution were normal.

The mean-variance approximation is used primarily within the context of 

the DM paradigm. A portfolio's expected loss ju over the planning hori­

zon equals the expected losses for the individual credit facilities:

Equation 10

V = YjEDFiLEEiLGDi
Ы

where for the credit facility /, ¿.CD, is the expected loss-rate-given-default, 

EDF, is expected default frequency, and LEE¡ is the loan equivalent expo­

sure. Recall that for plain-vanilla term loan, the loan equivalent exposure 

equals the amount of the loan. Other credit facilities, like lines of credit 

and derivatives, are converted into loan equivalent exposures as ex­

pressed in Section 12.

The portfolio's standard deviation of credit losses crean be composed into 

the contribution from each of the individual credit facilities:

Equation 11

o" = 2>/A
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where сг{ denotes the stand-alone standard deviation of credit losses for 

the credit facility /', and pt denotes the correlation between credit losses 

on the facility / and those on the overall portfolio. Furthermore, under the 

assumptions that (1) each facility's exposure is known with certainty, (2) 

the random risk factors affecting customer defaults and LCDs are inde­

pendent of one another, and (3) LCDs are independent across borrowers, 

the stand-alone standard deviation of credit losses for the facility / can be 

expressed as:

Equation 12

a¡ = LEE, ylEDF^EDF^öT+ED^/Öl^

where VOL denotes the standard deviation of the facility's LCD. These 

equations provide a convenient way of summarizing the overall portfo­

lio's credit risk within the DM framework in terms of each instrument's 

EDF, p, LCD, VOL and LEE.

The Fed Task Force reported that relatively few U.S banks used Monte 

Carlo methods to estimate PDFs (1998). For purposes of analytical sim­

plicity and computational speed, the vast majority used mean-variance 

approximation. Given the number of sources of variability and the num­

ber of positions to be estimated, simulation processes can indeed be 

computationally very burdensome. However, recent advances in comput­

ing capabilities have made it more feasible to estimate PDFs using the 

Monte Carlo simulation methods. In fact, many of the banks reviewed the 

BIS Task Force already used Monte Carlo simulation to characterize the 

full distribution of portfolio losses at least for some sub-portfolios (1999).
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14.2 Capital Allocation Rules

Finally, once the PDF for portfolio credit risk has been estimated, the 

bank must specify a particular rule for determining how much economic 

capital should be held against credit risk. As referred in Section 9, at most 

banking institutions this "allocation rule" is expressed as the capital nec­

essary to achieve some target insolvency rate over the planning horizon. 

Among the banks sampled by the Fed Task Force, the most widely used 

target rate was around three basis points, or equivalently, the 99.97th per­

centile value on the cumulative distribution of portfolio losses (1998). At 

the banking institutions reviewed by the BIS Task Force target rates were 

slightly lower falling in the range of 99-99.98th percentile values, with the 

majority converting in the middle (1999).

In cases where the portfolio's PDF is estimated directly via Monte Carlo 

simulation, the economic capital allocation against credit risk can be 

computed directly from the estimated PDF. For banks using mean- 

variance approximation methods, economic capital is calculated as some 

multiple of portfolios estimated standard deviation of credit losses, where 

multiple is chosen to be consistent with the target insolvency rate and the 

assumed shape of the PDF. The Fed Task Force found that these multiples 

vary in the range of 3-7 depending on the insolvency rate and on whether 

the "actual" PDF is assumed to be beta- or normal-shaped. Consequently, 

final economic capital allocations differ considerably across banks that 

use mean-variance approximation methods.
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Chapter 4

POTENTIAL MODELS-BASED APPROACH TO CREDIT RISK
CAPITAL CHARGES

15 Regulatory considerations

Of course, the Basle Committee as well as several banking regulators 

have recognized the weaknesses of current capital regime referred in 

Chapter 2. That is (1) the denominator of the risk-based capital ratio, total 

risk-weighted assets, may not be accurate measure of total credit risk and, 

more importantly, the measurement of total risk-weighted assets ignores 

critical differences in credit risk among financial instruments as well as 

differences across banks in hedging and portfolio diversification, and (2) 

the regulatory measure of "capital" may not represent a bank's true capac­

ity to absorb either expected or unexpected losses. For instance, banks' 

loan loss reserves often tend to exceed credit losses during good times but 

to understate expected credit losses during times of stress.

Furthermore, the anomalies of the current regime have created substantial 

opportunities for "regulatory capital arbitrage" that are rendering the for­

mal risk-based capital ratios increasingly less meaningful. The Task Force 

realized that, for example through securitization and other financial inno­

vations, many large U.S. banks have lowered their risk-based capital re­

quirements substantially without reducing materially their overall credit 

risk exposure (1998). In fact, the implementation of Market Risk Amend­

ment have created additional arbitrage opportunity by affording certain
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credit risk positions much lower risk-based capital requirement when held 

in the trading book rather than in the banking book. The basic arbitrage 

techniques involve re-engineering financial contracts to convert a bank's 

on-balance sheet credit risk into a nearly equivalent off-balance sheet ex­

posures having a lower capital requirement, or removing from the bank­

ing book financial instruments for which the 8% capital standard is too 

high, relative to underlying economic risks, while retaining instruments 

for which the standard is too low.

Considering the flaws of the current regime, there may be need to begin 

developing the next generation of credit risk capital standards, at least for 

the largest, most sophisticated banks, before the current framework is 

completely outmoded (see e.g., the Fed Task Force 1998; Jones & Mingo 

1998; de Swaan 1998). It is nevertheless infeasible to establish interna­

tionally applicable risk weightings that accurately reflect banks' risks at all 

times and under all conditions. For that reason, "internal models" ap­

proaches to prudential regulation may be the only long-term solution on 

the horizon (Jones & Mingo 1998). Especially the representatives of the 

Federal Reserve Board and the Basle Committee have examined whether 

banks' current internal credit risk models could also be used for regula­

tory capital purposes. However, there are still serious obstacles on this 

road when viewed from a regulatory perspective.

16 Comparison of calculation methodologies

To illustrate the potential models-based approach to setting credit risk 

charges, this section reviews testing results published by Isda in March 

1998. Isda tested the relative performance of the current BIS rules and 

three credit risk models. Models included in the straightforward test were:
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CreditMetrics, using a one year planning horizon and 99 percentile of the 

loss distribution; CreditRisk + , using the same parameters; and a proprie­

tary credit risk model of an ISDA member (SBC Warburg Dillon, no fur­

ther information on the model available in public), using the same pa­

rameters.

To assess the different calculation methods, three different portfolios, 

each with a total exposure of USD 66.8 billion, were composed as fol­

lows:

■ Portfolio A: A high credit quality diversified (500 name) portfolio
■ Portfolio B: A low credit quality diversified (500 name) portfolio
■ Portfolio C: A high credit quality concentrated (100 name) portfolio

The portfolios consisted solely of one-year corporate term loans and loan 

amounts were equal size for all names. Credit ratings, default rates and 

default rate volatilities were provided for the test (from 1.1.1981 to 

31.12.1996 U.S. data, from Standard & Poors). The test shows both 0% 

and, maybe more realistically, 50% recovery rates for the portfolios. Zero 

recovery uncertainty was assumed in both the cases. Furthermore, the 

tests shows the performance of the credit risk models assessed with in 

terms of modeled correlations (or the application of default volatilities 

under CreditRisk + ) but also with correlation set to zero. The test results 

are shown in Figure 3:
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Figure 3: Comparison of capital calculation 
Methodologies

Correlation Assessed, zero recovery (millions USD)
1 CAPITAL CHARGE

Portfolio A Portfolio В Portfolio C
BIS 5,304 5,304 5,304
Cred ¡(Metrics 2,264 11,346 2,941
CreditRisk + 1,638 10,000 2,547
SBC 1,373 9,654 2,366

Correlation Assessed, 50 % recovery, zero recovery uncertainty (millions USD)
2 CAPITAL CHARGE

Portfolio A Portfolio В Portfolio C
BIS 5,304 5,304 5,304
CreditMetrics 1,132 5,718 1,471
CreditRisk + 819 5,000 1,287
SBC 686 4,827 1,183

Zero Correlation, zero recovery (millions USD)
3 CAPITAL CHARGE

Portfolio A Portfolio В Portfolio C
BIS 5,304 5,304 5,304
CreditMetrics 777 2,047 2,020
CreditRisk + 789 1,907 1,967

The application of the current BIS rules means that credit risk capital 

charges are exactly equal for all three test portfolios regardless of credit 

quality and portfolio concentration. As all of the loan exposures are as­

sumed to be to corporates, all of them would receive a 100% risk weight­

ing. Consequently, the credit risk capital charge is 8%x66,3 bil­

lion =5,304 millions.

The importance of portfolio diversification effects is illustrated in Figure 3 

by contrasting the results for portfolios A and C. In all cases, the modeled 

charge differentiate between the two portfolios, recognizing that the rela­

tive concentration of portfolio C makes it riskier even though overall
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credit quality is the same between these portfolios. All three models re­

flect this impact in roughly same manner.

The credit risk models also differentiated charges in the light of credit 

quality. This can been seen contrasting the credit risk capital charges for 

portfolios A and B. Portfolio concentration is equal, but credit quality is 

lower in the latter portfolio. This is reflected by the significantly higher 

capital charges produced by all three models.

In relation to the current standardized rules, the modeling results adjusted 

for 50 percent recovery seem to be very close in the case of the low credit 

quality diversified portfolio C. The models-based approach would 

strongly reward the higher credit quality portfolios A and C and also fur­

ther rewards the greater diversification of portfolio A relative C. As re­

gards potential regulatory capital requirements, these modeling results 

may, however, be misleading because of the low 99.00th percentile value. 

Recall that the most widely used target rate appears to be around three 

basis points i.e., the 99.97th percentile value on the cumulative distribu­

tion of portfolio losses.

Furthermore, these testing results also indicate a challenge involved in 

credit risk modeling at least to some extent. That is, the sensitivity of the 

modeling results to default correlation analysis. In Figure 3, the strong 

impact of correlation on the test results can been seen by contrasting the 

results for diversified portfolios A and В in Table 1 and Table 3. Given the 

empirical difficulty of estimating default correlations with precision, regu­

lators have been concerned for the sensitivity of modeling results.
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17 Robustness of credit risk models

17.1 Choice of Planning Horizon and Loss Paradigm

As stated earlier, banks typically employ a one-year planning horizon for 

purposes of credit risk modeling. The reasons put forward for this choice 

seem to favor computational convenience rather than model optimiza­

tion. In support of the one-year horizon, practitioners suggests this interval 

represents a period over which in the normal course of business either (a) 

capital can be raised to fully offset portfolio credit losses, or (b) risk miti­

gating actions, such as loan sales or the purchase of credit protection, can 

be taken to eliminate the possibility of further credit losses. Perhaps the 

most important consideration however is that the estimations of key 

model parameters is viewed as infeasible for planning horizons beyond 

one year due to the lack of historical data.

According to regulators, the choice of planning horizon should be viewed 

outside the normal course of business (the Fed Task Force 1998). Regula­

tors tend to view capital adequacy within the context of a bank under 

stress attempting to unload the credit risk of a significant portfolio of dete­

riorating credits. That is, fluctuations in economic activity and in credit 

losses tend to be positively serially correlated from one year to the next, 

implying that a bank's capital buffer may be called upon to absorb signifi­

cant credit losses extending beyond a single year. Indeed, two or more 

years are typically required to resolve asset-quality problem at troubled 

banks, as the experiences of Finnish or Japanese banking sector, for in­

stance, has shown. The markets for secondary loan trading and credit de­

rivatives appear to be expanding and are becoming more liquid at least in 

some countries, but they have not yet been tested by any large bank un­

der severe stress.
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Besides the planning horizon, loss paradigm is inevitably critical decision 

variable in the current credit risk modeling processes. While various justi­

fication may be put forward in support of the DM paradigm versus the 

MTM paradigm, the determination of model superiority tends to be influ­

enced by the fit between model output and model application. For exam­

ple, a bank that utilizes credit risk models for performance measurement 

purposes associated with the buy-and-hold portfolio might reasonably opt 

for a much simpler DM-type model. In contrast, certain pricing decision 

for a portfolio of more liquid credits may require a loss measurement 

definition that incorporates potential shift in credit spreads.

From a regulatory perspective, materiality of loss paradigm is not yet 

clear. However, some regulators have been especially skeptical of the 

ability of DM-type models to capture the effects of potentially adverse 

credit events (see the Fed Task Force 1998). Due to the paradigm's "two- 

state" nature, DM-type models may be particularly sensitive to the choice 

of a one-year planning horizon. For example, with respect to a three-year 

term loan, the one-year horizon means that more than two-thirds of the 

credit risk is potentially ignored. In order to reduce this bias of the DM 

approach, banks apply sometimes various ad hoc adjustments, such as 

making a loan's estimated default frequency an increasing function of its 

maturity (see the Fed Task Force 1998 and the BIS Task Force 1999). In 

practice, adjustments of this sort may however lead to internal inconsis­

tencies with in the modeling procures. For example, multi-year EDFs may 

be used in combination with loss correlations calculated on the basis of 

one year time horizon. It is therefore difficult to assess these adjustments' 

overall impact and effectiveness.
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17.2 Treatment Credit-related Optionally

For many types of credit instruments, a bank's exposure is not known 

with certainty, but rather may depend on the occurrence of future random 

events. Modeling methods for dealing with such credit-related optionality 

are however still evolving as noted in Section 12. Both the Fed/BIS Task 

Forces observed great diversity in current modeling practices. The diver­

sity leads to very large differences across banks in credit estimates for 

similar instruments. For example, with regard to virtually identical lines of 

credit, estimates of stand-alone credit risk can differ as much as a ten-fold. 

The Fed Task Force (1998) realized that these differences sometimes re­

flect modeling assumptions that are even fundamentally inconsistent with 

a bank's own views regarding the nature of the underlying business. Con­

sidering committed lines of credit, the common assumption that future 

drawdown rates are independent of future changes in the customer's 

credit quality, despite clear evidence to the contrary, may lead systematic 

underestimates of the loan equivalent exposures (LEE) for lines of credit.

The treatment of optionality arising from derivatives transactions appears 

to be even more complex topic. Most modeling methods for calculating 

loan equivalent exposures for derivative contracts rely on the assumption 

that any unexpected future change in the bank's exposure with respect to 

a given derivative contract is independent of both (a) changes in all other 

derivative contracts and (b) changes in the credit quality of the bank's 

counterparty. Both these assumptions may bias the overall output of 

credit risk models. First, counterparty credit risk exposures may actually 

be positively correlated across contracts. Secondly, in certain derivative 

transactions, the extent to which a bank is "in the money" may be nega­

tively correlated with changes in the credit quality of its counterparty. Sat­

isfactory treatment of these issues would require a much closer integra-
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tion of internal market risk and credit risk measurement systems. Given 

current technologies, it nevertheless seems to be very difficult to conduct 

simultaneous Monte Carlo simulations of both the credit risk model and 

the bank's VaR market risk models, which could be used to simulate ran­

dom changes in the derivative contract's mark-to-market value over its 

lifetime (the BIS Task Force 1999).

17.3 Analytical Soundness of Modeling Practices

Under both the DM and MTM framework, estimates of portfolio credit 

risk are driven largely by assumptions and parameter estimates regarding 

the joint probability distribution of the relevant risk factors. As noted ear­

lier, available data on the historical performance of different types of 

loans generally do not span sufficiently long time period to enable precise 

estimation of the distributions. For that reason, parameter values are often 

established through a judgmental process involving critical assumptions 

and considerable uncertainty. As presented in Section 13, these include 

the followings:

(1) Joint normality or other parametric assumptions on the probability 
distributions of the risk factors determining credit ratings migra­
tions

(2) In the case of mean-variance DM models, the assumption that 
portfolio credit losses have a beta or normal probability distribu­
tion

(3) Independence between risk factors affecting changes in credit rat­
ings, changes in LCDs, and credit risk spreads

(4) Independence of LGDs across borrowers; and
(5) Stability of model parameters,

In reviewing the assumptions, regulators have highlighted that estimation 

of the extreme tail percentile values of a credit portfolio's PDF is likely to 

be highly sensitive to variations in key parameters, such as correlations. 

For the time being, in practice there is generally little analysis supporting
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these assumptions. Nor is it standard practice to conduct sensitivity testing 

of models' vulnerability to key parameters or assumptions (The Fed Task 

Force 1998 and the BIS Task Force 1999). In addition, adequate account­

ing for the uncertainty in modeling parameters would significantly in­

crease measured credit risk (see e.g. Duffey 1996). The following subsec­

tions review key consideration presented from a regulatory perspective.

17.3.1 Treatment of LCDs

As noted in the preceding sections, current methods for estimating LCDs 

vary considerably in terms of sophistication. In some models, LCDs may 

be treated as deterministic and known with certainty while in other they 

may be treated as random. Furthermore, while some banks appear to rely 

on almost exclusively on LGDs parameters set intuitively, other banks 

with access to large amounts of historical data may rely heavily on objec­

tive empirical analysis (The Fed Task Force 1998 and the BIS Task Force 

1999).

For portfolios characterized by distributions of exposure size that are 

highly skewed, the assumption that LG Ds are known with certainty may 

tend to bias downwards the estimated tail to the PDFs credit losses. The 

simulation results of e.g. Michael Gordy's comparative study illustrate 

how percentile values on loss distributions are directly proportional to 

LCDs (1998). For example, if LG Ds are assumed to be fixed proportions 

of X = 0.3 of book values, holding fixed other modeling parameters and 

the target insolvency rate, the required capital given a loss rate of e.g. 

X, = 0.45 would simply be 1.5 times the required capital given X = 0.3. 

Consequently, this kind of credit risk models incorporates only default 

risk, and thus additional capital should be held for recovery uncertainty.
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The reliability of pooled LCD data is of course also a key consideration, 

as it will affect accuracy of estimation results. First, owing to data limita­

tions, sample periods for estimating tend to be relatively short. Secondly, 

the BIS Task Force realized that in setting parameters for corporate cus­

tomers located outside the U.S., some banks appear to rely entirely on 

historical loss studies for publicly rated U.S. corporate bonds. Extrapolat­

ing U.S. data to other countries may be especially problematic due to dif­

ferences in bankruptcy laws (Shirreff 1998 and The BIS Task Force 1999).

Moreover, regulators seem to concern for the common assumption that 

LCDs between borrowers are mutually independent (the Fed Task Force 

1998). It is argued that this assumption may represent a serious shortcom­

ing when the bank has significant industry concentration of credits e.g., 

commercial real estate loans within the same geographical region.

17.3.2 Estimation methods for PDFs/Rating Transition matrices 

Subsection 13.4 presented the two methods that are generally used for 

mapping observable data historically into EDFs/rating transition matrices. 

Actuarial-based parameter estimates are inherently backward-looking, 

while in theory, the equity-based approaches are forward-looking at least 

to some extent. However, many of the assumptions underlying the equity- 

based models may be stylistic (the BIS Task Force 1999). These include 

the assumption that: (a) all equity price movements reflect changes in the 

underlying economic values of firms, rather than any change in the mar­

ket price of equity risk, and (b) equity prices fully reflect all available in­

formation. This efficient market assumption is often viewed as extremely 

questionable. For that reason, regulators have noted that the relative accu­

racy of actuarial-based versus equity-based methods may be ultimately an 

empirical issue (the BIS Task Force 1999).
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As said earlier, data availability generally dictates the empirical methods 

used to estimate EDFs/transition matrices. Banks typically have compara­

tively little useful default/migration data internally. Therefore, the banks 

reviewed by the Fed/BIS Task Forces attempt to estimate EDFs/transition 

matrices using historical performance studies on corporate bonds pub­

lished by the rating agencies and other researchers. These studies often 

report historical default and rating experience, by rating category, over 

time spans covering 20 or more years. However, when using such sup­

plemental information, the model-builder must usually determine judg- 

mentally whether the geographical and industry composition of published 

data is appropriate to the characteristics of the loan portfolio being mod­

eled; if not the model-builder often attempt to make data more compara­

ble through the processes that seem to involve a high degree of subjectiv­

ity (see the BIS Task Force 1999).

Furthermore, owing to the lack of sufficient data, current models are not 

designed to capture business cycle effects, such as tendency for credit rat­

ings to improve or deteriorate more during the cyclical upturns or down­

turns. In this sense, virtually all current bottom-up credit risk models can 

be termed "unconditional" (the Fed Task Force 1998). They reflect rela­

tively limited borrower- or facility-specific information. A potential impli­

cation of using "unconditional" transition probabilities is that estimates of 

expected losses and credit risk could be biased downward during the 

early stages of recession, and biased upwards during the early stages of 

recoveries. An example of a "conditional" credit risk model is McKinsey 

& Co's CreditPortfolioView (see Wilson 1997 I and II). Within its model­

ing framework, rating transition matrices are functionally related to the 

state of the economy. On the other hand, conditional techniques may 

also have drawbacks. For example, a conditional model may underesti­
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mate losses just as the credit cycle enters a downturn and overestimate 

losses just as the cycle bottoms out. Consequently, regulators' key con­

sideration seems to be the fact that business cycles effects raise the possi­

bility that parameter estimates may be subject to considerable uncer­

tainty.

17.3.3 Default Correlation Analysis

According to the BIS Task Force, the assumptions and approximation 

used in estimating default correlations also highlight various conceptual 

and empirical questions, including (a) whether the choice or risk factor 

distribution function, e.g. normality or gamma, makes a material differ­

ence to model output, (b) whether the technical approximations have a 

material impact, and (c) whether the default correlations generated by the 

different models are within the same range, result in a correct correlation 

structure, and are stable over the planning horizon. As regards the correla­

tion analysis, the discussion in Subsection 11.4 may suggest that the struc­

tural and reduced-form approaches are based on inevitably inconsistent 

views of the world.

Recent studies however argue that there may be good agreement be­

tween, for example, the CreditMetrics and CreditRisk + PDFs. To illus­

trate, Michael B. Gordy has run a set of simulations within CreditRisk + 

and the restricted "two-state" form of CreditMetrics, denoted as CM2T in 

Table 8 (1998). Both the models were calibrated to yield the same un­

conditional expected default rate for an obligor of a given rating grade, 

and the same default correlation between any two obligors with in a sin­

gle rating grade. The test portfolio consisted of 5000 obligors, and portfo­

lio concentration across rating grades was calibrated using data from in­

ternal Federal Reserve Board surveys of large U.S banking institutions. In
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all the simulations, it was assumed that LCD is a fixed proportion 0.3 of 

the loan book value. The total portfolio value outstanding is immaterial 

here because losses were calculated as a percentage of the total portfolio 

book value. A summary of the simulation results is given in Table 8.

Table 8: Effects of increased default volatilities

CM2T CR +
<7 2a a 2a

Mean 0.481 0.480 0.480 0.480
Std Dev 0.319 0.590 0.325 0.610
Skewness 1.696 3.221 1.844 3.860
Kurtosis 8.173 20.278 8.228 25.182
0.9500 1.089 1.597 1.120 1.648
0.9900 1.578 2.854 1.628 3.130
0.9950 1.795 3.467 1.847 3.818
0.9997 2.714 6.204 2.736 6.772
Source: Gordy (1998)

where a denotes the normalized volatility of default probabilities in the 

portfolio. Note that skewness is a measure of the symmetry of the loss dis­

tribution, and kurtosis is a measure of the relative thickness of the tails of 

the distribution. For the portfolio credit risk models, high kurtosis indi­

cates relatively high probability of very large credit losses.

In Table 8, the expected loss under either model is 48 basis points of the 

portfolio book value. The standard deviation of loss in turn is roughly 32 

basis points. Capital requirements implied by the simulations seem rela­

tive low. That is, a bank ought to hold only about three percent capital 

against credit risk in order to maintain a AA-rating standard (equal to the 

99.97th percentile value).

More problematically, both the credit risk models however appears to be 

sensitive to the volatility of default probabilities, or equivalently to the 

default correlations in the portfolio. When the normalized volatility of de­

fault probabilities was doubled in the above test, extreme tail percentile
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values increases substantially. Specifically, the 99.97th percentile values 

more than doubled under both the models. In addition, as the volatility of 

default probabilities increases, the loss distributions become increasingly 

kurtotic. Since capital decisions depend on extreme tail percentile values 

of the loss distribution, this sensitivity issue has been of primary concern 

among regulators (Shirreff 1998, the Fed Task Force 1998, and the BIS 

Task Forces 1999).

18 Model validation

18.1 Backtesting

Given the difficulties associated with calibrating credit risk models, regu­

lators attention has focused on the need for effective model validation 

procedures. Unfortunately, the same data problems that make it exceed­

ingly difficult to calibrate these models also make it difficult to validate 

the models.

The task of estimating the extreme tail of the PDF is comparable to pre­

dicting the frequency at which credit losses in any year will exceed many 

multiples of a normal year's losses. The only entirely objective method for 

evaluating the statistical accuracy of a credit risk model is to compare the 

model's ex ante estimates of PDFs against ex post realization of actual 

credit losses. Specifically, only the realization of more frequent, extreme 

credit losses relative to the modeling prediction can provide purely statis­

tical basis for concluding a model is deficient. Hence, backtesting is al­

most certain to be very problematic in practice, owing to insufficient data 

for out-of-sample testing. Consequently, the banks reviewed by the 

Fed/BIS Task Forces generally didn't conduct statistical backtesting on 

their estimated PDFs (1998). At the sampled banks, the backtesting was
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limited to comparison of expected and actual credit losses or default 

rates. However, such tests do not address the accuracy of the model's 

predictions of credit risk, against which economic capital is allocated.

Instead of the backtesting, credit risk models are often validated indi­

rectly; through various market-based "reality" checks (Jones & Mingo 

1998). For instance, peer-group analysis may be used to measure the rea­

sonableness of credit risk models and internal capital allocation proc­

esses. Another market-based method involves comparing the break-even 

spreads implied by the bank's internal pricing models with actual credit 

spreads on corporate bonds or syndicated loans having a particular credit 

rating, e.g. AA. An actual credit spread well below or above the bank's 

break-even spread might be interpreted as evidence that the model's capi­

tal allocation for A A-rated credit is too high or low. From a supervisory 

perspective, it is said that the use of market-based validation methods can 

raise serious concerns regarding the comparability and consistency of a 

risk model over time (the Fed Task Force 1998).

18.2 Stress Testing

In principle, stress testing could at least partially compensate for the data 

limitations, estimation problems, and short-comings available in back­

testing methods for credit risk models. Stress tests circumvent these diffi­

culties by specifying, albeit arbitrarily, e.g. particular economic scenarios 

against which the bank's capital adequacy may be judged without regard 

to the probability of that event actually occurring. In general, the types of 

credit risk stress tests that may be employed are similar to those used for 

VaR market risk models (see Jauri 1997).
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Specifically, in the credit risk context, stress testing should involve assess­

ing the impact of extreme "fat-tail" credit events on the current portfolio 

of credit exposures. A significant downward shift in credit ratings may be 

assumed across a portfolio, or recovery rates may be arbitrarily adjusted 

downward by a significant amount, and changes to corralations may be 

assessed. In terms of assessing credit spread risk, shocks to credit spreads 

can be also undertaken. These changes may be applied individually or in 

combination, for individual borrowers, portfolios of borrowers or across 

the whole credit portfolio.

As is the case with the market risk models, historical scenario stress test­

ing may also be considered, as experience about past credit crisis with 

particular sectors or about losses at extreme points of the credit cycle can 

be assessed. Furthermore, the reasonableness of capital allocation levels 

needs to be examined assessing the particular scenarios (an individual 

event or combination of events) that would be especially damaging to the 

current portfolio. Although several stress testing protocols might be de­

veloped for internal credit risk models, the Fed/BIS Task Forces appear to 

be unaware of the reviewed banks were actively pursuing this approach.

19 Concluding remarks

Credit risk modeling builds on the same statistical techniques employed 

by the VaR approach for the calculation of market risk. Hence, market 

participants' proposals recommending that the ten-years-old BIS frame­

work covering credit risk should be updated to reflect advances in credit 

risk modeling are inevitably motivated by the Market Risk Amendment 

that incorporated banks' internal VaR models into the determination of 

capital requirements for market risk. Accordingly, it is logical to conclude
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this study by summarizing the key differences in credit risk versus market 

risk modeling.

Underpinning all credit risk models are what is termed the probability 

density function of credit losses (PDF), but a consensus within the bank­

ing industry about a "standard" shape of the PDF has yet to emerge. This 

stands in contrast with market risk VaR models, where the normal distri­

bution is frequently used as a standard (Jauri 1997). Observed portfolio 

credit loss distributions are typically skewed toward large losses meaning 

that, for a given mean and standard deviation, the probability of large 

losses occurring is greater than would be the case if the distribution were 

normal. Due to the long-tailed nature of the distributions of credit risk 

models, the range of required capital corresponding to choice of a target 

loss rate within the 99.00-99.98 interval tend to be considerably wider 

than the range corresponding to the 95.00-99.00 interval used in market 

risk models.

One reason why no industry standard portfolio credit loss PDF has 

emerged may be that the modeling of losses from individual credit expo­

sures as such is more difficult than is the case for market risk, and a wide 

range of simplifying assumptions is therefore made. Individual losses 

might be assumed to be binary, or else to follow one of a range of con­

tinuos distributions. The portfolio PDF that result from aggregating indi­

vidual exposure losses may depend strongly upon these assumptions and 

further the assumptions made in estimating credit correlations.

Neither practitioners nor regulators are however fully aware of the effects 

of different modeling assumptions on estimates of the extreme tails of the 

loss distribution. Hence, it is unclear whether the high target credit loss
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percentiles used in the measurement of credit risk, and the resulting esti­

mates of economic capital, can be estimated with an acceptable degree of 

precision for regulatory purposes. Due to the shape of distributional tails, 

alternative modeling assumptions that appear reasonable may imply large 

differences in estimates of very high percentiles regardless of e.g. PDF 

computation method. Altogether, it is so far inappropriate to develop 

qualitative and quantitative standards to ensure that the quality of model­

ing outputs is comparable across banking institutions.

The difficulties in the modeling of credit losses are foremost due to data 

limitations. Contrary to market-driven instruments, most credit instru­

ments are not marked to market. For this reason, the predictive nature of 

a credit risk model does not derive from a statistical projection of future 

prices based on comprehensive records of historical prices. In addition, 

the scarcity of the data required to estimate model parameters also arises 

from the infrequent nature of default events and the longer-term horizon 

used in measuring credit risk. Consequently, in specifying model parame­

ters, credit risk models require the use of simplifying assumptions and 

proxy data, which in turn highlights the importance of model validation 

processes to ensure that capital requirements generated using credit risk 

models will in practice provide an adequately large capital buffer.

For market risk VaR models, the Basle Committee has outlined a particu­

lar supervisory framework for backtesting and the supervisory interpreta­

tion of testing results (see 1996b). The methodology applied to back­

testing market risk VaR models is not easily transferable to credit risk 

models due to the data constrains. Where market risk models typically 

employ a horizon of a few days, the Committee's backtesting framework 

requires the use of minimum of 250 trading days of forecasts and realized
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losses for backtesting purposes. A similar standard for credit risk models 

would inevitably require an impractical number of years of data, spanning 

multiple credit cycles. The longer holding period, associated with the 

higher loss percentiles used in credit risk models, presents problems to 

model-builders in assessing the accuracy of their models. At present, there 

actually seems to be no commonly accepted framework for periodically 

verifying the accuracy of credit risk models.

In many respects, the issues presented above are however qualitatively 

similar to concerns that raised in the course of developing the internal 

models approach to regulatory capital charges for market risk (Dale 

1996). Within the context of credit risk modeling, these problems are 

however much more severe. The size of the banking book and the length 

of its relevant planning horizon are many times larger than those of the 

trading book. Therefore, errors in measuring credit risks for the banking 

book are more likely to affect the assessments of the bank's overall finan­

cial soundness. In addition, the banking book does not benefit from high 

liquidity and a daily mark-to-market process that, in the context of the 

trading book, may provide substantial safeguards against significant losses 

accumulating unnoticed.

20 Summary

The regulatory framework to access capital for credit institutions through­

out many countries relies on principles laid out by the Basle Committee 

on Banking Supervision in the International Convergence of Capital 

Measurement and Capital Standards" document. Although this ten-years- 

old BIS framework has been developed and improved continuously, 

banking institutions as well as regulators are aware of the inherent flaws

67



of the framework. Perhaps the most important of them is the fact that the 

BIS risk weights do not reflect some very obvious determinants of portfo­

lio credit risk, such as differences in credit quality of corporate obligators 

or concentrations of risk in a specific asset category or to particular obli­

gor, industry, or region.

After drafting the Accord, a number of the large international banks have 

developed sophisticated systems in an attempt to model credit risk at port­

folio level. The most important advances have been made in the context 

of so-called bottom-up credit risk models. Banks use such models primar­

ily in estimating the economic capital needed to support their credit ac­

tivities similarly as VaR methods are used in allocating economic capital 

against market risks. Capital allocations are the basis for internal risk man­

agement processes, including risk-based pricing models, and the setting of 

portfolio concentration or exposure limits.

Lately, several market participants have suggested that there is a need to 

ensure greater convergence between the regulatory capital regime and 

best practice in internal credit risk management. Forcing banks to main­

tain a flawed standardized credit risk capital calculation methodology in 

addition their own more sophisticated internal risk management systems 

has been regarded as a significant and unnecessary diversion of resources.

This study highlights, however, that any consensus has not yet been 

reached on the best practice in credit risk modeling. Instead, the current 

generation of bottom-up credit risk models includes a range of practices 

in the conceptual approaches to modeling. To summarize, these different 

conceptual choices include:
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(1) Different approaches to the measurement of credit loss (the DM 
and MTM paradigms

(2) Different methodologies for measurement loss given default
(3) Unconditional and conditional models
(4) Different approaches to aggregation of credit risk
(5) Different techniques for measuring the interdependence of factors 

that contribute to credit losses.

Neither the materiality of these choices on models' accuracy nor their 

impacts on the size of required economic capital are well understood so 

far. However, before a portfolio modeling approach could be used in 

formal process of setting capital regulatory capital requirements for credit 

risk, regulators would have to be confident not only that models are being 

used to actively manage credit risk, but also that they are conceptually 

sound, empirically validated, and produce capital requirements that are 

comparable across banking institutions. This study shows that at this time, 

significant obstacles, concerning especially data availability and weak­

nesses in model validation, still need to be cleared before these objectives 

can be met.
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