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1. Introduction

Nowadays it is not uncommon to write one’s thesis about a narrow subject

in some very specialized field of science. In medicine, one might consider

the effects of single gene to a disease, or in chemistry, one might be inter-

ested in the synthesis of a single compound. This kind of specialization

is characteristic to reductionistic science; a way of studying systems by

reducing them to smaller and smaller parts. This paradigm has domi-

nated the science of the 20th century and brought us many good things

from quantum mechanics to the discovery of DNA as basis of genetic in-

formation. However, it is becoming increasingly clear that the reduction-

istic approach has its limits: one cannot unravel how genetic regulation

works (or doesn’t work, in the case of cancer) by studying a single gene,

understand how consciousness is born in the brain by observing a single

neuron, or predict changes in the society by analyzing the mind-set of a

single person in isolation.

This thesis studies scientific collaboration, mobile phone call patterns,

interactions of proteins, global trading, online auctions, and organization

of emotions, among other things. Such diversity in research topics is typ-

ical for the science of complex systems. Here the paradigm is the opposite

to that of reductionism: instead of zooming into the individual parts of

the system, we try to describe the parts as simply as possible, and in-

stead zoom out and focus on how the interactions between the parts are

structured on the system-wide scale. Remarkably, in most systems with

non-trivial interactions, emergent behavior is observed: patterns emerge

that would be hard to predict from the behavior of individual agents or

interactions.

Complex systems started to become popular around the 80’s, mostly

among statistical physicists [1]. The system-level approach was very nat-

ural for physicists since they had already found out that the reductionistic
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approach, such as the one taken by quantum mechanics, is not enough to

explain all the physics [2]. Instead, many physical phenomena, such as

thermodynamics, can be understood by simplifying the model for the par-

ticles and considering how they work as system. Today the study of com-

plex systems is a highly interdisciplinary field, which is mostly due to an

explosion in the amount of data available to scientists in many fields such

as sociology, genetics, epidemiology, and neuroscience. Also the growth

in both number and power of computers has made it possible to perform

increasingly complicated analyses of this new data.

This thesis concentrates on complex networks, which is currently the

most popular approach for studing complex systems. This approach is

popular since many systems are composed of some agents that interact

with each other, and much of the complexity in these systems can be

traced back to the structure of the network formed by these interactions.

The field of complex networks was born at late 90’s when it was found out

that regular lattices or random networks were not good enough models

for empirical systems [3, 4]. Instead, real-world networks contain non-

trivial structure that is interesting in itself, but also has a large impact

on processes taking place on top of the networks, and on the set of pos-

sible mechanisms that could have been responsible for the evolution of

the networks. Since then, the use of network theory in science has grown

dramatically, with thousands of complex networks related publications

appearing per year.

By far, most of the work in complex networks so far has been devoted to

static binary networks. Here, “binary” means that each pair of nodes in

the network is either connected or not. As an example, in a social network

this would mean that you either know someone or not, and all other infor-

mation about the relationship is irrelevant. However, it is known that tie

strengths (or link weights [5]) are very important in the context of social

networks [6]. A network is static if it doesn’t change in time. This might

be a valid assumption for example when finding weak spots in a power

grid [7], but again in social networks and for among others in airline traf-

fic networks, information on the dynamics and timings of interactions can

be essential [8–11]. In this thesis, the main theme is to take a small step

back towards reductionism by including more detailed information on link

weights and timings in the complex networks framework.

The thesis is organized as follows: First, the main concepts of network

theory are introduced in Chapter II. This Chapter also discusses some

12
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of the main results of the field. Chapter III concentrates on taking the

weights of the links into account and deals with the inherent problems

that any attempts to generalize unweighted network concepts are faced

with. Chapter IV introduces temporal networks and goes through related

concepts and some results. Finally, Chapter V reviews the results in all

the Publications of this thesis and discusses future aspects.
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2. Complex networks

The basis of complex networks theory is the notion that the essence of

most complex systems can be captured by representing them as networks,

which consist of the elementary parts of the system (nodes) and their pair-

wise interactions (links). Everything else can be left out. The simplicity of

the network abstraction is the reason why so many different systems can

be mapped to this unified framework: In a social system people are linked

through relationships, the routers on the Internet are connected by wires,

and in a cell the genes interact by controlling each others’ expression.

The complexity of all of these systems is due to the non-trivial topology

of the connections, and hence, all of them can be studied with the tools

of complex networks analysis. Remarkably, the network representations

of most of these complex systems display similar characteristics to such

a degree that one might even describe them as universal properties of

complex networks.

In mathematics, networks have long been studied under the name of

graphs. The first paper in graph theory is considered to be the one pub-

lished in 1736 by Euler. In this paper, the nodes of the graph are four parts

of the city of Königsberg, separated by rivers running across the city, and

the links are the seven bridges which connected these parts at the time.

Later, graph theory became an important part of discrete mathematics.

However, mathematicians were mainly concerned on constructing graphs

with simple deterministic rules or about very general results that could be

derived for all possible graphs. Outside of mathematics, graphs were also

used to describe some small empirical systems, such as social networks,

or sociograms, introduced by Moreno in the 1930’s [12]. Clearly, the lack

of computers for analyzing data and automation in data collection made

it impossible to consider any large empirical systems as networks.

A big theoretical step towards rigorous analysis of large-scale complex

15
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systems using networks was taken by Erdős and Rényi [13] in the late

1950’s. They studied the properties of random graphs, where some fixed

number of edges, L, is distributed uniformly at random between all pos-

sible node pairs. Even though this basic Erdős and Rényi (ER) model is

simple, on a large scale the random graphs display emergent properties

which have remained an active research topic in mathematics long after

the publication of the model [14]. As model of empirical networks the ran-

dom graphs were adopted as a part of social network analysis [15, 16] and

they are still one of the central concepts in the complex networks litera-

ture.

In the late 90’s, two landmark papers were published that showed that

neither regular lattice models or random graphs were enough to explain

the topology of many empirical systems. Instead, many networks were

shown to be small worlds [3] and scale-free [4]. These findings triggered

a large interest especially in the statistical physics community, leading to

the field of complex networks as we now know it.

In this Chapter, we will briefly go through some of the basic concepts of

network theory, such as small-world and scale-free networks. We will also

discuss other important related topics such as percolation, community

structure, and social network models. The purpose of this Chapter and

the whole introductory part of this Thesis is not to give a full review on

complex networks, or even to be a short introduction to the whole subject,

but to provide the reader with the necessary concepts and background in

order to follow the rest of the thesis. Thus, some central concepts such

as centrality measures and dynamics on top of networks will be left out.

However, we will discuss spreading dynamics on networks in Chapter III,

where temporal networks are discussed. There are several text books [17–

21] and review articles about complex networks [22–25], and even some

popular science books [26, 27]. Also, books on more specialized topics such

as social networks [12, 16], biological networks [28, 29] and dynamics on

networks [30] are available.

First, we will go through fundamental notation and concepts. This is

followed by a discussion of node degrees and their statistical distributions.

Data collected for Publication IV will be used here to exemplify the central

statistics and their typical behavior in complex networks.
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2.1 Basics

A network, or a graph G(V,E), consists of a set of nodes, or vertices, V ,

that are connected by a set of links, or edges, E ⊂ V ×V [31]. A convenient

way of representing networks is the adjacency matrix, commonly denoted

with the letter A. It is a binary matrix, where the element Ai,j takes the

value of 1 or 0, depending on if the nodes i and j are connected or not. In

this Thesis, we are dealing with undirected networks: if there is a link

from i to j, this also implies a link from j to i, and we can simply say that

there is a link between i and j. This implies that the adjacency matrix is

symmetric. In addition, we do not allow self-links, i.e. links from a node

to itself. In an adjacency matrix of a network without self-links all the

diagonal elements have value of 0, i.e. Ai,i = 0, ∀i.

2.1.1 Degree distributions and correlations

The degree ki of node i is the number of connections between i and other

nodes. With the adjacency matrix, the degree is defined as a row (or col-

umn) sum ki =
∑

j Ai,j . Typical large-scale empirical networks are sparse,

which means that most of the adjacency matrix elements are set to 0. This

is because the degrees, and thus also the average degree 〈k〉 =
∑

i,j Ai,j ,

are under some physical constraints that do not depend on network size.

For example, in a social network the number of people one knows is not

affected much by the total number of people in the world. On a random

network (i.e. Erdős-Rényi network [13]), the degree of a node follows the

binomial distribution that converges to a Poisson distribution if the aver-

age degree is kept constant when the network size grows. In both of these

distributions, the degrees are centered around the average degree 〈k〉 and

large deviations from the average are extremely unlikely.

For a long time, the degree distributions of empirical networks were not

studied, and thus their forms were not known. However, since ER net-

works were considered as adequate models of many empirical networks, it

was implicitly assumed that the degree distributions should resemble bi-

nomial distributions. In 1999, Barabási and Albert [4] published an arti-

cle challenging this simplistic view: they showed that actually, many net-

works contain hubs, i.e., nodes with such a high degree that they should

be practically impossible to observe in ER networks. More precisely, they

found out that networks were scale-free: the degree distributions followed

power-laws (i.e. P (k) ∼ kα) instead of being exponentially decreasing
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as for ER networks. After this finding, many other networks [22], such

as larger samples of the Web [32, 33], the Internet [34], protein interac-

tions [35], and metabolic networks [36, 37] were reported being scale-free.

Later on it was found using rigorous statistical testing that some of the

networks previously reported as scale-free actually do not have a power-

law degree distribution, or the functional form of the distribution is un-

clear [38, 39]. Also other forms of degree distributions such as power-laws

with cut-offs due to some constraints have been found [40]. Nevertheless,

most degree distributions of real-world networks are still fat-tailed, i.e.

the nodes are highly heterogeneous in degree.

The power-law (or fat-tailed) degree distribution is an important fea-

ture of a network since it affects the dynamics taking place on top of the

network [41], makes the network resilient to random failures but vulner-

able to attacks [42], and suggests preferential attachment as a possible

model for the evolution of the network [4]. The value of the exponent of

the power law affects the qualitative behavior of these features [41], and

thus the power-law exponent of the tail is sometimes reported to give an

indication how fat the tail is, even in cases where the degree distribution

may, in fact, not be a power law.

Figure 2.1 displays the degree distributions of various types of empirical

networks (see Publication IV for details of the data). It is remarkable how

much the degree distributions of networks obtained from different con-

texts resemble each other. All of them are undoubtedly fat-tailed. How-

ever, the power-law nature of the distributions is questionable already

with a visual inspection, since a power-law distribution should show as a

straight line in a double-logarithmic plot.

In some networks, such as social networks, there is a tendency for nodes

of similar degree to be connected to each others, i.e. there is assorta-

tive mixing [43, 44]. Other networks, such as communication or biologi-

cal networks, display disassortative behavior, where the hubs are mainly

connected to low-degree nodes. The assortitivity of a network affects its

vulnerability to attacks, error tolerance and spreading dynamics [43]. The

assortativity can be measured by a correlation coefficient considering the

degrees of connected vertices, or simply by plotting the average neighbor

degree knn [45] as a function of the node degree. The latter approach is

depicted in the inset of the Fig. 2.1, where it is seen that networks asso-

ciated with information diffusion are organized in highly disassortative

way, contrary to the social networks where the popular people are likely
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Figure 2.1. Degree distributions for social (red), information (blue), Internet (green), bi-
ological (magenta) and communication (yellow) networks. See Publication IV
for details on the networks. The black line corresponds to Poisson distribu-
tion with average 10, which would results from putting the edges at random
to the network. The inset displays the average neighbor degree as a func-
tion of the average degree (both normalized with the average values of the
networks).

to know each other.

2.1.2 The clustering coefficient

In many empirical networks, the local neighborhoods of the nodes are

highly connected, i.e. the networks contain much more triangles than

would be expected in an uncorrelated random network. The tendency of

nodes to form clusters is well known in the social network literature [12,

16]: it is clear that two of your contacts are more likely to know each other

than two randomly picked persons. This tendency is quantified by the

clustering coefficient [3] Ci which is defined as the the probability of two

neighbors of i being connected. That is, the clustering coefficient counts

the number of triangles ti around the node i, and normalizes that number

by the maximum possible number of triangles around a node with the

degree ki. We can write Ci = ti/
(
ki
2

)
= 2ti/[ki(ki−1)], or with the adjacency

matrix Ci =
∑

k,j Ai,jAj,kAk,i/[ki(ki−1)]. Ci = 1 if all the neighbors of i are

connected and Ci = 0 if none of them are connected. In an ER network

with link probability p, the expected value for the clustering coefficient

Ci = p.
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The clustering coefficient is typically negatively correlated with the node

degree, as is depicted in Fig. 2.2a, where the average clustering coefficient

is plotted as a function of the degree for several empirical networks. There

have been attempts to explain the clustering spectra observed in data by

hierarchical [46] or pseudofractal [47] network structure, which would re-

sult to the average C being inversely proportional to the degree: C ∼ k−1.

As is evident from the Fig. 2.2a, at least the set of example networks

used in this thesis do not strictly follow this law. Furthermore, a cluster-

ing coefficient inversely proportional to degree may be obtained with very

simple mechanisms, such as building a network from triangles, and thus

it is not necessarily related to hierarchy or fractality.

It is natural that the clustering coefficient decreases with the degree in

networks that are sparse and have fat-tailed degree distributions, since

the normalization of the clustering coefficient penalizes heavily on large

degrees. Let us take as an example the Wikitalk network of Fig. 2.2,

where the largest hubs have degree of around k = 104 and the aver-

age clustering coefficient is around C = 0.2. For the largest hubs to

have clustering around the average clustering coefficient, there should be

Ck(k − 1)/2 ≈ 107 triangles (or edges) around each node. However, there

are only approximately 4.6× 106 edges in the whole network.
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Figure 2.2. (a) The clustering spectrum for social (red), information (blue), Internet
(green), biological (magenta), and communication (yellow) networks. See
Publication IV for details on the networks. The black line corresponds to
the case where the clustering is inversely proportional to the degree. The
clustering spectrum of an ER random network would be a horizontal line.
(b) The average clustering versus the average path length for each of the
empirical networks. Both of the average values are normalized with the cor-
responding expected values for the ER random graph, i.e. 〈C〉ER = 2L

N(N−1)

and 〈l〉ER = logN
log 2L/N

20



Complex networks

2.1.3 Paths and distances

A path in a network is a sequence of connected vertices, and the number

of links on a shortest path from a node to another is the path length or dis-

tance between the two nodes. The longest distance observed in a network

is called its diameter. Path lengths have a large effect on dynamics on top

of the network. Take a social network as an example: If the distances in

the network are large, it is hard for any new information, disease or opin-

ion to spread on the network since it has to pass many people in order to

reach other parts of the system. In fact, the path lengths set an upper

bound for the speed of dynamics on networks.

2.1.4 Small-world networks: high clustering, short paths

Early on, networks were mainly modeled either as regular lattices or ran-

dom networks, depending on which kind of structure one wanted to em-

phasize: regular lattices are clustered and random networks have short

distances. In 1998, Watts and Strogatz published an article [3] where

they introduced a set of empirical networks having both of these qual-

ities. They called such networks small-world networks after the small-

world problem in social sciences [48, 49]. The article also demonstrated

how lattices can be turned into small worlds by randomly rewiring a small

number of links. Later, almost all empirical networks have been shown

to be small worlds, which was conjectured by Watts and Strogatz. This

is hardly surprising as only a few “random” links are enough to reduce

the shortest path lengths of any network to the required level. The small-

world article was highly important for complex networks research, since it

turned attention away from the simple lattices and entirely random net-

works, and encouraged focusing on the topology of real-world networks

instead of making such simplistic approximations.

In order for a network to be classified as a small world, it must display

the short path lengths of ER networks (〈l〉 ∝ logN ), but still have the

high clustering coefficient of the regular networks, i.e. show randomness

on top of regularity. Fig 2.2b shows the average clustering coefficient and

average path length values as compared to those of ER random networks

for the selected set of empirical networks. The clustering is much higher

in all of the networks than would be expected from the random network.

The average path lengths are equal or lower than for the random net-

works with the exception of three of the information networks. The three
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information networks – Arxiv, Amazon, and Web-BS networks must have

heavy clustering or other structural coherence reducing the number of

“random” shortcuts that decrease path lengths.

2.2 Percolation – connectivity of networks

f=0.6 f=0.7 f=0.8

f=0.5f=0.4 f=0.55

Random bond percolation

Explosive percolation, with m=10

Figure 2.3. Bond percolation on a square lattice. Occupied edges are thick and col-
ored and unoccupied edges are thin and gray. Each percolation cluster has
a color assigned to it (colors are repeat if there are many clusters). For the
random bond percolation, the percolation threshold is fc = 0.5. At the occu-
pation probability f = 0.4, all clusters are small, and at the threshold level
f = 0.5 there are many large clusters spanning almost the whole system as
well as a number of small clusters. Just after the threshold at f = 0.55, there
is a single giant component in the system.

Percolation theory [50] studies the connectivity of networks. Histori-

cally, the considered networks have been simple lattices, where some of

the nodes (site percolation) or edges (bond percolation) have been deleted

(or set unoccupied, in percolation theory jargon). The nodes can then be

assigned to connected components (clusters), where there is a path be-

tween each pair of nodes. The size of the clusters is an important question

in many real situations. For example, oil fields can be modeled as 3D lat-

tices representing the ground where some of the nodes are solid rock, and

others have pores filled with oil that can percolate freely between neigh-

boring pores. That is, when drilling a hole to the rock, one can only pump

out the oil from all the nodes belonging to the cluster that one hits. If the
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system contains large clusters then it becomes economical to drill the oil.

Usually the nodes or edges are considered to be occupied at random in-

dependently of each other with some probability f . Consider for example

the square lattice network of Figure 2.3, where each edge is set either oc-

cupied with probability f or unoccupied with probability 1−f . If f is small

enough, the system consists of a large number of small clusters, and if it

is large enough, most of the nodes in the system are connected to a giant

cluster. What is interesting is what happens between these two states:

the system changes rapidly from the unconnected state to the connected

state when it reaches critical percolation probability, fc, which in the case

of bond percolation on a square lattice is fc = 0.5. Also, at fc the diam-

eter of the clusters explodes and the cluster size distribution becomes a

power-law for large systems.

Percolation theory is closely related to random graph theory [13, 14],

since from the percolation point of view a random graph is a bond perco-

lation problem on a lattice where all the nodes are connected. Percolation

theory is important for empirical networks, where it provides information

on how many nodes or links can be deleted before the network falls apart

into separated components [51]. This is important for example for disease

spreading on top of a social network [52], where the site percolation tran-

sition point indicates how many people should be vaccinated before herd

immunity is reached. Percolation theory can be used in development of

more efficient vaccination strategies than simply giving the shots to ran-

dom people. In the Internet, it is important to know how many random

failures to the routers (site percolation) and connections (bond percola-

tion) between them can be handled before the whole network becomes

disconnected. In more general terms, percolation theory explains why in

most empirical networks almost all the nodes belong to the same compo-

nent.

To quantify the percolation process, some terminology and mathemati-

cal machinery from statistical physics is employed. In order to calculate

anything analytically, it is usually assumed that the system is of infinite

size. First, we need to define an order parameter that has a value of zero

when the network is in an unordered phase with no giant component, and

a value larger than zero when there is a giant component. We define the

percolation probability P as the probability of hitting the largest compo-

nent if we pick one node at random from the system, i.e. P = smax/N ,

where smax is the number of nodes in the largest component, and N is the
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total number of nodes in the network. We also need to quantify the change

in P if the occupation probability p is varied a little. For this, we define

the susceptibility χ as the expected change in the giant component size if

a single link connected to it and a random node of some other component

is set as occupied. That is, χ =
∑

s �=smax
nss

2/
∑

s �=smax
nss, where ns is the

number of clusters of size s. The values of P and χ as a function of f

are shown on Fig. 2.4 for bond percolation on square lattice. The change

from the disordered phase to the ordered phase is rapid and the phase

transition point is clearly visible as a peak of the susceptibility curve.

The study of critical phenomena [25] that take place close to the percola-

tion threshold fc is an essential part of percolation theory. As an example,

at the threshold value, fc, the tail of the cluster size distribution takes a

power-law form P (s) ∼ s−τ , and close to fc the relative giant size scales

as P ∼ |f − fc|β. In these scaling laws, the critical exponents τ and β

depend on the dimensions of the underlying lattice [21] or on the degree

distribution of the network [53–55].
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Figure 2.4. Statistics of bond percolation on square lattice. Lattice size is 500x500.
Curves for both random bond percolation and explosive percolation are
shown. (a) The percolation probability (relative giant component size) P as
a function of the occupation probability f . (b) The susceptibility as function
of f . The percolation transition point for the random bond percolation for
systems of infinite size is fc = 0.5, but due to finite size effects, the observed
susceptibility peak is located at a slightly lower value of f .

2.2.1 Explosive percolation

The concept of explosive percolation was introduced by Achlioptas et al.

in 2009 [56]. The idea is that instead of studying bond percolation on a

lattice or a network with random bonds set as occupied, the occupation is

determined by the following irreversible process: the process begins at a

point where all the links are unoccupied. Then at each step of the process,

m unoccupied links are selected at random. For each of those links i − j,

the sizes si and sj of the clusters where the endpoint nodes belong to are
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determined. Then for each of the links, a score is calculated based on the

cluster sizes, and the link with the smallest score is set occupied. Typical

rule for calculating the scores is to sum the sizes of distinct clusters si+sj

or set the score to zero if both end points of the link are in the same cluster.

This step is repeated until all the links are occupied. The process tries to

avoid creating large clusters [57], but tries to keep all the clusters roughly

equally sized before the percolation transition [58]. This is illustrated in

Fig. 2.3 for a square lattice.

What made explosive percolation theoretically appealing was the fact

that it seemed to result in a discontinuous (first order) phase transition

instead of a continuous (second order) phase transition which is typical

to percolation problems. In addition, the explosive percolation transi-

tion displayed scaling which seemed to be in contradiction with it being

a first order transition. However, it was later argued that the transition

is indeed continuous [59, 60], but just very sharp (P ∼ |f − fc|β , with

β ≈ 0.0555) [59].

The explosive percolation process is studied mostly in artificial networks

such as regular lattices [61] and scale-free networks [62, 63], but very lit-

tle work has been done for empirical networks [64]. In Publication VI we

asked what would happen if we applied the explosive percolation process

to some empirical network. To our surprise, we found two universality

classes, that depend on network topology by observing the behavior of the

explosive percolation process. We also found out that the explosive perco-

lation process tends to first accumulate the communities of the network

into separate clusters before joining them at the percolation transition.

2.3 Communities

Until now we have discussed either local network characteristics, such

as degree or clustering coefficient, or system-level behavior such as the

percolation transition. However, empirical networks contain rich struc-

ture somewhere between the local and global scale: social networks are

organized into families, groups of friends, and even larger units such as

institutions or companies. Genetic relationship networks of individuals

contain populations separated from each other by physical barriers [67].

Web pages with similar content tend to link to each other [68]. In network

terms, all of these are examples of communities: dense subgraphs or clus-

ters found inside networks (see the illustration of Fig. 2.5). These can,
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Figure 2.5. A network with communities. A network produced with a simple network
generation model with communities [65, 66]. The communities are detected
using the explosive percolation method explained in the Publication VI.

in theory, be detected by observing the topology of the network without a

priori knowledge of the qualities the nodes in the communities share.

The immediate practical problem one faces when trying to find the com-

munities is that there is no exact, universally accepted definition of what

is a community. Instead there is a wide variety of mathematical defini-

tions and related computational methods for community detection, all of

which have a common goal of finding dense subgraphs in empirical net-

works [69]. Hence, there is no free lunch when it comes to community

detection: Some prior knowledge about the properties of the communities

must be available in order to choose the most suitable community detec-

tion method.

Some properties such as if the communities can overlap or not might

be clear from the context. For example, in most social networks a per-

son can clearly belong to more than one community such as work and

family [70, 71]. However, it is not always clear what properties of com-

munities each method emphasizes, since community detection methods

are often defined as algorithms instead of defining the communities start-

ing from axioms that tell what the communities should be like. Most

community detection methods sound reasonable, but can still find com-

pletely different community structures [72]. A similar paradoxical situa-
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tion was encountered in the related field of data clustering much earlier

than community detection became popular in complex networks. This

situation was made clearer by a theorem stating that no such clustering

method exists which would satisfy four very reasonable axioms about the

clusters [73]. Instead, each clustering method is simply a compromise

between the properties a method can have. A similar theorem for com-

munities or clusters in graphs is still to be found, and the emphasis on

community detection is on asking which community detection method is

better instead of asking at kind of communities a method can find [74, 75],

although overlapping communities are already acknowledged as special

case in community detection [71, 76–81].

Probably the most well-known method for community detection is mod-

ularity optimization [82]. Modularity is a global measure for the quality of

a given community structure on a network. It is defined as the difference

between the fraction of edges inside the communities (as opposite of edges

between the communities) and the expected fraction of such edges in a

randomized network. The communities are detected by finding the com-

munity structure which gives the highest value for the modularity. As the

number of possible community structures grows exponentially with the

network size, the optimization is usually done only approximately by some

heuristics, such as greedy agglomerative optimization [83, 84], genetic al-

gorithm [85], spectral methods [86, 87], simulated annealing [88], round-

ing of integer linear programming problems [89], and approximation al-

gorithm [90], where the two latter ones can even give some guarantees for

the error [90]. In addition to being best known, the modularity optimiza-

tion method is also the one which has the most known disadvantages:

it requires solving an NP-complete optimization problem [91], there are

usually many only slightly suboptimal solutions which are far from each

other [92], there is a resolution limit which depends on the network size

and sets a lower bound for the size of communities that can be found [93],

and the method finds communities in random networks [88, 94]. Luckily,

there are plenty of alternative methods for community detection. One of

the methods which is gaining popularity and was found to perform well in

a recent comparison [76] is the Infomap [95, 96]. It is similar to modular-

ity optimization in a way that it tries to optimize a global quality function

for a partition of nodes, with the difference that the quality function is de-

fined as the expected description length of a random walk in the network.

One of the advantages of this definition is that it is flexible, such that it

27



Complex networks

can be generalized to allow overlapping communities [97] and hierarchical

community structure [98].

Despite the problems in community detection, the community structure

found from empirical networks seems to have universal properties, much

like the degree distribution, clustering and path lengths, or show signa-

ture characteristics depending on the class of networks, similar to assor-

tativity. The characteristics of communities found in different classes of

empirical networks are discussed in Publication IV.

2.4 Network models

Until now we have discussed the structural properties of networks and

found out that many of the network characteristics display similar be-

havior in most networks, even though these come from different sources.

However, we have not discussed what could have lead to such “univer-

sal” behavior of complex networks. This question is actually composed of

two questions: First, are some of these properties only the consequences

of some other properties? And second, is there some simple procedure of

graph generation that would produce all these properties?

Both of these questions can be answered by network models. The first

one is addressed by reference models that are ensembles of networks that

contain some selected set of properties of the empirical network but are

otherwise completely random. The second question can be approached by

simply constructing generative models approximating some aspects of the

mechanisms behind the evolution processes of the observed networks. The

next two subsections will briefly introduce both types of models, beginning

with the reference models.

2.4.1 Reference models

Reference models can answer questions such as “is the property X in my

system the direct reason for some other property Y that the system has?”

For example, can the degree distribution in a network explain the short

path lengths in the same network? Technically, a reference model is de-

fined as an ensemble of networks G from which networks are sampled

with probability p(G). There are two main ways of defining that G has the

set of properties Xi. The first is the “microcanonical” ensemble where all

networks are included that display exactly the same values for the prop-
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erties Xi observed in the empirical network. In other words, p(G) = 0 if

Xi(G) 	= Xi(Ge)∀i, where Ge is the empirical network and Xi is the func-

tion returning the ith property Xi. Otherwise the ensemble is maximally

random, which means that all other probabilities are equal to the inverse

of the number of possible networks. The second alternative is the “canon-

ical” ensemble, where one loosens up the conditions in a way that the en-

semble displays the properties only on average: 〈Xi〉 = Xi(Ge), where the

averages are defined as 〈Xi〉 =
∑

G∈G Xi(G)p(G). Here we again want the

ensemble to be otherwise maximally random, which can be achieved by se-

lecting the ensemble fulfilling the constraints with maximal entropy [99–

101]. The probability distribution for such an ensemble can always be

written in exponential form p(G) ∝ e
∑

i λiXi(G), where the constants λi de-

pend only on the values of the properties on the empirical network Xi(Ge).

The simplest reference model is the ER random graph [13, 102] that we

have already discussed and used several times in this Thesis. The mi-

crocanonical version of the ER model keeps the total number of links L

constant in all networks of the ensemble, i.e. it simply shuffles the links.

In the canonical version of the ER model1, each pair of nodes is linked

with a fixed probability p = L/
(
N
2

)
, where N is the number of nodes in the

network. Both versions of the model give roughly equal results, but the

canonical version is usually used for any analytical results and the mi-

crocanonical for simulating sample networks, e.g. when shuffling empir-

ical data. As discussed earlier, the ER model cannot explain the hetero-

geneous degree distribution of empirical networks. A random reference

model where the degree distribution is retained is called the configura-

tion model [53, 105–108]. The microcanonical version of the configuration

model is more popular, but the canonical version is also sometimes ap-

plied [100, 101].

In social network analysis, the canonical versions of the reference mod-

els have been used for a long time under the name of exponential random

graphs, or p∗ models [109–113]. Typically, exponential random graphs in

social network literature are used as sophisticated reference models that

can include properties (having fixed ensemble average value) related to

the number of triangles, degree, and even external attributes such as age,

1Erdős and Rényi didn’t consider the canonical version of the random graph
model in their seminal article considering random graphs [13]. However, both
versions of the model are commonly named after Erdős and Rényi [14] even
though there were several other authors with similar ideas already before
them [103, 104].
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sex or race. The downside of using such a complicated model is that the

analytical handling of these models is usually impossible and even sam-

pling from the ensemble and fitting the model to data can be hard [113–

115].

2.5 Generative models

Generative network models are designed to answer the question of what

kinds of mechanisms could have produced the observed network struc-

ture. Of course, the fact that one network creation procedure can lead

to the observed network doesn’t remove the possibility that there could

still be some other mechanism that can do the same. To address this

concern, network generation mechanisms are usually designed to be as

simple as possible, since a simple explanation for the network evolution

is more believable than a complex one. Also, in most systems there are

several known mechanisms molding the networks, but their relative im-

portances to the overall structure of the networks are not known. The

typical modelling approach is then to take one or two of these processes,

simplify them, and try out building networks according to them.

The fat-tailed degree distribution observed in most of the empirical net-

works cannot be explained by the ER network model. Instead, there must

be some sort of mechanism behind the network creation process that is

so simple that it is plausible for all different systems. The preferential

attachment process, where networks grow by new nodes linking preferen-

tially to high-degree nodes, fits these criteria perfectly. This mechanism

of network evolution was first described by Price in 1976 [116] in the con-

text of citation networks, but was later made popular by Barabási and

Albert [4] when explaining the ubiquity of the scale-free networks.

One of the most modeled types of systems in complex networks litera-

ture are social networks, which in addition to having the fat-tailed de-

gree distribution typically display characteristics such as assortativity

and strong community structure. In the Publication III, we review and

compare several social network models and assess their ability to pro-

duce realistic social network topology. We divide the generative network

models to network evolution models and nodal attribute models, and also

include exponential random graphs for comparison.
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The previous Chapter dealt exclusively with networks where each pair of

nodes is either connect or not, and all other information about the sys-

tems is discarded. As we have seen, this approach has been extremely

successful in describing a variety of systems, and has lead to the discov-

ery of many almost universal properties of empirical networks, some of

which are emergent and can be explained by simple network evolution

mechanisms. However, for many classes of networks, the simple topol-

ogy is not enough, but the interaction strengths, or edge weights, display

high heterogeneity, making them an essential part of the system. As an

example, for social networks it might not be enough to take into account

who knows who, but how well people know each other matters [6], and in

transportation networks the capacities of the connections are an impor-

tant factor [5, 117, 118].

The way of defining interaction strengths, or weights, varies a lot be-

tween different systems, as is evident from Table 3.1 that lists some of

the weighted data sets appearing in networks literature. Similarly to

unweighted networks, where various types of interactions between the el-

ements are reduced to links between the nodes of a graph, we can map all

the different types of interaction strengths to positive real numbers: an

unweighted graph G(V,E) may be generalized to account for the weights

by defining a weighted graph G(V,E,w), where V and E are the sets of

vertices and edges as before, and w is a weight function from the edge set

to (positive) real numbers (w : E → R+). Again, similarly to unweighted

networks, where the network structure is represented with an adjacency

matrix, weighted networks can be represented by a weight matrix W ,

where Wi,j is set to zero if there is no link between the nodes i and j,

and otherwise it is set to the weight of the edge between the two nodes

Wi,j = w(i, j).
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Network name Node Weight Citations

Mobile phone Person # of calls [10, 119, 120]

International trade Country Trade volume [121, 122]

Air traffic Airport # of seats [5, 40, 118]

Scientific collab. Scientist # of coauth. articles [5, 122–125]

Brain connectivity Brain area # of fibers tracts [126–128]

Brain connectivity Brain area prob. of fiber tract [126]

Stock market Stock Stock price cor. [129]

Genetic network Gene Genetic distance [130, 131]

Emotion words Word Similarity from 0-5 [132]

Clique overlap Clique # of shared nodes [79]

Metabolic network Chemical Flux of reaction [133]

Food web Species Flow of biomass [134]

Table 3.1. A sample of weighted network data sets. For each network, the type of
node and edge weight is listed.

For some systems, representing the interaction strength as a real num-

ber is straightforward, e.g. when there are multiple connections between

pairs of nodes [65], when links have well defined probabilities of exist-

ing [126, 135], or when there is a flow or a flux between pairs of nodes [133,

134]. However, in some other systems the interaction strengths are not

one-dimensional, but the link weights need to be defined by starting with

some higher-dimensional data, and calculating some summary statistics

reflecting the strengths of the interactions. If the links have a tempo-

ral dimension, such as in mobile phone call networks [119], it is usu-

ally averaged out, e.g. by considering the average rate of calls as the

link weight (there are also alternative statistics [136]). Bipartite net-

works [31, 124, 137, 138] can be projected into weighted networks by cal-

culating the (normalized) number of shared neighbors of nodes, such as

in scientific collaboration networks, where the weights correspond to the

number of coauthored articles [5, 122–125]. Note that many of the col-

laboration networks also have a time dimension, e.g. the release dates of

the movies and the articles. Finally, there are systems where the nodes,

instead of the interactions, are high dimensional feature vectors. Such

networks include stock market networks, where the nodes represent the

time series of stock prices, and the weights are the correlations between

them [129], and genetic networks, where each node corresponds to a geno-
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type of an individual and the weights are genetic distances between the

genotypes [130, 131]. The distances are usually further transformed to

similarities, since a high distance corresponds to a low tie strength. This

way of defining weighted networks results in full networks, where all the

possible edges are present.

The fact that all weighted networks can be represented with the same

abstraction implies a possibility to repeat the success story of the un-

weighted networks: to develop weighted network metrics [5] and apply

them to all possible weighted systems in order to observe some ubiqui-

tous behavior or find classes of systems with similar properties. However,

it turns out that weighted networks are not that simple. Consider for

example two networks, one where the weights are defined as probabili-

ties for the edges to exist, and another, where they represent distances

between the two nodes. The relevant questions one can ask about these

weighted graphs differ greatly: in the probability graph, one might e.g.

ask how likely it is for some clique to emerge in the network, which could

then be calculated as a product of the probabilities of the edges of the

clique. In the distance graph, this calculation doesn’t make any sense:

one simply cannot use the same set of tools for all weighted networks

since the interpretations of the weights are different.

The question that arises naturally is whether the weights can be some-

how categorized, such that these categories could be used to decide what

tools are appropriate for analyzing different networks. Similar questions

have arisen in the field of statistics, and in the 40’s there was an attempt

by Stevens [139] to build a hierarchy of measurement scales, and to clas-

sify the statistical procedures according to what type of data is appropri-

ate for what scale. As an example, it is typical to assign numbers to data

that is actually on an ordinal scale, e.g. at the scale of good (1), neutral

(0) and bad (-1). According to Stevens it would be forbidden to calculate

any statistics of the data, such as the average, that would be affected if

some other similarly ordered numerical values were assigned to the data

classes. Stevens’ approach has attracted a lot of critique [140, 141], be-

cause defining the scales for empirical data can be problematic, and fol-

lowing such categorization too strictly can unnecessarily limit the data

analysis. The type of analysis that can be performed on the data is not

determined by the type of variables, but by the type of questions the re-

searcher has regarding the data. The same is true for weighted networks.

Let us take as an example a mobile phone call network, where the num-
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bers of calls are used as the edge weights. If you are a mobile phone

operator you will probably consider the number of calls as absolute scale

and ask questions such as “how many more calls per month users of type

X make than users of type Y?”. However, if you are a sociologist inter-

ested in the underlying social network, and consider the number of calls

as a proxy for the tie strengths between the people, then you probably

consider the number of calls in an ordinal scale, where more calls means

a stronger tie, but you don’t ask questions such as “By how many calls per

month is person A better friends with B than with C?”.

This Chapter introduces two cases with two different approaches to

tackle the problems in analysis of weighted networks discussed above.

In the first case, some possible ways of generalizing the clustering coef-

ficient for weighted networks, and the problems related to them, are re-

viewed. It turns out that the heterogeneity in the ways of defining weights

for different systems has lead to variation in the interpretation of what

weighted clustering means, and ultimately to different generalizations

for the weighted clustering coefficient. In the second case, community

detection in weighted networks by applying thresholding and clique per-

colation is discussed. Thresholding-based methods are non-parametric in

the sense that they only consider the order of the weights, allowing one to

use them for a wide variety of systems.

3.1 The weighted clustering coefficient

One way of approaching weighted network analysis is to take some un-

weighted network characteristics and generalize them so that they take

weights into account. Perhaps the most successful of such generalizations

is the node strength, which is an extension of the degree [5]. The strength

si is simply the sum of the weights of the node, si =
∑

j Wi,j , similarly to

the degree which is a column (or a row) sum of the adjacency matrix. In

most networks, the sum of the weights is a natural measure of the im-

portance of the node: in some networks the sum represents the total flow,

count or rate related to the focal node. In networks weighted with the

edge probabilities, it equals the expected number of edges the node has.

There have been several attempts to generalize the clustering coeffi-

cient, probably because it is one of the most well known and widely used

network characteristics in the complex networks literature. In Publica-

tion I, we review four of these generalization attempts. Perhaps sur-
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prisingly, the different generalizations of the clustering coefficient behave

quite differently from each other, even though all of them have the same

goal of measuring local clustering around a node. On the other hand, this

is not surprising at all since the generalizations have been designed with

different types of systems in mind, and thus the questions behind them

are different. Barrat et al. [5] were interested in airport and collaboration

networks, and for these the relevant question was how much of the rela-

tive weight of the links of a node is associated with triangles, i.e. the clus-

ters. For Grindrod et al. [142] and Ahnert et al. [135], the starting point

was networks where edge weights are defined as the probabilities that the

edges exist. Here, a natural question to ask is what the expected value of

the unweighted clustering coefficient is. Both defined the weighted clus-

tering coefficient as an approximation of this expected value. The same

formula for the weighted clustering coefficient can be reached by replac-

ing the adjacency matrix with the weight matrix in the most commonly

used formula for the unweighted clustering coefficient [143, 144]. Onnela

et al. [145] defined the weighted clustering coefficient as a product of the

average of the intensities (i.e. geometric means of the weights) of the tri-

angles around the node and the unweighted clustering coefficient. This

compromise between clustering of weights and topological clustering was

seen to work well for stock correlation networks, and produced reason-

able results even when the weighted network was fully connected. Thus,

none of the generalizations is better than the others – the questions they

answer are simply different.

In Publication I, it was noted that all of the weighted clustering coef-

ficients are compromises between the topological clustering around the

focal node and the organization of weights around that node. This makes

all of the coefficients highly degenerate, and thus hard to interpret when

empirical data is used. Interpreting results for the unweighted clustering

coefficient already requires taking into account information on the node

degrees. Adding a new dimension, the weights, to the equation is not go-

ing to make interpretation any easier. That is, if the value of the weighted

clustering coefficient of a node is low, the reason can be any combination

of the following: (1) there are not many triangles around the focal node,

(2) the degree of the node is high, which in many networks with other-

wise high clustering coefficient values limits possible available values for

the clustering (see discussion in the previous Chapter), or (3) there is not

enough weight associated with the triangles around the node.
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The problems with the degeneracy of the weighted clustering coefficients

can be circumvented by asking more specific questions about how the

topological clustering and the weights are related. One approach is to

calculate intensity or coherence distributions of the triangles [145]. In

Publication VII, we wanted to find imbalanced triplets from a network of

emotion concepts, or more specifically triplets where two edges have high

weights and one has a low weight. We could have used coherence values

to find such structures, but triplets with one strong connection and two

weak ones also have low coherence. We could have then used intensity

values to filter out these unwanted triplets. Since our original question

was quite simple, we instead constructed a new measure for answering

that specific question.

3.2 Thresholding and clique percolation

A popular technique for studying weighted networks is to use the weights

to filter out a part of the edges, after which all usual weighted and un-

weighted network methods can be applied. The most popular and simplest

filtering method is thresholding the network by discarding all edges with

weight below (or above) a certain threshold level. This technique can be

applied with a single threshold level, or by sweeping through all thresh-

old levels and plotting appropriate metrics as a function of the threshold.

Thresholding-based methods can be, in theory, applied to all networks

where the weights can be (partially) ordered. Other filtering methods,

such as finding minimum/maximum spanning trees and backbone extrac-

tion methods [146], are not considered in this Chapter.

Theoretically, thresholding is close to bond percolation, with the differ-

ence that the edges are not set occupied and unoccupied at random, but

according to their weight. This correspondence is useful when applying

thresholding-based techniques to empirical system, since results for per-

colation of random networks can be directly used as a reference model for

the thresholding [129]. Also, the quantities of interest, such as the giant

component size and the susceptibility, can be directly adopted to monitor

the progress of the thresholding sweeps. This approach has been used for

example to determine a suitable threshold value for a genetic network of

populations [130], and to prove Granovetter’s theorem [6] stating that the

society is held together by weak social links [119, 120].
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3.2.1 Algorithmic perspective

The algorithmic cost of a threshold sweep, where the network character-

istics are calculated at each threshold level, might sound high at first.

However, the sweeps can usually be implemented in an algorithmically

efficient way, such that some of the key statistics from all threshold levels

can be extracted swiftly even for extremely large networks. The idea is to

begin with an empty network, and start adding edges one by one in the

order induced by the weights. After each addition, one simply updates

the changes in the statics. If the statistics are local in nature, e.g. the

clustering coefficient in a sparse network, these changes can usually be

calculated in constant time. That is, the total computational time used

for the addition of edges is O(L), where L is the number of links in the

network. The total time for the whole procedure is thus dominated by the

sorting time O(L logL).

The same algorithmic approach is also widely used in percolation anal-

ysis, where instead of ordering the edges by weight, they are added in

a random order. This procedure produces statistically correct uniform

samples from the set of networks with the given number of added edges.

However, the samples are not independent, which is usually not a prob-

lem since the procedure can be repeated to check for variations in sample

networks having the same number of edges. In fact, Fig. 2.4 of the pre-

vious Chapter displaying the giant component size and susceptibility at

different levels of occupation probability was produced in this way.

In order to calculate the giant component size, one needs to know to

which component each node belongs to. Updating this information after

addition of each edge requires more than a local inspection of the net-

work. However, this can be achieved faster than O(logL) by using the

disjoint sets forests (DSF) data structure [147]. Further, there is no need

to store the network structure in the memory, but only the DSF, which

takes only O(N) of memory, where N is the number of nodes. Thus, the

whole thresholding procedure can be completed in O(L logL+N) time.

3.2.2 Weighted clique percolation

The clique percolation method (CPM) is a community detection method in-

troduced by Palla et al. [70] in the 2005. The main motivation behind the

method was to detect overlapping communities, which were overlooked

by other community detection methods at the time. The CPM is based on
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the observation that communities usually contain cliques, i.e. subgraphs

where each node is connected to every other node, and that the cliques

are closely related to each other. To be more precise, community detection

with the CPM starts by transforming the network into a k-clique graph

G∗, where the cliques of size k form the nodes, and two cliques are con-

nected if they share k − 1 nodes on the original network. For example, if

k = 3 the triangles are the nodes and two of them are connected if they

share a link. Then, the communities are defined as the union of all nodes

in all cliques of each component of G∗.

In addition to the ability of the CPM to find overlapping communities,

its main benefits over the older methods are that it is deterministic (it

always finds the same communities), and it is easy to understand what

kinds of communities it finds, unlike for methods that are, for example,

based on solving some optimization problem. The CPM is also a local

method in a sense that the community finding algorithm only considers

local information and the communities it finds are not affected by changes

in distant parts of the network. However, if the clique size k is not selected

a priori to detecting the communities, the local nature of the method is

partially lost, since the global network density affects the choice of k if

the percolation procedure of Ref. [70] is used.

Selecting a proper clique size k is in practice the main problem with the

CPM. If k is too large almost no cliques can be found from the network,

and if it is too small, there might be a giant community that spans the

whole network. If the network is sparse, k should be small, usually around

3 to 6 [70], and because the clique size needs to be an integer, there might

not be any good value of k for a given unweighted network. Also, the

optimal value of k might be different for different parts of the network, i.e.

some parts of the network can be more dense than the others. And finally,

even if there is a good value of k to be found, it is usually found near the

percolation threshold point of the clique network [148]. From percolation

theory we know that the clusters near the critical point can be tree-like

and have a high diameter, both of which are not desirable properties for

communities. The properties of clique graphs formed when starting from

ER random networks are already well understood from the percolation

point of view [148–150], but the structural properties of empirical clique

graphs have not gained much attention [79].

If the empirical network is weighted, it can be thresholded before find-

ing the communities using the CPM. This allows one to select such a small
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clique size that it would results in too large communities without thresh-

olding, and then adjust the number of links such that the community

structure becomes as rich as possible [70]. As illustrated by Fig 3.1, there

is a tradeoff between the weight threshold and the clique size: selecting

a large weight threshold (and, thus, a small clique size) results in com-

munities that are based on the strong links of the network, but are not

necessarily topologically coherent. If a small threshold level is selected, it

is possible to use larger cliques, but communities can be formed between

weakly connected nodes. However, if large weights are associated with

the cluster structure, as in social networks [6, 119], the network should be

robust against the choice of the threshold. Also, a weighted clique percola-

tion method that is based on intensity values of cliques can be used [151].

���

���

���

Figure 3.1. Thresholding by topology and weight in clique percolation. (a) A
schematic view of the weight-topology tradeoff in clique percolation. Topo-
logically coherent communities can be found by allowing weak links in the
communities but increasing the clique size. Communities that have strong
weights but are not necessarily topologically coherent are found by increas-
ing the weight threshold while still keeping the clique size small. The dotted
line represents the “optimal” threshold value. (b-c) The giant component size
and susceptibility (measured in number of nodes in the original network) as
a function of the clique size and weight thresholds. The optimal threshold
should be so small that there is no giant component, but large enough for
cliques to exist: i.e. the susceptibility value should be large. The figure is
adopted from Ref. [67].

Thresholding does not only solve the problem of finding a value for the

clique size k such that the community structure is as rich as possible.

It also solves the problem of heterogeneity in the network density that

makes different values of k optimal for different parts of the network. In

the Publication II we introduce the sequential clique percolation (SCP)

method, which is used to build dendrograms displaying the community

structure at each weight threshold level, and the way the communities

merge when the threshold is decreased. Thus, it doesn’t only produce the
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community structure at multiple resolutions, but also allows one to find

the hierarchical structure of the network.

The power of the CPM and the SCP method is perhaps best illustrated

by giving an example. In Publication VII, we investigated a weighted net-

work formed between Finnish emotion concepts using similarities of the

concept pairs as weights. Running the SCP method with the clique size set

to three for this network produces the dendrogram presented in Fig 3.2.

The hierarchical community structure in this network is an essential part

of the system, and the benefits of building the whole dendrogram instead

of choosing a single threshold are clear: First, there is no clear optimal

threshold since selecting one would always leave some interesting struc-

ture invisible. Second, the dendrogram reveals the relationships between

the communities, such as the positive communities merging together be-

fore they merge with the negative ones. An important feature of CPM is

the fact that the communities can overlap. Take the three clusters where

the concept “happiness” belongs to as an example: depending on the con-

text, the word can have different meanings, which is evident from the

overlapping community structure found with the CPM, but would have

caused some trouble to any other community detection algorithm not al-

lowing for overlapping communities.

Figure 3.2. SCP applied to the emotion concept network. The circles represent the
3-clique clusters, with the area of each circle proportional to the number of
nodes in the cluster. The x-axis denotes the weight threshold level: decreas-
ing the threshold makes the clusters merge such that finally there is only a
single giant cluster containing all the nodes. Colors denote the average va-
lence level (positive to negative) of the emotion concepts. See Publication VII
for more details.

Algorithmic perspective

A naive solution to the problem of finding clique communities in a net-

work is to explicitly build the clique overlap network G∗, and simply find
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the connected components. For a given k � N , the worst case for this

algorithm is the full graph for which the algorithm runs in polynomial

time and memory O(N2k). However, in real world cases it is often bet-

ter to build a network where the nodes are the maximal cliques of the

graph [70, 152] (i.e. cliques which are not completely covered by some

larger clique), and link two of them if they share nodes. Considering

this network as a weighted network, with weights defined as the num-

ber of nodes shared by the maximal clique pairs, all k-clique community

structures can be reached by simply thresholding the network (and by

considering the isolated maximal cliques separately). The problem with

this approach is that finding the maximal cliques is an NP-complete prob-

lem [153]. However, there are algorithms that are usually fast for sparse

empirical networks [154–156].

The algorithmic approach taken by the SCP method is closer to the naive

solution than to the maximal-clique solution. The SCP method improves

the naive solution by turning the problem of finding the connected com-

ponents in the clique graph at each threshold level of the original graph

into an edge percolation problem in a modified clique graph. This way, the

edge percolation algorithm described in the previous section can be used

both to find the new cliques at each threshold level and to update the

component structure of the clique graph. In the modified clique graph the

k−1-cliques are the nodes that are connected if they are a part of the same

k-clique, making the k-cliques in effect hyperedges [31] of the graph. The

DSF uses less memory in the worst case for the modified clique graph than

for the naive clique graph, as the number of k − 1 cliques is less than the

number of k-cliques (O(Nk−1) versus O(Nk)). This is also true for many

realistic cases. For example, there are usually more edges, i.e cliques of

size 2, than nodes, i.e. cliques of size 1, in empirical networks. Effec-

tively, the SCP algorithm does thresholding sweeps on the horizontal axis

of Fig. 3.1, where the maximal clique algorithm finds all the community

structures on the vertical axis. A full description of the SCP algorithm

can be found in Publication II.
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4. Temporal networks

In the previous Chapter it was argued that due to the heterogeneous

nature of interaction strengths in many complex systems, such systems

should be represented with weighted networks instead of binary ones.

However, if you take a look back at Table 3.1, you will notice that actu-

ally, most of those networks are not just weighted – they are also time-

dependent. As an example, in the mobile phone call network, the links

are active only at the times of the calls, and in the scientific collaboration

networks, the number of links is constantly growing as more and more

articles are published. Also, brain activation networks [157–159], protein

interaction networks [160–163], gene regulation networks [164–166], and

stock price correlation networks [129, 167–169] are inherently dynamic in

nature.

As with weighted networks, we would like to find a suitable abstrac-

tion level at which all different time-dependent networks could be rep-

resented. Similarly to weighted graphs, we can extend the static graph

representation G(V,E) to temporal graphs G(V,E, ρ) with a presence func-

tion ρ : E × T → {0, 1}, where T is the temporal domain of the system,

and the presence function gets value ρ = 1 if the edge e ∈ E is present

at time t ∈ T and ρ = 0 otherwise [170]. Temporal graphs can also be

represented with sequences of static graphs or with time-varying adja-

cency matrices [171]. For some networks it might be necessary to include

a latency function for the edges [9, 170, 172]. For example, in an air-

line network a link between two airports is present only at the departure

times of the flights with the latency equal to the flight time. In many sys-

tems, it is more natural to think of the temporal network as consisting of

events [8, 10, 11, 173]. Graphs with presence and latency functions can

be equivalently represented with event sequences if we define the events

as tuples e = (i, j, t, d, δ), where i and j are the two nodes participating in

43



Temporal networks

the event and t is the time, d is the duration and δ is the latency of the

event.

For the purpose of this Thesis, we will concentrate on temporal networks

represented by event lists E that are sets of events e = (i, j, t) between two

nodes i, j ∈ V at time t. We consider the events to be undirected, such that

the order of i and j in the events is not meaningful. Further, we will leave

out the duration and the latency. This will restrict our scope to temporal

networks where all events have (almost) zero duration and latency, like in

email networks, or the duration and the latency are negligible compared

to the other time scales, like for mobile phone calls, where the durations of

the calls are typically much shorter than the times between calls. Leaving

out these extra parameters allows us to concentrate on the timings of

events, which are at the core of temporal networks. More complicated

temporal networks should be considered only after we understand how

the timing of events affects temporal networks.

In this Chapter, the focus is on temporal social networks and dynamics

on top of them. If the timings of events in a temporal network come from

a uniformly random distribution, the whole temporal networks frame-

work would be unnecessary since weighted, or even unweighted, networks

could be used to model such systems. This Chapter begins by reviewing

results showing that human behavior in temporal communication net-

works is highly heterogeneous, instead of uniformly random. We will then

discuss the implications of this heterogeneity on spreading processes tak-

ing place on top of these social networks. Again, the interested reader

is pointed towards a recent review [174] for a more complete picture of

temporal networks.

4.1 Heterogeneous activity patterns

The Poisson process is a continuous time model that creates sequences of

events such that these take place independently of each other. It is the

standard temporal model that has been successfully used to describe var-

ious systems from radioactive decay to customers arriving into a queue.

However, it is becoming increasingly clear that for many complex systems,

from natural ones to ones related to human behavior, the Poisson process

doesn’t offer a good description, but their dynamics are more heteroge-

neous instead [175]. This is also true for social interactions and communi-

cation in social networks [176]. In this Section, we will go through ways of
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measuring and quantifying heterogeneity and bursts in event sequences

using a mobile phone call network as an example.

The simplest way of characterizing heterogeneity in any signal consist-

ing of time-stamped events is to calculate the interevent times of consec-

utive events. For temporal networks, one can for example calculate the

interevent time distributions of activity patterns of nodes or the activa-

tion sequences of links. The interevent time distributions are dominated

by the average rate of events, and as we are mainly interested in the het-

erogeneity of the interevent times, the distributions are further normal-

ized with the average interevent time. Fig. 4.1 displays the normalized

interevent time distributions of links in a mobile phone call network [10].

The distributions have been computed conditional to the edge weights

(numbers of calls) in order to detect any behavior that would depend on

the weights. All the interevent time distributions come from the same fat-

tailed signature distribution, independently of the number of calls taking

place on the edge. A similar scaling of the interevent times has been also

found for the node activations in a mobile phone call network [176].
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Figure 4.1. Interevent time distributions for calling patterns. Distributions of nor-
malized interevent times of call sequences on top of the edges, conditional to
the number of calls on the edge (binned for better statistics for edges with
high number of calls). The higher the number of calls, the darker the color
of the points in the distribution plot. Inset: the normalized interevent times
without conditioning for the original data (in red), for data with only the daily
patterns and no bursts (in blue), and for data without daily patterns and no
bursts (yellow line). Figure adopted from Publication V.
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Even for a Poisson process, there is some variation in the interevent

times. Further, the heterogeneity in the communication patterns might

be due to the daily pattern alone, i.e. because there is more activity during

day-time than during the night. To test if the observed heterogeneity in

the interevent times is only due to these trivial reasons, we need to build

reference models. Similarly to topological reference models, we want the

event sequences to be maximally random with the condition that they re-

tain some properties, such as the daily pattern or network topology. Such

models are discussed at length in Publication VIII. The inset of Fig. 4.1

displays the normalized interevent time distributions for the original data

and for two reference models: one where only the weights and topology of

the underlying network are retained, and another where the daily pattern

is included in addition. It is clear that the original data is more heteroge-

neous than the reference models: The original interevent time distribu-

tion has a fatter tail, and shows a larger number of short interevent times

than the interevent time distributions of the reference models.

It is not always necessary to plot the whole interevent time distribution

to quantify the heterogeneity in the time sequences. Goh and Barabási [177]

measured heterogeneity by defining a quantity they called burstiness,

which is the normalized coefficient of variation of an interevent time dis-

tribution. The normalization is done in a way that the burstiness will be

zero, if the variance of the interevent time distribution is equal to that

of a Poisson process with the same average rate of events as in the ob-

served sequence. Further, the normalization limits the burstiness values

between -1 and +1, such that higher values correspond to more bursts.

Burstiness values higher than zero were reported both for natural time

sequences, such as earthquakes and weather patterns, and for temporal

social networks [177].

The correlations in event sequences of temporal networks are not lim-

ited to the heterogeneity in interevent times. In social contact networks,

for example, an event between two nodes A and B might trigger an event

between B and C [178]. These networks also display larger, mesoscale

structures such as dynamic motifs [179].

4.2 Spreading and path lengths

Until now, we have not discussed much about dynamical processes tak-

ing place on top of networks. However, dynamics such as disease or ru-

46



Temporal networks

mor spreading [24, 30, 41, 180, 181], opinion formation [182–185] and

cascading failure [186, 187] are central topics in complex network litera-

ture. Some results on spreading models were mentioned when the perco-

lation theory was reviewed (see Section 2.2), since many of these processes

are heavily related to paths and percolation. In this Section, spreading

models are finally discussed in more detail. At first, we will go through

compartmental models [188] with fully mixed populations which form the

theoretical basis on top of which more complex spreading models can be

constructed. After that, static networks as spreading lattices are shortly

reviewed, and finally spreading on temporal networks is introduced.

4.2.1 Compartmental models

Much of the theory of spreading originates from models of epidemic progress

in epidemiology. Thus, much of the terminology is referring to epidemics

of contagious disease, although one might be discussing, for example, the

diffusion of information on social networks. Compartmental models are

one set of theoretical tools that have been borrowed from mathematical

epidemiology. In these models, each individual is in a single state, or

compartment, and can move between the compartments according to the

rules set by the spreading model. The simplest of such models is the SI

model, where each individual is either susceptible (S) or infected (I). Ini-

tially, most of the nodes are set to the susceptible state, and susceptible

nodes become infected if they come into contact with infected nodes.

In the SI model, all nodes finally become infected, since there is no way

the nodes could recover and move back from the infected state to the

susceptible state. This is not very realistic, and there are two ways to

correct this: First, recovery could take place so that the nodes again be-

come susceptible after some time. This model is usually denoted the SIS

model. However, for disease spreading, the patients recovering from an

infection usually develop an immunity towards the disease, and thus can-

not be infected again. Another alternative is that the patients die, and

cannot infect other nodes any further. These situations can be modeled

with the SIR model, where nodes in state I move to state R with some

rate. Depending on the level of optimism of the researcher, the state R is

called either “removed” or “recovered”. There are also other compartmen-

tal models which are not considered here. One could, for example, include

an incubation period for the disease.

The spreading models, described above are rather simple. The tricky
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part is to define when two nodes are in contact such that the infection

(or information) can be transmitted to a susceptible node. In traditional

epidemiology it is usually assumed that there is no underlying structure

in the contacts of the nodes. Instead, each pair of nodes is equally likely

to be in contact at each point of time. This assumption is then combined

with the assumption that the population is infinitely large, allowing the

use of a set of differential equations for solving how the dynamics of the

epidemics proceed. For the SI model, the solution to the equation is that

the number of infected people grows exponentially at the beginning, and

the growth is slowed down only when a significant proportion of the pop-

ulation is infected. Finally, the whole system is in the infected state. For

the SIR model, the behavior of the system depends on the basic reproduc-

tion number. If a person can infect more than one other person on average

before moving to the removed state, the epidemic progresses roughly sim-

ilarly to the SI model, whereas for a ratio smaller than one, the infection

quickly dies out. The concept of the basic reproduction number is useful

for example in deciding how many people must be vaccinated against the

disease in order to lower the basic reproduction number below one, i.e. to

achieve herd immunity. In this case, even unvaccinated people should be

safe.

4.2.2 Spreading on networks

Complex networks offer a more realistic way to model the contact se-

quences than simply considering the whole population as fully mixed. The

nodes are considered to be in contact only with those nodes they are con-

nected within the network. The contacts are usually considered to follow

a Poisson process with a constant rate over time. If the underlying net-

work has weights, they can be used to determine heterogeneous contact

rates for the edges.

The final outcomes of the SI and SIR processes can be mapped into per-

colation problems in networks [52, 189]. If an SI process is started from

a single initially infected node, the infection always spreads to all nodes

of the component that the initial node belongs to. For the SIR model, it

turns out that a probability can be calculated for each edge, by which the

edge transmits the infection if one of the two nodes becomes infected at

some point in time. Thus, the size of the infected population is equivalent

to the cluster size distribution in an edge percolation problem [190, 191].

The transmission probability of an edge depends on the rate at which in-
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fected nodes are removed, on the infection probability, and on the contact

rate which can be determined from the edge weight.

The inclusion of networks to generate the contact sequences doesn’t only

make the spreading model more accurate, but it also moves the focus

away from the infection and recovery rates and from the basic reproduc-

tion number to the topology of the networks. If the network topology is

scale-free, the presence of high-degree nodes, or hubs, causes the epidemic

threshold to disappear, such that the entire network always becomes in-

fected [41, 192, 193]. Thus, the hubs should be targets for vaccination,

instead of distributing vaccinations to a random subset of people as sug-

gested by the fully mixed population model [194, 195]. Also the distribu-

tion of weights has a role in spreading phenomena. For example, in social

networks with Granovetter-type structure, the weak links work as bridges

between well-connected parts of the network and inhibit spreading [119].

4.2.3 Spreading on temporal networks

Instead of modeling the contact sequences with the fully mixed popula-

tion model, or as Poisson processes on top of complex networks, we can

directly take the contact sequences into account, i.e. use temporal net-

works as spreading lattices. The spreading of diseases, that require some

physical contact has been studied with dynamic networks of face-to-face

interactions [196], sexual contacts [197–200], hospitals [201], and airline

transportation [9]. Information spreading in electronic contact networks

has been studied by using mobile phone [10, 11, 136] and email net-

works [8, 202]. In addition, the spreading of computer viruses has been

studied by looking at node activation times in email networks [203].

In Publication V and Publication VIII, we studied the theoretical max-

imum speed of information spreading in the mobile phone call network

using an SI spreading model with the infection probability set to one. We

found out that the temporal correlations in the call sequences consider-

able slow down spreading, and that taking the time stamps into account

when modeling spreading is at least as important for the speed of the

process as taking the topology of the social network into account. This

is illustrated in Fig. 4.2. There are two main types of temporal correla-

tions in communication networks that can affect the spreading speed: the

bursty nature of link activation sequences [203, 204], and triggers and

other correlations between neighboring nodes [8, 136]. Using temporal

reference models we were able to show that most of the slowing down of
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Figure 4.2. Spreading on the mobile phone network. The average number of in-
fected people 〈I〉 as a function of time t, when the infection is started from a
single node and susceptible nodes get infected every time they are in contact
with the infected nodes. The averages are taken over 1000 realizations of the
infection process. The red curve corresponds to the original temporal network
containing both bursts and topology. The blue curve is from simulations on
a reference network that retains the topology but destroys burstiness (time
shuffled reference model). The reference network for the gray curve retains
the bursty link sequences but the topology is randomized with the ER model
(random network reference model). See Publication VIII for details.

spreading is due to the bursts of the link sequences, and that the triggers

present in the call sequences have only minor consequences on the over-

all spreading speed. In Publication VIII we extensively studied the relay

times, i.e. the times the infection waits at a node before it is transmitted

across a link during the spreading process. We were able to analytically

show a one-to-one correspondence between the burstiness measure and

the expected relay time, and how the local correlations affect these times.
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5.1 Summary

The publications in this Thesis can be divided to three categories depend-

ing on what types of networks they consider: Publications III, IV, and

VI consider structure and dynamics of binary networks, such as network

generation mechanisms, communities, and percolation, whereas Publica-

tions I, II, and VII concentrate on weighted networks, and Publications V

and VIII deal with temporal contact networks.

5.1.1 Binary networks

In Publication III we categorize social network models and compare their

ability to reproduce topological features of social networks. These mod-

els are based on network evolution, and mechanisms such as triadic clo-

sure and preferential attachment were found to produce fat-tailed degree

distributions, decreasing clustering spectra and weakly assortative net-

works. However, some of the methods had problems in producing proper

community structure. Further, the extent to which the structural prop-

erties match the real networks depends on the details of the microscopic

network evolution mechanisms. Homophily-based models produce some

unrealistic features, such as degree distributions that are too peaked and

flat clustering spectra, but succeed in producing realistic assortativity.

Thus, most of the important structural features of social networks are bet-

ter explained by the microscopic mechanisms of network evolution models

rather than homophily, but obviously the evolution of real social networks

is controlled by combinations of both mechanisms.

Community structure in networks is one of the main research topics in

complex networks. However, most of the work on the topic has concen-
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trated on the issue of community detection, and not much attention has

been given to the actual properties of the communities. In Publication

IV we systematically study properties of communities in empirical social,

information, communication, technological, and biological networks. We

found that some community properties, such as broad size distributions,

can be observed in all types of networks, and that there are many proper-

ties which are remarkably similar for networks of the same category.

In Publication VI we explored the possibility of finding applications for

explosive percolation on real-world networks, since at the time the method

had mostly been studied theoretically. We found out that the universality

class of the percolation transition in explosive percolation depends on the

type of topology the empirical network has and on the details of the ir-

reversible percolation process. Further, we observed that the components

near the critical threshold are related to the communities of the networks,

both for empirical networks and for a simple model networks with built-in

community structure.

5.1.2 Weighted networks

In Publication I generalizations of clustering coefficients to weighted net-

works were compared from a theoretical and empirical perspective. This

comparative article was timely, since there were 4 different generaliza-

tions available at the time, and it was not clear what the differences

between them are and which one should be used. The main conclusion

was that the different generalizations could lead to completely different

results even in very simple cases because of the different motivations be-

hind the different coefficients. Also, the weighted clustering coefficient

values were found to be highly redundant. This makes it hard to inter-

pret the results since it is not clear if the coefficient values are mainly

effected by the topology or the weight configuration. Thus, we suggest a

different approach: one should first use the unweighted clustering coef-

ficient to study the topology, and then study how weights are correlated

with topology, using some other measures such as triangle intensities.

Publication II introduced the sequential clique percolation method, which

is a fast method for detecting hierarchical clique percolation communities.

The hierarchical approach was shown to reveal much more information

about an online auctioning network than could have been possible by se-

lecting a single threshold level in the hierarchy. The algorithm is also

practical for normal clique percolation, and it was shown to be dramat-
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ically faster for realistic model networks than the best alternative algo-

rithm available at that point. Further, the worst-case scaling of the algo-

rithm is almost linear in the number of k-cliques in the network.

In Publication VII the system formed from emotion concepts was studied

for a first time as a weighted network. The standard way of studying

emotion concepts is to project them into a metric space. We developed

methods that allowed estimating when and how the assumption of an

underlying metric space of emotions fails and the network perspective

becomes useful. We further analyzed the emotion network with the SCP

method developed in Publication II, which yielded an alternative point of

view on relationships between emotion concepts.

5.1.3 Temporal networks

The exact timings of activations of edges in a complex social network

formed from mobile phone calls of millions of subscribers and a smaller

email network were studied in Publication V. The paper focused on the

speed of spreading dynamics in such networks and considered how this is

affected by different temporal aspects of the systems. It was previously

known that community structure and Granovetter-type weight-topology

correlations slow down spreading in social networks [119]. These effects

were confirmed, but in addition we found a slowing-down effect caused by

the time sequences. We were able to trace the effect down to the hetero-

geneity of the call sequences of individual links, and found out that daily

patterns in the overall call frequency do not affect the spreading speed.

In Publication VIII, the results of Publication V were extended. More

emphasis was given to the sequences of events on the links and to explain-

ing how they slow down spreading. The effects of link sequences on the

spreading speed were quantified by studying the relay times of the links

both from theoretical and empirical perspectives. An analytical one-to-

one correspondence between burstiness and the local spreading speed was

found, and event triggering was shown to speed up spreading on links. Fi-

nally, the errors made by studying the link sequences in isolation instead

of observing them as parts of the full network were quantified. We also

formalized the reference model framework, making it easier to extend and

to apply to new systems.

53



Summary of results and discussion

5.2 Discussion

The field of complex networks has come a long way since its initiation in

the late 90’s. In the beginning most of network science was concentrated

on projecting all different types of complex systems to simple graphs and

then applying general methods of analysis. This approach was extremely

successful in the past, and it was sometimes even able to find universal

properties of networks. However, in order to proceed and better under-

stand specific systems, more information needs to be included than the

pure topology of networks, and more specific questions about the networks

need to be asked. Because of this, network science is becoming increas-

ingly divided into specialized branches, and the methods are becoming

more domain-specific and targeted e.g. mainly at social networks, inter-

cellular networks, and brain-related networks. Thus, the use of weighted

and temporal networks has become more common and will continue to do

so in the future. This is also true for other special network types such as

directed networks, interconnected networks, and spatially embedded net-

works. Although there has been a lot of pioneering work on weighted and

temporal networks, the theory and tools for handling such networks have

still not matured to the stage at which we are with binary networks.

As for any research area, it is important to begin with something as

simple as possible, and only after the basics are fully understood, to con-

tinue to work on more advanced and complex topics and domain-specific

problems. This has been one of the guidelines of this work. For example,

when comparing the weighted clustering coefficients, we focused on iden-

tifying the underlying questions they aim at answering and on finding out

what kinds of structure they find on small example networks, instead of

directly jumping into applying them to empirical data. With the temporal

contact networks, the starting point was the simplest possible dynamical

process, which then provided an upper bound for the speed at which any

dynamical process can proceed. Also, the temporal reference models were

build such that more and more complicated correlations could be turned

on in the networks, one by one, and with the relay times the starting point

was to analytically solve the simplest case of uniformly random events on

isolated edges before proceeding towards more complex phenomena. The

author of this thesis believes that the systematic approach of explicitly

defining the research questions the methods are build to answer while

starting with the simplest possible questions is the only way to tackle
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the complexities of weighted and temporal networks, and that the arti-

cles included in this Thesis have been an important contribution to this

direction.

The research presented in this thesis opens up many doors for future re-

search. For example, the online auction network of Publication II and the

emotion concept network of Publication VII are not the only weighted net-

works with similar hierarchical overlapping community structure, which

can now be extracted using the sequential clique percolation algorithm.

In temporal communication networks, the impact of bursts and triggered

events to spreading phenomenon are now better understood, but the exact

way how they are related to topology, or attributes of the nodes such as

age, sex, or location is still not known. Also, although other dynamic mod-

els on top of temporal networks have already been studied, all possible

research lines related to using different temporal lattices and dynamic

models are still far from being exhausted. Perhaps more importantly,

some doors have also been closed, since there is no longer any justifica-

tion for blindly selecting one of the weighted clustering coefficients with-

out asking if this really is the type of weighted clustering that is relevant

for this specific type of networks.
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