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ABSTRACT 
 
The definition of good classification rules for rule-based interpretation of remotely sensed data is 
a laborious and demanding task. One interesting method that could be used to automate the 
process is the classification tree method. It can be used to create a tree-structured classification 
hierarchy and rules automatically from training data. In this study, tests were carried out using 
the classification tree method in two applications: building detection using laser scanner and 
aerial image data and land-use classification using E-SAR data. The method was applied to 
segments with a large number of different attributes. The results were satisfactory and the 
classification accuracy was near to that obtained in previous studies using manually created 
classification rules. The most important benefit of the classification tree method was its high level 
of automation and speed compared with the process of defining the rules manually. A 
combination of the classification tree method and permanent, up-to-date reference data could be 
a useful tool in developing new classification applications and testing the feasibility of new 
remotely sensed datasets. Together with segments and attributes derived from remotely sensed 
data, it could be used for the rapid construction of classification trees, which could then be 
directly applied to classification or used as a starting point for further development of the rules. 
 
 
1. INTRODUCTION 

In the analysis of remotely sensed data with automatic methods, it is often advantageous to use 
more versatile information than the single pixel values of one dataset. This information can 
include properties of regions (regions derived from the imagery and/or map data), multisource 
remotely-sensed data, and ancillary data such as maps and geographical information system 
(GIS) data. Standard image classification methods, however, can encounter difficulties in dealing 
with such data, which do not necessarily have a certain statistical distribution and which can 
include both continuous and categorical data with different ranges of values. To overcome the 
problem, different knowledge-based interpretation and classification methods have been 
developed (see, for example, Richards and Jia, 1999; Jensen, 2005). These methods are more 
flexible, but they also have limitations. In particular, they are often based on rules defined by a 
human interpreter, and the development of good classification rules is usually a difficult and 
laborious task. When a new dataset becomes available, considerable time and expertise are 
needed to exploit it efficiently in practical applications. In recent years, many new types of 
remotely sensed data have become available, such as laser scanner data, digital aerial images, 
high-resolution optical satellite images, and synthetic aperture radar (SAR) images from airborne 
and spaceborne sensors. There is plenty of valuable information in these datasets, and it would be 
useful if this information could be exploited more rapidly. 
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This article discusses the application of one promising method – classification trees (as described 
by Breiman et al., 1984) – to the interpretation of remotely sensed data. The basic idea of 
classification trees (also called decision trees) is to perform stepwise splitting of the data into 
classes that are arranged in a hierarchical structure (see, for example, Richards and Jia, 1999; Tso 
and Mather, 2001). Tree structures are often used in knowledge-based classification approaches. 
The tree structure and classification rules associated with it can be defined manually, but in this 
study we were interested in automatic methods for creating classification trees. Many different 
approaches to this have been presented in the literature (see Safavian and Landgrebe, 1991).  
 
Classification or decision trees, typically created with data mining or statistical software tools, 
have been used increasingly in the classification of remotely sensed data in recent years. They 
have been used for land-cover/land-use classification (e.g. Hansen et al., 1996; Friedl and 
Brodley, 1997; Thomas et al., 2003), change detection (Chan et al., 2001; Rogan et al., 2003; Im 
and Jensen, 2005), detection of buildings from aerial images (Jung, 2004) and from IKONOS 
data (Tullis and Jensen, 2003), mapping of residential density patterns (McCauley and Goetz, 
2004), forest mapping (Huang and Lees, 2004), and many other types of study. Classification 
trees are well suited to dealing with heterogeneous datasets because they can use continuous and 
categorical data and do not require assumptions on the distributions of the data (e.g. Hansen et al., 
1996; Friedl and Brodley, 1997). Classifications with the classification tree method can be highly 
automatic, which yields savings in time (see, for example, Thomas et al., 2003). The 
classification trees are also considered easier to use and understand than artificial neural 
networks, which are another popular non-parametric classification method (see, for example, 
Hansen et al., 1996; Chan et al., 2001; Pal and Mather, 2003). The tree structure provides 
information on the roles and importance of different attributes (features) in the classification 
problem, which can be very useful, from both the practical and the theoretical perspective 
(Hansen et al., 1996). 
 
The classification tree method can be applied to pixel-based classification of image data in much 
the same way as more traditional classification algorithms are applied. On the other hand, it can 
be used to generate rules for knowledge-based and possibly region-based classification with 
different types of attributes. Huang and Jensen (1997) used the C4.5 machine learning algorithm 
(Quinlan, 1993) to create a decision tree and store it as production rules. The application under 
study was wetland classification using SPOT (Satellite Pour l’Observation de la Terre) 
multispectral imagery and GIS data. Hodgson et al. (2003) and Tullis and Jensen (2003) applied a 
similar approach using the newer See5 algorithm (RuleQuest Research, 2006). Hodgson et al. 
(2003) studied the mapping of urban parcel imperviousness using colour aerial photography and 
laser scanner-derived height information. Tullis and Jensen (2003) studied the detection of houses 
from IKONOS data. Lawrence and Wright (2001) used classification and regression tree analysis 
(Breiman et al., 1984) available in the S-Plus statistical software package to create rules for a 
land-cover/land-use classification. Landsat Thematic Mapper (TM) images and a digital elevation 
model (DEM) were used in the study. Other studies using knowledge-based approaches have also 
been presented (Li et al., 2000; Rogan et al., 2003; Thomas et al., 2003). In some of the studies, 
region-based classifications were carried out. For example, Hodgson et al. (2003) and Thomas et 
al. (2003) classified segments created with the eCognition software (Definiens, 2006). As input 
data for construction of the classification tree using the S-Plus software, Thomas et al. (2003) 
used a large number of different attributes available for the segments from eCognition. The study 
was related to land-cover/land-use mapping in an urban environment using high-resolution digital 
imagery. For actual classification with the rules, the studies have used different software tools, 
such as the ERDAS Imagine Expert Classifier (e.g. Lawrence and Wright, 2001) or Avenue 
scripts in ArcView (e.g. Hodgson et al., 2003). 
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Although the classification tree method has become relatively popular in recent years, its use in 
some applications is still at an early stage. One such application seems to be the analysis of laser 
scanner data. As mentioned above, Hodgson et al. (2003) used laser scanner-derived height 
information in addition to image data in their study. Another study in which the method was 
applied to laser scanner data was carried out by Ducic et al. (2006). In this study, laser points 
were classified as vegetation points and non-vegetation points on the basis of full-waveform 
information. To classify SAR images the classification tree method has been used by, for 
example, Townsend (2001) and Simard et al. (2002). 
 
In our study, the classification tree method was tested for two different applications and datasets: 
building detection using laser scanner and aerial image data, and land-use classification using E-
SAR data. The results were compared with earlier results obtained using manually defined 
classification rules (Matikainen et al., 2004a; unpublished results, 2006). Both datasets were from 
the Espoonlahti suburban study area near Helsinki. The methods used in the study, including the 
theoretical background of the classification tree tools and the workflow used in the classification 
tests, are described in Section 2. Section 3 presents the classification tests and results. The results 
and possible future uses of the method are discussed in Section 4, and the conclusions are 
presented in Section 5. 
 
 
2. METHODS 
 
2.1 Classification tree tools 
 
We used the classification (and regression) tree tools available in the Statistics Toolbox of the 
Matlab software (The MathWorks, 2006). The tools can be used to construct a classification tree 
with a binary tree structure on the basis of training data, and to apply the tree to the classification 
of new data (for a detailed description of the classification tree method, see Breiman et al., 1984). 
A classification tree contains a root node, non-terminal nodes and terminal nodes. Examples of 
classification trees can be found in Sections 3.1.2 and 3.2.2. The root node and each of the non-
terminal nodes contain a question that asks whether a given attribute satisfies a given condition. 
Each question can be answered as ‘yes’ or ‘no’. The terminal nodes represent individual classes. 
When an object is classified, the conditions are tested beginning from the root node. From each 
node, the object goes to the left descendant node if it satisfies the condition and to the right 
descendant node if it does not satisfy the condition. Finally, the object ends up at one of the 
terminal nodes and is assigned to the corresponding class. One class can be represented by 
several terminal nodes. There can thus be several alternative paths (sequences of questions) that 
lead to the same classification result. (Breiman et al., 1984; The MathWorks, 2003.) 
 
There are two main stages when the classification tree method is used for a given classification 
task: construction of a tree and application of the tree to classification. The construction of a 
classification tree can be carried out in Matlab with the ‘treefit’ function, which uses the 
attributes and classes of training objects as input data. The function then selects the most useful 
attributes and splits automatically using a splitting criterion. The Gini’s diversity index was used 
as the splitting criterion in our study. This criterion is a measure of node impurity and is defined 
as  
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where t is the node, and p(i⏐t) is the proportion of cases xn ∈ t which belong to class i (x is the 
measurement vector). At each node, a search is made for the split that most reduces node 
impurity. (Breiman et al., 1984; The MathWorks, 2003.) 
 
When the tree is constructed, it is advantageous to continue the splitting until the terminal nodes 
contain a small number of training objects and the tree is large, instead of attempting to stop the 
splitting at the right set of terminal nodes (Breiman et al., 1984). A tree of this size, however, is 
larger than the data warrant and will have a higher true misclassification rate than a correctly-
sized tree. Therefore, the tree must be pruned, which means that a set of smaller subtrees is 
obtained. The subtree that has the lowest estimated misclassification rate can be selected using, 
for example, cross-validation. With the ‘treefit’ function it is possible to compute the full tree and 
a sequence of pruned subtrees. The best level of pruning can be estimated with the function 
‘treetest’. The function computes the cost of each subtree in the optimal pruning sequence. The 
costs are based on the misclassification costs and probabilities of the terminal nodes. When the 
tree is constructed, a cost matrix C is used to define the costs C(i,j) of classifying an object as 
class i if its true class is j. In our study, the default values C(i,j) = 1 if i ≠ j and C(i,j) = 0 if i = j 
were used. The option ‘crossvalidate’ was used in the ‘treetest’ function, which means that the 
training data and 10-fold cross-validation were used to calculate the cost values of the subtrees. 
The best level of pruning given by the function was the level that produced the smallest tree 
within one standard error of the minimum-cost subtree. When the tree was initially created with 
the ‘treefit’ function, a threshold value of 10 (default) was used for splitting nodes, which means 
that a node had to contain at least 10 training objects to be split. (Breiman et al., 1984; The 
MathWorks, 2003.) 
 
Once the tree has been created and the desired pruning level selected, the classification of the full 
dataset can be carried out with the ‘treeval’ function. The function takes the tree, the attribute 
table and the pruning level as input data and produces the class for each object as the result. (The 
MathWorks, 2003.) 
 
2.2 Workflow used in the classification experiments 
 
In both classification tests, the same basic stages were used: 
1. Segmentation of the data into homogeneous regions. The segments were the objects to be 

classified. The segmentation was carried out with the eCognition software (Definiens 
Imaging, 2003), which also provides a large number of different attributes for each segment. 

2. Exportation of the segments and various attributes for the segments from eCognition.  
3. Definition of training segments on the basis of training data (map data or reference points). 
4. Construction of a classification tree on the basis of the attributes of the training segments. 
5. Classification of all segments on the basis of their attributes and the classification tree. 
6. Accuracy estimation. 
This basic workflow was similar to that used by Thomas et al. (2003) for land-cover/land-use 
classification, but we used different software tools for the classification tree construction and 
classification. In practice, segmentation results available from previous studies (Matikainen et al., 
2004a; unpublished results, 2006) were used for stage 1. Stages 3–6 were carried out using 
Matlab. Simple scripts were written for the classification tree construction and classification. 
These scripts read the input data, used the classification tree functions available in Matlab and 
saved the results. The reference data used for accuracy estimation were separate from the training 
data. Finally, the results were compared with previous classification results, which were obtained 
using the eCognition software and manually created rules.  
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3. CLASSIFICATION EXPERIMENTS 
 
3.1 Building detection using laser scanner and aerial image data 
 
3.1.1 Data 
 
In the building detection study, the goal of the classification tree classification was to distinguish 
building segments from tree segments on the basis of their properties in laser scanner and aerial 
image data. An area covering about 0.4 km2 was used for training, and areas covering about 2.1 
km2 were used for testing the accuracy of the classification. The segments were created using a 
laser scanner-derived digital surface model (DSM). This raster DSM with a pixel size of 30 cm × 
30 cm was formed with the TerraScan software (Soininen, 2005; Terrasolid, 2006), from last 
pulse laser scanner data acquired with the TopoSys FALCON system. The average point density 
in the original data was about 17 points per m2 (includes overlap between adjacent strips). The 
lowest value within the pixel was assigned to each pixel, and interpolation was used to determine 
values for pixels without laser points. The original laser points were also classified using the 
classification routines of the TerraScan software to detect points located over 2.5 m above ground 
level. This point classification was used to distinguish building and tree segments from ground 
segments before application of the classification tree method. A segment was classified as 
‘building or tree’ if most of the points within it had a height value of 2.5 m or over. Within each 
pixel, only the lowest point, which was also used in forming the DSM, was used. In addition to 
the laser scanner data, an aerial colour ortho image was available. The aerial imagery on a scale 
of 1:5300 was acquired and scanned by FM-Kartta Oy. The pixel size of the ortho image was 30 
cm × 30 cm. Some more details of the data, segmentation and point classification can be found in 
Matikainen et al. (2004b). This earlier study used first pulse laser scanner data, but otherwise the 
same dataset, segmentation method and point classification method for distinguishing ground. 
 
The following 35 attributes were exported for each segment from eCognition to be used as input 
data for the classification tree method (for a description and formulas of the attributes, see 
Definiens Imaging, 2003): 
− mean value of the segment in the DSM and in each channel of the aerial image (red, green and 

blue), 
− standard deviation of the segment in the DSM and in each channel of the aerial image,  
− a texture measure ‘Grey Level Co-occurrence Matrix (GLCM) homogeneity’ calculated for 

the segment from the DSM and from each channel of the aerial image, 
− shape attributes for the segment: size (area), length, width, length/width, compactness, elliptic 

fit, rectangular fit, border length, shape index, density, main direction, asymmetry, 
− shape attributes calculated for a polygon created from the segment: size excluding inner 

polygons, size including inner polygons, perimeter, compactness, number of edges, standard 
deviation of length of edges, average length of edges, length of longest edge, number of inner 
objects, number of edges longer than 3 pixels, number of rectangular angles with edges longer 
than 3 pixels (the last two attributes with a threshold value of 10 pixels were also tested, but 
the resulting classification tree was the same, i.e. these attributes were not selected for 
classification). 

The attribute GLCM homogeneity is one of the texture measures presented by Haralick et al. 
(1973). The general principle of these texture measures is discussed by, for example, Jensen 
(2005) and the implementation in eCognition by Definiens Imaging (2003). The measures are 
calculated from a matrix commonly called a GLCM, and they can take into account grey level 
variations between neighbouring pixels in different directions. The option ‘all directions’ was 
used in our study. 

9



 

A building map obtained from the city of Espoo and a forest map obtained from FM-Kartta Oy 
were used as reference data. The map data were also processed into raster format with 30 cm × 30 
cm pixels. Buildings and forest areas in the training area were used to determine training 
segments, and buildings in the test areas were used to test the accuracy of the building detection. 
A segment was used as a training segment for building or tree if over 80% of its area was 
classified as building or forest in the map data (some forest areas on the map were excluded 
because they included a considerable area covered by roads). Segments classified as ground were 
excluded from the training data. Compared with some ground measurements, the positional 
accuracy of buildings in the original building map is 0.5 m or higher. It should be noted, 
however, that there are many differences in the appearance of the buildings between the map and 
the remotely sensed data. For example, the building outlines on the map represent the ground 
plans of the buildings rather than the roof edges. Buildings with wide eaves are thus larger in the 
laser scanner and aerial image data than on the map. Small building polygons (< 20 m2) were 
eliminated from the reference map to exclude very small buildings and other constructions from 
our accuracy estimation. Some small parts of larger buildings, however, were also eliminated in 
the process.  
 
3.1.2 Classification and results 
 
The attributes and classes of the training segments were contributed as input data to the ‘treefit’ 
function (see Section 2.1), which constructed the classification tree. When the ‘treetest’ function 
with cross-validation was used, the best pruning level for the tree was determined as 3. In 
practice, the script created for the construction of the tree was run a few times to find the best 
level of pruning. The estimated level may vary slightly between the runs because the ‘treetest’ 
function selects the subsamples for cross-validation randomly. The tree pruned to level 3 was 
used in classification and is shown in Figure 1. It can be seen that the tree was very simple and 
the classification was based on only two attributes: GLCM homogeneity (texture measure, see 
Section 3.1.1), calculated from the DSM, and mean value in the blue channel of the aerial image. 
If the GLCM homogeneity of a segment was over 0.629095 or if the mean value of the segment 
was over 104, the segment was classified as building, otherwise as tree.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Classification tree for building detection. Attribute x3 is GLCM homogeneity calculated from the DSM and 
attribute x10 is mean value in the blue channel of the aerial image. 
 
The classification was carried out with the ‘treeval’ function using the attributes, the tree and the 
pruning level as input data. Classification of ground was based on prior classification of laser 
points as described in the previous section. The classification results are shown in Figure 2. The 
study area can be roughly divided into an industrial area, a high-rise residential area and a low-
rise residential area, and the results are shown separately for these areas. Results for two subareas 

x3 < 0.629095 

x10 < 104 

Tree Building 

Building 
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in the low-rise residential area are shown on a larger scale in Figure 3. The accuracy of the results 
was estimated by comparing them pixel by pixel with the reference map. Accuracy measures i.e. 
completeness (corresponds to interpretation accuracy or producer’s accuracy), correctness 
(corresponds to object accuracy or user’s accuracy) and mean accuracy were calculated for 
buildings (see Helldén, 1980). The results are shown in Table 1. A small part of the high-rise area 
was not covered by the reference map and was thus excluded from the accuracy estimation. To 
allow comparisons, the accuracy of previous results obtained using the same dataset and 
manually created classification rules is shown in brackets (Matikainen et al., unpublished results, 
2006). This previous classification used the rules described in Matikainen et al. (2004b) to 
distinguish buildings from trees. The ground classification was the same as that used prior to the 
classification tree classification. 
 

 
 

 

 

 Building  Tree  Ground  Outside study area 
 
Figure 2. Building detection results for the industrial area (left), high-rise residential area (middle) and low-rise 
residential area (right). The width of each area is 900 m. 
 

   
 
Figure 3. DSM and building detection results for two subareas of the low-rise residential area. The legend for the 
building detection results is presented in Figure 2.  
 
Table 1. Accuracy of the building detection results estimated pixel by pixel. The accuracy of previous results 
obtained using manually created classification rules is shown in brackets. The classification of the ground was based 
on prior classification of laser points. 
 

 Area 
 Industrial area High-rise res. area Low-rise res. area All 
Completeness 98% (97%) 94% (92%) 94% (91%) 95% (93%) 
Correctness 89% (93%) 87% (93%) 78% (85%) 84% (90%) 
Mean accuracy 93% (95%) 90% (93%) 86% (88%) 90% (92%) 
Buildings classified 
as trees 

0% (1%) 0% (2%) 2% (5%) 1% (3%) 

Buildings classified 
as ground 

2% (2%) 5% (5%) 4% (4%) 4% (4%) 
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3.2 Land-use classification using E-SAR data 
 
3.2.1 Data 
 
In the land-use classification study, the classification of the main land-use classes from high-
resolution airborne E-SAR data was studied. The E-SAR data were acquired by DLR (German 
Aerospace Center). The goal was to recognize water, forest, open areas and built-up areas. Open 
areas included roads, and built-up refers to areas covered with buildings as interpreted using the 
SAR images (due to the side-looking geometry of the SAR sensor, buildings shifted slightly from 
their real position). The size of the study area was about 5.2 km2. The SAR data included L band 
images with four polarizations (HH, HV, VV, VH) and X band images with two polarizations 
(HH, VV). The pixel size of the images on the ground was 1 m × 1 m. Simple texture images 
were produced by calculating the variance in a moving window (25 m × 25 m). The segmentation 
was carried out by using all the image channels except LVH, which is similar to LHV. In addition 
to the segments used for classification, a lower segmentation level with very small segments was 
created for the purpose of texture calculation. A total of 38 attributes were exported for each 
segment to be used in the classification tree classification (for a description and formulas of the 
attributes, see Definiens Imaging, 2003): 
− mean value of the segment in channels LHH, LHV, LVV, XHH and XVV, 
− standard deviation of the segment in channels LHH, LHV, LVV, XHH and XVV, 
− a texture measure ‘average mean difference to neighbours of sub-objects’, calculated for the 

segment from channels LHH, LHV, LVV, XHH and XVV, 
− mean value of the segment in the texture image calculated with the moving window from 

channel XHH, 
− shape attributes for the segment: size, length, width, length/width, compactness, elliptic fit, 

rectangular fit, border length, shape index, density, main direction, asymmetry, 
− texture measures based on the shape of the sub-objects (sub-segments) of the segment: mean 

size of sub-objects, standard deviation of the size of sub-objects, mean density of sub-objects, 
standard deviation of the density of sub-objects, mean asymmetry of sub-objects, standard 
deviation of the asymmetry of sub-objects, mean direction of sub-objects, standard deviation 
of the direction of sub-objects, 

− mean value of the segment in LHH divided by the mean value in LHV, 
− mean value of the segment in LHH divided by the mean value in LVV. 
 
A set of 87 reference points located inside homogeneous areas was used to determine the training 
segments. These points were selected and classified manually on the basis of the SAR imagery, 
an aerial ortho image and map data. If a segment contained a point, it became a training segment 
of the corresponding class. A set of 519 reference points was used to estimate the accuracy of the 
results. The points used for training and accuracy estimation were separate sets of points, 
although some points were located in almost the same places in both sets. The points used for 
accuracy estimation were collected from aerial imagery and not specifically for the SAR image 
study. Some problematic points may therefore exist (e.g. buildings in the reference data but not in 
the SAR images). Some more details concerning the imagery, reference points and segmentation 
can be found in Matikainen et al. (2004a). 
 
3.2.2 Classification and results 
 
The classification tree obtained for the land-use classification study is shown in Figure 4. For this 
tree, the best pruning level was determined to be 0, i.e. the full tree without pruning. The structure 
of the tree was again simple, and only four attributes were used for classification. The 
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classification results are shown in Figure 5. The confusion matrices and accuracy estimates for 
the classification can be found in Tables 2 and 3. In addition to the completeness, correctness and 
mean accuracy of the individual classes, the overall accuracy and the result of the Kappa analysis 
(KHAT statistic; Congalton and Green, 1999) are presented. The same information for previous 
classification results obtained using manually created rules (Matikainen et al., 2004a) is shown in 
brackets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Classification tree for land-use classification. Attribute x4 is mean value in channel LHV, attribute x37 is 
mean value in LHH divided by mean value in LHV, attribute x16 is mean value in the texture image calculated with 
the moving window from channel XHH, and attribute x17 is the size of the segment. 
 

 
Open 
 

 
Built-up 
 

 
Forest 
 

 
Water 
 

 

 

 
Outside 
study area 

Figure 5. E-SAR image (L band with polarization HH) (left) and land-use classification results (right). The size of 
the area is 2.5 km × 2.5 km. Image data © DLR and Astrium GmbH. 

x4 < 203.054 

x37 < 1.58406 x16 < 261.486 

x17 < 4675.5 

Built-up Built-up 

Open Water 

Forest 
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Table 2. Confusion matrix for the land-use classification results. Corresponding figures for earlier results obtained 
using manually created classification rules are shown in brackets. 
 
Classif. 
result 

Reference points 

 Water Forest Open Building Garden/ 
grass 

Garden/ 
trees 

Car 
park 

Multi-
storey 

car 
park 

Road All 

Water 7 (11) 0 (0) 5 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 12 (11) 
Forest 0 (0) 104 (104) 7 (15) 29 (21) 1 (0) 12 (12) 3 (3) 2 (1) 8 (8) 166 (164) 
Open 4 (0) 3 (3) 94 (93) 28 (28) 8 (8) 4 (4) 27 (24) 4 (2) 88 (82) 260 (244) 
Built-up 1 (1) 2 (2) 5 (3) 59 (67) 0 (1) 5 (5) 5 (8) 0 (3) 4 (10) 81 (100) 
All 12 109 111 116 9 21 35 6 100 519 

 
Table 3. Confusion matrix and accuracy estimates for the land-use classification results. The reference points were 
divided into four classes corresponding to those used for classification. Corresponding figures for earlier results 
obtained using manually created classification rules are shown in brackets. 
 

Classification 
result 

Reference points 

 Water Forest 
(forest, 

garden/trees) 

Open 
(open, 

garden/grass, 
car park, 

road) 

Built-up 
(building,  

multi-storey  
car park) 

All 

Water 7 (11) 0 (0) 5 (0) 0 (0) 12 (11) 
Forest 0 (0) 116 (116) 19 (26) 31 (22) 166 (164) 
Open 4 (0) 7 (7) 217 (207) 32 (30) 260 (244) 
Built-up 1 (1) 7 (7) 14 (22) 59 (70) 81 (100) 
All 12 130 255 122 519 
      
Completeness 58% (92%) 89% (89%) 85% (81%) 48% (57%)  
Correctness 58% (100%) 70% (71%) 83% (85%) 73% (70%)  
Mean accuracy 58% (96%) 78% (79%) 84% (83%) 58% (63%)  
Overall accuracy     77% (78%) 
Kappa     0.64 (0.66) 

 
 
4. DISCUSSION 
 
4.1 Classification experiments 
 
The quality of the building detection results was satisfactory and comparable to that obtained 
using manually created classification rules (see Figure 2, Figure 3 and Table 1). The 
completeness of the results was 95%, which means that 95% of the map’s building pixels were 
detected as buildings. The correctness was 84%, i.e. 84% of the building pixels in the 
classification results were labelled as buildings on the map. The mean accuracy, which is a 
combined measure of completeness and correctness, was 90%. The test areas were separate from 
the training area and contained a large variety of buildings of different sizes, and different types, 
materials and colours of roofs. Despite their simplicity, the rules thus proved to work well with 
the test data. It should also be noted that some of the errors shown by the accuracy measures are 
due to the different appearance of the buildings on the map and in the remotely sensed data (see 
Section 3.1.1). For example, buildings with wide eaves are larger in the classification results than 
on the map, which reduces correctness. The mean accuracy of the classification tree results was 2 
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percentage units lower than the mean accuracy achieved using the manually created rules. The 
manually created rules, however, were originally defined for first pulse laser scanner data and it 
is possible that a slight improvement might be achieved in these results by tuning the rules for 
last pulse data. The classification process applied with the manually created rules in eCognition 
was more complex than the classification tree classification. The attributes used in this 
classification included the GLCM homogeneity calculated from the DSM, the mean value in the 
red channel of the aerial image and the shape of the segment (standard deviation of length of 
edges). Additionally, the size of the segment and information on the classes of neighbouring 
segments were used to correct some small, misclassified segments. The rules were selected after 
investigating histograms of various attributes in the classes building and tree. 
 
The overall quality of the land-use classification results was also satisfactory and near to that 
obtained using manually created rules (see Figure 5, Table 2 and Table 3). The overall accuracy 
of the classification was 77%, which is only 1 percentage unit lower than the overall accuracy 
achieved earlier using the manually created rules. The results of the kappa analysis for the 
classification tree classification and the previous classification were 0.64 and 0.66, respectively. 
In the classification tree classification, however, some problems occurred with the class water. A 
large part of the water area was classified as open and some open areas were also classified as 
water. The distinction between water and open was based on the size of the segment (see the 
classification tree in Figure 4), and this proved to be an inadequate criterion in practice. The 
number of training segments for water was only 3, which is one likely reason for the problem. 
The mean accuracy of the class built-up area was also slightly lower in the classification tree 
classification. When the manually created rules were used, the number of rules was considerably 
higher and the classification process was more complex. In particular, many rules had to be 
created for the classes built-up and water to achieve satisfactory results. Neighbourhood 
information was used in addition to the basic attributes of the segments.  
 
It must be noted that the comparisons between the classification tree results and earlier results 
give information on the quality of these particular classifications. It is possible that different 
results would be obtained in other studies. It is also possible that improvements might be 
achieved with both the classification tree method and manually created rules by further testing 
and developing the methods. In the case of the classification tree method, several methods and 
improvements are available for the construction of the tree (see, for example, Breiman et al., 
1984; Safavian and Landgrebe, 1991; Pal and Mather, 2003; Lawrence et al., 2004; Zambon et 
al., 2006). For example, the classification trees that can be created with the Matlab software and 
that were used in this study are univariate trees, where each split is based on one attribute. The 
splits are thus perpendicular to the axes of the attribute space, and many such splits may be 
needed to separate the classes (Breiman et al., 1984). Methods for creating multivariate decision 
trees have also been developed. These may be better suited to classification problems in which 
the separation between classes is based on combinations of attributes (see Breiman et al., 1984; 
Friedl and Brodley, 1997). Several alternative splitting rules and pruning methods also exist, and 
advanced methods of using training data have been developed (see, for example, Pal and Mather, 
2003; Lawrence et al., 2004; Zambon et al., 2006). It is also known that factors such as the total 
number of training objects and the number of training objects in different classes affect the results 
(see, for example, Friedl and Brodley, 1997; Pal and Mather, 2003). 
 
The benefits of the classification tree method have been discussed by several authors (see, for 
example, Breiman et al., 1984; Safavian and Landgrebe, 1991; Hansen et al., 1996; Friedl and 
Brodley, 1997; Lawrence and Wright, 2001; Thomas et al., 2003; Huang and Lees, 2004; 
Lawrence et al., 2004). From our point of view, the method proved to be well suited to the type of 
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region-based and rule-based classifications we were interested in. A large number of different 
attributes can be presented for the method as input data, and it automatically selects the most 
useful ones. This differs from most automatic classification approaches, where the user must 
select suitable attributes before classification. The method can also use different attributes for 
distinguishing different classes. The structure of the classification tree is easy to understand and it 
gives information on the usefulness of different attributes in the classification task, although 
caution is needed in the interpretation of this information (see Breiman et al., 1984). The main 
benefit of the classification tree classification in our study was its high level of automation. Once 
the scripts had been created and the input data were in the correct format, the tree could be 
created and the classification carried out in seconds. Compared with the process of manually 
defining the rules and stages of classification, this achieves considerable time-saving. The manual 
work, including different analyses and experiments to find a good classification process and rules 
for a new application, may well take weeks or at least days. 
 
4.2 Classification trees and permanent reference data in new classification 

applications 
 
Combined with suitable training data, the classification tree method could be a useful tool in the 
development of new classification applications and in testing the feasibility of new datasets. As 
discussed above, region-based and rule-based classifications exploiting several different types of 
attributes can be carried out with a high level of automation using the method. It might thus be 
possible to achieve satisfactory classification results relatively easily and automatically. The 
automatically created classification trees could also be used as a starting point for the further 
manual improvement of the rules. This is possible because the classification rules in the tree are 
easy to understand and could also be programmed in some programming language or 
implemented in rule-based classification packages (see, for example, Huang and Jensen, 1997; 
Lawrence and Wright, 2001). It would also be possible to carry out additional classifications after 
the classification tree classification to correct some obvious misclassifications. For example, 
information on the classes of neighbouring segments could be exploited at this stage. 
 
For the purpose of developing new applications on the basis of new datasets, a permanent 
reference dataset would be useful. The dataset could consist of reference points for which 
detailed information on the land cover and land use is available and is kept up-to-date. The points 
should be located inside homogeneous regions, so that transformation from training points to 
training segments is possible. Different point sets could also be collected, taking into account the 
characteristics of different spatial resolutions and application areas. Additionally, the reference 
data could include map data if suitable, up-to-date data are available. When new, remotely sensed 
datasets become available, the permanent reference data, together with segments and attributes 
derived from the remotely sensed data, could be used as a basis for the rapid construction of 
classification trees. Depending on the characteristics of the data and application, the land-
cover/land-use information of the reference data could be generalized into the desired classes. If 
the reference data are representative enough and the characteristics of the remotely sensed data 
are stable, the classification rules could then be applied to classify new areas. It is possible, 
however, that variations in intensity and other characteristics between different datasets and areas 
require changes in the rules. In this case, the rules could be further improved and modified. 
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5. CONCLUSIONS 
 
The classification tree method is an interesting method that can be used to create a tree-structured 
classification hierarchy and rules automatically from training data. A large number of different 
attributes can be presented for the method as input data, from which it automatically selects those 
most useful for classification. The method is thus well suited to dealing with the diverse datasets 
and attributes that are typical in the region-based and knowledge-based interpretation of remotely 
sensed data. Tests with the classification tree method in two applications – building detection 
using laser scanner and aerial image data and land-use classification using E-SAR data – were 
carried out using the classification tree tools available in the Statistics Toolbox of the Matlab 
software. The segments to be classified and attributes for the segments were obtained from the 
eCognition software. The results were satisfactory and the classification accuracy was near to that 
obtained in earlier studies using manually created classification rules. The structure of the 
classification trees in both applications was very simple. The most important benefit of the 
classification tree method was its high level of automation. The creation of the tree was very fast 
compared with the process of manually defining rules for classification. A combination of the 
classification tree method and permanent, up-to-date reference data could be a useful tool in the 
development of new classification applications and in testing the feasibility of new remotely 
sensed datasets. Together with segments and attributes derived from remotely sensed data, it 
could be used for the rapid construction of classification trees, which could then be directly used 
in classification or as a starting point for further development of the rules. With this method, it 
might be possible to achieve satisfactory classification results relatively easily and automatically. 
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