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Preface

This work has been conducted at the Dept. of Chronic Disease Preven-

tion at the National Institute for Health and Welfare (THL, former KTL),

Helsinki, and at the Dept. of Biomedical Engineering and Computational

Science (BECS), Aalto University (former TKK), Espoo.

As I came to KTL in 2004, Docent Marjatta Karvonen introduced me to

the field of medical geography. Encouraging me to begin my doctoral stud-

ies, she supervised Publications I,III–IV. Prof. Kirsi Virrantaus (Dept. of

Surveying) was my first supervisor at TKK. I am grateful for the time and

interest she took in my work.

Due to unsuccessful grant applications, I soon had to take a new direc-

tion. In 2006 I joined Prof. Veikko Salomaa’s unit at KTL. He has en-

couraged me to continue this doctoral work as time allowed. I also started

my postgraduate studies anew in 2006 at BECS, instructed by Docent Aki

Vehtari and supervised by Prof. Jouko Lampinen. Aki’s example has en-

couraged me in pursuing a deeper understanding of Bayesian statistics.

The work for Publication V and for this thesis has been jointly supervised

by Aki and Veikko. Veikko also supervised the work for Publication II

with Marjatta.

Prof. Antti Penttinen (University of Jyväskylä) and Prof. Seppo Koski-

nen (THL) have done a superb job in reviewing this manuscript and pro-

viding insightful comments.

Looking back in time, discussions with a fellow student, Marko Peussa,

guided my interest towards statistical modelling; the resulting master’s

thesis (in chemometrics) was supervised by Prof. Lauri Niinistö. Then

a course at Palmenia Institute honed my skills in mathematical and sta-

tistical modelling. Dr. Jukka Sinisalo (at Kemira) got me involved with

Bayesian networks. Dr. Jukka Ranta (Risk assessment unit/former EELA)

finally convinced me to become a Bayesian.
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Dr. Elena Moltchanova and the late Olli Taskinen made me immedi-

ately welcome at the SPAT team when I came to KTL, guiding my first

steps in Bayesian modelling. Besides friendship, they both have made a

major contribution on my work. Dr. Anne Kousa, first author in Publica-

tions III–IV, has had an important role in this work. Rauni Pääkkönen

helped a lot with Publication II, and shared the office with me for several

years. Dr. Mika Rytkönen helped me a great deal in starting my postgrad-

uate studies and writing grant applications. Dr. Maria Nikkarinen, Dr.

Pentti Tienari, Prof. Johan Eriksson, Prof. Reijo Marttila, and Dr. Kirsti

Martikainen have all contributed in the publications. Prof. Juhani Hassi,

Reija R., Ari V. and Pentti P. have also participated in the early phase.

My physical presence at BECS was minimal, but interactions with Jaakko

R., Ville P., Jouni H., Eero P. and Jarno V. have been very helpful.

Thanks to all the people at KAHY and DIGY units for a great atmo-

sphere to work in. Especially, I have learned a lot from the late Jorma

Torppa and Vladislav M. besides enjoying the non-work discussions with

them. My recent work with Olli S. and Juha K. have given me new ideas

and improved my skills as a statistician. Arto P. and Mikko K. also shared

the office with me for a while. Time spent with Paul, Nadja, Niina, Samuel

and Marketta has provided relaxing diversions from work.

The early work was funded from Marjatta’s research grants. Later,

Pentti T. provided crucial support, which allowed me to continue this

work. Foundations for Publication V were laid during the YYSSP’06 at

the IIASA institute (Laxenburg, Austria, grant from The Academy of Fin-

land). My work at BECS was funded by the TERANA project (part of

Finn-Well/TEKES). The Finnish Foundation for Cardiovascular Research

provided a grant for finishing this thesis (the original submission) and to

do part of the research work which was later adapted to Publication V.

Above all, the life-long support and encouragement from my parents

Katja and Pentti (he also proofread this manuscript), my siblings Heidi

and Henri, and many more family members has given me strength in my

good and bad times.

Helsinki, November 23, 2011,

Aki S. Havulinna
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1. Introduction

This thesis consists of five papers studying various aspects of applied

Bayesian epidemiology using spatial and temporal smoothing models. Our

original aim was to make methodological contributions also for spatiotem-

poral modelling (using lung cancer as an example), but this task turned

out to be beyond the scope and schedule of this thesis. We have therefore

made a different contribution (Publication V) for the revised version of

this thesis.

The practical epidemiological studies in Publications I–IV are based on

excellent nationwide public health and population registers in Finland.

Publication I studies the incidence and prevalence of medicated parkin-

sonism. Publication II studies the shared and disease-specific geographic

variation in ischaemic stroke and acute myocardial infarction (AMI) inci-

dence. Publications III and IV study the geographically varying mineral

composition of drinking water as a possible environmental risk factor in

AMI incidence. Publications I–IV were all driven by practical needs to

assess geographic variation in non-communicable diseases and to suggest

putative environmental risk factors affecting these diseases. Their main

emphasis has therefore been on the disease epidemiology.

Publication V presents methodological extensions for the Bayesian age-

period-cohort (APC) model and demonstrates the utility of the extensions

through the analysis of long series of total mortality in several European

countries. This study is based on the carefully harmonized data from the

Human Mortality Database [52]. In the future we will make further re-

finements to the model for assessing changes in cardiovascular disease

incidence, prevalence, case-fatality and mortality. This was the original

motivation for developing and studying these extensions for the APC mod-

els.

In applied statistics, the role of the actual statistical models is crucial

11



Introduction

even when the models are merely presented in the background as nec-

essary tools for solving the study questions; it is important to be able to

determine the appropriateness of the statistical tools at hand. This thesis

will review the statistical models used in Publications I–V in more detail.

A new interpolation model for partially censored geochemical data was

briefly presented in the appendices of Publications III and IV; the model

will also be described in more detail here.

We begin with a brief account on registry based studies and health ge-

ography. Non-communicable disease epidemiology will then be reviewed,

focusing on ischaemic stroke, AMI and Parkinson’s disease. The emphasis

is on ecological modelling and environmental risk factors. Next, we take

a look at mortality through time. We then introduce Bayesian statistical

modelling, reviewing the relevant literature on spatial, spatiotemporal

and APC modelling. After briefing the results of this thesis, we open the

discussion by exploring the findings. The discussion will then touch the

wider applicability of the presented methods and give an outlook of the fu-

ture in spatial, spatiotemporal and APC modelling, concentrating on epi-

demiological applications. We conclude this thesis with a short summary

of the empirical findings and statistical models which we have developed.
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2. Health Geography and
Non-communicable Disease
Epidemiology

2.1 Registry Based Health Studies

These studies are based on registered information on disease events or

status and auxiliary information, usually using at least the reference pop-

ulation at risk. Finland is extremely suitable for this kind of studies as

we have virtually 100% nationwide registry coverage of:

• Hospitalisations (HILMO): National Institute for Health and Welfare;

data starts from 1967 and the coverage was widened to cover all social

institutions in 1994.

• National Causes of Death Statistics: Statistics Finland; data starts

from 1969.

• Reimbursed medications: National Social Insurance Institute; data on

persons entitled to reimbursed medication starts from 1964 and phar-

macy data on prescribed medicine purchases starts from 1995.

• Population: National Population Register Centre; data starts from 1969.

• Additional covariate information, e.g., socioeconomic status (education,

occupation, income): Statistics Finland.

Most of the registered information is available from 1969 onwards. By

1968 the unique National Social Security Insurance ID’s had been issued

to every Finnish citizen and permanent resident in Finland, thus enabling

accurate record linkage between registers. Many registers were comput-
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erised at the same time. Some registers are available from earlier periods,

mainly for specific diseases. The data collection at Finnish Cancer Reg-

istry, for example, started in 1953. Studies have shown that in some cases

National Social Security Insurance ID’s could be retrospectively matched

with high accuracy to the earlier registers, but this is an expensive and

time-consuming task. [86] There are also probabilistic methods for record

linkage reconstruction. Although the theoretical basis is sound, this is

naturally only the second best option [73, 200].

A central problem in registry based studies is case ascertainment. In

some cases, the disease register data can be validated using independent

sources (e.g., [211, 280, 150, 218]), but this is not always feasible. The

issues in registry based studies in Finland are further discussed in [86,

123].

We finally note that collection of vital statistics in Finland was started

already in 1749, by "Taulustolaitos" (Swedish Tabellverket), which later

developed into Statistics Finland. The information includes births, deaths

and marriages. The causes of death in the 1700’s were crude observa-

tions given usually by relatives. [86] Nevertheless, regional studies could

be done using this data—see, for example, the thorough study of the

geographic distribution of malaria, gastroenteritis and smallpox in 234

Finnish municipalities, during 1749–1850 [309]. A historical perspective

of regional mortality differentials in Finland is given in [220].

2.2 Geographies of Health

Several issues affect human health in the geographical setting. Each in-

dividual has her own "geography of health",1 related to the geographic

places of her everyday life. We must stress that it is the place that mat-

ters, not the geographic location given by coordinates. The location re-

mains the same, but the place is under constant change. [76] The impor-

tance of this temporal aspect in human geography was first addressed in

[109].

The role of place in human health and medicine was recognised already

by Hippocrates (e.g., [111, 107]). Our "everyday" places are the places

where we spend most of our time: home, school/workplace, outdoors, and

travel between these places. These are the places that may have a positive

or negative influence on our health. On the positive side, some landscapes

1Hence, the title is in plural form [76]
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might have therapeutic effects, and good availability of public health ser-

vices and leisure/recreational facilities, for instance, might induce well-

being. Turning to the negative side, living near an industrial plant might

affect our well-being, perhaps by some seemingly little things: the smell

of air, or the fear that an accident could happen. Also fear in an unsafe

neighbourhood reduces well-being. [76] A recent case-study2 in the City

of Järvenpää enabled the inhabitants (427 respondents) to indicate via an

Internet questionnaire the places of positive and negative quality factors

in their living environment. Most of the positive as well as negative places

were within 1 km of home. However, negative places tended to cluster

more. [235] It has also been noticed that the relative socioeconomic status

of a person within her neighbourhood may affect health. Poor people liv-

ing in a rich neighbourhood seem to cope less well than poor people living

in a poor neighbourhood. One possible explanation is the persons’ social

stress from being constantly reminded of her poorness. [307]

In a more quantitative setting, place can be seen as a surrogate for

the interaction between genetic factors, lifestyle and environment [237].

Genetic factors may pose an elevated disease risk, but usually the ge-

netic disease expression is far from 100%. However, monogenetic muta-

tions have 100% expression in rare mendelian disorders, of which there

are several examples in the Finnish disease heritage [201]. In a gen-

eral setting, genetic factors contribute to an elevated risk, which may

(more profoundly) lead to disease when phenotypic (i.e. environmental

and lifestyle) risk factors are unfavourable. In many cases, environmental

and lifestyle risk factors themselves may be enough for the development

of disease.

Cancers form one group of diseases in which there exist a multitude

of modifiable lifestyle and environmental risk factors. Examples include

smoking (mainly) in lung cancer, human papilloma virus mainly in cervi-

cal cancer and hepatitis B virus in liver cancer. In addition, food intake

imbalance, obesity and the multitude of environmental carcinogens are

risk factors for several cancers. Observed rapid changes in the incidence

of several cancers cannot be attributed to genetic polymorphism, as the

changes in allele frequencies require several generations. It is hypothe-

sised that adaptation of modern lifestyle along with recent cumulation of

environmental carcinogens caused by industry has elevated cancer risk in

2http://opus.tkk.fi/pehmogis/dokumentit/lyh_tutkrap_pehmoGIS_
elinympariston_koetun_kartoittajana.pdf. Accessed September 5, 2011.
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the genetically susceptible persons. [119, 14, 15]

2.3 Spatial Epidemiology

Spatial epidemiology concerns both describing and understanding geo-

graphical variations in health, especially in small area level. There are

four types of studies [64]:

1. Disease mapping

2. Geographical association/correlation studies

3. The assessment of risk in relation to point or line source

4. Disease clustering and cluster detection.

Publications I–IV in this thesis are related to disease mapping and geo-

graphical associations.

2.4 Disease Mapping

Geographic mapping of diseases began as early as in the 1790’s [10]. Ge-

ographers’ broader interest in the analysis of disease and care started in

the 1960’s, forming the subdiscipline of medical geography [175]. A histor-

ical perspective of disease mapping is given in [299]. Until recently, small

event numbers and data availability restricted disease mapping to rather

coarse areal level aggregates. Studies in fine geographic resolution had

to wait for the development of advanced statistical methods to control the

inherent random noise. Development and use of those methods, however,

required modern powerful computers.

An early review of the model building and spatial statistics in human

geography is provided in [45]. A review of published disease atlases up

to 1991 found that most of the studies did not use any kind of smoothing.

The Finnish cancer atlas [224] was one of the first to show disease rates

smoothed by a geographic centroid approach: weights are inversely pro-

portional to the distance from the point being smoothed and directly pro-

portional to the population counts. [300] The empirical Bayes smoothing
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method [44] set forth the use of conditional autoregressive (CAR) mod-

els. Besag, York and Mollié [28] presented the fully Bayesian convolution

model, also known as the BYM model, which has become almost a de facto

standard in the field. Although understanding the geographical phenom-

ena and methodology remains an important part in the studies, disease

mapping relies mostly on the use and development of spatial statistical

methods. Disease mapping is usually conducted in terms of ecological

studies (see, e.g., [64]).

2.5 Ecological Studies

In ecological studies, the analyses are done at group level instead of indi-

vidual level. In spatial studies the aggregated groups are inhabitants of

some (non-overlapping) geographic areas, represented by areal level data.

The rich terminology reflects various viewpoints in the public health con-

text, including health geography [76], medical geography [176, 175], geo-

graphical epidemiology [237], spatial epidemiology [64], small-area health

statistics [65] and disease mapping [29].

Until recently, the geographic areas in the studies have been defined by

some administrative bounds, e.g., counties, municipalities, hospital dis-

tricts or postal areas. In Finland, grid (lattice) based exact population

data has been available since 1970 [276]. Although some geographic stud-

ies have been conducted using the data, disease mapping studies have

been done only recently, as the methods and available computer power

developed. Also in the other Nordic countries, exact georeferenced data

has been available for some time [276]. This enables us to perform geo-

graphic studies in high resolution and independent of any administrative

boundaries.

2.5.1 Smoothing

As we increase the geographic resolution, the problem of small numbers

increases. What we see on a crude map will be overwhelmed by ran-

dom (Poisson) noise. One simple solution is to use Bayesian (non-spatial)

shrinkage estimators, which force observations based on small numbers

towards the global average. [79, 296] When there is reason to believe

that the observations are spatially dependent—and usually they are—

this information should be taken into account. The general solution is
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to perform some kind of smoothing over the map. However, ordinary im-

age processing methods may not be powerful enough. Moreover, choices

such as selecting the smoothing parameters are very subjective. These

concerns have seeded the field of Bayesian disease mapping.

Whether we should use smoothing naturally depends on the question at

hand. A decision maker in some small municipality might want to look at

the actual crude number of disease cases (say) for reviewing health care

resource allocation. However, if she were interested in (predicting) what

will happen next year, there would be a high level of uncertainty because

of the small numbers. In this case, her real target of interest would be

prediction based on estimated underlying disease incidence rate. Also,

when comparing the risk of a disease among different areas, or temporal

changes, we are interested in differences in the underlying disease rates,

not in the random noise.

2.5.2 Ecological Fallacy

The main limitation of an ecological study is its susceptibility to ecological

fallacy [259]. When estimates are based on aggregated groups, we should

not try to apply them at an individual level, as this would usually induce

ecological bias. If we have found a region with a high incidence rate (e.g.,

as compared to the nearby areas), we may say that the disease risk is on

average higher than in the nearby areas. However, the risk of a particular

individual living in the high-risk area might well be much lower than the

risk of a particular individual living in a low-risk area.

2.5.3 Modifiable Areal Unit Problem

Modifiable areal unit problem is a concept related to ecological fallacy.

The choice of which way to divide an area into aggregate regions is not

unique, and the analytical results of a study may depend on this choice.

There are two components of the modifiable areal unit problem: the scale

and zonation effects. The scale effect is attributed to variation in nu-

merical results owing strictly to the number of areal units used in the

study. For example, the choice of the resolution in a grid based map leads

to scale effects. Zonation effects are attributed to the manner in which

smaller areal units are grouped together to form larger units. Means and

variances are resistant to these effects, whereas regression coefficients

and correlation statistics exhibit dramatic changes. In disease mapping,
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the scale effect is apparent as the between area–variation becomes larger

in smaller scales. Choosing a larger aggregation level, the variation is

smaller, but important information might be lost. [3, 195]

2.5.4 Spatiotemporal Processes and Latency

There are two issues related to space and time in health geography. First,

we note that the latency from exposure to disease occurrence might be

quite long. In extreme cases, the accumulated life-time exposure to risk

factors is relevant. During the latency period, people might have moved to

another location—and even if not, the place itself could have changed, as

noted above. Yet, almost all disease mapping studies consider the place of

residence at the time of event and the place and time of exposure (almost)

equivalent. [257]

The second concern is that geographic data is seldom purely spatial [45],

and neither are epidemiological phenomena [257]. We may first look into

this by considering the differences between disease clusters and cluster-

ing [27, 297]. Clusters refer to compact areas where there is an excess of

disease cases. If specific clusters are detected, possible environmental as-

sociations could be investigated. The term clustering, on the other hand,

refers to a general tendency of a disease to cluster, i.e., show geographic

variation. If such variation is known to exist (or detected with some sta-

tistical test, e.g., [27]), this geographic variation could be mapped using

the statistical disease mapping methods. These methods do not neces-

sarily need to be restricted to using cluster models; e.g., the BYM model

is commonly used. The clustering could show different characteristics in

space and time—clusters may exist:

1. In the spatial dimension—this would indicate some permanent risk fac-

tors which are concentrated in certain areas.

2. In the temporal dimension—for example, an excess of AMI cases may

be clustered in the cold seasons.

3. In the spatiotemporal continuum—for example, some infectious dis-

eases could show temporary clustering in certain places.

As the above listing shows, usually there is no justification in consid-

ering disease events only in the spatial dimension. Indeed, the misuse of
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count data aggregated over time may lead to biases in the estimated area-

specific risks [203]. Therefore, the natural framework for modelling in

geography (also in general) is spatiotemporal processes. [45] In the point-

referenced geographic studies, geostatistical modelling (e.g., kriging) is an

often used technique. [58, 184] Some authors have applied geostatistical

and point process methods in disease mapping using areal level data (e.g.,

[133, 16, 288]). There also exist spatiotemporal point process models in

disease mapping, e.g., [33] However, usually the spatiotemporal models

are constructed for areal level data. Spatiotemporal models and issues

will be considered in the review of statistical methods (Chapter 4).

2.6 Environmental Risk Factors

By environmental disease risk factors we refer to any factors that are

shared by people living in a common environment. Studies could include,

for example, ground water [154], dietary intake [161], air pollution [137],

bacterial/viral infections [303], soil [69], climate/weather [101], urban/ru-

ral environment [126], or exposure to animals at a farm [157]. However,

recently it has become clear that Finns differ in genetic inheritance, being

mainly separated by the so-called east/west gradient [160]. This will add

a genetic flavour into the geographic epidemiology in Finland.

2.6.1 Spatial Ecological Correlation Studies

In spatial correlation studies (e.g., [239]) we are interested in determining

whether some risk factor is associated (i.e., correlates) with the spatial

(geographic) variation of a disease. Because of the ecological modelling

framework, this can only be seen as an explorative semi-quantitative

method. The results may provide important clues for associations that

may be worth more rigorous studies, for example in a case-control setup.

As is often stressed, ecological studies cannot reveal any causal relation-

ships, even when the effects of potential confounders are controlled for.

We must also bear in mind the ecological fallacy: any results apply on av-

erage, in the aggregated group level and are not generalisable to apply in

the individual level. Hence, as the link between exposure and effect is not

assessed directly, this ’incompleteness’ of the study generally leads to eco-

logical bias. A technical introduction to the subject is given in the review

of statistical methods (Chapter 4). Also, because of the modifiable areal
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unit problem, the choice of the areal aggregation might have a dramatic

effect on the results.

Another issue is the problem with spatially misaligned data. Epidemi-

ological data is usually available at an aggregated level, in part because

of confidentiality reasons. Environmental data, however, is usually avail-

able in an accurate point level. How to realign these spatially misaligned

data sets has been a subject of several studies [30, 31, 192, 87, 88]. This

problem also concerns Publications III–IV in this thesis, where one possi-

ble solution is presented.

2.6.2 Point or Line Sources and Spatial Clustering

Ever since John Snow’s success in identifying the source of a cholera epi-

demy in London3 [34, 71], there has been interest in studying the asso-

ciation of a point source with an excess number of disease cases. For ex-

ample, the Small-Area Health Statistics Unit at Imperial College London

was originally established for studying disease risk from point sources

[65]. As line sources we refer to roads with heavy traffic etc.

Examples among the studied sources are poor air quality in cities [258],

asbestos mine [147, 146], polluted river [293], a nuclear power plant [273],

an oil refinery plant [216], and magnetic fields from high voltage power

transmission line [285, 294]. Significant associations were found with

air quality and mortality [258] and with cancer and polluted river [293].

Magnetic fields showed some associations with multiple myeloma in men

and colorectal cancer in women. The former could be a real association,

but the study had multiple testing issues. Also, in the case of multi-

ple myeloma, potential exposure confounders could not be controlled for

[294]. In the later study of lung cancers near asbestos mine [146] distance

related change points were found in the disease risk, but the study con-

centrated on methodology. Hence, the epidemiological results could not be

further evaluated.

On the other hand, the media had raised uncritical concerns on elevated

risk of childhood leukaemia around the Sellafield nuclear power plant,

even trying to publish "scientific" studies. The study [273] assessed the

available information and concluded that there was no evidence for the

elevated risk. In cases like this, the media itself should be more critical

3Snow identified a pattern concentrating at a particular public water well, later
mapping the dwelling locations of cholera cases—and in that map, he created
(one of) the first Voronoi diagram
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before raising public concerns. Also, the scientific community should be

always careful in risk communication.

As we can conclude from above, the results have been negative, or in-

conclusive in many cases. Detecting any small excess would require a

vast number of events. However, a negative finding in a study of possi-

ble risk sources should be considered a positive thing. At the same time,

these studies have driven the development of advanced statistical meth-

ods. The design and methodological issues in ecological small-area studies

have been recently discussed in [63, 11]. Recently, it has been suggested

that ecological bias could be avoided with careful study designs, but even

if this is the case, care should be taken in interpreting the results [296].

2.7 Epidemiology (Geographic) of Non-communicable Diseases

Non-communicable diseases refer to diseases which are not transmitted

from one person to another. Acute diseases, e.g., acute myocardial infarc-

tion (AMI) and sudden stroke have an abrupt start. They may last a few

days and then settle, or lead to a chronic condition or death. Chronic

diseases, such as coronary heart disease (CHD) or diabetes may have an

impact for the rest of life once they have emerged. [76] Chronic disease

onset may be quite slow as with the development of Parkinson’s disease

(PD) [304]. One point we should consider is the fact that the population is

constantly aging. Thereby the number of patients with chronic diseases

is expected to grow dramatically in the next few decades. [171]

The risk factors vary from disease to disease, but some factors are com-

mon to several diseases. One example is the cluster of most danger-

ous heart attack risk factors, known as the metabolic syndrome (METS).

METS drives the global twin epidemy of cardiovascular disease (CVD)

and type 2 diabetes (T2DM). According to the International Diabetes Fed-

eration definition, a person is defined as having METS if she has cen-

tral obesity plus any two of the following: raised triglycerides, reduced

HDL cholesterol, raised blood pressure or raised fasting plasma glucose.

[56] Note, however, that there are several other definitions of METS, e.g.,

the American National Cholesterol Education Program–Adult Treatment

Panel (NCEP-ATP-III) definition and the WHO definition. In the Interna-

tional Diabetes Federation definition central obesity is considered a neces-

sary trait, whereas in the other definitions it is considered as equal among

the other risk factors. The different definitions may lead to slightly differ-
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ent diagnoses. [217]

The classification into non-communicable and communicable (i.e., infec-

tious, transmissible) diseases is not always clear-cut. So-called microbial

cancers (cervical, liver and stomach cancers) [256] make a notable exam-

ple. Virtually all cervical cancer cases result from persistent genital infec-

tion with highly trasmissible human papilloma virus [49]. Transmissible

Helicobacter pylori is associated with stomach cancer [139]. Chronic in-

fection with hepatitis B virus is the most important risk factor for liver

cancer [119, 256]. Note, however, that cancer itself is never infectious.

The role of bacterial or viral infections is suspected also in many other

non-communicable diseases (see below for some examples).

In the following, we review geographic studies on some of the major non-

communicable diseases in Finland.

2.7.1 Cardiovascular Diseases

The geographic variation in CVD mortality in Finland has been known

since the late 1940’s [124, 151, 202, 286]. Until the 1900’s, infectious dis-

eases were a common cause of death, and the remoteness of rural areas

was an asset in avoiding transmission, which was reflected in lower mor-

tality rates. During the first part of the 1900’s the differences in wealth

determined the regional differences in mortality. [220] Thereafter, the re-

gional east/west gradient in mortality rates has remained practically the

same ever since the 1930’s, and the higher mortality in eastern Finland

is mainly attributable to CVD. Although mortality has received most at-

tention, the east/west relative difference in CHD incidence and prevalence

has also been noticed since the 1970’s, starting from the "Seven Countries"

study [128]. More specifically, the geographic variation in the incidence of

AMI follows an east/west pattern [126] which is similar to that of CHD

mortality. It has also been noted already in the 1960’s that there were re-

gional differences in the duration of pregnancy and the weight and length

of the newborn, with a similar east/west gradient [278]. The east/west

mortality differences cannot be explained by differences in demographic

and socioeconomic composition of the regional population [151, 287].

Incidence and mortality rates of CVD have been constantly decreas-

ing nationwide [252, 251, 213, 282, 265, 212, 168, 194]. In part, this

favourable trend reflects the success of nationwide prevention programmes

(e.g., [289]). However, changes in classic risk factors no longer explain

time trends in CVD mortality [98]. Moreover, the east/west gradient in
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CVD incidence and mortality has remained despite the decreasing trend

at the nationwide level [126]. An east/west gradient in CVD mortality also

prevails between the European countries [183]. Geographic variation in

stroke incidence or mortality has not been previously studied in Finland.

Classic risk factors of CVD include: male sex, smoking, diabetes, hy-

pertension and high LDL cholesterol. In the multinational cross-sectional

INTER-HEART study, abnormal lipids, smoking, hypertension, diabetes,

abdominal obesity, psychosocial factors, consumption of fruits, vegetables,

and alcohol, and regular physical activity accounted for most of the dif-

ferences in the risk of myocardial infarction worldwide in both sexes and

at all ages in all regions [314]. The geographic distribution of cholesterol,

obesity and some dietary habits in Finland has also been studied [262],

but the association with geographic variation in CVD was not assessed.

The role of drinking water constituents in CVD risk has been subject to

several studies in Finland (see, e.g., [154] and references therein), and

also in other countries (e.g., [189, 311, 191, 41]). The results generally

suggest that low water hardness, especially low magnesium (Mg) concen-

tration, is associated with increased CVD risk. However, there seems to

be no consensus on the subject as of yet. Associations of viral and bacte-

rial infections with CVD have been studied [303, 228]. There are gender

differences in the presentation and clinical course of many cardiovascular

disorders [312], and also generally in health in later life [6], which sug-

gest that the geographic variation in disease risks should be evaluated

genderwise. The geographic variation in CVD risk has not been studied

specifically in women in Finland.

This thesis studies CVD with ischaemic (i.e. atherothrombotic) aetiol-

ogy. CVD originating with inflammation or infection is therefore excluded.

In addition, periferal artery disease (claudicatio intermittens) is excluded

although it has an ischaemic origin. CVD can be further divided into

heart diseases and cerebrovascular diseases. The diagnostic practices in

this thesis are broadly based on the experience of the World Health Orga-

nization (WHO) MONICA (Multinational MONItoring of trends and de-

terminants in CArdiovascular disease) project4 [281] and the Finnish my-

ocardial infarction and stroke registers which participated in the MON-

ICA project [252, 282]. The more recent FINAMI [251] and FINSTROKE

[265] registers have followed and updated the diagnostic classification of

the MONICA registers. In the Finnish national health care registers the

4http://www.ktl.fi/monica/. Accessed September 13, 2011.
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diagnoses were coded using International Classification of Diseases, Ninth

Revision (ICD-9) until the beginning of 1996, when International Classi-

fication of Diseases, Tenth Revision (ICD-10) was adopted.

As a short description (in ICD-10), ischaemic heart disease includes the

codes I20–I25. Of those, I21–I22 denote AMI. I20.0 denotes unstable

angina pectoris. Clinically, AMI and unstable angina are often considered

together as acute coronary syndrome (ACS). Cerebrovascular diseases in-

clude: subarachnoid haemorrhage (I60), intracerebral haemorrhage (I61)

and cerebral infarction (I63). Stroke, not specified as haemorrhage or in-

farction (I64), is seldom used as most of the strokes can nowadays be clas-

sified. In the epidemiological research practice, I63 and I64 are together

considered as ischaemic stroke. The exact CVD classifications used in this

thesis are given in the Materials and Methods (Chapter 6).

2.7.2 Parkinson’s Disease

Parkinson’s disease (PD) is a chronic slowly progressing neurodegenera-

tive disease with a multifactorial aetiology. Its prevalence increases with

age and it is slightly more common in men than in women. [304] In the

central European population, the estimated prevalence is 1.6% in popu-

lation over 65 years of age [53]. Studies have been conducted for assess-

ing the role of some environmental/occupational risk factors in PD (e.g.,

[157, 57]). Coffee drinking and smoking seem to be associated with lower

risk [115]. Living in a rural area, exposure to pesticides or drinking well

water are suggested as risk factors [157]. Other suggested risk factors in-

clude high body mass index (BMI) [117] and high total cholesterol [114].

T2DM was also suggested as a strong risk factor [116]. However, many

results seem to be still controversial (see, e.g., [263]). Genetic factors

have a role in PD, especially in early-onset PD (at <45 years). PD seems

to be a heterogeneous disease with considerable genetic background and

gene-environment interactions [12]. Some interactions have recently been

suggested: Apolipoprotein E polymorphism with coffee drinking and α-

synuclein Rep1 polymorphism with smoking [173]. A report [136] showed

a map of PD prevalence in Finland.
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2.7.3 Cancers

Recent reviews of cancers in Finland are given in [226, 37]. There are nu-

merous studies5 on cancer occurrence, including spatial disease mapping.

The Finnish Cancer Registry was established in 1952, the data collection

started in 1953 and reporting all new cases of cancers has been mandatory

since 1961. [270] In Finland, tumours are the second most common cause

of death (23% of all deaths in 2009) after cardiovascular diseases.6 This

proportion is similar in both sexes, but cancer sites are sex specific. In

men, prostate cancer is most common (5322 incident cases; 38% of all new

cases in 2005), whereas breast cancer is most common in women (4021 in-

cident cases; 32% of all new cases in 2005). [37] In absolute numbers, the

yearly incidence of cancers has almost doubled from 1960 to 2005, both in

men and women. In 2005, there were 14,046 new cancer cases in men and

12,415 cases in women. Much of this change is attributable to ageing pop-

ulation. Hence, the age-adjusted cancer incidence rate has not changed

much until some recent increases around the 1990’s. At the same time,

age-adjusted cancer mortality has been decreasing. [37, 226]

First cancer maps in Finland were made in the late 1950s, presenting

crude cancer rates in the municipalities. Later, in the 1970’s cancer maps

were published concerning larger regions, e.g., counties. Finally, in 1987

the smoothing method originally developed at the Geological Survey Fin-

land (GTK) [94] was used for presenting an atlas of smoothed cancer rates

in the municipality level. [223, 224]. Generally speaking, no associations

of cancer and ground water minerals have been found [219]. Later cancer

studies in Finland suggest some associations with environmental risk fac-

tors; see, e.g., [294, 293]. Later, atlases of cancers in the Nordic countries

have been published [227, 225]. The same method has also been used

for cancer maps in other countries (e.g., [260]). Unfortunately, the choice

of colours in several published iso/choropleth maps (in Finland and else-

where) is not appropriate for black and white copies; see, e.g., [223, 39].

Breast cancer in Finland has been studied in a fine grid. The geographic

differences were associated with mutations in BRCA1 and BRCA2 genes.

[221].

5For a list of references, see: http://stats.cancerregistry.fi/Publications/
publications.html
6Statistics Finland; http://www.stat.fi/tup/suoluk/suoluk_terveys_en.html#death
Both sites accessed September 13, 2011.
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2.7.4 Diabetes

In Finland, the research of insulin dependent diabetes mellitus (Type 1

diabetes mellitus, T1DM) has been very active. The geographic variation

of incidence has been mapped. During 1987–1996 the high risk areas of

incident T1DM among children under 15 years of age seemed to form a

belt over the central Finland. There was a slight male excess in the inci-

dence. [234, 247, 249]. An earlier study [127] mapped the same data with

a simpler Bayesian method (shrinkage towards the global mean). The rel-

ative risk (RR) in a high aggregation level (20 functional areas) seemed to

exhibit the above mentioned belt pattern, but at lower aggregation levels

the pattern was lost. The incidence was not associated with zink and ni-

trate in ground water or urban/rural status [187]. The annual decreasing

trend in age of onset of T1DM was also studied in an incomplete birth

cohort design, using a Bayesian spatial smoothing model. No decreas-

ing trend was found within the birth cohorts and hence, it was concluded

that the decreasing trend is mostly due to steady increasing trend in the

cumulative birth cohort incidence [186].

T2DM has not been studied with disease mapping methods, but there is

some evidence for regional variation in Finland. The results from three

areas in Finland in men and women aged between 45 and 64 years indi-

cate that in women the prevalence (adjusted for age and BMI) was low-

est in eastern Finland (Kuopio and North Karelia), higher in southwest-

ern Finland (Turku-Loimaa), and highest in the Helsinki-Vantaa region

(p=0.003). The results in men were just the opposite but not statistically

significant (p=0.52). On average, the prevalence was 10% in men and 7

% in women. [313] These results indicate that a disease mapping study

could provide important new information in the regional differences of

T2DM. However, the high prevalence indicates that it should be taken

into account when estimating risk population counts for mapping the in-

cidence of T2DM. This would make the estimation more difficult than in

the usual disease mapping studies.

2.7.5 Other Diseases

Multiple sclerosis (MS) disease incidence is known to have geographic

clustering in Finland: there is a large excess of MS disease cases con-

centrated at Seinäjoki in Southern Ostrobothnia. [274] A map of alcohol-

related deaths was shown in [288]. Schizophrenia was mapped in munic-
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ipality level (with no smoothing) using Finnish birth cohorts born from

1950 to 1969. There was some regional variation and significant spatial

clustering of excess cases in eastern Finland. Incidence was higher in the

rural areas in the oldest birth cohort, but in the younger birth cohorts

incidence was higher in the urban areas. [100]

2.8 Spatial Epidemiology in Other Countries

Disease mapping studies and disease atlases until 1991 were reviewed

in [300] and [299] updated the review until 2000. Many of the studies

had concentrated on cancer mortality. Also, many Bayesian studies seem

to reconsider the same few classic data sets: Scottish lip cancer [44] and

Ohio lung cancer [298] using new models. Although the epidemiologi-

cal novelty usually remains low, this is good for the modelling point of

view, as model comparisons are easier to make. Other studies include,

e.g., meningococcal disease [144], T1DM [40], MS-disease [190], Crohn’s

disease and ulcerative colitis [198].
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3. Mortality Through Time

3.1 Collection and Analysis of Vital Statistics

The first effort to analyse vital statistics was by John Graunt in his book

Natural and Political Observations Made upon the Bills of Mortality (1662).

The London Bills of mortality were weekly records of causes of death

which were first begun for monitoring the 1592/3 Bubonic plague out-

break. After some disuse, the monitoring was resumed at the 1603 plague

outbreak, until superseded by other means of record keeping in the 19th

century. [243] Although he was not the only advocate of Small Pox in-

oculation at the early 18th century [241], Cotton Mather’s influence on

noticing the efficiency of Small Pox inoculation (a practice borrowed from

Africa and the Orient) in 1721 became another early example on the use

of vital statistics [231].

However, it was only in the middle 1800’s that the recording of vital

statistics and work on public health became major issues, perhaps culmi-

nating in John Snow’s classic work on the London cholera epidemic [34]

which we have already mentioned.

In fact, vital statistics have been collected in some Italian cities already

from the 14th century onwards. Nordic countries, however, were among

the first to commence nationwide collection of vital statistics in the 1700’s.

A detailed history of the data collection is given in [85]. It is noted that

the data quality in Sweden was much better in the early years than the

respective data in Finland, although both data sets originate from the

Swedish Tabellverket. [85]

Recently, harmonized nationwide time-series of vital statistics have been

produced from many, mainly European countries by the Human mortal-

ity database (HMDB) [52]. The above stated lower quality of the early
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Finnish data compared to the respective Swedish data was verified in a

personal communication from Mila Andreeva (of HMDB).

3.2 Epidemiologic Transitions

The epidemiologic transition theory [208] with later refinements (e.g. [125])

views mortality as the fundamental factor in population dynamics. The

theory describes demographic trends with a long-term shift in mortality

and disease patterns as successive stages. We list the stages with refer-

ence to the Finnish time periods [125]:

1. ’Era of pestilence and famine’. In Finland, the last great famine was

during 1866-1868. Before that, mortality was high and fluctuating, due

to epidemics, famines and wars. During this stage, sustained population

growth was not possible.

2. ’Era of bacteriology’. Soon after the last famine, mortality started de-

caying, partly due to improvements in hygiene. One important step was

the work against tuberculosis. Around 1930, one Finn died of tubercu-

losis every hour. Mass screenings and availability of medications since

the late 1940’s have reduced the tuberculosis mortality to a tiny fraction

of what it was 100 years earlier. [275]

3. ’Era of antibiotics’. In Finland, antibiotics were introduced for general

use in public health during the late 1940’s. There is some controversy

regarding whether this had much impact on infectious disease mortality,

which started declining already before the antibiotics were introduced.

[108]

4. ’Era of delayed ageing’. After most of the infectious diseases became mi-

nor causes of death, chronic diseases took the major role in mortality. In

Finland, the CVD epidemy begun in the 1950’s, showing the (in)famous

east/west gradient in mortality. [124] However, mortality of elderly peo-

ple started decaying since the 1970’s. This was not anticipated in gen-

eral, nor in the seminal work on epidemiologic transitions [208].
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3.3 Beyond Life Tables - Analysis of Mortality

John Graunt’s book, cited above, was the first to present a modern life

table in 1662. Some decades later (in 1693) Edmond Halley published

his Breslau life table (or more strictly a population table) [95] which may

be seen as the first real step in the art of life-measurement. Halley con-

structed an almost complete life table (population annuity by age) from

observed births and deaths from a 5-year observations period. The un-

documented exact methods which Halley used, including smoothing and

removal of outliers, have been tried to reconstruct in [13]. Since Halley’s

days, several methods for measuring and predicting mortality have been

presented. We do not try to make a complete survey of the methods, but

merely scratch the surface here.

The age-aspect was first modelled with the Gomperz-Makeham law of

mortality, and later, e.g. by the Heligman-Pollard model. [106] In the

Heligman-Pollard model, the mortality curve is thought to be composed of

three distinct and consecutive components.

1. The ’infant’ component describes the rapid exponential decline in mor-

tality during the early childhood, as the child adapts to the surrounding

world, including development of the immune system.

2. The ’accident’ component reflects the excess mortality from accidents

and also the maternal mortality in women. It can be approximated as a

lognormal distribution peaking around 20 years of age.

3. The ’senescent’ component describes the gradual deterioration of the ag-

ing body. This can be modeled with the exponential Gomperz law of

mortality.

A presentation of mortality on the calendar-time vs. age surface was

done using the Lexis diagram in 1875. [132] Since the 1920’s several pub-

lications [55, 5, 135, 72] considered (and some modelled) mortality in the

age and time scales. ’Generation’ effects in mortality were first consid-

ered in [55, 5], and [72] introduced the term ’cohort’. Later developments

have led to so-called ’age-period-cohort’ (APC) models in the 1980’s. See,

e.g., [113] We present the Bayesian version of the APC model in the next

chapter. For completeness, we note that there are several other models
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for studying mortality, e.g., the Lee-Carter model [167] is quite popular.

3.4 Prediction of Mortality

Besides taking a look at the past mortality, predicting the future trends

in mortality has become more and more important. Population aging has

become an internationally important concern. As the number of elderly

people is growing, while the number of youth is declining, the social and

economic costs are increasing—as the old age dependency ratio increases.

However, at the same time older people tend to have fewer disabilities

than people at the same age had a few decades earlier, and the cognitive

decline also seems to be postponed. It seems that forecasting of aging

needs new thinking and new measures, as well. [255]
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4. Review of Statistical Methods

4.1 Bayesian Statistical Modelling

4.1.1 Bayesian and Frequentist Paradigms

There are two major philosophical paradigms in statistics. Traditionally,

statistics has been ruled by so-called classical frequentist paradigm. In

the frequency interpretation, the probability of an event is the limit of its

relative frequency of occurrence when the experiment is repeated a very

large number of times. Probabilities are only assignable to events, in well

defined random experiments. The set of all possible outcomes forms the

sample space. An event forms a particular subspace of the total sample

space. For an event, there are only two possibilities: either it happens

or it does not happen. In practice, however, many events are unique or

cannot be assigned an explicitly defined sample space. [79]

In the Bayesian paradigm, probability can be seen as a measure of the

state of knowledge. Before any data is observed, a Bayesian statisti-

cian describes her a priori knowledge of a phenomenon—the degree of

information—by a prior probability distribution. The likelihood of the ob-

served data is measured by assigning it a likelihood function, which is

often derived from a well-known probability distribution. 1 After observ-

ing the data, she updates her degree of information to form the posterior

distribution, using the Bayes’ formula as described below. There are two

views on Bayesian probability. A subjectivist Bayesian describes probabil-

ity as a personal degree of belief. So-called objectivist Bayesians subscribe

to an axiomatic view of probability, in the spirit of Aristotelian logic. Their

methods include so-called reference priors. The two books [79, 206] give

1Note, however, that a likelihood function is not a probability distribution
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a comprehensive account on the Bayesian view. The latter book—aimed

for a more advanced audience—often contrasts Bayesian and frequentist

methods. The original Bayes’ essay is reprinted in [9].

Because they are sometimes used in the disease mapping field, we must

note that there exist also so-called empirical Bayes methods, which try to

retain an objective approach with the frequentist view that model param-

eters are not random variables, by first learning parameters from data

and then using them a second time in the actual model. In this thesis

we only consider full Bayesian models. In philosophical terms: "Abandon-

ing the classical frequentist probability, one might as well become fully

Bayesian" (loosely quoted from [206]). But naturally there is much more

to this question.

4.1.2 Aleatory and Epistemic Uncertainty

Another view on the Bayesian and frequentist interpretations of proba-

bility is that there are two kinds of uncertainty. Aleatory2 uncertainty

is induced by randomness. Aleatory uncertainty is present whenever we

are interested in one or more instances of a random process. Epistemic3

uncertainty is due to our imperfect knowledge of something that is not

random, and so it is knowable, at least in principle. A statistical model

can be viewed as a representation of (aleatory) probability distributions

and (epistemic) parameters. As noted above, frequentist probability can

only refer to aleatory uncertainty, requiring events to be repeatable in a

process having intrinsic randomness. Epistemic uncertainties are typi-

cally associated with unique events. Usually this applies to parameters

of a statistical model, as well. If we wish to use probabilities to ex-

press epistemic uncertainty, we must turn to subjective probability, i.e.,

become Bayesians. Expert elicitation and risk analysis are examples of

fields where the distinction between aleatory and epistemic uncertainty

has been emphasised. [205, 207, 204, 214]

4.1.3 Bayesian Inference

The frequentists view the unknown parameters of a statistical model as

fixed values. In contrast, Bayesians have the view that the parameters

are random variables to which they can assign probability distributions.

2Latin: alea=die, as in the words attributed to Julius Caesar "Alea iacta est" –
the die is cast
3Greek: pertaining to knowledge
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In the following, the terms probability distribution and probability den-

sity are used intermixed. The Bayesian statistical conclusions about a

parameter θ (or unobserved data ỹ) are made in terms of probability state-

ments. These probability statements are conditioned on the observed data

y and are denoted p(θ|y) or p(ỹ|y), where the vertical bar is read "given".

Bayesian statistics relies on the Bayes theorem. We first derive it for

two mutually dependent random events, A and B. The chain rule states

that p(A,B) = p(B|A)p(A). Using this with the law of conditional proba-

bility p(A|B) = p(A,B)
p(B) leads to p(A|B) = p(B|A)p(A)

p(B) . This is known as the

Bayes’ rule. [79] The usefulness of this formula may be illustrated with

the frequently used example4 in determining the diagnostic accuracy of a

clinical test, as follows.

Suppose that p(D+) = 0.01 = 1% of women who participate in routine

mammography screening actually have breast cancer. Hence, p(D−) =

0.99 = 99%. Further, suppose p(T+|D+) = 0.8 = 80% of women who have

breast cancer get a positive test result (true positive rate; TPR, i.e., sen-

sitivity). On the other hand, p(T+|D−) = 0.096 = 9.6% of women who

do not have breast cancer get a positive test result (false positive rate,

FPR), thus the specifity is p(T−|D−) = 1 − FPR = 0.904 = 90.4%. We

are then asked to calculate the probability p(D+|T+) that a woman who

gets apositive test result in the routine screening actually has breast can-

cer. Using the Bayes formula, we have p(D+|T+) = p(T+|D+)p(D+)
p(T+)

, where

p(T+) = p(T+|D+)p(D+) + p(T+|D−)p(D−) = 0.8 × 0.01 + 0.096 × 0.99 =

0.10304 = 10.3%. Therefore we get p(D+|T+) = 0.8×0.01
0.10304 ≈ 0.078. In other

words, only 7.8% of women who get a positive test result actually do have

breast cancer.

Turning back to the Bayesian statistical modelling, we derive a model

which describes our joint probability distribution for θ and y. We write

this as a product of two independent components, the prior distribution

p(θ) and the likelihood function of the data given the model parameter(s),

p(y|θ). Hence, we have: p(θ, y) = p(θ)p(y|θ). As above, using the law of

conditional probability, we get the Bayes’ rule for posterior density:

p(θ|y) = p(θ, y)

p(y)
=
p(θ)p(y|θ)
p(y)

,

where p(y) =
∫
p(θ)p(y|θ)dθ is the marginal probability of the observed

data y over all possible values of θ. In the discrete case p(y) =
∑

θ p(θ)p(y|θ).
Note that the marginal probability distribution of y is also the prior pre-

4See, e.g., http://yudkowsky.net/bayes/bayes.html
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dictive distribution of observable, but not yet observed data y. As this

normalisation constant is independent of the parameter(s) θ, it is often

omitted to obtain the unnormalised posterior density p(θ|y) ∝ p(θ)p(y|θ).
The symbol ∝ is read "is proportional to". From the above formulae, an-

other distribution can be derived, namely the posterior predictive distri-

bution p(ỹ|y) =
∫
p(ỹ|θ)p(θ|y)dθ, which in the present form shows that ỹ

and y are conditionally independent given the parameter θ. [79]

4.1.4 The Role of Prior Information

The role of priors in Bayesian inference is multifaceted. In a simple model

without multilevel hierarchy, the prior represents our knowledge (or lack

of it) in terms of a probability distribution, before the data has been ob-

served. After the data has been observed, the prior distribution can be

updated to the posterior probability density, using the above Bayes’ rule.

This density can then be considered as our prior knowledge before observ-

ing some new data. According to the likelihood principle, all information

from the observed data is contained in the likelihood function. Hence,

the prior may not depend on the data.5 Together, these principles lead

to the fact that the exact manner in which data has been collected must

not affect the inference. This leads to the fact that a Gaussian model, for

instance, produces equal information when observed data is obtained and

added one point at a time (as in process control) or if all data is obtained si-

multaneously. Another example comes from epidemiology: a clinical trial

could be optionally stopped prematurely, for example, when funding is

withdrawn. It is not valid to analyse the incomplete data using frequen-

tist methods, but there is no problem when the data is analysed using

Bayesian methods. [206, 79]

Our prior ignorance can be represented by vague priors, and in extreme

cases, objective inference is sought by using improper uniform, flat pri-

ors. An improper prior does not correspond to a probability density, as

it cannot be integrated in order to form a normalising constant. In con-

trast, proper priors are integrable probability densities. Even when an

improper prior is used, it may lead to a proper posterior density, because

the likelihood function is integrable. Jeffreys’ priors are one attempt to

form objective priors which retain their properties even under variable

transformations (but in general they do not obey the likelihood principle).

5As we note, empirical Bayes methods do not obey this principle
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In hierarchical Bayesian models (HBM’s), on the other hand, priors are

used as (informative) constructions to describe our assumptions on the

dependency structures in the data. These priors are then completed by

giving them so-called hyperpriors, which themselves depend on fixed hy-

perparameters. [206, 79]

4.1.5 Hierarchical Modelling

We begin with the concept of exchangeability. Given a set of experiments,

for example the lifetimes of similar light-bulbs, it is plausible to assume

that we cannot distinguish between them. Therefore, permuting the ex-

periments would not affect our information. We could estimate indepen-

dent failure rate parameters for each light-bulb—with excellent model

fit—but that hardly makes sense: we are interested in the average fail-

ure rate. In order to avoid overfitting6 and take best possible use of the

available information, we should assume a common failure rate for all the

light-bulbs and estimate it with a single model parameter.

In more complex situations, however, all observations might not be exchange-

able—exchangeability merely states that we do not have (or are ignorant

of) any knowledge that would differentiate the experiments. In case we

had such knowledge, we should use it in our model. HBM’s, also known

as multilevel models [92], offer a flexible framework for problems of this

kind. In HBM’s the prior distribution for the lower hierarchical level is

complemented by a hyperprior in the next upper level and this structure

may be extended to include many levels. In this case the priors at the up-

per levels usually describe assumed dependence structures between the

observations.

Hierarchical models can be represented using tree-like structures, known

as graphs. Usually, the model construction assumes that there are no

causal loops in the graphs, which leads to directed acyclic graphs (DAG’s).

Conditional independence is exploited in multilevel hierarchical models,

for instance in the frequently used WinBUGS software package. HBM’s

are estimated by sampling from the full conditional (FC) distributions (see

below). The models often exploit conjugate priors so that the prior and

posterior distribution remain in the same family of probability densities.

Examples include Gamma-Poisson and Beta-Binomial models. Sampling

from the standard probability distributions is straightforward. [267, 84,

6Overfitting refers to a situation where a model fits the data well, but makes
poor in prediction—hence the model does not represent a general case
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163, 36, 162, 79]

One concrete example [79] describes how to combine information on ed-

ucational tests from eight schools. Using a hierarchical Gaussian conju-

gate model, we assume at the first level that within each school i, the

scores yij of each pupil j are normally distributed7 with common means

θi: yij ∼ N (θi, σj). The means in each school are normally distributed

by hyperparameters μ and τ : θi ∼ N (μ, τ). Out of convenience, a uni-

form hyperprior is assigned to μ given τ , thus: p(μ, τ) = p(μ|τ)p(τ) ∝ p(τ).

The model is completed by assigning a prior for τ— again by convenience,

we assign a flat hyperprior: τ ∝ 1. In this example, σj are assumed to be

known from other sources. The fact that these improper prior choices lead

to a proper posterior distribution is given in [79].

4.1.6 Markov Chain Monte Carlo Sampling

Bayesian inference often leads to situations where there is no analyti-

cal solution for the posterior distribution, especially when constructing

HBM’s. The development of sampling methods based on simulation using

pseudorandom numbers, along with the ever-increasing computer capac-

ity, has led to current wide-spread use of Bayesian methods. MCMC in

Bayesian statistics was popularised by its use in image analysis, namely

in Markov random field (MRF) models—the same models that we now use

in disease mapping. [25]

Monte Carlo (MC) and later Markov chain Monte Carlo (MCMC) meth-

ods were the brainchildren of the Los Alamos scientists who during WW2

developed the first electronic computer, ENIAC. The computer was built

to replace a virtually limitless line of women who were constantly solving

ballistical tables by cranking electromechanical hand calculators. One in-

teresting problem for ENIAC was solving neutron diffusion in fissionable

material. After an initial setting of several neutrons was established, the

time evolution of the system was simulated using known statistical proba-

bilities according to the physical and geometric factors of the experiment.

Simulated events for individual neutrons were based on pseudo-random

numbers. The analogy to events in a casino led to the name Monte Carlo

after the famous casino.
7Throughout this thesis, we use precision, i.e. the inverse of variance, in param-
eterising normal distribution. In addition, the gamma distribution is parame-
terised as Gamma(shape, rate).
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Generally speaking, MC sampling (which is a frequentist method),8 is

used when a deterministic analytical solution of a problem is not avail-

able. In the method, several independent random realisations from the

domain of possible model inputs are created and the outputs in each case

are computed deterministically. The result is then obtained by averag-

ing over the sampled outputs. MC sampling is useful for instance in nu-

merical integration and optimisation in multidimensional spaces. MCMC

samplers, on the other hand, produce a chain of dependent samples from

the probability distribution of interest, p(x). In the following, we describe

the most often used MCMC samplers. [178, 177, 4]

Metropolis and Metropolis-Hastings Sampling

Metropolis sampling was a further development of the MC sampling. It

was used in a multiparticle problem in statistical mechanics of calculating

a quantity of interest F in the equilibrium of state—in statistical terms,

this is the expected value of F . We briefly introduce the method follow-

ing the original development9 which led to the Metropolis sampling algo-

rithm. [178] The potential energy E of a system with N particles in any

state is easily determined (Equation 1 in the article). Using the canonical

ensemble, the microscopic states (i.e. the state of each particle) of the sys-

tem can be described by the Boltzmann distribution: pi = exp(−Ei/kT ),

where k is the Boltzmann constant and T is the absolute temperature.

pi is the proportion of the particles which would exhibit a measurable

macroscopic state i, i.e. have the potential (repulsion) energy Ei. Now

the expectation of F is calculated as F̄ =
∫
F exp(−E/kT )/ ∫ exp(−E/kT ).

This is a multidimensional integral in the 2N dimensional configuration

space (for illustration, a system in a 2-D square was used in the article).

A solution by MC would involve generating random configurations and

weighting each configuration by w = exp(−E/kT ). This is not practical in

close packed systems as states with low weights w would be selected with

high probability.

Therefore a modified version of MC was developed, which would later be

called MCMC. Instead of choosing configurations randomly and weight-

ing them with w as in MC, configurations are chosen with probability w

and weighted evenly. The sampling proceeds as follows. The system of

8However, so-called Bayesian Monte Carlo (BMC) has been recently introduced
[236]
9This may be rather difficult to grasp from the original article, but it is very
interesting when understood, hence the introduction this way
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N particles is first initialised to an arbitrary state (we use the above 2-

D unit square system). Then each particle is moved to a new position:

X∗ = X + δu1 and Y ∗ = Y + δu2, where u1 and u2 are drawn uniformly

between [−1, 1] (these uniform densities are called proposal densities),

and a tunable parameter δ is the maximum allowable displacement. If

we get outside the square, the particle is re-entered from the other side.

The change of energy, ΔE, related to the move of particles is then cal-

culated. If the new system has lower energy, the move is accepted.10 If

the new system has higher energy, the move is accepted with probability

w = exp(−E/kT ). In practice, a random number u3 is drawn uniformly

between [0, 1], and the move is accepted if u3 < exp(−E/kT ). Otherwise

the system is returned to the original position. A number of iterations

are first run "in order to get rid of the effects of the initial configuration

on the averages". Then after each iteration, the quantity of interest F

is calculated. After M iterations we have simulated the expected value

F̄ = 1
M

∑M
i=1 Fi. [178]

Contemporary Metropolis samplers commonly use symmetric Gaussian

random walk proposals, i.e. X∗ ← N (X, τ). Here the precision param-

eter τ is used for tuning the acceptance rate. Inference often concerns

the expected value of X itself, instead of the expected value of some func-

tion(al) which depends on X. Metropolis sampling was later generalised

by Hastings [99] to cases where the proposal density is not necessarily

symmetric. In Metropolis-Hastings sampling the acceptance ratio be-

comes α = p(x)q(x|x∗)
p(x∗)q(x∗|x) , a random number u is drawn uniformly between

[0, 1], and the move is accepted if u < α. q(x|x∗)/q(x∗|x) is the proposal

ratio, which in the case of Metropolis sampling is 1 and can thus be omit-

ted. [42] Finally we note that in almost all practical applications, log-

likelihoods are used, i.e., all the above formulae are log-transformed, be-

cause computers have a limited precision and range of real numbers. An-

other computational asset of using the log-scale is that power calculations

reduce to multiplications and correspondingly, multiplications reduce to

additions.

As is evident from the Metropolis algorithm above, each of the gener-

ated samples in the chain only depends on the previous sample, i.e., the

chain has the Markov property. Hence, the generated chain is a Markov

chain. We note that a Markov chain has to fulfill certain criteria in order
10This leads to the maximum entropy principle, which joins information theory
and statistical mechanics [120, 121]
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to converge to the invariant distribution π(x) we want to sample from.

The Markov chain theory states that any chain which is irreducible and

aperiodic will have a unique stationary (=limiting) distribution and a t-

step transition kernel11 P(x, x∗)t will "converge" to that distribution as

t → ∞. In an irreducible Markov chain it is possible to get to any state

from any state, i.e. all states of the chain communicate with each other

but not with any other state. A Markov chain is aperiodic, if it is possible

to get to any state from any state in one step. In slightly tighter terms, a

Markov chain is positive recurrent if the expected return time to any state

is finite (which implies that the chain is also irreducible). An aperiodic

and positive recurrent Markov chain is said to be ergodic. In the MCMC

sampling we need an ergodic Markov chain with the property πP(x, x∗) =
π, i.e. given x ∼ π(x), if x∗ ∼ P(x, x∗) then x∗ ∼ π(x∗) also. Reversible

Markov chains have the necessary properties, i.e., they obey the detailed

balance π(x)P(x, x∗) = π(x∗)P(x∗, x). [36, 242]

Gibbs Sampling

The original paper on Gibbs sampling [82] proved the equivalence of MRF’s

and Gibbs distributions (of which the Boltzmann distribution is a special

case), hence the method was named Gibbs sampling. The development

followed the "Heat bath" version described in [178]. However, the method

had been presented independently in other papers by other names. [25]

The paper [82] made a formal link between statistical mechanics and im-

age analysis.

Gibbs sampling is a special case of Metropolis-Hastings sampling, in

which the proposed moves are accepted with probability 1. This is an

attractive option when the FC is in the form of a standard probability

distribution—which happens when using conjugate priors. Otherwise

Metropolis-Hastings, or nowadays slice sampling is usually a better choice.

[25]

As an example, a single update in the systematic scan (see below) Gibbs

sampling proceeds as follows. We start with an arbitrary initial config-

uration, x0 = {x01, . . . , x0k}. Then each variable in turn is systematically

updated:

11A transition kernel P(x, x∗) is the conditional distribution of the next state x∗

given the current state x
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x11 is sampled from p(x1|x02, . . . , x0k)
...

...
...

x1i is sampled from p(xi|x11, . . . , x1i−1, x
0
i+1, . . . , x

0
k)

...
...

...

x1k is sampled from p(xk|x11, . . . , x1k−1).

Slice Sampling

There are certain methods for automatically tuning the Metropolis-Hastings

acceptance rate, but especially in MCMC sampling of HBM’s, there is

a need for a generic sampler which would not require any tuning and

would easily handle things like multimodal distributions. Slice sampling

[197, 196] is one possible solution, and it has found widespread use e.g. in

WinBUGS [267].

Slice sampling is an example of samplers which use auxiliary variable

[24] methods. A single slice sampling update from a density f(x) is per-

formed as follows. First we assume that we are at some current point

x. An auxiliary variable y is drawn uniformly from [0, f(x)]. Using this

height we form a horizontal slice by expanding alternatively to the left

and right until both ends (xL and xR) of the slice are at a higher point

than the density, i.e. f(xL) < y and f(xR) < y. In practice the expansion

is limited to 10 (say) iterations, to avoid infinite loops. Now we repeatedly

sample a point x∗ uniformly from [xL, xR], until f(x∗) < y. Finally we set

x← x∗ and discard y. This procedure is then repeated until enough points

x are generated. In practice there are several alternatives for performing

the initial expansion. Also, the sampling procedure for x∗ is inefficient,

and in practice a "shrinkage" procedure is used. Sampling from truncated

distributions is easy: we simply use the truncation points as hard bound-

aries when performing the expansion. [197, 196] A basic algorithm in C++

is given in Appendix D.

4.1.7 MCMC in Practice

Having introduced a set of MCMC samplers we now discuss how mul-

tivariate simulation is performed using MCMC. Often we have to sim-

ulate from multivariate distributions which are in a nonstandard form,

and have dependent components. Simulation must then use conditional

distributions. The chain rule states that:

p(x) =

n∏
i=1

p(xi|xj<i).
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In a simple model, reordering the terms might allow sequential static

simulation from p(x), but normally this is not the case. From the above

equation it follows that p(xS |x−S) ∝ p(x) for any subset S of parame-

ters. In particular, for a single parameter, p(xi|x−i) ∝ p(x). The above

formulae are known as full conditionals (FCs). We note that the product

form of joint distribution arises frequently in Bayesian posterior distribu-

tions, particularly in HBM’s. Graphical models which form the backbone

of HBM’s often introduce conditional independence structures which can

be exploited in simplifying the FCs. In HBM’s the FC distribution of node

v is usually expressed as the product

p(v|rest) ∝ p(v|parents of v)
∏
u∈Cv

p(u|parents of u),

where Cv represents the set of children of the node v. [25, 36]

There are several options for updating the FCs. Often a single-site

Metropolis-Hastings or a Gibbs sampler is used. Another option would

be block-updating some dependent parameters in a Metropolis-Hastings

step. However, there is a limit in how many parameters can be block-

updated simultaneously; this is because multivariate distributions are

more sensitive to parameter changes than univariate distributions. When

the proposed changes are small enough to produce a good acceptance rate,

the sample autocorrelations are too high, and it could take an eternity

to produce enough independent samples. There are alternatives for the

parameter visiting schedule. Systematic scans are often used (e.g. in

WinBUGS) even though they could produce unwanted drift effects. Ran-

dom scans might be a preferable choice, also allowing the visit probabili-

ties of individual parameters to be chosen. As modified from the random

scan, a semi-regular scan would prohibit successive visits to the same site.

[25, 36]

As mentioned in the treatment of Metropolis-Hastings sampling above,

a MCMC sampler is first initialised to some state, which could be either

random or an a priori probable state. A number of iterations are then

simulated, until the sample paths have stabilised, i.e., the sample chains

have converged to the invariate distributions from which we wish to sim-

ulate. This phase is known as the burn-in. Then we generate a large

number of samples; the exact amount depends on the required accuracy

(known as the Monte Carlo error) and on the available computer capac-

ity. In some cases there could also be considerable autocorrelation in the

sample chain (as MCMC generates dependent samples). Autocorrelation
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reduces the effective sample size. One remedy is to use thinning, i.e., store

samples only in every 20th (say) iteration. [83, 79]

A bit outdated discussion of the sampling strategies of various researchers

is in [129]. Among the choices is whether we use several shorter chains

for controlling the possible effect of initial state, or one longer chain for re-

ducing potential autocorrelation and reduce the risk that the chain would

suddenly jump to another mode, which would remain unnoticed if only

shorter chains were used. Another issue is how the convergence is as-

signed. Some authors prefer visual inspection of the generated chains (as

we mainly do in this thesis) and others like to use diagnostic tests, e.g.

[80]. One point to remember is that parameterisation may have a con-

siderable effect in the model sampling efficiency [78]. Auxiliary variable

methods are one possible remedy to improve model mixing [24, 110].

Posterior Summaries

After we have generated a sufficiently long chain of samples from the

desired distribution, there is the question "how do we describe our distri-

bution?" Although full Bayes models give the actual posterior densities,

for reporting purposes the estimates of model parameters are usually ex-

pressed in terms of posterior summaries. The parameter estimates can be

described by posterior means, medians or modes.[79]

Beyond point estimates, the variability of these estimates are usually

described by so-called credible intervals (CI) or highest density regions

(HDR). A p-% CI is the central interval supporting p
100 of the posterior

mass. A p-% HDR is the most compact set supporting p
100 of the posterior

mass. HDR is sometimes used when the posterior density is skewed to get

a more accurate estimate. In simple terms, both CI and HDR might be

called the Bayesian version of frequentist confidence interval, but there

is an important difference. A Bayesian CI or HDR has p% probability

that the parameter of interest lies within that interval. In contrast, the

frequentist confidence interval has the interpretation that in a large num-

ber of repeated samples, p% of the calculated intervals would contain the

true value of the parameter of interest. However, the frequentist confi-

dence interval is often mistakenly considered as if it had the Bayesian

interpretation. [79]

In a regression model we may check whether the 95% (say) CI of an ef-

fect (β) contains zero. If not, there is strong evidence for an association. As

we see, Bayesian statistics considers the (subjective) degree of evidence,
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not some arbitrary threshold between "not statistically significant" and

"statistically significant".

One versatile and simple measure to consider is the "Bayesian marginal

posterior tail probability". As an example, suppose we have MCMC sim-

ulations of N draws from the posterior distribution of two parameters θ

and φ. We wish to assess whether θ > φ. We calculate the posterior tail

probability as p(θ > φ) = 1
N

∑N
i=1[θi > φi], where Iverson bracket denotes

the indicator function. This kind calculations are commonly used in, e.g.,

disease mapping to calculate region-wise posterior probability of excess

disease risk. In the Bayesian setting, no direct hypothesis is done, but

there are some experimental rules for decision making, to which we re-

turn later [240].

4.1.8 Bayesian Model Comparison and Averaging

More advanced Bayesian modelling is concerned with with the compar-

ison of candidate models and validating the fit of the chosen model(s).

Bayes factors [130] may be used for model comparison. In some cases

we do not choose a single ’best fit’ model, but instead use model aver-

aging [112] to overcome the inherent uncertainty of choosing the correct

model. In the model averaging methods the final posterior distribution

is the average of the posterior distributions of each model, weighted by

the posterior probabilities of choosing the corresponding models. Transdi-

mensional MCMC is one of the advanced methods used in Bayesian model

averaging.

Transdimensional MCMC

There exist a number of challenging statistical problems in which the di-

mension of the object of interest is not fixed [89]. Simultaneous inference

on both model and parameter space is a fundamental issue in modern

statistical practice [264]. Reversible jump Markov chain Monte Carlo

(RjMCMC) [89] was a natural generalisation of Metropolis-Hastings al-

gorithm to so-called Metropolis-Hastings-Green algorithm which is capa-

ble of sampling between model spaces of variable dimensions. This has

enabled the use of partition models which approximate surfaces using a

variable number of tiles each having a constant level. A smoothed sur-

face is obtained by averaging over possible configurations. At the same

time, possible jumps in the surface level can be easily retained. Another

application is choosing variables in a regression model. Usually these ap-
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plications lead to posterior model averaging [112], but another option is to

select only the most probable model configuration in calculating posterior

summaries.

Shortly described, the algorithm relies on fulfilling the usual reversibil-

ity requirements of the MCMC samplers. In the case of jumping between

model spaces of variable dimension, new model parameters can be de-

rived from the existing ones using an auxiliary random variable—and

taking care of the Jacobian term resulting from the change of variables

when calculating the Metropolis-Hastings acceptance ratio. This is illus-

trated in the "coal mining disasters" example in the original paper. [89]

On the other hand, when new variables for jumping to a higher dimen-

sional space do not necessarily depend (directly) on the current variables,

jumps between variable dimensional parameter spaces can be made with-

out using auxiliary variables (as e.g. in [143, 54]). We note that alterna-

tives for RjMCMC do exist, see e.g. [271, 38, 264].

4.1.9 Sensitivity Analysis and Model Validation

We must bear in mind that our model could be sensitive to the underlying

assumptions. The posterior distribution of the model parameters could

either over- or underestimate various aspects of "true" posterior uncer-

tainty. Typically the posterior distribution of model parameters overesti-

mates the uncertainty in the sense that all of one’s substantive knowledge

is not included in the model. However, even a good model is just a simple

representation of the true phenomenon.12 Hence, we need to do posterior

model checking against the observed data. It might also turn out that

other reasonable models could have fit the data equally well. In model ex-

pansion, a larger model could be constructed with suitable parametrisa-

tion to contain the alternative models as special cases. Another possibility

is doing model comparison or validation by checking which of the models

has better predictive accuracy, possibly with penalising model complexity

(number of parameters). [79, 206] Bayes factors [130] form one option for

comparing two models.

A model could also be sensitive to the prior assumptions. Informative

prior distributions could have an impact on the results. This may be

checked by using various choices for the prior hyperparameters or by try-

ing a prior from another family of distributions. Also the likelihood model

12"All models are wrong, but some models are useful." — G. E. P. Box
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could affect the model sensitivity. One example is the Gaussian distri-

bution, which could be replaced by a more robust long-tailed Student-t

distribution. [79, 206] The importance of priors in disease mapping was

considered in [17].

Deviance Information Criterion (DIC)

DIC was introduced in the disease mapping context as an information

criterion which would enable comparison of BHM’s which are estimated

using MCMC sampling. In a hierarchical model, informative prior struc-

tures could cause considerable shrinkage and therefore the effective num-

ber of parameters might be much lower than the actual number of param-

eters. Thus, penalising by the actual number would lead to a too conser-

vative measure. At the moment, DIC provides only point estimates and

significant differences in model performance must be deduced by some

sort of rules of thumb. Quoting from the DIC FAQ,13

It is difficult to say what would constitute an important difference in DIC. Very

roughly, differences of more than 10 might definitely rule out the model with

the higher DIC, differences between 5 and 10 are substantial, but if the differ-

ence in DIC is, say, less than 5, and the models make very different inferences,

then it could be misleading just to report the model with the lowest DIC.

Despite the criticism, DIC has remained the most commonly used mea-

sure of model fit in HBM’s, especially in the disease mapping community.

[268, 269]

We first define deviation as D = −2 log(p(y|θ)) + C, i.e., it is -2 times

the log-likelihood of the data y given the parameters θ. C is an arbitrary

constant which depends only on the data. When two models for the same

data are compared, this constant cancels out. The expectation of deviance

D = Eθ[D(θ)] measures model fit; the smaller it is the better the model

fits. As more and more parameters are added in the model, it is easier

to get a better model fit. pD = D̄ −D(θ) is called the effective number of

parameters. The larger this is the easier it is for the model to have a good

fit. DIC is then defined as DIC = pD +D. This means that a poor model

fit and a large effective number of parameters both indicate a poor model.

[268, 269]

13http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/dicpage.shtml.
Accessed September 13, 2011.
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Cross-validation

In cross-validation (CV), we leave out a subset of the data when fitting

the model and then use the model to predict the data which was left out.

This is done sequentially for all observations. Most common strategies

are leave-one-out CV and K-fold CV. In leave-one-out CV, one observation

at a time is left out and predicted. In K-fold CV, 100/K% of the data

is left out. Leave-one-out CV is naturally more accurate but it requires

estimating the model as many times as there are observations. K-fold

CV requires estimating the model only K times. Traditionally, model fit

has been measured by mean squared error or root mean squared error.

Especially in chemometrics, cross validated R2 has also been used.

In Bayesian CV, expected utilities are used for assessing the cross-validated

model goodness. MSE and RMSE are possible measures of expected util-

ity, but in some cases the expected utilities may be application specific. In

the case of leaving observations out one at a time, importance sampling

leave-one-out CV may be used to obtain some computational savings. One

problem with these methods is that in frequentist models, algebraic so-

lutions are usually available and fast to compute, but in Bayesian mod-

elling, we usually must use MCMC methods. As a single model could

take hours (if not days) to compute, this might make CV an impractical

method. For further technical discussion, see e.g. [292, 291]. An approx-

imate CV method has been presented for checking extreme observations

in disease mapping [272]. There also exist various methods based on pos-

terior predictive replicates—see, e.g., [81].

Widely Applicable Information Criteria (WAIC)

Recently the asymptotic equivalence of Bayes CV and widely applicable

information criterion (WAIC) has been proved for singular learning ma-

chines [302, 301]. WAIC is a very promising measure for model goodness

because of the simplicity of computation and broader applicability com-

pared to DIC. However, the definition of WAIC is different between the

two cited references, and therefore we must wait until the community or

the author of WAIC decides which is the correct version.

4.2 Spatial Modelling and Smoothing

There are three basic types of spatial data [8]:
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1. Point pattern data, where D is a random subset of R
r (i.e, the r ∈

(1, 2, 3)-dimensional space of real numbers). The index set s ∈ D gives

locations of random events. If ∀ s : Y (s) = 1, this would define a sim-

ple point process. However, Y (s) could give some additional covariate

information, producing a marked point process.

2. Point-referenced data, where Y (s) is a random vector at locations s ∈
R
r, which vary continuously over D, a fixed subset of Rr, defining a r-

dimensional rectangle of positive volume. This is often referred to as

geostatistical or geocoded data.

3. Areal data, where D, a fixed subset of R
r, is partitioned into a finite

number of non-overlapping areal units with well defined boundaries.

Different data types call for different modelling approaches. Point process

data is analysed using spatial point process models. Geostatistical data is

analysed by kriging, i.e., using Gaussian process regression. Areal data

is analysed using (ecological) areal level models. In the disease mapping

context, conditional autoregressive (CAR) models are often used. How-

ever, these are merely the basic modelling rules.

In a wider perspective, spatial modelling can be seen as any modelling

task where observations have some type of spatial dependence structure.

These observations might be for example:

• Number of events in geographic locations (e.g. incident disease cases)

• Geographic observations (e.g. geochemical concentrations in soil)

• Number of events (or some continuous levels) in a time-series

• Nearby genotypic alleles in a DNA strand (within a chromosome)

• Spatiotemporal observations, i.e., a temporal series of events observed

in some spatial region.

The last item reminds us that time may also be seen as a spatial dimen-

sion, although it has the directional causality property. This leads to the

concept of space-time continuum.
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We usually consider situations where:

Everything is related to everything else, but near things are more related than

distant things.

This is called Tobler’s first law of geography [279]. Initially, these near

things were probably considered as near in the sense of being geographi-

cally close to each other. However, things could be near w.r.t. some other

measure, e.g., rural areas could be similar to each other and so could be

urban areas. In mathematical terms, we consider a wide class of distance

based correlation measures.

In the context of spatial epidemiology, there are basically four kinds of

spatial smoothing models. In this thesis the first two model types below

are used. We note that there exist several other models and model exten-

sions which are not covered here.

4.2.1 Spatial Conditional Autoregressive Models

Conditional autoregressive models (CAR) have been widely applied in spa-

tial epidemiology. Based on the seminal work [22], a CAR model joins the

(usually) Gaussian random field and Markov random field models. The re-

sult is a conditional Gaussian Markov random field (GMRF) model. The

model has the local Markov property, i.e., the conditional probability den-

sity in each region depends only on the observed values in the adjacent

regions. The CAR model is usually used as a prior dependence structure

for a spatially structured random effect in a hierarchical model. Recently,

a multiple membership prior in the CAR framework was considered for

spatially discontinuous regions in [47].

Although the conjugate gamma prior for Poisson regression model would

have certain good properties (i.e., it would scale correctly under aggrega-

tion or refinement of regions, unlike GMRF models), the original work

[22] has a pessimistic view of the possibility of gamma MRF models. Pois-

son/gamma model for spatial point processes was presented in [308], but

at least in the disease mapping field it did not receive much interest. Few

exceptions are the linear Poisson regression model (which is available

in GeoBUGS [277]) for combining health and exposure data measured

in disparate resolutions [30, 31], and the spatial partition model of [54].

Two Markov gamma random field models were finally independently pre-

sented in [199] and [43].
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CAR models were first applied in disease mapping using an empirical

Bayes method [44], and a full Bayes model (BYM) was introduced in [28].

Slightly earlier, the CAR model was applied in image restoration [23], the

field from where the Gibbs sampler also originated [82]. Empirical and

full Bayes models were compared in [19], and the later developments of

the empirical Bayes models are discussed in [179]. In short, the estimates

from empirical method have too narrow confidence intervals, as the un-

certainty of the smoothing parameter (spatial precision) is not taken into

account [19], although bootstrapping offers a partial remedy [19, 179].

The empirical Bayes smoothing method in Rapid Inquiry Facility [7] is

based on simple gamma-Poisson smoothing towards global mean [44]. In

this thesis we consider only full Bayes models.

Intrinsic CAR Prior

The widely used Gaussian intrinsic CAR prior (iCAR) is a special case of

CAR priors, leading to an improper distribution. The formulation is based

on Gaussian pairwise differences:

p(λi|τ) ∝ τmi
λ exp

⎧⎨
⎩−0.5τλmi

∑
i∼j

(λi − λj)2
⎫⎬
⎭ ,

where i is an index of regions, i ∼ j refers to the mi regions j that are

neighbours to i and τλ is the spatial precision14 [28]. We may also write

λi ∼ N (λj∼i,miτλ), which is equal to the above formulation. The fact

that this particular set of fully conditional distributions leads to a joint

probability density for λ is not trivial,15 but it is proved by Brook’s lemma

[35] (also known as the Hammersley-Clifford theorem [22]). We may write

the joint density as:

p(λ|τλ) ∝ N (λ, τλKλ),

where Kλ is the N ×N structure matrix:

Kλ = diag(m)−W,

where N is the number of regions and m = {m1, . . . ,mN}. W is the

neighbourhood weight matrix: Wij = 1i∼j . In MCMC simulation, λ may

be slice-sampled (see appendix D) element by element from the condi-

tional distributions (see the Convolution Model below). For the sake of
14In this thesis we denote the precision of a parameter θ as τθ; correspondingly,
the structure matrix is denoted as Kθ

15We note that a joint distribution can always be defined by its FCs, but only
certain sets of FCs define a joint distribution
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model identification, we must recenter it immediately after sampling:

λ ← λ − λ. The precision τλ may be Gibbs-sampled from its FC: τλ ∼
Gamma(a+ 0.5(N − 1), b+ λTKλλ), assuming we use a conjugate gamma

prior, i.e. τλ ∼ Gamma(a, b). Sparse matrix algebra is beneficial in calcu-

lating λTKλλ. For further discussion of the model formulation and com-

putational issues, see, e.g. [28, 140]. The book [245] is a good source of the

MRF theory and also for the below mentioned Gaussian approximations.

Proper and Multivariate CAR

The iCAR prior is actually a limiting case of a proper CAR prior (it is

available in GeoBUGS [277]). This proper CAR prior has been considered

for disease mapping, but the problem is that it cannot model considerable

spatial autocorrelation [26]. Hence, the BYM iCAR prior [28] is most often

used. Another option for a proper CAR prior is that of [96], which has

gained popularity among some authors. An improper multivariate CAR

model (MCAR) was described in [145] and the proper MCAR model was

developed in [77]. In the disease mapping model comparison [29], the

performance of MCAR was not good.

Fast Sampling of GMRF’s

Block updating of the correlated parameters of the BYM model would im-

prove model mixing and gain computational speed [145]. An approximate

fast sampling algorithm of GMRF’s was introduced in [244]. The algo-

rithm exploits the fact that Cholesky decomposition can be used in gener-

ating multinormal random variables. When this is combined with a band

matrix rearrangement of the very sparse covariance matrix of CAR mod-

els, we may have significant savings in sampling time. A Taylor-expansion

may be used for the Poisson-likelihood of rare event data on disease oc-

currence. Although these methods seem attractive, so far they have not

gained popularity in disease mapping studies. Later develoment sug-

gests using Laplace approximations to completely avoid the need for sam-

pling [246]. Related to block updating, we have tried simple Metropolis-

Hastings block updates of the CAR model and found that updating λ

works for blocks up to (say) 100 regions—with more regions the random

walk moves have to be too short in order to get a reasonable acceptance

rate, resulting in a high autocorrelation of the generated samples. With

the conditional independence structure of the CAR model, it is obvious

that this kind of block updating allows parallel computing.
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Simultaneous Autoregression

Simultaneous autoregression (SAR) was developed much earlier than CAR

[306]. SAR models fit well in the maximum likelihood based inference,

whereas CAR is the natural choice in BHM’s. Another difference is that

SAR models assume spatial stationarity (as the article name [306] sug-

gests), whereas CAR adapts to the local, possibly non-stationary patterns,

which is important in, e.g., disease mapping. [8] Note that any SAR model

can be represented as a CAR model but the opposite is not necessarily

true. [48]

Convolution Model (BYM)

In disease mapping, the commonly used Besag, York and Mollié (BYM)

convolution16 model using the iCAR prior is constructed as follows [28].

At the first hierarchical level we model Poisson rates μi for cases yi in each

region i: Yi ∼ Poisson(μi). The Poisson rates are modelled by a log-linear

regression model: μi = exp(α+λi+ηi)ei, where α is the baseline level, and

ei is the expected number of cases in the region in question. At the second

level, the iCAR prior is assigned to λi, which is the spatially structured

random effect: λi ∼ N (λj∼i,miτλ). The notation is as above, but τλ is the

spatial precision. As an identifiability constraint,
∑

i λi ≡ 0. Optionally,

when using the BYM convolution model, ηi is the spatially unstructured

random effect: ηi ∼ N (0, τη), where by model definition,
∑

i ηi ≡ 0. At

the third level, we have the priors: vague Gamma priors are given for

the precisions, τλ, τη ∼ Gamma(0.01, 0.01) is a usual choice. A flat prior is

always assigned for the baseline : α ∝ 1.

For the spatially structured random effect we have the log-FC (omit-

ting constants): �(λi) ∝ [yi
i − exp(
)] + 2miτλ(λi − λi∼j), where the

first part is the Poisson-likelihood and the last term is the iCAR prior.

The "log-prediction" is 
i = log(ei) + α + λi + ηi, and λi∼j is called the

local mean of λ at the region i. Correspondingly, we have for the spa-

tially unstructured random effect: �(ηi) ∝ [yi
i − exp(
)] + 2miτη(η
2
i ),

with the terms as above. As the prior for the baseline is flat (α ∝ 1),

we have �(α) ∝ ∑
i (yi
 − exp(
)). We may use slice-sampling with all

these terms. The FC for τλ was given above in the description of iCAR

prior. τη may be Gibbs-sampled from its FC, τη ∼ Gamma(a+0.5N, b+η2),

again assuming the conjugate Gamma prior. In the sampling algorithm,

we must take care to recenter λ and η immediately after sampling. α is

16In this case, convolution means the convolution of spatially structured and
spatially unstructured random effects
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the only parameter which we (must) allow to drift. However, we note that

this model is available in Win/GeoBUGS [267, 277], which was used in

Publications I–IV.

Neighbourhood Structure

The neighbours are usually defined as the regions which share any com-

mon boundary with region in question. In case of a regular lattice, this

leads to the second-order neighbourhood,17 where also the diagonal neigh-

bours are counted—thus leading to a maximum of eight neighbours. We

must note that this is only one possible choice, and not necessarily the

best one (e.g. the diagonal distance in a regular lattice is
√
2 times the

horizontal or vertical distance). Many other choices are compared with

this one in [62]. More general lattices for MRF’s were considered in [149]

and references therein, including the hexagonal honeycomb lattice, which

would lead to a less anisotropic correlation structure. Of course, the con-

ventionally used assumption of spatially anisotropic correlation in disease

mapping is a strong one, but in case it is used, the model should reflect the

assumption as closely as possible. One problem with these more general

lattices would be the difficulty in data aggregation. In case of irregular

administrative areas, this is not (directly) relevant.

Underlying Assumptions

Moreover, there are certain underlying assumptions, which justify the use

of a Poisson process model:

1. Individuals within the study population behave independently w.r.t.

disease propensity, after allowance is made for observed and unobserved

confounders. In other words, hypothetically conditional on fully speci-

fied factors for each individual, they would have independent probabili-

ties of conducting the disease.

2. The underlying population at risk has a continuous spatial distribu-

tion within the study area. Modifications are required when there are

uninhabited regions (see below).

3. The case events occur as single, unique, spatially separate events.

17In chess terms, this is the queens neighbourhood; c.f. first order (=rooks) neigh-
bourhood
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In this case the counts are Poisson-distributed with a region specific ex-

pectation, and this expectation is defined as a multiplicative function of a

background intensity with a log-linear predictor term. [164]

Posterior Probabilities

One thing to consider is whether there is evidence for spatial clustering,

i.e. whether there is evidence for an excess of cases in some regions. One

initial option is to use tests for clustering: either global clustering, e.g.

[27] or local clustering, e.g. scan statistics [156] (which have been crit-

icised). However, if we opt for disease mapping models, the Bayesian

methods allow us to calculate the marginal posterior tail probabilities or

CI’s. An early view considered 95% CI’s of the estimated RR’s and con-

cluded (in a non-Bayesian way) the results to be statistically significant if

the CI excluded 1.0 [185]. Later, decision rules were considered based on

simulated data, with the conclusion that using 70-80% posterior probabil-

ity that RR excluded 1.0 as a cut-point gives reasonable sensitivity with

moderate expected counts (∼20) and excess risks (∼1.5-2.0) [240].

Calculating the posterior probability that the incidence/prevalence rate

in a region exceeds the average rate is trickier. If the average rate is cal-

culated as the mean estimated rate over the regions, it is certainly wrong

as we have noticed in retrospect in [126]. The average over geographic

regions does not correspond to the overall pooled rate, because the former

gets a biased weighting: regions with sparse population have as much in-

fluence as the urban areas. We have experimented with weighting based

on the running (or local) mean population counts. If these are used as

weights when calculating the spatial mean rate, the result is well in ac-

cordance with the overall pooled average. However, we have not tried to

prove this result which is only an approximation. Furthermore, we must

note that the incidence/prevalence rate is not symmetric around the aver-

age rate. For example, if we have an average rate of 100 (in some arbitrary

units), a RR of 2.0 leads to 200, or a difference of 100, but a RR of 1/2.0

only leads to a difference of 50 units. As we recall from above, the proba-

bility of exceeding the average RR would be calculated from the chain of

N samples as p(RRi > RRi =
1
N 1RRi>RRi

. It is thus clear that it is much

easier to exceed the average RR than to fall short of it, which is counter-

intuitive (but the good thing is that the high risk areas are found more

easily). Therefore we recommend calculating these probabilities based on

RR’s. The median rate was used instead of mean rate in [190].
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Edge Effects

Considering edge effects is important in stationary point pattern mod-

elling using restricted sample regions of spatially continuous processes

[118]. However, edge effects have not had much concern in areal level

disease mapping. In part this is because we are usually modelling non-

stationary patterns for data which exist only in a certain restricted area.

Edge effects were considered in the book [164] for various models. The

suggestions included downweighting the boundary areas or using guard

areas. In the BYM model, border regions become naturally downweighted

as they usually have less neighbours. The effect is that the estimated

variance in the border regions is larger than in the central regions. When

the restriction is by some administrative boundary, e.g., national border,

it might be so that there are no observations in the outer regions which

could be used as guard areas. Another suggestion in [164] was to use

data augmentation to create "data" into the guard areas, but this seems

rather artificial. As a recent example, edge effects were mentioned but

not corrected for in [59].

4.2.2 Semi-parametric Partition and Cluster Models

Models for General Clustering

As discussed earlier, the partition models for general clustering aim to

provide a more flexible model to account for discontinuities and regional

differences in the geographic variation of a disease. Partition models

based on Voronoi tesselation [91] and RjMCMC sampling were first dis-

cussed in [89]. Further development concerning spatially continuous marked

point processes was done in e.g. [103]. The partition model in [143] was

first to consider discrete areal level data in an irregular space. In the

Voronoi tesselation, a set of cluster centres are first determined. These

centres may be geographic points when using point referenced data, or

discrete, non-overlapping regions when using areal data (as we do here).

The rest of the areas are then assigned to the clusters so that each area

belongs to the cluster centre to which it is closest. Ties are handled so

that the cluster centre which is first in the list of cluster centres wins. In

the disease mapping models, the RR is constant within each cluster. By

generating various configurations with the MCMC algorithm, we usually

base the model results on the model average (or median) over these con-

figurations. It is not likely that there would exist only a single plausible
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model configuration.

The partition models are based on MCMC methods, and there are four

main types of attempted updates [143, 54]:

1. Birth of a new cluster centre.

2. Death of a cluster centre.

3. Shift of an existing cluster centre. Also we may optionally switch two

cluster centres in order to break possible ties in the cluster assignment

faster.

4. Update other model parameters, e.g. RR’s.

In the model of [143],18 a log-Gaussian model is used for the Poisson rates,

with diffuse hyperprior for the mean and a vague gamma prior for the

precision. With a birth step, RR is proposed from the normal approxima-

tion of the FC and the RjMCMC change of variables is thus avoided. The

distances are measured as the number of regions that have to be passed

when going from region A to region B. The number of clusters k is given

a truncated geometric distribution, resulting in p(k + 1)/p(k) = (1 − c)k,

where c is suggested to be 0.02. This gives a constant penalty for adding

one cluster in the model. On the other hand, conjugate gamma/Poisson

or beta/binomial models are used in [54]. With the conjugate model, RR’s

can be marginalised out when calculating the probabilities of old and new

tesselation configurations. Also, the RR’s can be Gibbs-sampled from their

gamma (or beta) FC’s. The cited model uses the Euclidean distance mea-

sure.

Other partition models which have been studied for general clustering

in disease mapping include [66] and [90], the latter using the Potts model.

Potts model has found use in (spatial) population genetics [188, 70], which

has its own rich field of Bayesian clustering models. Some more recent de-

velopments in disease cluster mapping include product partition models

[230, 102]. The latter model is somewhat similar to those of [143, 54], and

uses the gamma/Poisson conjugate prior structure.

18A programme is freely available at http://www.stat.uni-muenchen.de/sfb386/
software/bdcd/index.html. Accessed September 7, 2011.
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Models for Specific Clusters

According to the earlier discussion, another type of aim in cluster mod-

elling is to locate specific clusters of an excess of disease cases. This kind

of scenario is plausible if we may assume a stationary background risk of

a disease and some regions where the disease risk factors have accumu-

lated. One example of this kind of phenomenon is a sudden environmental

hazard. The model in [74] is based on Markov connected component field

priors. Their later model [75] is based on background level baseline risk

and small circular clusters concentrated on cluster centres.

4.2.3 Gaussian Process Regression Models, a.k.a. Kriging
Models

In the geographic point process field, geostatistical kriging models have a

long history. Later, they were introduced in the machine learning commu-

nity as Gaussian process models. Bayesian model based geostatistics was

introduced in [58]. The problem with these models is the need to invert

the covariance matrix at each iteration, an operation which is O(n3). Ap-

proximate Gaussian process regression models were presented in an uni-

fying view in [229]. The partially independent training conditional (PITC)

method produced rather good results, with savings in computational time.

Naturally the approximation gets better when it is less sparse, so there

is a tradeoff between speed and accuracy. Sparse log-Gaussian processes

were recently applied in epidemiology in [288].

4.2.4 Adaptive Binned Kernel Estimators

Various adaptive binned kernel estimation models have been used for

smoothing in disease mapping [224, 290] and geochemical interpolation

[94] contexts. For example, the Alkemia [94] interpolation method devel-

oped at Geological Survey Finland uses a first order Butterworth kernel

function 1
1+(d/d0)2

as weights for weighted recursive median smoothing. d

is the Euclidean distance between two points and d0 is the half-distance,

i.e. distance where the function has dropped from 1.0 to 0.5. Weights at

distances larger than a prespecified value dmax are set to zero. Besides d0
and dmax, the user-tunable parametres are: minimum number of points

to include and maximum broadening factor of the window. This method

has been adapted for disease mapping using weights based on inverse

distance and direct population size, ever since [224]
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The model described in [290] simply sums up as many neighbouring

regions for a point that is needed for obtaining a prespecified number of

expected cases. Each region receives equal weight. The breast cancer map

in [221] was prepared using this model. Although being fast, the meth-

ods have the tendency to produce circular ripple artifacts. This model

[290] has been later refined to include only a fraction of the cases in the

last added regions as for reducing ripple [A. Vehtari: personal communi-

cation]. On both model types, the choice of parameters is subjective and

the smoothing uncertainties are not available. Nevertheless, Adaptive

Binned Kernel Estimation methods might be one feasible solution for a

fast preview of new data.

4.2.5 Further Modelling Issues

The Poisson assumption may sometimes be a bad choice. Although this

has been considered mainly with CAR models, it applies to other models

as well. The rare event assumption may not hold, especially when dealing

with case fatality. In those cases using the binomial logistic regression

(e.g. [140]) is more appropriate. In a simple model, the cases yi in a region

i would be binomially distributed:

yi ∼ Binom(ni, pi), where ni is the risk population count and logit(pi) =

α+λi+ηi. As we note, the risk population counts are used here instead of

the expected number of cases (ei above). It seems that the binomial model

is usually avoided, as it is in the general epidemiology. One reason for

this might be the fact that logistic regression leads to odds ratios instead

of the more easily interpreted RR’s.

It may also happen that the disease counts are overdispersed, i.e., the

variance might be larger than the mean, which violates the Poisson as-

sumption. If this is the case, the model uncertainty would be underes-

timated. This is even more important in the case of ecological regres-

sion where the appropriateness of Poisson model should be checked. In

the case of the BYM convolution model, the spatially unstructured term

would model the overdispersion, but the assumption that the overdistri-

bution is log-normally distributed is just an approximation to the Pois-

son model. Negative binomial regression would then be more appropriate

[295].

CAR models were first presented with the above simple observed vs.

expected number of cases, where the age standardisation has been done

beforehand. If there is enough data, it might be more appropriate to con-
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sider the uncertainty in the age standardisation. The Cox proportional

hazards assumption was used in mapping cancer survival [210]. A para-

metric age-group specific survival model was used in [126] and a similar

model has been used in Publications I–IV. This model choice was done be-

cause at least in AMI it has been noticed that the assumption of log-linear

age effect is not completely valid. This is also true in parkinsonism, as the

tables in Publication I clearly show.

An early comparison of disease mapping models was done in [165]. Sev-

eral disease mapping models were recently compared in [29].

Uninhabited Areas

Especially when using fine grid data, there exist a number of "empty"

regions which are not inhabited, i.e. have no population at risk. For ex-

ample, in a regular 1 km×1 km grid over Finland, 34.1% of the land area

was inhabited in 1998 [276]. The spatial models which are usually devel-

oped using international data on a much coarser aggregation level do not

have this concern (as is evident from the published articles).

In the case of the CAR model, there are at least two approaches. The

first (e.g. [126]) is to exclude the empty regions, also from the neighbour-

hood structure. This is feasible, if the proportion of empty regions is not

too large. The second approach [154] is to modify the Poisson distribution

so that p(yi = 0|Ni = 0) = 1, where Ni = 0 indicates the population num-

ber. The implementation ([154]) has the problem that logarithm of the

population counts log(Nik) is used in the model formulation. The remedy

was to use something like log(Nik+10−5) to keep the logarithm defined. In

practice this leads to the situation that the relative risks in empty areas

become predicted from the CAR prior. The model is still identifiable as

the sum to zero constraint and data make the CAR prior proper [26]. The

use of zero inflated Poisson (ZIP) models is also a relevant option here,

e.g. [233]

4.3 Ecological Regression

Naturally there are other options, but in this thesis we have used ecolog-

ical regression based on the CAR/BYM model. Additional covariate data

can be included in the BYM model by modifying the log-linear regression

term to be: log(μi) = α+ZT
i ξ + λi + ηi + log(Ni), where all the other terms

are as in the disease mapping model, but Zi is the matrix (or vector) of
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covariate(s) and ξ are the corresponding effect(s). Vague normal priors

are given for the covariate effect(s) ξ ∼ N (0, 10−5). Ecological regression

with errors in covariates was considered in [20].

The ecological regression approach may look trivial, but there are sev-

eral underlying issues, which we briefly describe here. For a deeper dis-

cussion, see e.g. [239]. First, we note that the spatial structure must

be accounted for, in case we have an ecological regression model which

studies the effect of a covariate (e.g. in the risk of a disease) over some

geographic areas i. A simple regression model would be: yi = XT
i ξ + εi,

where yi are the aggregated disease counts and Xi are the group-average

values of the covariates. The residual error, εi, accounts for the aggregate

effects of unmeasured confounders. It would be incorrect to assume that

the residuals are independent, because the confounders in nearby regions

are likely to be correlated. Omitting the residual correlation would lead

to underestimation of the variance in the covariate effects.

The second important point concerns the ecological bias, which we have

already discussed above. If we assume the commonly used multiplica-

tive hazards model, we have the dose response for an individual: f(x) =

exp(α+ xTξ). The disease rate at group level, for the whole group is λG =

EG[p(D|X)] =
∫
x∈G f(x)H(x)dx. For example, assuming that the expo-

sures of individuals (H(x)) are normally distributed, H(X) ∼ N (μG,Ω
−1
G ),

we have λG = exp(α+μTGξ+0.5ξTΩGξ). In practice, the attractive approx-

imation λG ≈ exp(α + μTGξ) is often used, perhaps even without noticing

that it is only an approximation.

A third point is that the Poisson assumption that the variance and mean

are equal may not hold. The BYM convolution model accounts for possi-

ble spatially unstructured extra variability, but assumes the residuals to

be log-normally distributed. As we already mentioned, the negative bi-

nomial regression model would be a more natural choice for accounting

extra Poisson variation [295].

4.4 Shared Component Modelling

Shared component modelling was introduced in [142] and it may be seen

as a version of spatial factor analysis. One aim in shared component is

to pool strength in using data on related diseases. Another aim is to find

similarities and dissimilarities in the geographical distribution of related

diseases, as we do in Publication II. A disease can also be used as a sur-
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rogate for a health risk, as has been done using lung cancer as a surro-

gate for the prevalence of smoking [50]. The original model in [142] used

a symmetric specification in which three spatial clustering components

(each based on the cluster model [143]) are used to describe joint and dis-

ease specific variation in disease risk. In short, the model is formulated

as:

y1i ∼ Poisson(e1iθδi φ1i)

y2i ∼ Poisson(e2iθ
1/δ
i φ2i),

where y1i and y2i are the number of cases in diseases ("1" and "2") and

e1i and e2i are the corresponding expected number of cases. θi is the clus-

tering component shared by both diseases, with the weights δ and 1/δ

allowing the strength of the common component to be different in the two

diseases. φ2i and φ2i are the disease specific clustering components. A

suitable prior is given for δ. In the model, nothing is said about the clus-

tering components, they could as well be formed with BYM convolution

priors (as in Publication II), or with any other suitable choice.

Later developments (e.g. [277, 105] propose using a non-symmetrical

specification, so that the model for disease "2" becomes y2i ∼ Poisson(y2iθ
1/δ
i ).

In this formulation, both diseases are assumed to share common vari-

ation, and the disease specific part of variation is accounted only for the

first disease. The symmetric components can be extracted by simple arith-

metic. The non-symmetrical formulation is assumed to produce a more

stable model than the symmetric version, because of possible identifiabil-

ity problems in assigning the variation between the shared and disease

specific components. [29] Extension to more than two diseases are also

discussed in [105]. The recent article [59] jointly modelled six cancers

using three shared components. Issues in mapping two diseases were dis-

cussed in [50].

4.5 Spatiotemporal Modelling

So far, we have considered only models which assume that the geographic

variation does not show any temporal development. As we discussed ear-

lier (Chapter 2), usually this assumption is not plausible. As the people,

their lifestyles and environment are under constant change, this change

is usually reflected in disease rates. BHM’s offer several alternatives to

incorporate the temporal aspect in disease mapping. Although several
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time-space models have existed for a long time (e.g. so-called space-time

autoregressive integrated moving average models), spatiotemporal mod-

elling naturally followed in the footsteps of spatial disease mapping mod-

els. The variety of models is large, but we try to cover the models of main

interest here.

Among the first spatiotemporal considerations in disease mapping was

the paper [46]. Then, several approaches were presented for the BYM

models. [18] uses multinormally distributed log-linear time-trends, where

the trend on an area is conditioned on the time-average spatial RR in

that area. [298] suggests using a nested specification, where the spatial

random effects in each time period independently have BYM priors. A

model which is separable in space and time was used in [141].

Earlier we stated that for model comparison, it is beneficial to provide a

general model class which includes the models to be compared as special

cases. This kind of approach was used in [140], where the variation in

space and time could be divided into separable effects in space and time,

and a spatiotemporally inseparable term. Each of these components may

be individually included or excluded from the model. BYM priors were

used in [140] for each component, but any other type of prior could be

used. Later, the model was extended with a temporal lag in covariates,

with the claim that the models were estimated in WinBUGS, including

the spatially inseparable term. However, no WinBUGS code is included

in the publication ([60]) and it remains unclear whether this is actually

achievable.

Recently, there has been an increasing interest in spatiotemporal mod-

elling. Here we merely list a few of the novel ideas. MCAR priors were

used in [122]. The binomial CAR model with separable spatial and tempo-

ral terms was augmented with a mixture of low variation and high vari-

ation spatiotemporal residuals in [1]. Smoothing splines were used in

[170] and later with the binomial model in [261]. Temporal autoregressive

terms of higher order were considered in [172]. The shared component /

latent factor framework was used in [238, 284]. Dirichlet process mix-

tures were used in [153]. The specific cluster model of [75] was extended

to the spatiotemporal domain in [310].
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4.6 Bayesian Age-Period-Cohort Modelling

Cohort or generation effects in mortality were first considered in the 1920’s

and 1930’s, e.g., in tuberculosis mortality [5]. Slowly this observation

has led to so-called age-period-cohort (APC) models in studying the time-

trends of mortality and morbidity [113]. The APC models assume that

three effects affect the trends simultaneously:

• The age effect captures the natural development of mortality or disease

morbidity by age.

• The period effect reflects events that affect all people at a certain time

point.

• The cohort effect reflects events that affect a certain generation, e.g., a

birth cohort.

As an example, we formulate the logistic binomial APC model as19

Ypa ∼ Binom(Npa, ppa) (4.1)

log

(
ppa

1− ppa

)
= θa + φp + ψc, (4.2)

where Ypa is the number of deaths and Npa is the population size of age

group a during the period p. Because of the linear dependency C(pa) =

A − a + p, the linear trend is identifiable only in 2 out of 3 effects. This

is the well known unidentifiability problem [209]. Bayesian APC models

[21] with conditional autoregressive (CAR) first or second order random

walk smoothing priors and additional constraints in the parameter esti-

mates have provided one elegant solution to make the model parameters

identifiable.20

4.6.1 Conditional autoregressive random walk smoothing
priors

The derivation of first or second order random walk smoothing priors is

shown in detail in Publication V. Here we only note that the second order

19Another common option is using a log-linear Poisson model.
20A software package, BAMP, is freely available at http://volkerschmid.de/bamp/.
Accessed September 7, 2011.
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random walk prior can also be derived as the symmetric form [25, 169]:

p(θ1) = p(θI) ∝ 1

p(θi|θi−1, θi+1) ∝ N
(
θi−1+θi+1

2 , 4τ
)
, for i = {2, . . . , I − 1}

(4.3)

⇔ p(θ|τ) ∝ τ (I−2)/2 exp

{
−τ
2

I−1∑
i=2

(θi−1 − 2θi + θi+1)
2

}
= τ (I−2)/2 exp

{
−τ
2
θ′Kθ

}
.

(4.4)

As with the asymmetric form, we obtain the MRF structure matrix of

the RW2 prior after expanding the square to the quadratic form:

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1

−2 5 −4 1

1 −4 6 −4 1

. . . . . . . . . . . . . . .

1 −4 6 −4 1

1 −4 5 −2
1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.5)

4.6.2 Autoregressive Integrated Moving Average Models

The Box-Jenkins approach to time series modelling frequently employs

autoregressive integrated moving average models (ARIMA) [32]. We write

the general ARIMA(p, d, q) model as

Y ∗
t = θ1Y

∗
t−1 + · · ·+ θpY

∗
t−p + εt + φ1εt−1 + · · ·+ φqεt−q, (4.6)

where p and q are non-negative integers, which respectively define the

order of the autoregressive, integrated and moving average parts of the

model. Y∗ is the dth difference of the original time series Y, and {ε1, · · · , εt}
are the error terms.

An autoregressive model assumes that the current state of a process

linearly depends on the p previous states. A moving average model, on

the other hand, assumes that the current state of a process linearly de-

pends on the q previous error terms, so that the errors (also called random

shocks) are correlated. The autoregressive model is more straightforward

in interpretation and easier to fit than the moving average model. De-

pending on the application and data, both models can be used at the same

time. If the time series is not stationary (i.e., the joint probability dis-

tribution changes when the process is shifted in time), differencing (i.e.,
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using the "integrated" part of the ARIMA model) can be used to make

the process stationary. The full ARIMA model is usually estimated using

state space methods [61].

In this work we have only used the integrated autoregressive part of the

full ARIMA model. This can be estimated using Bayesian linear regres-

sion, as detailed in Publication V.
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5. Study Aims

The aims of this study were:

1. To examine the geographic variation in Parkinson’s disease incidence

and prevalence using an existing conditional autoregressive spatial smooth-

ing model (Publication I)

2. To examine the joint and disease specific geographic variation in stroke

and AMI incidence using a shared component model (Publication II)

3. To examine the role of geographically varying mineral composition of

drinking water in AMI incidence and create a Bayesian method for in-

terpolating geochemical data with censored observations (Publications

III-IV)

4. To create versatile extensions for the Bayesian APC models in order to

analyse and predict long time series of observed mortality and morbidity

(Publication V)

67



Study Aims

68



6. Materials and Methods

6.1 Georeferenced Data in Finland

Georeferenced data is usually delivered in Finnish "Kartastokoordinaat-

tijärjestelmä" (KKJ, map coordinate system), which consists of several

detached strips.1 As such, the KKJ data is not usable in modelling, but it

must be transformed into a projection which treats Finland as a contigu-

ous region. In all studies, the coordinates were transformed into Finnish

"Yhtenäiskoordinaatisto" (YKJ, common coordinate system) as detailed in

[155]. YKJ is a national projection system which produces very low dis-

tortion of scale across the country [155]. In practice, we treated all data

as if the scale was not distorted at all.

One topic which has not received much attention is the accuracy and

repeatability of geocoding. Quality seems to vary between different ven-

dors of commercial geocoding [305]. In Finland, the national Population

Register Centre has the geographic centre coordinates of each building

available, and this information can be linked to every person. At least

in the cities, the accuracy of the coordinates is about 20m [222], and it

is therefore of no relevance in the ecological studies, where the grid size

is typically 10km × 10km. We may also note that the typical everyday

neighbourhood radius of a person is about 1km [235], which suggests that

it is generally of no use to consider more accurate grid levels in ecologi-

cal studies. The proportion of missing georeferenced data in the official

statistics was 1% in 2000, thus only few people in Finland lack an official

address. [193] However, the official address does not necessarily represent

1Since 2010, ETRS89 will become the new standard in
Finland. http://www.maanmittauslaitos.fi/tiedotteet/2010/05/
maanmittauslaitos-vaihtoi-etrs89-koordinaattijarjestelmaan. Accessed 7
September, 2011.
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the actual place of residence. Also, it is plausible to assume that missing

addresses are more common in the lower socioeconomic groups, i.e. those

persons who usually have a higher disease risk.

6.2 Georeferenced Data Sets

6.2.1 Medicated Parkinsonism, in Men and Women, 1995–2000

This data set was constructed for the study in Publication I, which gives

the details. The original aim was to form a data set on idiopathic PD, but

it was not possible using the data available to us. Hence, we settled for a

wider class of medicated parkinsonism. The data is based on two "semi-

independent" sources of The Social Insurance Institution of Finland:

1. Registry of patients entitled to reimbursed medication of PD or parkin-

sonism (Reimbursement code 110).

2. Registry of prescribed medicine buys. A buy of at least one PD-specific

drug was required; the drugs are listed in Publication I.

In addition, patients were restricted to those who were 30 years or over

at the time of diagnosis. This restriction was chosen to decrease patients

with extrapyramidal symptoms due to non-PD causes. Coordinates were

available for >98% of the cases.

6.2.2 Stroke and AMI in Men and Women, 1991–2003

This data set was used in Publication II (ischaemic strokes and AMI) and

in Publication IV (AMI).

All incident and recurrent AMI and Stroke events were collected in the

Finnish National Cardiovascular Disease Register (CVDR) [158]. This

register is constructed by a nationwide record linkage of HILMO, Na-

tional Causes of Death Statistics and the drug reimbursement and pre-

scribed medicine purchase registers of The Social Insurance Institution of

Finland.

The incident cases were defined as those for whom there were no similar

events in the preceding seven years [253]. We note that AMI in this data

set is not directly comparable with the earlier data set (which is described
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below) because it had a broader definition of cases and a slightly biased

definition of incident cases. The principles of case definitions are given in

the project website.2 The exact case definitions for this study, as given in

Publication II, are listed below. ICD-9 and International Classification of

Diseases, Tenth Revision (ICD-10) codes were used in both sources.

AMI Events

Non-fatal AMI events were identified from HILMO using the codes I21-

I22(ICD-10) / 410(ICD-9) as the main or an additional diagnosis. Fatal

AMI events were identified from the National Causes of Death Statis-

tics using the diagnosis codes I20-I25, I46, R96, R98 (ICD-10) / 410-414,

798 except 7980A (ICD-9) as the underlying or immediate cause of death.

Codes I21-I22(ICD-10) / 410(ICD-9) were also accepted as a contributing

cause of death.

Stroke Events

Ischaemic stroke events were identified using the diagnosis codes I63-I64

except I63.6 (ICD-10) / 4330A, 4331A, 4339A, 4340A, 4341A, 4349A, 436

(ICD-9) in both HILMO and National Causes of Death Statistics.

Coordinate Data

For each case, the exact place of residence coordinates were obtained cor-

responding to the event date. Unexpectedly, the proportion of missing

coordinates was much higher than in the previous AMI data, although

the data should be more complete in more recent years. The proportion of

missing coordinates was systematically biased towards higher age, earlier

years and women, with a maximum of 10% for a single year/age/gender

group.

The probable explanation is that there were some details in the data

merging process that were not taken into account in the construction of

this latter data set, despite multiple requests to the data provider. As the

risk population data sets were provided earlier, this probably created a

downward bias in the estimated disease rates. Therefore, some compen-

sation was done as follows.

As described in Publication II, a part of the persons with missing co-

ordinates could be assigned to their coordinates from a previous event—

because of the incident case definition and two followed events, each per-

son could have several events in the data set. The rest of the cases with
2http://www.ktl.fi/portal/7137. Accessed September 7, 2011.
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missing coordinates were assigned into the data as fractional observations

spread into the municipality of residence (this was available for everyone)

weighted with the age-group specific population counts in each of the grid

cell belonging to the municipality (see Publication II). This can be seen as

a conservative approach, as each of the cases is spread out into a whole

commune instead of assigning it randomly to a specific grid cell. Creating

multiple imputed data sets [79] would probably have had a similar effect,

but the implementation would have been unnecessarily difficult.

6.2.3 AMI in Men, in Years 1983, 1988 and 1993

This earlier data set on AMI was used in Publication III. The data con-

struction is detailed in [126]. Both fatal and non-fatal cases of AMI were

defined as any of the International Classification of Diseases, Eighth Re-

vision (ICD-8) or ICD-9 codes 410–414 in HILMO or National Causes of

Death Statistics in the years 1983, 1988 or 1993. As is clear from the ICD-

9 codes, the data set in fact represents the broader category of ischaemic

heart disease (IHD). However, we denote this as a data set on AMI, as was

done in the original publications [126, 154] and in Publication III. Inci-

dent cases were confirmed by tracing back any earlier AMI events. As the

HILMO and National Causes of Death Statistics data are available only

after 1968, this forms a bias in the incident cases, as cases in the later

years have been followed up for a longer time. Persons aged 35–74 years

at the time of event were included in the data. For each case, the exact

place of residence coordinates were obtained corresponding to the event

date. The proportion of missing coordinates was low, about 3% on average

over the cross section years.

6.2.4 Georeferenced Population at Risk

In Publications I–IV the population data sets were obtained from the Na-

tional Population Registration Centre, covering years 1983, 1988, 1993,

1998, 2000 and 2002. The spatial resolution was at 1km × 1km regular

grid. Population counts were available at the end of each year in question,

for ages 0–74. Therefore, the risk populations were in part interpolated

and extrapolated from available data. Although this led to some loss of in-

formation, it was considered a better option than the loss of money which

the high costs of obtaining the additional data would have caused.

Interpolation and extrapolation were done assuming linear age-cohort
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trends, and negligible migration. The population counts in older age

groups were estimated from the population counts of 75+ years old which

were available for each grid cell. The proportion of people in the age

groups 75–79, 80–84 and 85+ years were available at municipal level and

these proportions were used as weights to assign the counts of 75+ years

old people in each grid cell to the corresponding age groups. The estimated

population counts in five-year age groups for the whole country were com-

pared with the accurate counts available from Statistics Finland, showing

very high accuracy.

Despite the high accuracy at countrywide level, the estimated counts at

areas of low population density could have considerable random errors;

see [234] for a related analysis and discussion. The probable effect is

that some structured variation in the estimated maps could change into

unstructured variation.

6.2.5 Urban and Rural Areas

This data set was used in Publications III–IV. The data is based on sev-

eral reports primarily aimed for rural regional development policy (e.g.

[134]). A detailed description of the principles behind urban and rural

division was given in [248], which we outline here. The classification was

available at the municipality level and it is based on the situation in 1993,

at which time there were 455 municipalities in Finland. The municipali-

ties were classified into four possible categories.

1. Urban areas are characterized with dense population and high share

of secondary and tertiary sector activities. Population of built-up areas

must exceed 15,000 inhabitants.

2. Urban-adjacent rural areas are mainly located in the western and south-

ern Finland. Over 50% of the total population live in an area from which

more than 20% of the work force is commuting to an urban area.

3. Rural heartland areas are either dominated by strong primary produc-

tion or have achieved functional diversification. Most often large city

centres are relatively distant to people living in the rural heartland.

Over 50% of active farms are situated here.

4. Remote/isolated areas have surmounting problems. The share of pri-
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mary activities is high, farming has low intensity and profitability, the

population density is low, outmigration is high, and the population struc-

ture is skewed.

For the analyses, all areas except urban areas were jointly considered

as rural areas. The division into urban and rural areas was applied at 10

km × 10 km grid level by assigning each grid cell the classification of the

municipality which covered the major part of the cell area.

6.2.6 Geochemical Data

Point-referenced data on mineral constituents in drinking water origi-

nated from Geological Survey Finland as research co-operation. Concen-

trations of magnesium (Mg) and calcium (Ca) were among the available

measurements (others are mentioned in Publication IV). The data origi-

nated mainly from Geological Survey Finland’s "Thousand wells" survey

[159], which was conducted in 1999 to obtain information on the physical-

chemical quality of Finnish household well waters in the sparsely pop-

ulated rural areas across the country. The data included samples from

springs, shallow dug wells and wells dug into bedrock. It has been esti-

mated that over 1,000,000 Finns use private well water in their house-

holds. [159]

Additional data samples were obtained later from natural springs etc.

In an earlier study [154], the data were interpolated into a regular 10x10

km2 grid by the Alkemia smooth interpolation method [94]. For present

studies, however, we developed a Bayesian smooth interpolation method

in Publications III–IV. One reason for this was that there were several

nondetects in the data. Another reason was that we wanted the level

of smoothing be dictated by data, not by any arbitrary choices of the re-

searcher. A technical description of the interpolation method is given be-

low.

6.3 Disease Mapping Using the iCAR Model

The disease mapping model used in Publication I followed the approach

presented in [126]. As mentioned in the review of statistical methods

(Chapter 4), we use a parametric model for age-group effects, which ac-

counts for the uncertainty in age standardisation.
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The hierarchical model starts with Poisson rates μik for cases Y in each

grid cell i and age group k: Yik ∼ Poisson(μik). The Poisson rates are

modelled by a log-linear regression model: log(μik) = α + βk + λi + ηi +

log(Nik), where α is the baseline level, βk are the age group effects (with

β1 ≡ 0 for identifiability) and Nik is the risk population.

The CAR prior is assigned to λi, which is the spatially structured ran-

dom effect: λi ∼ N (λj∼i,miτλ), where λj∼i is the mean of λ in the local

neighbourhood of grid cell i, mi is the number of neighbours i has, and

τλ is the spatial precision. As an identifiability constraint,
∑

i λi ≡ 0.

Optionally, when using the BYM convolution model, ηi is the spatially

unstructured random effect: ηi ∼ N (0, τη). τ ’s are given vague Gamma

priors: τλ, τη ∼ Gamma(0.01, 0.01) is a usual choice. A flat prior is as-

signed for the baseline : α ∝ 1. The age group effects are assigned vague

Normal priors: βk ∼ N (0, 10−5); k ∈ {2 . . .K}.

6.4 Ecological Regression Using the iCAR Model

Following the approach presented in [126], additional covariate data can

be included in the model by modifying the log-linear regression term to

be: log(μik) = α + βk + XT
i ξ + λi + ηi + log(Nik), where all the other terms

are as above, but Xi is the matrix of covariates and ξ are the effects of

the covariates. Vague Normal priors are given for the covariate effect(s)

ξ ∼ N (0, 10−5). This model was used in Publications III–IV for the asso-

ciations of drinking water constituents and AMI and in Publication I for

the effect between urban/rural areas.

6.5 A Shared Component iCAR Model

The model used in Publication II follows the symmetric specification [142,

277] of the shared component model. We extended the model to include

age group specific effects as follows. The number of observed cases Ydik in

area i and age group k = 1, . . . ,K in diseases d = 1, 2 were modelled with

Poisson rates:

Y1ik ∼ Poisson(μ1ik)

Y2ik ∼ Poisson(μ2ik),
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and log-linear models were used for Poisson rates:

μ1ik = exp(α1 + β1k + κδ10i + κ1i + log(N1ik))

μ2ik = exp(α2 + β2k + κδ20i + κ2i + log(N2ik)).

The baseline risks were assigned flat priors, αd ∝ 1. Vague normal pri-

ors were assigned to age group effects, βdk ∼ N (0, 10−5), except βd1 ≡ 0

as identifiability constraints. κ0i was a BYM convolution prior for the

shared variation and κdi were BYM convolution priors for disease spe-

cific variation. δd allowed the strength of shared variation to be differ-

ent in each disease, and it was assigned somewhat informative prior,

log(δ1) ∼ N (0, 5.9). This corresponded to assuming a priori a 95% prob-

ability that the proportionδ1/δ2 was between 1/5 and 5. Ndik is the risk

population. In the case of two diseases, N1ik ≡ N2ik is usually used, but

if the disease rates in men and women are compared, the risk popula-

tions are naturally different. The WinBUGS code of the model is given in

Appendix B.1.

6.6 Interpolation of Geochemical Data Using the iCAR Model

The interpolation models in Publications III–IV were used for spatially

aligning the geochemical point level observations with the areal level AMI

data. Our initial aim was to develop an interpolation model which would

account for the non-detected observations (observations where the concen-

tration is below the detection limit) and for the measurement uncertainty.

We note that our interpolation models are not exact in the sense that the

interpolated surface does not necessarily go through the observed data

points. With data aggregated to areal level this is not even possible: there

may be several observations within a certain area.

6.6.1 Interpolation Model in Publication III

In this Publication a rather complex interpolation model was used. The

WinBUGS code of the model is given in Appendix B.2.

6.6.2 Interpolation Model in Publication IV

In this Publication, a much simpler model was used for interpolation.

The model algorithm in WinBUGS is given in the Appendix A of Publica-

tion IV. The model assumes a lognormal distribution of observations xik
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within each region i: xik ∼ LN (μi, τreg), where k(i) is the index of obser-

vation in region i, and τreg is the precision which is common to all regions.

Observations below the detection limit (DL) are modelled as arising from

the truncated distribution xik ∼ LN (μi, τregion)|(0, DL). In this model we

use xik = DL/2 as a "pseudo-observation", which in retrospect was noticed

to be unnecessary; using "NA" would be the proper choice. Note that the

corrected likelihood based model is given in Appendix B.3.

The interpolations in each area, μi, were modelled with the CAR model:

mui = α + λi, where α is the baseline and λi has the iCAR prior as de-

scribed above (Section 6.3). The precision parameters τreg and τλ were

given the usual Gamma(0.01, 0.01) priors, and α ∝ 1. The interpolated

observations were calculated as x̂i = exp(μi).

6.7 The Bayesian Age-Period-Cohort Model (with Extensions)

The models are described in detail in Publication V.
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7. Results

As the epidemiological results are already given on the original papers, we

only wrap up the most important results here. However, the geochemical

interpolation model was only briefly presented in the Publications III–IV,

so we give it a further treatment here.

7.1 Medicated Parkinsonism

The results in Publication I suggest that there exists a belt of higher inci-

dence and prevalence of medicated parkinsonism, passing across central

Finland. There is also a sporadic area of excess number of cases in South-

ern Ostrobothnia. Based on different medicine buying patterns, the ele-

vated risk in Kuopio and North Karelia regions (marked in the maps in

Publication I as "2", "3") was the most consistent finding. Incidence rate

grew steadily, until peaking at the age of 75–79 years. Prevalence peaked

a bit later, at the age of 80-84 years. There was strong evidence for a male

excess both in incidence and prevalence, the RR being around 1.5. As

discussed in Publication I, microtubule associated protein tau haplotype

1 homozygosity is not a likely risk factor in the geographic variation of

medicated parkinsonism.

7.2 Ischaemic Stroke and AMI

The main findings in Publication II were:

1. There is strong evidence for geographical variation in ischaemic stroke

incidence.

2. There is strong evidence for geographical variation in AMI incidence,
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and the variation pattern was rather consistent with previous findings

(e.g. [126]).

3. The variation patterns of ischaemic stroke and AMI were quite similar

in men and women. Figure 7.1 shows the shared and gender specific

AMI risk using a shared component model for AMI incidence only. Fig-

ure 7.2 shows the shared and gender specific ischaemic stroke risk using

a shared component model for ischaemic stroke incidence only. The data

for these models was the same is in Publication II. Because of the sim-

ilarity, men and women were pooled in consequent analyses. However,

the age group effects in men and women had to be considered separately,

in both diseases.

4. The variation patterns of ischaemic stroke and AMI have consider-

able independent components, although these diseases share a common

atherosclerotic background.

5. The traditional east vs. west difference in CVD incidence rates still

exist. The male excess is much higher in AMI but there is also male

excess in ischaemic stroke incidence rate.

In addition, the geographic variation in haemorrhagic stroke was stud-

ied, but no clear patterns were found. In part this is due to small case

numbers. Therefore these results were not published.

Figure 7.1. The shared component model for AMI incidence. Relative risk is shown in
log-scale.
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Figure 7.2. The shared component model for ischaemic stroke incidence. Relative risk is
shown in log-scale.

7.3 AMI and Drinking Water

The conclusion of the earlier study (Publication III) was that hard drink-

ing water was associated with reduced AMI risk in men. Especially wa-

ter poor in Mg (as measured by the Ca:Mg ratio) was associated with in-

creased AMI risk. Later, Publication IV refined the results by using a

larger, more recent AMI incidence data set which included women. The

results suggest that Mg is the beneficial constituent in hard drinking wa-

ter.

7.4 Interpolation of Geochemical Data

The first model (Publication III) worked well for the elements with a few

nondetect values. The magnitude of variance was similar within and be-

tween the grid cells. Measurement uncertainty was ignorable when com-

pared to the regional variations. The WinBUGS implementation of the

model was rather tricky, with a need to restrict some parameters to be

positive. In the later work (Publication IV), there were more elements to

interpolate, and a few of them had more than 40 % of the observations

as nondetects (Table A1 in Publication IV). It was noticed that in those

cases, the original interpolation model did not converge. As a remedy, the

interpolation model (Appendix A in Publication IV) was simplified con-

siderably. This model worked well and was very fast to execute. In both

papers, the estimated posterior means were taken as the interpolations,
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hence omitting the posterior uncertainty in the interpolation.

7.5 Age-Period-Cohort Models

The results are thoroughly presented and discussed in Publication V.
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8. Discussion

8.1 Epidemiological Studies

8.1.1 Medicated Parkinsonism

The clear clustering pattern of excess cases suggests common environ-

mental or genetic risk factors. The genetic risk factors may be related to

the settlement history in Finland [201]. On the other hand, some miner-

als in soil could form one environmental risk factor; manganese (Mn) is

one suggested risk factor in PD. The sporadic cluster (region "4" in Pub-

lication I) seems to be located at the acid sulphate soil region [69] in the

Ostrobothnia. It can also be noted that the MS cluster in Finland [274] is

located in the same region. Geological Survey Finland’s maps of elements

in soil [148] indicate that most of the studied elements have a belt of high

concentration passing through the areas that have higher risk of PD. This

belt is known as the Raahe-Laatokka ore belt. However, there are high

elemental concentrations also around the region of Tampere, which does

not support the hypothesis. Preliminary ecological regression (using the

model as in Publication IV) did not suggest any geographic association

with Mn in the soil and the incidence/prevalence of parkinsonism in Fin-

land.

Although our case ascertainment is slightly stricter than elsewhere (e.g.,

[117, 115, 116, 114]), there is still a moderate possibility for some regional

biases, e.g. due to differences in registration practices. Even if this would

be true, the bias can hardly be the sole cause of the considerable geo-

graphic variations. The fact that there was no clear geographic variation

pattern in the early-onset parkinsonism patients might be in part due to

small case numbers.
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8.1.2 Ischaemic Stroke and AMI

The geographic pattern in AMI incidence still showed the traditional east-

/west gradient. Interestingly, the pattern of ischaemic stroke incidence

showed some independent variation, although the major part of variation

(70%) was common with AMI. This is somewhat in contradiction with the

fact that the two diseases with common atherosclerotic background share

common risk factors. Possible explanations for the differences would in-

clude risk factors that act more strongly on the other disease, e.g. hy-

pertension or excess use of alcohol (c.f. the map in [182, 288]) in stroke.

Another explanation could be competing risks [166]: the age specific risks

are somewhat different in these two diseases.

The fact that the geographic patterns of AMI and ischaemic stroke were

similar in men and women further suggests that there are some com-

mon environmental or genetic risk factors underlying the diseases. In

a recent study in Finland, the genetic background (as indicated by birth-

place) predicted risk of prehospital sudden cardiac death independently of

other risk factors in men ≤ 54 years of age who had migrated to Helsinki

metropolitan area [283]. This gives further support to the role of genetic

factors in the east/west CVD gradient, as environmental risk factors of

the original birthplace have not accumulated for the whole lifetime. As-

sociations of single nuclear polymorphisms (SNP’s) have been found with

known CVD risk factors (e.g [131]). Recently, SNP’s associated with CVD

itself have also been found [174, 254].

The different age group effects in men and women (Table III in Publi-

cation III) were in accordance with the common epidemiological knowl-

edge. The risk accumulation in men somewhat seems to slow down with

age, because those with the highest risk become selectively removed from

the risk population. In contrast, the accumulation in women turns to a

higher rate after the menopause. This supports the choice of indepen-

dent age-group effects (instead of a log-linear age effect) in the models of

Publication II.

8.1.3 AMI and Drinking Water

In particular, the association of Mg in drinking water (and not Ca) with

lower AMI incidence is plausible on two grounds. First, the finding is con-

sistent with physiological effects of Mg. Second, in Finland we generally

have an adequate supply of Ca from dairy products.
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There exist a lot of uncertainties in this kind of ecological studies. In

this study the relevant questions (and some answers) include:

• Who drinks well water? We have restricted the study population to

inhabitants in rural areas, who are more likely to have a well of their

own. The more rural an area is, the higher percentage is expected to

have own wells.

• In this study there was no way to link individuals with a particular well.

Therefore it was assumed that on average people drink the kind of water

that the region in question has on average.

• Is there such a thing as "average water" in a region? In part this de-

pends on the level of aggregation. This question is also related to uncer-

tainties in interpolating the well water data. The effects of modifiable

areal unit problem must also be considered. By choosing a regular grid,

the confounding effects of administrative regions can be mostly avoided.

• Is the proportion of Mg obtained from drinking water considerable when

compared to other sources? As discussed in Paper IV, about 10% of the

daily Mg intake is estimated to be attributable to drinking water. How-

ever, water is ingested also in the form of beverages and food, and the

same drinking water will probably be used in local production.

• What about migration? It is not reasonable to assume that people live

their whole life in one place. Therefore, in a strict sense, the life-long ex-

posures should include the effects of individual migration histories. In

Publications III–IV we have assumed that the migration within nearby

areas is more common than migration between distant regions. In fact,

migration within a municipality is roughly twice as common as migra-

tion between municipalities. The latter is directed from rural regions to

more urban centres. [152] By pooling statistical power from nearby re-

gions, local migration is in part accounted for. However, further studies

should consider the whole migration history of each disease case.

In short, one strength of ecological studies is the relative easiness with

which data can be collected. The uncertainties most probably dilute any

existing associations.
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Similar associations have been ascertained in several ecological studies

in AMI and CVD in general. The consensus has been that this association

is not generally ascertained in case-control studies (e.g. [191]). This may

be in part related to the fact that adjusting for confounders needs to be

more strict when we use smaller aggregation levels. However, a recent

meta-analysis of case-control studies suggests a significant association of

higher magnesium levels in drinking water and reduced CVD risk [41].

It seems that more quantitative studies with careful design are needed

before final conclusions can be drawn.

Recent research suggests that Mg intake is inversely related to systemic

inflammation and C-reactive protein (CRP), which is associated with in-

creased CVD risk [138, 2]. Similar inverse association is found with Mg

intake and METS [266]. In the U.S., Mg intake is much lower than the rec-

ommended daily allowance in a considerable part of the population [138].

Perhaps we may note that the most important fact is not whether Mg

deficiency is mostly due to drinking water; instead it would be more im-

portant to know whether there exists a risk group of people also in Fin-

land with inadequate magnesium supply and whether this is related to

increased CVD or METS risk. On the other hand, we must note that the

National FINDIET Survey 2007 (e.g. [215] suggest that Ca and Mg in-

take are both above the recommended levels in men and women, but the

intake is slightly lower in the Helsinki/Vantaa and Turku/Loimaa region,

compared to North Savo, North Karelia and Oulu. In the FINDIET stud-

ies also the urban dwellers are represented, so that the results are not

directly comparable with our findings.

8.1.4 Mortality in Several European Countries

The study in Publication V is rather descriptive in nature. However, it

shows that with proper models the observed data sets can be broken down

to a highly detailed level, i.e., even obtain information at 1x1 year resolu-

tion in the age/period plane.

The complexity of the underlying phenomena still waits more research

to be done for making useful predictions. It should also be noted that the

population predictions depend on the predicted mortality and the popu-

lation predictions obtained elsewhere could be discrepant in view of the

predicted mortality. A proper model should therefore include the popula-

tion predictions.
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8.2 Statistical Models

8.2.1 The Shared Component Model

The shared component model in Paper II proved to be useful in study-

ing the shared and disease specific variation in two related diseases. Our

extended implementation with the age group specific effects and the sym-

metrical specification resulted in somewhat slow converge and moderate

autocorrelation. Hence, we used 100,000 iterations with thinning in the

estimation. With this complex model, the estimation took one week in

WinBUGS. It is evident that as such the model is not suitable for routine

use, at least not in WinBUGS.

Using the model to check whether there are any differences in the spa-

tial variation of a disease in men and women was a novel idea, which

worked well, and the models also converged fast. It remains to be tested

whether there are convergence issues when there exists a difference be-

tween men and women. We may also comment that merging the incidence

rates of men and women to obtain a common pooled estimate is epidemio-

logically somewhat meaningless—such a "genderless" population does not

exist. However, this approach produced a more simple model to answer

our study question.

8.2.2 The Geochemical Interpolation Models

The model in Publication III worked initially rather well despite the rather

complex approach. There is a clear need for an interpolation model which

could account for the possibility of nondetects. In a nonspatial statis-

tical modelling, a similar likelihood based approach (based on censored

observations) has been used.1 Our model also includes the possibility of

accounting for measurement errors.

However, because of the model complexity, a simple model was created

for Publication IV. The asset of the model is fast estimation; with a 10x10

km2 grid with 6000 observations estimation takes less than one minute

in WinBUGS. In retrospect, the implementation (Winbugs Code in Ap-

pendix A) has a flaw (as does the implementation in Publication III) .

For nondetects, there is no need for the pseudo-observations. Instead,

the likelihoods of censored observations could be directly used, which ac-

1The "Nondetects and Data Analysis" package in R: http://cran.r-project.org/web/
packages/NADA/. Accessed September 12, 2011.
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tually was the original model idea. This is shown in the Appendix B.2

here. A spot check showed that the original model will produce a some-

what smaller range of interpolated values than a proper likelihood based

approach would. Otherwise, the interpolation results were very similar.

The difference in ranges would have some conservative effect in ecological

regression models when covariate data contains a noticeable proportion of

nondetects. In this study, mainly Ca and Mg were used as covariates in

the regression models. The proportion of missing data on these elements

was negligible, so the use of pseudo-observations probably had no effect.

8.2.3 Age-Period-Cohort Models

In Publication V we have noticed the need of versatile interactions in the

age-period-cohort modelling of long time-series of mortality. Previous ap-

proaches for mortality models have usually omitted all but the most re-

cent data when making predictions. We have also noticed that the simple

conditional autoregressive random walk smoothing priors may be ade-

quate for the observed time series, but they do not have any long-range

dependence which would be needed for predictions.

Our experiences so far suggest the ARIMA family of time-series mod-

els as a good candidate for age-period-cohort models, but ARIMA models

should be also used for the observed time period instead of using them

only for the predictions which result in an inconsistent model. Another

option would be using Gaussian process priors as the smoothers. Ini-

tial work with Jaakko Riihimäki and Dr. Aki Vehtari (Aalto University

/ BECS) suggests that these models work quite well, but are quite time-

consuming to estimate.

8.3 Suggestions for Future Research

Here we mainly discuss ideas for further model development, as it is evi-

dent that there still are many more interesting epidemiological questions

to be explored in Finland. A few applications to mention are model ex-

tensions for (the spread of) infectious diseases and disease mapping and

other applications in spatial genetics.

As longer time series of georeferenced epidemiological information will

become available, the need for spatiotemporal modelling is growing. This

is already reflected in the literature. Both in spatiotemporal and purely
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spatial modelling, there is a need for flexible model classes as it is evident

that the conventionally used BYM model has rather strong prior assump-

tions. Geostatistical models (e.g., [133]) provide more complex covariance

structures, and partition/cluster models (e.g., [143, 54]) provide almost

limitless flexibility. Another option is the use of multiscale modelling [67].

The flexibility, however, comes at a certain price, namely increased com-

putational complexity. With the more flexible models, we must keep in

mind the original aim: the rather strong prior model assumptions of e.g.

the BYM models were placed because of the uncertainty of small numbers.

If the numbers themselves cannot provide us with the complete picture,

we must complete it with our (assumed) prior knowledge. Thus, too flexi-

ble models are not appropriate for data on rare disease events—with these

models we would fall in the trap of overfitting.

With a growing variety of models at hand, the actual data may not be

enough to tell us which model(s) would be appropriate for our application.

Also, as we have seen, the DIC is not always useful. Some disease map-

ping models have been compared using simulated data (e.g., [29]), but

more comparisons are clearly needed. Also, there is a need for a care-

fully designed simulated data sets which would be shared among the re-

searchers.

Many interesting applications of spatial modelling await in the field of

population genetics. As more and more genetic studies become available,

the genetic data will also include the possibility of studying genetic com-

ponents in the regional variation of a disease; see, e.g., [250].

Current approaches in spatial modelling use in part some hand made

implementations, e.g., in Publications I–IV, a lot of hands-on work has

been done. As more and more data and larger data sets become available,

better tools are clearly needed for data management and model develop-

ment. Also, it is clear a that faster, modular software code is needed for

implementing and developing the models.

8.4 Future Perspectives in Spatial Epidemiology

Historically, ecological studies have had a large impact in epidemiology.

Recently, ecological studies have received much criticism, mainly as com-

pared to the more rigorous case/control and prospective cohort study de-

signs, e.g. [257]. This criticism is naturally justified as a reminder of the

limitations of ecological studies (e.g., ecological bias, modifiable areal unit
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problem), and the results are only applicable at an aggregated level, with

no possibility to prove any causal pathways. However, right tools must be

used in the right place. While we should keep in mind the limitations, eco-

logical studies have many assets, and hence they have remained popular

in the epidemiological field.

As spatial aggregate data is usually much more easily available than

individual level data, ecological studies may be readily used as prelimi-

nary studies in generating etiological hypotheses (cf. Publications I–IV).

Ecological studies are well suited for environmental epidemiology—a field

of growing importance. Better use of spatiotemporal data and further de-

velopment of spatiotemporal models will be an important task. Besides

surveillance, properly designed spatiotemporal models, for example asso-

ciated with the age-period cohort approach may be used in forecasting dis-

ease rates in the nearby future. Estimating the geographical differences

in disease incidence and prevalence provides important information in the

functioning of the health care system and in directing the public health

resource allocation and research.

Some recent papers have considered careful ecological designs which

either could avoid the ecological bias [296] or use a hybrid design with

supplementary case/control data [97] to obtain more accurate estimates.

However, the view in [257] that the ecological studies should try to reach

the standards of case/control studies would effectively reduce if not nullify

the original assets of ecological studies. However, in some cases a more

thorough approach is warranted, as in [294]. Another thing to consider

in disease mapping is adding the information on birthplace, which should

usually be readily available, and could provide important background risk

information [283]. As already mentioned, we see that spatial genetics will

also become a new important field of research.

We must stress that spatial statistics is a field of its own, including

much more than the applications in spatial epidemiology which we have

discussed. In Publication V we have exploited spatial statistical models

in the age-period-cohort model context. As we have seen, spatial statis-

tics has been a major driving force in the development of sophisticated

Bayesian computational methods and models. We expect that this favourable

contribution will prevail also in future.
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9. Summary of the Empirical Results
and Statistical Models

9.1 Empirical Results

In Finland, regional differences in mortality and morbidity have been ob-

served over the last six decades, since the seminal work of Väinö Kannisto

[124]. Despite the continuing efforts in epidemiology and health promo-

tion, mortality and morbidity still have regional variation in several dis-

eases/causes. So far, most of the studies on regional health differences

have been done at the level of administrative regions whereas the differ-

ences in etiological factors do not necessary follow these boundaries. Re-

cent advances in computational technology and statistical methods have

enabled us to use a high geographic resolution independent of any admin-

istrative boundaries.

In this thesis we have georeferenced morbidity and mortality data from

several administrative registers to a 10x10 km2 regular grid over Finland.

We have used more recent observations and larger data sets to update the

earlier knowledge on AMI incidence and on the incidence and prevalence

of parkinsonism. The east/west relative risk (RR) is 1.23 in AMI with a

large male excess risk (RR=2.5). Ischaemic stroke shows a pattern sim-

ilar to AMI, but only 70% of the regional variation is shared with AMI.

The east/west difference is lower (RR=1.08) and also the male excess is

lower (RR=1.58) in ischaemic stroke. In parkinsonism we have mainly

observed a wide belt of excess risk passing across Finland along the bor-

derline of the historical Pähkinäsaari peace treaty. There was strong male

excess in the incidence and prevalence of parkinsonism (RR=1.54), but no

urban/rural difference.

One of the etiological hypotheses in the regional differences of AMI is

the role of drinking water; especially hard drinking water has been sug-
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gested as a protective factor. We have further studied the role of drinking

water in AMI incidence in the rural areas. Our results suggest that hard

water with a low Ca/Mg ratio is associated with lower AMI incidence.

However, this alone would explain only some small percentage of the re-

gional variation. Earlier studies suggest that the geographic differences

are rather similar within each socioeconomic subgroup. We see the role of

genetics as one of the next focus areas in studies of regional differences.

We have also studied all-cause mortality in a long time-perspective of a

few hundred years in several European countries. The results show that

although there are some country-specific aspects, all the countries have

followed the epidemiological transition theory and are now in the fourth

era, namely the era of delayed ageing. Studying disease-wise trends and

future projections of mortality, incidence and prevalence would provide

important information for decision making in the public health sector.

Further studies should also inspect the spatiotemporal patterns of geo-

graphic variation in order to assess the long-term stability of the observed

differences.

9.2 Statistical Models

We have based the research on the conditional autoregressive model of

Besag, York and Mollié. From this we have created a smooth interpola-

tion model for geochemical observations with non-detects, but both of the

published model versions handle the nondetects in a complicated manner.

The proper model (which we suggest in the discussion) would be directly

likelihood-based. We have also made a small extension to the conditional

autoregressive shared component model of Knorr-Held and Best, by in-

cluding age effect covariates.

The spatial smoothing model which we have used so far is quite ro-

bust, fast and easy to implement (e.g., in WinBUGS), but it assumes that

the spatial patterns are similar in each region. Therefore, some region-

specific clusters or discontinuities might not be detected. There exist some

cluster models which are based on the transdimensional reversible jump

MCMC. This will be our next action item, also with attempt to extend

these models to the spatiotemporal domain—which has proved to be a

complex task.

We have used the one and two-dimensional conditional autoregressive

smoothing priors also with the age-period-cohort models. However, in the
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study it became evident that we need a smoothing model with a longer

time-dependence, such as the models in the ARIMA framework.
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A. List of Abbreviations

ACS Acute Coronary Syndrome

AMI Acute Myocardial Infarction

APC Age-period-cohort

ARIMA Autoregressive iterative moving average

BMI Body Mass Index (weight/height2; kg/m2)

BRCA1 Breast Cancer 1, early onset gene

BRCA2 Breast Cancer Type 2 susceptibility protein gene

BYM Besag York and Mollié (model)

Ca Calcium

CAR Conditional Autoregressive

CHD Coronary Heart Disease

CRP C-reactive Protein

CV Cross Validation

CVD Cardiovascular Disease

CVDR Finnish National Cardiovascular Disease Register

DAG Directed Acyclic Graph

DIC Deviance Information Criterion

DNA Deoxyribonucleic Acid

ENIAC Electronic Numerical Integrator And Computer

FAQ Frequently Asked Questions

FC Full Conditional (distribution)

FINAMI The Finnish Myocardial Infarction Register

FINSTROKE The Finnish Stroke Register

GMRF Gaussian Markov Random Field

HBM Hierarchical Bayesian Model

HDL High Density Lipoprotein

HILMO National Hospital Discharge Register

iCAR Intrinsic Conditional Autoregressive
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List of Abbreviations

ICD-8 International Classification of Diseases, Eighth Revision

ICD-9 International Classification of Diseases, Ninth Revision

ICD-10 International Classification of Diseases, Tenth Revision

IHD Ischaemic Heart Disease

KKJ Kartastokoordinaattijärjestelmä (a Finnish Map Coordinate System)

MC Monte Carlo

MCMC Markov Chain Monte Carlo

MCAR Multivariate Conditional Autoregressive

METS Metabolic syndrome

Mg Magnesium

Mn Manganese

MONICA Multinational MONItoring of trends and determinants

in CArdiovascular disease

MRF Markov Random Field

MS Multiple Sclerosis

PD Parkinson’s Disease

PITC Partially Independent Training Conditional

RIF Rapid Inquiry Facility

RjMCMC Reversible jump Markov chain Monte Carlo

SAR Simultaneous Autoregression

SNP Single Nuclear Polymorphism

T1DM Type 1 Diabetes (Mellitus)

T2DM Type 2 Diabetes (Mellitus)

WAIC Widely Applicable Information Criterion

WinBUGS Microsoft Windows R© version of

"Bayesian inference Using Gibbs Sampling" software

YKJ Yhtenäiskoordinaatisto (a Finnish Common Map Coordinate System)
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B. WinBUGS Code for Selected Models

B.1 Shared Component Model in Publication II

Besides the basic shared component model, this programme shows: 1)

one version for coping with uninhabited regions, 2) how to calculate age-

adjusted incidence rate, 3) how to calculate the "properly weighted" age-

adjusted incidence rate (as we suggested in the text), and 4) how to calcu-

late the fractions of variances explained by each component.

# simple model for pooled diseases , j o i n t model for two diseases

# & another use : study i t there ’ s any need to separate models for men & women.

# Aki H. , 14.2.06

# using " srrun " weighting to ca lcu late SRmean

# ( those weights are disease s p e c i f i c )

# notation : Y1 , Y2 ; N1, N2 etc

# lambda0 = j o i n t

# alpha1 , lambda1 = for dis . 1 etc .

# agest= age stardardizing c o e f f s

# using convolution pr iors

model ;

{

f o r ( j in 1 : regions ) {

f o r (k in 1 :K) {

#LIKELIHOODs;

Y1[ j , k]~ dpois (mu1[ j , k ] ) ;

Y2[ j , k]~ dpois (mu2[ j , k ] ) ;

} }

f o r ( j in 1 : regions ) {

f o r (k in 1 :K) {

log (mu1[ j , k])<−eta1 [ j ]+ beta1 [k]+ log (N1[ j , k]+1.0E−5)+alpha1 ;

log (mu2[ j , k])<−eta2 [ j ]+ beta2 [k]+ log (N2[ j , k]+1.0E−5)+alpha2 ;
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} }

#CAR−dis t r ibut ions ;

lambda0 [ 1 : regions ]~ car . normal (map[ ] ,w[ ] , Nneighs [ ] , tau0 ) ;

lambda1 [ 1 : regions ]~ car . normal (map[ ] ,w[ ] , Nneighs [ ] , tau1 ) ;

lambda2 [ 1 : regions ]~ car . normal (map[ ] ,w[ ] , Nneighs [ ] , tau2 ) ;

# including unstructured components

for ( i in 1 : regions ) {

kappa0 [ i ]<−lambda0 [ i ]+uns0 [ i ]

kappa1 [ i ]<−lambda1 [ i ]+uns1 [ i ]

kappa2 [ i ]<−lambda2 [ i ]+uns2 [ i ]

uns0 [ i ]~dnorm(0 , tau . uns0 )

uns1 [ i ]~dnorm(0 , tau . uns1 )

uns2 [ i ]~dnorm(0 , tau . uns2 )

eta1 [ i ]<−kappa0 [ i ]∗ delta+kappa1 [ i ]

eta2 [ i ]<−kappa0 [ i ] / delta+kappa2 [ i ]

}

f o r (k in 1 :K) {

expb1 [k]<−exp ( beta1 [k ] )

expb2 [k]<−exp ( beta2 [k ] )

}

astd1<−inprod ( expb1 [ ] , agest [ ] )

astd2<−inprod ( expb2 [ ] , agest [ ] )

f o r ( i in 1 : regions ) {

# for monitoring age−standardized , dis 1 ;

SR1[ i ]<−exp ( kappa0 [ i ]∗ delta+kappa1 [ i ]+ alpha1 )∗ astd1∗100000;

SRrun1 [ i ]<−SR1[ i ]∗ srwrun1 [ i ] ;

# for monitoring age−standardized , dis 2 ;

SR2[ i ]<−exp ( kappa0 [ i ] / delta+kappa2 [ i ]+ alpha2 )∗ astd2∗100000;

SRrun2 [ i ]<−SR2[ i ]∗ srwrun2 [ i ] ;

}

srrunmean1<−sum(SRrun1 [ 1 : regions ] )

srrunmean2<−sum(SRrun2 [ 1 : regions ] )

#assigning weights for CAR−dis t r ibut ion ;

f or (k in 1 : neighs ) {

w[k]<−1;

}

#CALCULATING P−VALUES;

for ( j in 1 : regions ) {

P0[ j ]<−step ( kappa0 [ j ] ) ;
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P1[ j ]<−step ( kappa1 [ j ] ) ;

P2[ j ]<−step ( kappa2 [ j ] ) ;

Psrrun1 [ j ]<−step (SR1[ j ]−srrunmean1 ) ;

Psrrun2 [ j ]<−step (SR2[ j ]−srrunmean2 ) ;

}

#PRIORS;

beta1[1]<−0

beta2[1]<−0

Pbeta[1]<− step ( alpha1−alpha2 ) # => actual ly p ( alpha )

for (k in 2 :K) {

beta1 [k]~dnorm( 0 . 0 , 1 . 0E−5);

beta2 [k]~dnorm( 0 . 0 , 1 . 0E−5);

Pbeta [k]<−step ( beta1 [k]−beta2 [k ] )

}

alpha1~d f la t ( ) ;

alpha2~d f la t ( ) ;

tau0~dgamma( . 0 1 , . 0 1 ) ;

tau1~dgamma( . 0 1 , . 0 1 ) ;

tau2~dgamma( . 0 1 , . 0 1 ) ;

sigma0<−1/ sqrt ( tau0 ) ;

sigma1<−1/ sqrt ( tau1 ) ;

sigma2<−1/ sqrt ( tau2 ) ;

tau . uns0~dgamma( . 0 1 , . 0 1 ) ;

tau . uns1~dgamma( . 0 1 , . 0 1 ) ;

tau . uns2~dgamma( . 0 1 , . 0 1 ) ;

sigma . uns0<−1/ sqrt ( tau . uns0 ) ;

sigma . uns1<−1/ sqrt ( tau . uns1 ) ;

sigma . uns2<−1/ sqrt ( tau . uns2 ) ;

# scal ing fac tor for re la t i ve strength of shared component for each disease

logdel ta ~ dnorm(0 , 5 .9 )

# ( pr ior assumes 95% probabi l i ty that delta^2 i s between 1/5 and 5;

delta <− exp ( logdel ta )

#summaries

for ( i in 1 : regions ) {

totalRR1 [ i ]<−exp ( eta1 [ i ] )

totalRR2 [ i ]<−exp ( eta2 [ i ] )

specRR1 [ i ]<−exp ( kappa1 [ i ] )

specRR2 [ i ]<−exp ( kappa2 [ i ] )

sharedRR [ i ]<−exp ( kappa0 [ i ] )

logsharedRR1 [ i ]<−kappa0 [ i ]∗ delta

logsharedRR2 [ i ]<−kappa0 [ i ] / delta

}

var . shared1<−sd ( logsharedRR1 [ ] ) ∗ sd ( logsharedRR1 [ ] )

var . shared2<−sd ( logsharedRR2 [ ] ) ∗ sd ( logsharedRR2 [ ] )

var . spec1<−sd ( kappa1 [ ] ) ∗ sd ( kappa1 [ ] )
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var . spec2<−sd ( kappa2 [ ] ) ∗ sd ( kappa2 [ ] )

f rac . shared1<−var . shared1 / ( var . shared1+var . spec1 )

f rac . shared2<−var . shared2 / ( var . shared2+var . spec2 )

f rac . spec1<−1−f rac . shared1

frac . spec2<−1−f rac . shared2

}

B.2 Interpolation Model in Publication III

This particular model was programmed for interpolating Mg observations.

This model listing should be read along with the description in Publication

III. Additional complexity is due to the fact that certain tricks must be

used in order to limit the distributions to positive values.

# val id observations

for ( i in 1 :Mg. nvalid )

{

# assign a common lognormal d i s t r ibut ion

# as with Ca, th is actual ly not used ; using dunif f or Mg . . .

Mg[ i ]~dlnorm (Mg.mu,Mg. tau . c e l l )

}

# observations below det . l imi t o f 92 , simulation

for ( i in 1 :Mg. nlo92 )

{

# simulate the d is t r ibut ions for values below det . l imi t o f 1992

# use this i f many of the observations belong into this c lass

# Lo .Mg[ i ]~dlnorm (Mg.mu,Mg. tau . c e l l ) I ( ,Mg. dl92 )

# use this i f only a f rac t i on of observations belong into this c lass

Lo .Mg[ i ]~ dunif (0 ,Mg. dl92 )

}

# pr iors

Mg.mu~dnorm(0 ,1 .0E−5)

Mg. tau . c e l l ~dgamma(0 .01 ,0 .01 )

####

# the spat ia l model for Mg

####

Mg. dlper<−Mg. dl92 /2

# l ike l ihoods

for ( i in 1 :Mg. nvalid )

{

Mg. uc . tau [ i ]<−pow ( 1 / uncert .mg[ i ] , 2 )
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Mg.vmuu[ i ]~dnorm(Mg. s .mu[Mg. c e l l [ i ] ] ,Mg. uc . tau [ i ] ) I (1 .0E−6 ,) # l imit th is to >0

L.Mg.vmuu[ i ]<− log (Mg.vmuu[ i ] )

L .Mg2[ i ]<− log (Mg2[ i ] )

L .Mg2[ i ]~dnorm(L.Mg.vmuu[ i ] ,Mg. sstau [Mg. c e l l [ i ] ] )

}

f o r ( i in 1 :Mg. nlo92 )

{

Mg.muu[ i ]<−Mg. s .mu[Mg. l o c e l l 9 2 [ i ] ]+ cut ( Lo .Mg[ i ] )

L .Mg.muu[ i ]<− log (Mg.muu[ i ]∗ step (Mg.muu[ i ]−1.0E−7)+1.0E−6) # l imit th is to >0

L.Mg. dlper2 [ i ]<− log (2∗Mg. dlper ) # recentering : add dl /2

L .Mg. dlper2 [ i ]~dnorm(L.Mg.muu[ i ] ,Mg. sstau [Mg. l o c e l l 9 2 [ i ] ] )

}

f o r ( i in 1 : regions )

{

Mg. sstaw [ i ]<−Mg. s . tau [ i ]+Mg. tau0

Mg. sstau [ i ]<−Mg. sstaw [ i ]∗ step (Mg. sstaw [ i ] )+1 .0E−6

log (Mg. s .mu[ i ])<−Mg. lambda0 [ i ]+Mg. alpha0

Mg. interp [ i ]<−( cut (Mg. s .mu[ i ] ) )

}

# CAR−dis t r ibut ions

# weights for CAR−dis t r ibut ion were preassigned in the data

Mg. lambda0 [ 1 : regions ]~ car . normal (map[ ] ,w[ ] , Nneighs [ ] ,Mg. tau )

Mg. s . tau [ 1 : regions ]~ car . normal (map[ ] ,w[ ] , Nneighs [ ] ,Mg. s . tau . p )

# spat ia l pr iors

Mg. s . tau . p~dgamma(0 .01 ,0 .01 ) # for c e l l variance

Mg. tau~dgamma(0 .01 ,0 .01 ) # for CAR

Mg. alpha0~d f la t ( )

Mg. tau0~d f la t ( )

}

B.3 Corrected Version of the Interpolation Model in Publication IV

As we can see, this model is much simpler than the above model. Again,

this should be read along with the description in Publication IV. This cor-

rected model version uses NA for observations below the detection limit,

and therefore exploits the original idea of likelihood based approach for

nondetects.

##########################################

# " arguments " == data

# Obs = val id observations

# ObsLow = low obs , give NA
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# detlim = detect ion l imi t

# n . val id = number of val id observations

# grid . val id = grid c e l l index for each val id observation

#

# n . low = #low observations

# grid . low = grid c e l l index for each " low " observation

#

# map, Nneighs , regions , neighbours as usual

##########################################

# i n i t s

# tau . car = 1; spat ia l CAR variance

# tau . c e l l = 1 ; spat ia l in−a−c e l l variance

# alpha0 = log ( "mean basel ine concentration " )

# lambda0 = rep (0 , regions )

# ObsLow[ i ] <− NA ( not detlim / 2 )

model {

# l ike l ihoods

for ( i in 1:n . val id )

{ Obs [ i ]~dlnorm ( spat .mu[ grid . val id [ i ] ] , tau . c e l l ) }

f o r ( i in 1 :n . low )

{ ObsLow[ i ]~dlnorm ( spat .mu[ grid . low [ i ] ] , tau . c e l l ) I (0.00001 , detlim ) }

f or ( i in 1 : regions )

{

spat .mu[ i ]<−lambda0 [ i ]+ alpha0

interp [ i ]<−exp ( spat .mu[ i ] )

}

# CAR−dis t r ibut ion

lambda0 [ 1 : regions ]~ car . normal (map[ ] ,w[ ] , Nneighs [ ] , tau . car )

# assigning weights for CAR−dis t r ibut ion ;

f or (k in 1 : neighbours ) { w[k]<−1 }

# spat ia l pr iors

tau . car~dgamma(0 .01 ,0 .01 ) # for CAR

sigma . car <−1/ sqrt ( tau . car )

tau . c e l l ~dgamma(0 .01 ,0 .01 ) # for c e l l

sigma . ce l l <−1/ sqrt ( tau . c e l l )

alpha0~d f la t ( )

}
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