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Abstract
A single-crystal silicon oscillator with a non-tilting out-of-plane vibrational
mode and high-quality factor for the mechanical resonance was designed,
fabricated and characterized. The finite-element method (FEM) was utilized
before the fabrication process to simulate the oscillator behavior and give
guidance in optimizing the design. At low pressure p =10−3 mbar and at
room temperature, the resonance frequency and Q value were measured to
be f0 = 26 526 Hz and Q = 100 000, respectively. The measured resonance
frequency was in a good agreement with the simulated one, f0,FEM =
26 787 Hz. The actual mode pattern was verified by measurements and
compared with the simulation result. An interferometric laser beam was
scanned over the oscillator surface and position-dependent oscillation
amplitudes were stored with the phase-sensitive detection. The oscillation
was proved to occur effectively in a pure non-tilting out-of-plane mode. We
propose to use this kind of micromechanical probe in various measurement
schemes, where one needs to approach the surface with a single
non-torsional plane. In addition, such an oscillator can be utilized as an
optical mirror so that the optical mode can be kept the same when moving
the mirror.

1. Introduction

Mechanical oscillators contain elements that typically vibrate
in flexural (deflection), torsional or longitudinal (extensional,
bulk) modes [1–3]. High mechanical quality (Q value) of
the resonance is desired in many high precision sensing
applications. Torsionally vibrating structures have proved
to be successful solutions for designing high-Q oscillators
[2, 4, 5]. In these structures, one idea has been to use balanced
designs so that the center of mass of the oscillator is stationary
in a torsional mode, which leads to very small intrinsic energy
losses [6].

Torsional motion, however, is not always optional because
of the inherent tilting of oscillation. In some physical
experiments it is desirable that the motion of a mechanical
oscillator takes place precisely in a direction that is normal to
the oscillator surface. For example, if a torsional mechanical
oscillator is employed as a mirror in an interferometric system
[7–9], torsional motion inevitably introduces deflection of
the reflected light and makes an optical mode stabilization

impossible. In principle, the excitation of a torsional
oscillation requires a torsional force, i.e. torque, on the
oscillator. This may set limitations to the type of force that
can be detected with a torsional oscillator. For example,
if the studied force can be considered as a plane wave
with a large cross-section compared to the oscillator surface
area, the torsional oscillation mode may not become excited.
When studying the short-range interaction of surfaces, such
as Casimir force of two conducting plates [10] with a
micromechanical oscillator, the oscillating element should be
kept parallel to the other surface. In addition, such experiments
typically require very small separation between the surfaces
which limits the use of torsional motion to a certain extent.

In this work, we demonstrate a mechanical silicon
oscillator structure vibrating effectively in a non-tilting out-
of-plane mode and having a resonance frequency of f0 =
26.5 kHz. The oscillator exploits a supporting structure which
still allows a balanced oscillation mode, very low clamping
losses and thus very high mechanical Q value (Q = 100 000)
in vacuum at room temperature.
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Figure 1. A photograph of the microfabricated non-tilting
out-of-plane mode oscillator. Here the oscillator is still attached to
the silicon wafer.

2. Non-tilting out-of-plane mode high-Q oscillator

2.1. Oscillator design

The microfabricated out-of-plane mode high-Q mechanical
silicon oscillator used in this work is illustrated in figure 1. The
elements of the oscillator structure vibrating in a non-tilting
mode are the two rectangular silicon vanes with the size of
0.8 × 0.8 × 0.38 mm3. These vanes are mounted with narrow
bridges to the oscillator body (1.5 × 14 × 0.38 mm3) which is
basically a free–free beam vibrating in a second flexural mode.
The mounting of the vanes is accurately positioned to the
antinodes of the oscillator body. This arrangement guarantees
that the two vibrating vanes are in anti-phase relative to each
other and precisely parallel to their equilibrium position (i.e.
yz plane) during the whole vibration cycle.

The oscillator support always causes some leakage of
mechanical energy. In order to minimize these energy losses,
the support arrangement must be carefully designed. We use
two torsional suspension bars to mount the oscillator body
to the frame. Torsional bars are located on the oscillator
body symmetry axis, i.e. at the oscillation node, which
allows good isolation of vibrational energy [11]. Ideally the
suspension bars experience only torsional motion in the high-
Q mode oscillation. The lengths of these bars are chosen to
correspond to the effective quarter wavelength of the resonance
frequency of the oscillator body. Thus, the suspension bars
act as impedance matched acoustic transmission lines and
the oscillator body experiences minimum energy dissipation
through the support [1]. The advantage of inserting additional
masses on the thin torsional suspension bars is that one can
use shorter suspension bars and gain a mechanically robust
structure.

2.2. Fabrication of the oscillators

Oscillators were fabricated from a double-sided polished,
380 µm thick (1 0 0) oriented single-crystal silicon wafer
(p type, 5–10 � cm). Single-crystal silicon has excellent
elastic properties and very low intrinsic losses which make it
an appropriate material for high-Q oscillators [12]. A thermal
silicon oxide layer was grown on the wafer to be used as an etch
mask. Structures were released by double-sided anisotropic
wet etching in a 25% TMAH solution at 85 ◦C. This fabrication
process has the benefit of allowing well-defined symmetric
features and high surface quality which are needed for reaching
balanced oscillation mode and low damping. The polished
silicon surface provides a power reflection constant of R = 0.34

for the HeNe-laser wavelength, allowing silicon components
to be used as low-reflectivity mirrors in optical measurements.

2.3. Oscillator mechanical model

If the surrounding openings of the vanes are excluded, the
oscillator body can be considered as a uniform free–free beam
which vibrates in the second flexural mode. The characteristic
function xn(y) gives the mode pattern (i.e. the oscillation
amplitudes along the y-axis) of the nth oscillation mode [13]:

xn(y) = An[(cos βnL − cosh βnL)(sin βny + sinh βny)

− (sin βnL − sinh βnL)(cos βny + cosh βny)], (1)

where An is a constant, L is the length of the free–free beam
and βnL is a parameter related to the nth flexural mode of the
free–free beam. For the second flexural mode β2L = 7.8532.

The mechanical oscillator discussed in this paper
can be modeled as a one-dimensional harmonic oscillator
characterized by an effective mass meff, angular resonance
frequency ω0 and mechanical quality Q. Angular resonance
frequency for a high-Q oscillation mode is determined by
its spring constant k and effective mass, ω0 = 2πf0 =
(k/meff)

1/2. The equation of motion of a damped harmonic
mechanical oscillation under the external monochromatic
driving force F(t) with angular frequency ω can be written
as

meff
d2x

dt2
+

meffω0

Q

dx

dt
+ meffω

2
0x = F0 cos(ωt), (2)

where x(t) is the oscillator displacement as a function of time.
The solution of x(t) is given by [14]

x(t) = x0 e− ω0 t

2Q cos(ωt + α) + |χ(ω)|F0 cos[ωt + δ(ω)], (3)

where the first term on the right-hand side is the transient part
of the oscillator response (exponentially damped harmonic
oscillation), x0 is the oscillation amplitude and α is the
phase shift. The second term is the steady-state part of the
solution (frequency response of the oscillation) and χ (ω) is
the mechanical susceptibility with Lorentzian behavior,

χ(ω) = 1

meff
(
ω2

0 − ω2 − iωω0
/
Q

) . (4)

The frequency response of phase δ(ω) can be written as [14]

tan[δ(ω)] = ωω0

Q
(
ω2 − ω2

0

) . (5)

3. Finite-element model simulation

Before the component fabrication, a three-dimensional finite-
element model of the oscillator was utilized to inspect the
out-of-plane vibrational high-Q mode. Although the exact
numerical Q value cannot be predicted by finite-element
simulation, it is a convenient method to estimate the damping
of mechanical energy in different vibrational modes because
it reveals the strain concentration and stress maxima points
generated in the oscillator structure. Therefore, finite-element
modeling can be used to give guidance in optimizing oscillator
design for obtaining low damping [15].

The finite-element modeling used here contains some
simplifications and inaccuracies. The cross-section of the
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Figure 2. The non-tilting out-of-plane high-Q oscillation mode
given by the FEM simulation. Position-dependent displacements in
the x-direction are largely exaggerated. The surrounding frame of
the oscillator is not shown here.
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Figure 3. A Michelson interferometer configuration was used to
measure the position-dependent oscillation amplitudes and to verify
the actual mode pattern of the non-tilting high-Q oscillation mode.

oscillator was modeled as rectangular and the influence of
the oblique side walls due to the double-sided anisotropic wet
etching was neglected. Moreover, small variations in etching
the corner compensation structures may result in slightly
inaccurate shapes of the outer corners. The result of the
simulation of the non-tilting high-Q oscillation mode pattern is
illustrated in figure 2. The frame of the oscillator is not shown
in the figure. The position-dependent displacements in the
x-direction are largely exaggerated. The simulated resonance
frequency of the high-Q mode was f0,FEM = 26 787 Hz.

4. Measurement setup

The measurement setup is shown in figure 3. The oscillator
was clamped by pressing the short edge of the frame between
two aluminum parts. Energy losses at the clamping were
estimated to be negligible since, according to the FEM
simulations and measurements, the clamping area is well
decoupled from the high-Q oscillation. The oscillator mount
was attached to a two-dimensional translation stage which
allows an accurate control of the oscillator position in the
y- and z-directions.

The actuation of the oscillator was mechanically realized
by using a signal generator driven piezo transducer which was
attached to the oscillator mount. The signal generator also
provides a reference signal for the phase-sensitive detection
of a lock-in amplifier. The signal generator and the lock-
in amplifier are connected to a computer for storing the
measurement data and controlling the oscillator actuation

through a feedback loop. The computer control that was used
in this work allowed either an automated excitation frequency
sweep over desired bandwidth or locking the exciting signal
to the oscillator resonance frequency.

Gas damping of the surrounding medium is the main
source of energy losses of high-Q mechanical oscillation.
Thus, the oscillator was placed in a vacuum chamber for
detecting the maximum reachable Q value. The turbo-
molecular pump created low pressures down to p = 10−5 mbar.
This pressure is low enough since gas damping is negligible
under p = 10−3 mbar [11].

In this work, a HeNe-laser beam was utilized as
an interferometric probe to detect the displacements in
the oscillator position in the x-direction (figure 3). We
used a Michelson interferometer configuration in which the
mechanical silicon oscillator was acting as a moving mirror
in one of the interferometer arms. The stationary reference
mirror utilized in the other interferometer arm is also a piece
of polished silicon so that the two reflected interfering light
fields have similar intensities, I1 = I2, giving the maximum
modulation depth at the output.

The output intensity of the Michelson interferometer Iout

depends on the position of the movable mirror relative to the
stationary reference mirror as the phase difference between the
two reflected light fields is changed. The output intensity is

Iout(�x) = R

2

[
I0 + I0 cos

(
4π�x

λ

)]
, (6)

where R is the power reflection constant of the polished
silicon surface, I0 is the intensity of the incident light and
the beamsplitter is considered lossless. In order to guarantee
that the interferometer response occurs in the linear region
(figure 3), the equilibrium position of the oscillator must
correspond to the average output intensity Iave, and the
oscillation amplitude �x must be small compared to the
wavelength of the used light (�x � λ). Therefore, an
additional piezo-driven translation stage is utilized to control
the oscillator equilibrium position in the x-direction and the
strength of the oscillator excitation is kept at a moderate level.
Interferometer output is detected with a silicon photodiode and
monitored by a dual-phase lock-in amplifier.

The oscillator displacements were measured with high
resolution comparable to a small fraction of the wavelength
of light. The measurement sensitivity was determined to

be S
1
2
x = 5.6 × 10−13 m Hz− 1

2 . The optical interferometric
measurement method used in this work was proved to be an
accurate and flexible tool to perform vibrational analysis of
a microfabricated silicon component. Surface scanning by
altering the position of the laser probe beam in the yz plane
with the two-dimensional translation stage gives possibilities
of measuring the position-dependent oscillator displacements
and thus generating the vibrational mode pattern of the
oscillation.

5. Measurements

5.1. Verification of the mode pattern

The actual non-tilting out-of-plane oscillation mode pattern
was verified by measurements because additional spurious
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Figure 4. The actual mode pattern was verified by measurements.
The inset shows an enlarged picture of one of the oscillator vanes.

vibrational modes could degenerate the oscillator performance
if coupled to the desired high-Q mode. The shape of the vanes
implies that they possess a torsional oscillation mode as well.
However, the resonance frequency of the non-tilting out-of-
plane oscillation is determined by the resonance frequency of
the second flexural mode of the oscillator body ( f0 = 26.5 kHz)
and is thus significantly far from that of the torsional mode of
the vanes. Torsional mode of the vanes occurs at a frequency
of f0,to ≈ 1 MHz and is well decoupled from the non-tilting
out-of-plane oscillation mode. Longitudinal and torsional
vibration modes of the body were concluded not to affect
the desired high-Q resonance mode because the first-order
longitudinal and torsional modes occur at approximately one
order of magnitude higher frequencies than the second flexural
mode of the body. Another possible spurious oscillation mode
is, e.g., the one in which the torsional suspension bars have
an additional flexural motion causing the oscillator support
area to vibrate like a trampoline in a direction perpendicular to
the initial component surface, i.e. the yz plane [1]. Also this
mode was noted to be satisfactorily separated from the desired
out-of-plane mode.

The measured oscillation mode pattern was composed by
scanning the interferometer probe beam over the oscillator
area in the y- and z-directions and reading the position-
dependent interferometer response which is proportional to
the magnitude of the oscillation amplitude (figure 4). The
scanning was realized by using two orthogonally situated
micrometer translation stages, and 100 µm steps in the y-
and z-directions were used. Each small square in figure 4
corresponds to one measurement point and an area of
100 × 100 µm2. The grayscale of the square is directly
proportional to the oscillation amplitude of the oscillator at
the corresponding coordinate. The simulated and measured
results of the high-Q mode pattern are in a very good agreement
with each other (figures 2 and 4).

Each rectangular vane was measured in total at 49
locations (inset of figure 4). The oscillation amplitude at
each measured location across the vane was 10 nm ± 50 pm.
This small uncertainty in the measured oscillation amplitudes
indicates that the vanes oscillate in a pure non-tilting out-of-
plane mode and that the torsional motion, flexural deformation
of the vanes and other higher order modes are sufficiently
suppressed. It should be noted that the roughness of a
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Figure 5. The normalized analytical solution of the second flexural
mode of the uniform free–free beam and measured mode pattern
along the y-axis. The openings around the vanes reduce the
oscillator stiffness in the neighborhood of the antinodes.
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Figure 6. The measured Q value and resonance frequency as
functions of pressure at room temperature. In comparison, the solid
line shows the pressure dependence of the Q value of a uniform
resonant beam at low pressures according to a theoretical model
given in [17].

highly polished silicon wafer is at best of the order of a
few angstroms and much larger than the uncertainty in the
measured parallelism of the vibrating vanes. Therefore, it
can be concluded that the mode purity of our non-tilting out-
of-plane mode high-Q oscillator is excellent for applications
that require parallel approaching of the surfaces to very small
distances.

In addition, the measured mode pattern was compared to
the analytical solution of the uniform free–free beam given in
equation (1). The normalized mode patterns along the y-axis
are illustrated in figure 5. The surrounding openings of the
vanes introduce a local decrease in the stiffness of the oscillator
body in the neighborhood of the antinodes. This can be seen
as a sharper bending of the oscillator body.

5.2. Oscillator characterization at low pressure

The resonance frequency and the Q value were determined as
functions of pressure at room temperature. The interferometric
probe beam was pointed to the center of the rectangular vane
and the interferometer response was monitored with a lock-in
amplifier. Measurement results are shown in figure 6.

The damping at very low pressures is determined e.g. by
internal energy dissipation mechanisms and clamping losses
[2]. In the intrinsic damping region ( p < 0.01 mbar) the
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Figure 7. The measured and theoretically calculated decay curves
of the high-Q oscillation mode at p = 10−3 mbar and room
temperature.

mechanical quality of the non-tilting out-of-plane mode was
measured to be Q0 = 100 000. As the pressure is increased
the increasing number of individual gas molecules hitting the
oscillator surface introduces additional molecular damping. In
the molecular damping region the Q value of resonant beam
structures is typically inversely proportional to the pressure,
Q(p) ∝ p−1 [2, 16, 17]. In comparison, the solid line in
figure 6 illustrates the pressure dependence of the Q value
which is calculated by using a theoretical model for damping
of a uniform resonant microbeam given in [17]. Above 1 mbar
the measured Q values are clearly higher than the calculated Q
values. One explanation for the reduced molecular damping
is the fact that a fraction of the gas molecules drifts through
the openings of the vanes instead of hitting the surface as in
the case of a uniform beam. In the viscous damping region
( p > 100 mbar) the surrounding gas acts as a viscous fluid and
the Q value was measured to be Qvis = 10 600.

The resonance frequency was measured to be f0 =
26 526 Hz in vacuum being in a rather good agreement with
the simulated one, f0,FEM = 26 787 Hz. It was demonstrated
that the resonance frequency shows pressure dependence at
pressures exceeding 10 mbar. The pressure dependence
of the resonance frequency due to gas damping, fm(p) =
f0[1–1/4Q(p)2]

1
2 , at even higher pressures is negligible for

high-Q oscillators.

5.3. Decay time measurement

Oscillator was mechanically excited to vibrate at its resonance
frequency by using a piezo actuator attached to the oscillator
mount. The resulting oscillation amplitude saturates to the
equilibrium level. At this oscillation level the external
excitation energy and energy losses of the oscillator are in
balance. The oscillation amplitude was measured from the
center of the vane. When the excitation was switched off, the
oscillation started decaying (ringing down) and the envelope
curve of the exponentially damped oscillation was stored
with a lock-in amplifier (figure 7). The Q value can be
determined from the resonance frequency f0 and decay time τ

corresponding to the oscillation amplitude being decreased to
(1/e)th part of its initial value, Q = πτ f0. The solid line in
figure 7 illustrates the exponential decay curve which was
calculated by using the transient part of equation (3)

0.2

0.4

0.6

0.8

1.0

26528.0 26528.5 26529.0 26529.5

Frequency [Hz]

O
sc

ill
at

io
n 

am
pl

itu
de

 [a
.u

.] 

-100

-80

-60

-40

-20

0

20

40

60

80

100

P
ha

se
 [d

eg
]

OscAmp (pzt) OscAmp (theor.)

Phase (pzt) Phase (theor.)
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phase at p = 0.1 mbar and room temperature. The high-Q mode was
excited mechanically by a piezo actuator (pzt). The solid lines refer
to the frequency responses according to equations (3) and (5).

and experimentally determined numerical values of f0 =
26 526 Hz, x0 = 1.1 nm and Q = 100 000.

5.4. Frequency response measurement

Frequency response of the oscillation amplitude of a
mechanical resonance has a clear Lorentzian behavior as
described by the steady-state part of equation (3). The
frequency response was measured by sweeping the excitation
frequency over the resonance and storing the resulting
oscillation amplitude and phase with the lock-in amplifier
(figure 8). The probe beam was pointed to the center of
the vane. Excitation was kept at a moderate level in order
to guarantee that the resonance peak is symmetric and to
avoid hysteresis behavior. It can be seen that the measured
frequency response of the oscillation amplitude is close to
a single Lorentzian curve and therefore similar to the one
calculated by using the steady-state part of equation (3). Here
the measured numerical values of f0 and Q were used and
the parameter F0/meff was normalized so that the calculated
oscillation amplitude corresponds to the measured one at
resonance. Also the phase response in figure 8 behaves as
predicted in equation (5).

6. Conclusions

A carefully designed high-Q mechanical silicon oscillator
vibrating in a non-tilting out-of-plane mode was presented
in this work. The oscillator was measured to have a resonance
frequency of f0 = 26.5 kHz and a Q value of 100 000
at low pressure p < 10−2 mbar and at room temperature.
Three-dimensional finite-element method simulation was
demonstrated to give accurate predictions of the resonance
frequency and vibrational mode pattern. It was shown that the
non-tilting high-Q oscillators can be produced by combining
appropriate oscillator material, balanced oscillation mode and
low loss support. In order to minimize energy losses at the
support, quarter wavelength torsional suspension bars were
used to mount the oscillator structure at the nodal points.

Oscillators with a non-tilting out-of-plane vibrational
mode can offer very low damping of mechanical energy
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and thus show strong potential for high precision sensing
applications. It was shown that the oscillation occurs in a pure
non-tilting out-of-plane mode and, therefore, our oscillator
designs are suitable to be used e.g. as moving mirrors in
interferometric systems. Further applications can be found
in those experiments that require parallel approaching of the
surface to very short distances as in AFM, micro bridges,
Kelvin probe, gas detection and in short range detection of
weak forces.

Many high precision sensing applications may benefit
from the utilization of oscillators with higher resonance
frequency and smaller mass. The resonance frequency of our
out-of-plane mode high-Q oscillator is inversely proportional
to the body length if the aspect ratio is kept constant. In
miniaturization of our design, a scaling factor of 1:50 seems
very realistic if the components were fabricated e.g. by
using silicon-on-insulator (SOI) technology. Unfortunately,
intrinsic damping increases when the size of the oscillator
is reduced [6, 18]. The surface contribution to total losses
is significant and, therefore, the increased surface-to-volume
ratio may lead to a reduced Q value. In any case, much higher
resonance frequencies of the order of MHz can be achieved.
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