Publication VI

Alessandro Cimatti and Jori Dubrovin and Tommi Junttila and Marco
Roveri. Structure-Aware Computation of Predicate Abstraction. In
Formal Methods in Computer Aided Design, 9th International Conference
(FMCAD 2009), pages 9—16, November 2009.

© 2009 IEEE.
Reprinted with permission.

This material is posted here with permission of the IEEE. Such permission
of the IEEE does not in any way imply IEEE endorsement of any of Aalto
Aalto University's products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works
for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

195

Structure-Aware Computation of
Predicate Abstraction

Alessandro Cimatti*, Jori Dubrovin, Tommi Junttilaf, Marco Roveri*
*FBK-irst, Embedded Systems Unit, Via Sommarive 18, 1-38123 Povo, Trento, Italy
THelsinki University of Technology TKK, P.O. Box 5400, FI-02015 TKK, Finland

Abstract—The precise computation of abstractions is a bot-
tleneck in many approaches to CEGAR-based verification. In
this paper, we propose a novel approach, based on the use of
structural information.

Rather than computing the abstraction as a single, mono-
lithic quantification, we provide a structure-aware abstraction
algorithm, based on two complementary steps. The first, high-
level step exploits the structure of the system, and partitions
the abstraction problem into the combination of several smaller
abstraction problems. This is represented as a formula with
quantifiers. The second, low-level step exploits the structure of
the formula, in particular the occurrence of variables within the
quantifiers, and applies a set of low-level rewriting rules aiming
at further reducing the scope of quantifiers.

We experimentally evaluate the approach on a substantial
set of benchmarks, and show significant speed ups compared
to monolithic abstraction algorithms.

I. INTRODUCTION

Many recent approaches to verification are based on
Counter-Example Guided Abstraction Refinement (CEGAR).
The idea is that the concrete system is overapproximated by
an abstract system, that can hopefully be analyzed more easily.
If the abstract system is safe, then so is the concrete system.
Otherwise, the counterexample witnessing the violation in
the abstract space is mapped back to the concrete space.
If this operation succeeds, then there is evidence that the
property is violated in the concrete space; if not, the abstract
counterexample is spurious, and it can be analyzed in order
to obtain indications on how to refine the abstraction. The
CEGAR framework, originally proposed in the purely Boolean
setting [1], has more recently been extended to the case of
system representable in more expressive theories [2], [3].

Predicate abstraction is a way to guarantee conservativeness
by construction [4]; basically, each predicate characterizes
a set of concrete states; the abstract space is generated by
collapsing in the same abstract state all the concrete states
that share the same evaluation of the predicates. Some re-
cent approaches obtained increased performance by leveraging
the power of Satisfiability Modulo Theory (SMT) technolo-
gies [5], [6], [7]. Unfortunately, the computation of predicate
abstractions remains a bottleneck.

Several CEGAR loops try to mitigate the problem by
using imprecise predicate abstractions [2], where the transition
relation of the abstract system contains spurious transitions.
Although this approach eases the cost of computing the ab-
straction, it often results in additional CEGAR loop iterations,

978-1-4244-4966-8/09/$25.00 ©2009 IEEE

whose only purpose is to rule out the imprecision of the
abstraction.

In this paper, we take on the problem of computing exact
predicate abstractions efficiently. We consider that the methods
for generating a precise predicate abstraction [5], [6], [7]
are monolithic, i.e. start from a symbolic encoding, without
taking into account any available structure, e.g. the possible
partitioning of the concrete transition relation, the structure of
predicates, or the scope of variables. We propose a method to
compute predicate abstractions that is aware of, and exploits,
the available structural information, thus following a divide-
and-conquer approach.

The method proceeds at two different levels. At a higher
level, we assume that the concrete system to be abstracted
is described in a structured language. We discuss basic
simplification principles to partition the construction of the
abstraction. We instantiate the technique to the case of hybrid
automata, that includes partitioning based on asynchrony,
scoping of variables, handshake synchronization, and global
synchronization (with timed transitions). These simplifications
exploit the frame conditions (i.e. that certain variables are not
modified), and the cone of influence of the predicates, trying
to reduce the number of quantified variables. The technique
works on the formula of the transition relation, not committing
to a single formalism for models.

At a lower level, we transform the quantification tree by
means of syntactic transformations aiming at reducing the
scope of quantifications even further. This set of reductions
exploits the structure of the formula to be quantified (rather
than the structure of the models), and can strengthen the
partitioning resulting from the high level analysis, by detecting
further simplifications that are not readily visible from the
structure of the input. The description of the abstract space
resulting from the transformations is also structured (e.g.
disjunctively partitioned), which can be used to optimize the
search in the abstract space. From the technical point of view,
there are several ideas that contribute to the efficiency of
the approach. First, we perform iterative steps in inlining of
equalities and values to simplify the formula to be quantified,
and to precompute as much as possible the values of abstract
variables. The second idea is to aggressively block partial
results from one quantification to the next, thus focusing
the search on the unexplored parts of the abstract transition
relation. The third and perhaps more interesting idea, called
“variable sampling”, tries to split a monolithic quantification

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on May 24,2010 at 08:56:30 UTC from IEEE Xplore. Restrictions apply.

even further. Variable sampling applies to the case where
individual variables would be uncorrelated, were it not for
the presence of a single variable: the idea is then to iteratively
pick suitable values for the variable to be sampled, and to
solve the resulting quantification, that can now be split into
separated partitions, and separately quantified.

We implemented the proposed techniques within the
NuSMV model checker [8], and we carried out an extensive
experimental evaluation on benchmarks from several sources.
The results show that the idea of partitioning the computation
of predicate abstractions does pay off, and the proposed
optimizations are effective in partitioning and in reducing the
overall computation time.

The paper is structured as follows. In Sec. II, we discuss
some background. In Sec. III, we present the high level
structural abstractions. In Sec. IV, we discuss the low level
structural abstraction algorithms. In Sec. V, we discuss some
relevant related works. In Sec. VI, we report on the exper-
imental evaluation of the approach. Finally, in Sec. VII, we
draw some conclusions and outline directions for future work.

II. BACKGROUND

In this section, we first define our reference formalism,
based on Linear Hybrid Automata (Sec. II-A) [9], [10].
Then, in Sec. II-B, we discuss how Linear Hybrid Automata
(LHA) can be represented symbolically, in a formalism that
is amenable for SMT reasoning. In Sec. II-C, we define the
problem of predicate abstraction for LHA. We remark that
LHA are chosen as a paradigmatic formalism, generic and
expressive, featuring asynchrony, synchronization, time and
data variables with frame conditions. However, the results are
not limited to this formalism.

A. Linear Hybrid Automata

The following definitions are based on [11], [12], [13]. A
linear atom over a vector X = (x1,...,x,) of real-valued
variables is an (in)equality of the form >, . ¢; - x; > d,
where ¢1,...,¢p,d € Q and 1 € {<,<,=}. A linear
predicate is a finite Boolean combination of linear atoms; a
convex linear predicate is a finite conjunction of linear atoms.
Given a vector X = (x1,..., @) of variables, we write X' for
(x},...,2,) and, if ¢ is an atom, predicate, or formula over
X, then ¢’ is obtained from ¢ by substituting each variable
occurrence z; with x; If x is a variable, we denote with & the
variable representing the first derivative of = w.r.t. time elapse.

A linear hybrid automaton is a tuple H
<L,)?., 3, T, Inv, Flow, Init) consisting of the following
components.

o A finite set L of control locations.

o A finite vector X = (x1 Z) of real-valued data
variables.

« A finite set X of synchronization labels, not including the
symbol 7 for non-synchronizing transitions.

o A finite set T of transitions. Each transition ¢ € T is a
tuple (I, 0, act,l’), where [€ L is the source location,
o € X U{r} is the label, act is the action, and I’ € L is

10

the target location of t. An action is a pair act = (Y, a),
where ¥ C X is the subset of variables that is updated
when ¢ is executed, and the linear predicate v over Xuy’
relates the values of the updated variables in the next state
with the current values of the variables. The closure of
act, denoted by Clos(act), is the linear predicate over
X U X’ obtained from a by adding the frame axioms
for the variables that are not updated, i.e. Clos(act) :=
a A /\ze)?\?(x/ =x).

A mapping Inv from each location [€ L to the location
invariant Inv(l) that is a convex linear predicate over X.
A function Flow mapping each location l € L to a convex
linear flow predicate Flow(l) over X = (i1,...,dn).
The predicate Flow(l) defines the allowed change deriva-
tives for the variable values when time elapses but the
automaton does not perform any discrete transition. Given
a predicate Flow(l), we define the predicate Flow*(l)
over X U {6} U X', where § is a real-valued variable,
by substituting each linear atom), _, ., ¢;-&; > d in
Flow(l) by Y1 ciep, €i - (¢} — ;) > d - 6. This predicate
relates the current variable values with the values after
the time has elapsed the amount §.

The initial configuration Init = (I°,3), where I° € L
and f is a convex linear predicate over X.

A state of the automaton H is a pair s = (I,7), where [€
L is the current control location and ¢ = (vq,...,v,) € R"
associates each data variable x; with a value v;. The set of all
states is denoted by S. A state (I, %) is initial if (i) { = [° and
(ii) both 8(7) and Inv(l)(¥) evaluate to true. The behavior
of H is defined by the transition relation — C S x S such
that (I4,U4) —u (I, Up) if and only if (i) Inv(l4)(v4) and
Inv(lp)(Up) hold, and (ii) either
o (time elapse step) (1) lIp la,
Flow*(1)(¥a,d,v5) holds for some & > 0, or
o (discrete step) there is a transition ¢ = (L4, 0, act,lg)
T such that Clos(act)(Va, V) holds.
Given two hybrid automata, Hy
(L1, X, %1, Th, Invy, Flowy, Inity) and H,
(LQ,X,227T2,IHUQ, Flows, Inity), over a common set
X of variables, their parallel composition is the hybrid
automaton

and

(ii)

m

Hy ® Hy = (Ly X Ly, X, 51 U Sy, T, Inv, Flow, Init)

such that

o ((l1,12),0,act,(l},14)) € T if and only if

1) <l170'7 (lctl,li> e Ty, o ¢ Yo, Iy = ’2, and

act acty, meaning that if the automaton H;
executes a o-transition such that o is either 7 or
not in the synchronization alphabet of Hy, then Ho
does nothing;
(Ia,0,acta,lh) € Ty, 0 ¢ Xy, 1y =13, and act =
acto, i.e. the case symmetric to the previous one;
3) o 7£ T, <ll,0', U,Ctl,l/1> € Ty with act; = ()71,a1>,

(la, 0, acta, 1) € Ty with acte = <172,a2>, and

2)

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on May 24,2010 at 08:56:30 UTC from IEEE Xplore. Restrictions apply.

T (30 < ap)A i
(2 < 40)

enterR1 :
(21 =0)

lowerl:(z; = 19)

I
' c_must_raise
| true

i true true
I

I

I

.

an oo . .

e
el
-
-

raise : true

raising i

g <90) R !
©<yHA(G<10) [|
I

,

Fig. 1. A (partial) network of linear hybrid automata.
act = (Y1 UY3, 04 A ag), meaning that both au-

tomata execute a o-transition synchronously.

Inv({l1,12)) = Invi(ly) A Inva(lz) for each (l1,ls) €
L1 X L2.
Flow({l1,12))
<11,12> € Ly X Lo.
Init = ((19,19), B1 A B2) when Init; = (I9,5;) and
I7L7:t2 = <l8,[)’2>

As an example, consider the hybrid automata network “grc-
ver” (taken from the HyTech distribution [14]) partially shown
in Fig. 1. The location “far” in the automaton “trainl” has the
location invariant (z; < 0) and the flow predicate (i
1) A (g1 = 1). In the state in which “trainl” is in location
“T”, “controller” is in “down” and the variable x5 has value
10, the two automata can synchronize with the label “exitl”
and move to locations “far” and “c_must_raise”, respectively;
the other automata, which are not synchronizing with the label
“exitl”, do nothing.

Flowy(l1) A Flows(lz) for each

B. Symbolic Representation

In order to apply symbolic model checking to a finite
network Hi, ..., H; of linear hybrid automata, we represent
the transition relation — 5 for the composite automaton H =
H; ®...® Hj, symbolically without explicitly constructing
H. First, assume that each component automaton is of form
H, = (Lo, X, %4, Ty, Invy, Flow,, Init,) and define the set
of encoding variables as V := X U {locy, ..., loc;,} U A, where
each loc, is a variable with the domain L, used to represent
the current location of the automaton H,, and A is a set of
auxiliary encoding variables introduced to encode whether
a synchronizing transition is executed or not (see later for
details). Now the symbolic transition relation encoding for H
is a formula R over VU{#}UV" such that a valuation p for VU
{8}UV’ evaluates R to true iff the transition relation — 7 has a
step from the state ((p(loc1), ..., p(lock)), (p(z1), ..., p(xn)))

to the state ((p(locy),...,p(lock)), (p(x}), ..., p(x7,))). We
define one such R by considering 7-transitions, synchronizing
transitions, and time elapse steps separately. To simplify the

11

presentation, we use X, to denote the set U’;ZlEa of all
synchronization labels and T,, , = {t € T, |t = (I, 0, act,l')},
where o € X, U {7}, for the set of o-transitions in H,.

a) Local non-synchronizing transitions: For each com-
ponent automaton H, and for each 7-transition ¢
(l,7,act,l') € T, in H,, we define the encoding

E, (locg = 1) A Clos(act) A (locl, = 1U')A

A1§j§k77j¢(l(loc"j = locj).

()]

capturing the effect of H, executing ¢ and stating that the
other automata do nothing.

b) Synchronizing transitions: The discrete steps corre-
sponding to the execution of synchronizing transitions in
several automata is perhaps the most cumbersome to en-
code. Let 0 € ¥, be a synchronization label. Let J, =
{a€{l,...,k}| o € X,} be the set of indices of automata
in whose label set o occurs and define the complement of .J,
by Jo ={1,...,k}\ Jo.

First, the set of encoding variables is extended by having
the set A of auxiliary encoding variables to include a variable
Fire, , with the domain 7, , for each component automaton
H,. Intuitively, Fire, , = t if the o-transition ¢ is executed.

Given a o-transition ¢ = (I, 0, act,l') with act = (Y, a) in
an automaton H,, let Updated(t) = Y and define

U, (Fireqs =t) = (loca, =) Aa A (loc, =1'). (2)

In addition, we define a predicate Frame, , that evaluates
to true iff the frame conditions for the variable x are met,
i.e. either some o-transition that updates x is fired or the
variable keeps its current value. Formally,

Frame, , = (2' = x) V\/ \/ (Fireq,e =1t).

a€Jy t€T, o A€ Updated(t)

3

Note that if no o-transition updates z, then Frame, , := (x’
x). Now define the actual encoding by

E, = (/\jejo(loc;- = locj)> A (/\xe);Fr‘amez,g)/\
(/\aeJ” /\teT,,,,a “IJavt)

c) Time elapse steps: In time elapse steps the component
automata do not change their current locations but only time
passes in a way that respects the flow predicates of the
current locations of the automata. This can be captured by
the encoding

Es =(6>0)A /\1§a,§k ((loc; = locg) A /\leLQqJ“’Z) 5)

where W, = ((loca = 1) = Flow}(1)).
d) Putting it all together: We also define location invari-
ant constraint

Chyy = /\lgagk/\leL(, ((loca =)=]m/a(l))

that ensures that the location invariants of all automata hold
in the current state.

(C))

6)

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on May 24,2010 at 08:56:30 UTC from IEEE Xplore. Restrictions apply.

Building on the components described above, we can define
a compact symbolic transition relation for the composite
automaton H; ® ... ® Hj as

V'V BV B VE)ACkACh, ()

1<a<kteT, - ceny

R =

C. Computing Predicate Abstractions

Let a set ' = {y1,...,9m} of predicates be given. '
induces a partition on the set of states of the concrete system,
each partition containing all the states that assign the same
truth values to each predicate. Predicate abstraction defines
an abstract system having as states the (finite) set of truth
assignments to I'; a transition between two abstract states a;
and a; is possible iff there exist two concrete states s; and
s; such that the evaluation of the predicates in s; is a;, the
evaluation in s; is aj, and s; =5 s;.

Predicate abstraction can be symbolically represented by
associating to each predicate a corresponding Boolean vari-

able. Based on the corresponding vector P = (py,...,Dm),
we define the abstraction constraint
Cr=" N\ e Al <)) ®)

1<j<m

The abstract transition relation of the system obtained by
applying predicate abstraction to the given system is symbol-
ically represented by a Boolean formula R over PUP'. The
formula is equivalent to the following definition:

R:=3V,5,V': RACr.)

Similar considerations apply to the symbolic representation of
the initial states, and to the abstraction of the error states. How
to efficiently compute a quantifier-free Boolean presentation of
the above formula is the subject of the next sections.

III. HIGH-LEVEL STRUCTURAL ABSTRACTION

Our goal is to compute a quantifier-free presentation for the
abstract transition relation R over P U P’ defined by

R:=3V,5,V': RACr.

Because existential quantification does not distribute over the
conjunctions in (9) and (7), the computation of R can be
very expensive. However, when we push the invariant and
abstraction constraints in, and distribute the quantifier over
the resulting disjunctions, we obtain the disjunctive abstract
transition relation formulation

Rdisj = \/ \/ (3‘7, 0, ‘7/ By A Cry A Cl/nv A Cr‘) V
1<a<ktET,.,
\/ (3\7,5, V' Ey A Ciy ACliy A cr> v
oc€EXy

(317, 5, V"2 Es A Ciny A CLy A Cp> .

(10

While increasing the total formula size, this enables us to
decompose the computation of the abstract transition relation
into smaller computations. Moreover, it enables the application
of simplifications as the sub-problems have a simpler structure.

12

For instance, the disjunct encoding a local, non-synchronizing
T-transition ¢ = (I, 7, act,l’y € T, ; of a component automa-
ton H, is now of form

v,s v (locg =1) A an
/\me)Z\?(x/ =z) A (loc; =1"A
Ni<jch jallocs = locj)N
Ciy A C{m A Cp

an

where Y C X is the set of data variables updated by the action
act of the transition ¢. This formulation enables for the use of
the equalities to eliminate the quantified variables loc,, locfl,
loc; for each j # a and 2’ for each x € X \ Y, by applying
inlining (see Sec. IV-A).

Furthermore, this structure-based disjunctive formulation
has the benefit of making the formula-based techniques de-
scribed in the next section more efficient because the formulas
bound by the quantifiers have less constraints and the con-
straints reflect the structure and locality of transitions. For
instance, consider the system in Fig. 1 and assume that the
set of abstraction predicates I' is such that each predicate
involves variables used either (i) only in the automaton “gate”
or (ii) only in other automata. Now the computation of, e.g.,
the abstraction of the 7-transition in the automaton “trainl”
is partitioned into two parts automatically: (i) the effect of
firing the transition w.r.t. the automata “trainl”, “train2”,
and “controller”, and (ii) the effect w.r.t. “gate” (which after
inlining reduces effectively to stating that “gate” stays in the
same location).

Note that although structure-based disjunctive partitioning
enhances locality and structure exploitation, there are two
aspects that reduce transition and variable locality and thus
partly necessitate the formula-level techniques in Sec. IV.
First, location invariants of other component automata can
refer to variables owned by an automaton and thus control
its behavior. For instance, the enabledness of the 7-transition
from location “R” of automaton “trainl” is indirectly con-
trolled by the automaton ‘“controller” via the variable xi:
when “controller” is in location “up”, the transition cannot
be enabled. Second, the predicates can “globalize” a local
variable if the variable is correlated with (compared with or
assigned from/to, either directly or transitively) any non-local
variable. When variables are correlated with others, the part of
the CEGAR loop that deduces new predicates can introduce
predicates that mix the variables, even if they are local to
different automata. As an example, in Fig. 1 the variable g
is local to the automaton ‘“gate” and none of the transitions,
location invariants, or flow predicates that refer to g refers to
any other variable. But the time elapse steps implicitly connect
the flow predicates of the automata “gate” and “trainl” via the
variable J, and after executing the CEGAR loop few times a
predicate “y; := (9z1 + g < 261)” can be found and added to
the set of predicates. Because of this predicate, the abstraction
of local transitions of “trainl” cannot disregard the variables
and location invariants of “gate” like in the previous paragraph.

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on May 24,2010 at 08:56:30 UTC from IEEE Xplore. Restrictions apply.

A. Explicating Some Structural Invariants

We can make the individual disjuncts in Rdisj more
amenable to the low-level techniques described in the next
section by making some local structural invariants explicit in
the formula level. In the following we illustrate some typical
cases.

It is common in hybrid automaton that some variables
never change value in time elapse steps. This applies not only
to variables that are untimed by nature (e.g. counters, other
discrete data) but also to variables that are used to remember
and compute with the values of timed variables observed when
executing transitions (e.g. a variable can be used to remember
the oil temperature observed when the engine was started).
For such a variable z;, all the flow conditions Flow,(l) of one
component automaton H, (the one that conceptually owns the
variable) are of form “(#; = 0) A ...”. This allows us to make
the time elapse step specific invariant (z; = z;) explicit by
rewriting the encoding disjunct 3V, 8, V' : Es ANC ACly AC
to IV,8,V' : (¢} = ;) A Es A Ciy A Ch, A Cp. This
transformation helps the low-level abstractor to remove quan-
tified variables by applying inlining; on the pure formula level,
noticing that (2} = ;) always holds whenever Es holds would
not be this easy.

A similar case occurs when a variable x; is used as an “exact
clock” whose value changes linearly w.r.t. the elapsed time. As
an example, x; is such a variable in the automaton “trainl”
in Fig. 1. In this case, all the flow conditions Flow,(l) of one
component automaton H, (the one that conceptually owns the
clock) are of form “(& = ¢) A ...” for some fixed constants
¢ (usually ¢ = 1), allowing us to explicate the corresponding
conjunct (z; = x; + ¢ - J) in the time elapse step encoding
disjunct.

Furthermore, if all the o-synchronizing transitions in one
automaton include a common conjunct (e.g. a clock is always
reset with (z’ = 0)), then it can be explicated in the disjunct
encoding o-synchronization. For example, all the “exitl”-
synchronizing transitions in the “trainl” automaton in Fig. 1
include the conjuncts (z} < 0) and (y; = 0).

IV. LOW-LEVEL STRUCTURAL ABSTRACTION

In this section we discuss how the structured representation
obtained in previous section can be further simplified and eval-
uated to construct a Boolean presentation of the abstraction.
The low level simplification routines presented in the following
can also be used to simplify an unstructured description of a
predicate abstraction problem. The idea is to transform the
monolithic quantifier elimination problem into a sequence of
smaller problems. Compared to the techniques described in
previous section, operating on the automaton representation,
here the transformation steps work at the level of the syntax
of the formula. The simplifications are thus independent of the
input formalism, and are possibly able to exploit additional
structure of the original model by making cheap syntactic
transformations.

For an expression 3, let vars(/3) denote the set of variables
occurring in 3, and let 8]y +— «] denote a copy of 3 in which

13

every occurrence of the sub-expression v has been replaced
with a.

We work on a Boolean combination of formulas of the form
30 - ¢. We assume that there are no nested quantifiers, and all
free variables, that is the set Q := vars(¢) \ U, are Boolean.
When computing the abstract transition relation (10) of hybrid
automata, we have U = V UV’ U {6} and G C PU P

The simplification steps include inlining and syntactic con-
junct clustering, and the idea of clustering is further general-
ized by a technique we call variable sampling.

A. Inlining

From the abstraction equations (10) and (11) we see that the
matrix ¢ generally has the form of an n-ary conjunction. We
can identify some of the conjuncts that allow simplifying the
formula for less expensive quantifier elimination. The follow-
ing three equivalence-preserving transformations are applied
in sequence, until none of them is applicable.

1) 30 : BA (u=a) ~ TU : Bu al, where u € U and
« is an expression such that u ¢ vars(a).

30 : B A (g=a) — (g=a) A 30 - Blg + «], where
q € @, and o is a formula with vars(a) € Q \ {q}.
When applying this rule, we identify the formulas ¢ and
—q with ¢ < true and ¢ < false if necessary.

U : BA (vea) — TU: By « a] A (y&a), where
~ and o are formulas such that vars(y) N U # 0 and
vars(a) C Q This only has an effect if v occurs as a
sub-expression in [3.

2)

3)

Transformations 1 and 2 each eliminate a variable u or ¢
from the scope of the quantifier. Transformation 3 replaces
occurrences of a formula v with another formula « that does
not contain any variables from U.

As an example, consider the formula 3z,2" : (p1 < (z >
0))A (P} & (2' > 0))A(2" =). Using Transformation 1 with
u:= 2 and « := 2/, we inline the frame condition (2’ = x)
and obtain Jz,z’ : (p1 & (z > 0)) A (p] & (& > 0)).
Then, using Transformations 3 and 2 in this order, we get
first 3z, 2" : (p1 < (x > 0)) A (p] < p1) and then (p) <
p1) A3z, &’ 1 (p1 < (x> 0)). As a result, we have obtained
a frame condition for p; and eliminated p} and 2’ from the
scope of the quantifier.

B. Syntactic Conjunct Clustering

From the quantifier elimination problem 30 : ¢, where ¢
is an n-ary conjunction, we can identify clusters of conjuncts
such that each variable of U occurs in at most one of them.
Let us rearrange ¢ into conjuncts ¢g A ¢1 A--- A ¢, such that
¢ contains no variables from U ,and forall 1 <i < j <n,
the sets vars(¢;) N U and vars(¢p;) N U are disjoint. Then,
v - ¢ is replaced with the equivalent partitioned formula
o AU : ¢1)A---A@U : ¢,). This enables solving a
sequence of smaller quantifier elimination problems instead
of one large one even when the matrix ¢ is a conjunction.

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on May 24,2010 at 08:56:30 UTC from IEEE Xplore. Restrictions apply.

C. Variable Sampling

We are often able to benefit from a conjunctive partitioning
even if the conjuncts are not totally disjoint w.r.t. the set U.
This is particularly evident in the case of time elapse steps,
where the ¢ variable occurs in the same linear atom with many
or all data variables, preventing syntactic clustering. We notice,
however, that when ¢ is instantiated to a specific numerical
value, clustering wrt. the remaining variables may become
possible. In the general setting, assume that ¢ = ¢1 A~ A ¢,
and there is a subset W C 7 such that for all 1 <i1<j<n,
the set vars(¢;)Nvars(d;)NU is a subset of W. Then, 30U : ¢
is equivalent to W : ((HU'\W Ch) A AEFU\NW bn)).
The sub-problems Hﬁ\W : ¢; cannot be solved directly using
efficient SMT-based techniques [6], [7] when W contains non-
Boolean variables. However, if the values of all variables in
W are fixed, then the free variables in the sub-problems are all
Boolean, and the sub-problems can be solved in sequence. By
performing the quantifier elimination when W is fixed, we get
an under-approximation of 30 : ¢. The following procedure
shows that by sampling only a finite number of valuations of
W, we can accumulate the precise formula of 30 ¢, which
is then returned by the procedure.

a < false

2) while ¢ A —a is satisfiable:

3) w < a valuation of W that satisfies ¢ A\ ~«

4) aea\/Ehm(ﬁa/\/\KK" 30 : ¢, [W<—w])
5) end while

6) return a

On line 3, an SMT solver is used to discover a new valuation
of W. On line 4, the expression ¢;[W < w] denotes the
assignment of the values w to W in ¢;, and Elim is a
procedure that eliminates the quantifiers from its argument and
returns the resulting formula over Q The benefit is that Elim
can now exploit syntactic conjunct clustering and eliminate
the quantifiers in sequence.

The above procedure maintains the invariant that « is an
under-approximation of v - ¢. On the other hand, « is
equivalent to v . ¢ when the formula ¢ A —« is unsatisfiable,
and this is when the procedure returns. Termination of the loop
follows from the fact that on line 4, procedure Elim always
finds at least one new valuation of Cj that makes « false and
30U : ¢ true, and there is only a finite number of possible
valuations of the Boolean variables Cj

In abstraction problems originating from hybrid systems,
the set {8} is a good candidate for the set W . Effectively, this
means computing the abstraction of the time elapse step in
pieces, where each piece corresponds to a fixed value of §,
i.e. a fixed-length time interval.

D. Blocking Visited Models

Once the simplifications have been carried out, quantifier
elimination to the remaining parts is applied. We remark that,
when computing a disjunction of quantifications, it is possible
to restrict the search to the negation of the models computed
so far. This can pushed even further by considering that at
a certain point of the abstraction computation we may end

14

up with a formula of the form « V (y A 30 : ¢). where the
subformulas « and v do not contain quantifiers or variables
from U. A valuation of the free variables vars(¢)\U in 30U : ¢
is a don’t care if it entails a or —y. Thus, we can further
reduce the models the quantifier elimination has to enumerate
by computing the Boolean formula 30 : (v A —a A ¢).

V. RELATED WORK

In the Boolean setting, quantification is typically used for
the basic operation of Symbolic Model Checking, i.e. image
computation. Quantification procedures based on Binary Deci-
sion Diagrams (BDDs) have been aggressively optimized [15],
[16], [17]. Depending on the nature of the design under verifi-
cation, the corresponding transition relation was disjunctively
or conjunctively decomposed, and quantifiers were pushed
inside as to operate on possibly smaller BDDs. The above
transformations typically operate on the set of support of
BDDs. More recently, SAT-based quantifier elimination has
been investigated [18], [19], also in combination with BDD-
based techniques [20].

The preliminary idea of pushing quantifiers inside of con-
juncts and disjuncts for computing abstraction has been firstly
discussed in [21]. However, although the description was done
in a general settings, it was applied for abstracting finite
domains using BDD operations.

The idea of using decision procedures for computing ab-
stractions has been explored in [22], [23]. The work in [6]
improves over them by lifting DPLL-based quantification to
the case of SMT. The approach, referred to as All-SMT, is
based on the use of an SMT solver, which iteratively finds
models that satisfy the formula under the quantifier; each
satisfying assignment of the free (Boolean) variables is added
as a blocking clause, and the search is restarted until no more
models are found. The work in [7] attempts to overcome some
of the inefficiencies of [6] by combining BDD-based reasoning
and SMT techniques. Compared to the work presented in
this paper, both [6] and [7] tackle the problem of predicate
abstraction as a monolithic problem. We remark that, any of
these two techniques can be used as back-ends in the procedure
presented in this paper.

Several approaches trade precision for accuracy. In fact, [6]
also shows how to approximate the results. A similar line is
followed in [2], [24], where different approximate methods for
the computation of predicate abstractions are presented. The
main problem is that approximation in the abstraction may
lead to additional iterations in the CEGAR loop. In this paper,
we concentrate on the computation of the exact abstraction for
a given set of predicates.

Several approaches to software model checking rely on the
construction of an abstract space based on the availability of
predicates [25], [26]. In a sense, the approach is exploiting
the structure of the control flow graph to partition the problem
of computing the abstractions: the abstract system shares the
same control flow graph with the program being abstracted.
The main difference with our approach is in that here we
do not have a single sequential program, but rather a set of

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on May 24,2010 at 08:56:30 UTC from IEEE Xplore. Restrictions apply.

concurrent programs interacting via shared variables and with
global timed transitions, which poses additional difficulties.

Several notable abstraction mechanisms have been proposed
in settings other than predicate abstraction. The work by
Segelken [27] addresses abstraction for concurrent systems by
retaining the control structure of the automata being analyzed
but dropping information and over-approximating the transi-
tion relation. A similar approach is also used in [28] for timed
systems, and [29], [30] for hybrid systems.

VI. IMPLEMENTATION AND EXPERIMENTS

We have implemented the proposed techniques within an
extended version of the NuSMV model checker [8] that
allows for variables of type Real and is connected to the
MathSAT SMT engine [31]. This version allows for bounded
model checking, and a CEGAR loop based on predicate
abstraction. The proposed techniques have been implemented
as follows. The networks of automata have been described
as data structures in the Python programming language. The
high level abstraction is implemented as a Python front-end
that generates from the network of automata an abstraction
problem as a formula either in monolithic form R or dis-
junctive form Rgsj. The lower level computation engine is
implemented within NuSMYV, and relies on the formula manip-
ulation routines to implement inlining and syntactic conjunct
clustering. The quantifier elimination can either be performed
by the All-SMT functionalities provided by MathSAT, or by
hybrid techniques combining BDDs and SMT [7]. The variable
sampling procedure is obtained by integration with MathSAT.
In the implementation we exploit the incrementality provided
by MathSAT, so that learnt theory lemmas can be reused in
the different calls.

For the experimental evaluation, we considered two sets
of benchmarks. The first set is taken from the examples
distributed together with HyTech [14]. The predicates for
the abstraction of this set were found automatically using
the CEGAR loop in NuSMV while proving/disproving the
property. The second set is obtained by means of a script
that generates structured descriptions for networks of linear
hybrid automata; the examples contain non-synchronizing
and synchronizing transitions and flow constraints, and data
variables with a controlled amount of interdependencies. Each
predicate for abstraction corresponds to either a location of an
automaton being active or to a random linear atom being true.
In the experiments we varied the number of parallel automata
between 3 and 5, predicates between 13 and 37, data variables
between 3 and 39, and top-level disjuncts between 18 and 38.
The set contains 756 different models in total.

The problem we consider consists of the generation of
the (BDD representing the) transition relation of the system
obtained by precise abstraction with respect to the set of
predicates. In the experiments we disregard the computation
of abstract initial state and property formulas, since they are
in general much easier to obtain than the transition relation.

For each of the benchmarks, we compare the proposed ab-
straction techniques to the direct monolithic quantifier elimina-

15

TABLE 1
ABSTRACTION RESULTS FOR HYTECH MODELS.

computation time (s) sampling
Model |P| |V| |disj|| monol. partit. clust. sampl. |clu sam
active 34 5 27 | 54.626 18.847 2410 0937 |5 1
active-trace 34 7 27 | 51.781 22.171 2473 0952 |5 1
audio 30 6 15 | 13.826 4.547 0448 0442 | 2 2
audio-timing 29 7 15| 10910 3915 0947 0690 |2 6
billiard-timed |25 3 5 0910 0.732 0.732 1.044 | 2 13
dist-controller | 8 7 12 0.320 0.232 0.195 0.147 | 5 1
gre-ver 24 5 11 | 33.068 19.599 10.421 0455 | 4 8
new-grc 22 5 11 | 38.649 17.840 7.395 0383 | 4 7
railroad 16 3 8 0.170 0.140 0.131 0.112 | 2 5
reactor-clock 19 4 5 0.181 0.133 0.069 0.050 | 2 2
reactor-rect 17 4 5 0.132 0.112 0.051 0045 | 2 2

tion. When moving from monolithic to structural abstraction,
we incrementally enable the different techniques to assess
their effectiveness individually. In the experiments, we use
the MathSAT All-SMT quantifier elimination procedure. The
hybrid techniques of [7] shows similar trends. The benchmarks
were run on a cluster of Intel Xeon 5130 based machines, with
one CPU core allocated for each problem. In all runs, we used
a time out of 10 minutes and a memory limit of 1GB. The
software and models used in the experimental evaluation are
available at http://es.tbk.eu/people/roveri/tests/fmcad09/.
Table I shows the results for the HyTech automata. The
columns | P, |V|, and |disj| show the number of predicates, the
number of data variables, and the number of top-level disjuncts
in }N?,disj for each instance. The column “monol.” shows the run
time in seconds for computing the abstract transition relation
using monolithic All-SMT on the compact non-partitioned
formula R. The column “partit.” shows the run time with
disjunctive partitioning and inlining enabled. In the column
“clust.”, syntactic conjunct clustering is enabled in addition,
and in the column “sampl.”, also the variable sampling of
Sec. IV-C is used with W = {6}. The listed times are average
times over 9 identical runs given a fixed set of predicates. No
individual run time was more than 14% off the average. Some
HyTech models that were experimented with are omitted from
Table I, because in those cases the run time is less than 0.1 s
using all four approaches, with no measurable differences.
Fig. 2 shows corresponding run times for the randomly
generated hybrid automata. Each marker represents a network
of automata and a set of predicates, for which the abstract
transition relation was computed once using monolithic All-
SMT (run time shown on the x-axis), once using disjunctive
partitioning with inlining enabled (the y-axis of Fig. 2(a)),
and once with also syntactic conjunct clustering and variable
sampling wrt. the ¢ variable enabled (the y-axis of Fig. 2(b)).
The results clearly show that the presented techniques can
dramatically speed up the abstraction computation. Moreover,
the enabling of all the features together results in the biggest
improvement. We remark that the variable sampling technique
is able to increase the number of clusters in all of the HyTech
models of Table I (this is not generally always the case), and
this often makes the particularly expensive abstraction of the
time elapse step much more tractable. The rightmost columns

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on May 24,2010 at 08:56:30 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

- 0 E , ER E
s F , 1 2]
E o PN 1 E . 1
et 7/ = 7/
E0F =z 3 EF E
= SE 7 1 = °F 3
= F 4 4 F
g [o] § 2 F
P 3 i
b & E
F © 3 oo b
[7%] [e o 00 b
10 TR RTINS WU M- \\\HH" L \H\H‘ 10—1 L u‘?‘?ﬁ ERTETRETTTI - \HHH" L \Hm\
10'2 5 12 5102 51002 510 102 s 12 5102 51002 510
monol. run time / s monol. run time / s
Fig. 2. Abstraction computation times for randomly generated LHA.

“clu” and “sam” show the number of clusters resulting from
fixing 0 and the number of values of § that were sampled to
obtain the precise abstraction. Variable sampling wrt. variables
other than ¢ might give further speedup, but was not tested in
these experiments.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have tackled the problem of computing
precise predicate abstractions. We have proposed two main
contributions. On the high level, we have shown that it is pos-
sible to exploit several features common in standard modeling
languages in order to obtain high level simplifications. At the
low level, we propose to manipulate the logical formulation of
the abstraction problem with transformations such as inlining,
quantification push-in, and the novel variable sampling. This
divide-and-conquer approach results in simpler formulations,
that, as shown by the experimental evaluation, can be more
effectively computed.

The approach presented in this paper also enables for an
easy use of standard optimizations for image computation in
the abstract space, e.g. conjunctive and disjunctive partitioning
of the transition relation [15], [16], [17].

In the future, we will investigate the application of the
proposed techniques for the abstract reachability, according
to the lines defined in [22], and a formulation that is able to
provide incrementality for the abstraction-refinement loop.

ACKNOWLEDGEMENTS

The financial support of Helsinki Graduate School in Computer
Science and Engineering, Emil Aaltonen Foundation, Academy of
Finland (project 112016), and Technology Industries of Finland
Centennial Foundation is gratefully acknowledged. A. Cimatti and
M. Roveri are sponsored by the European Commission with project
FP7-2007-IST-1-217069 COCONUT.

[11

[2]

[3]

REFERENCES

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement for symbolic model
checking,” J. ACM, vol. 50, no. 5, pp. 752-794, 2003.

H. Jain, D. Kroening, N. Sharygina, and E. Clarke, “Word Level
Predicate Abstraction and Refinement for Verifying RTL Verilog,” in
Design Automation Conference (DAC), June 2005.

M. K. Ganai and A. Gupta, “Completeness in SMT-based BMC for
software programs,” in DATE. 1EEE, 2008, pp. 831-836.

16

[4]
[51
[6]

[71

[8]
[91

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,”
in CAV, ser. LNCS, vol. 1254. Springer, 1997, pp. 72-83.

C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, “Satisfiability modulo
theories,” in The Handbook of Satisfiability. 10S Press, 2009.

S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras, “SMT techniques for
fast predicate abstraction,” in CAV, ser. LNCS, vol. 4144. Springer,
2006, pp. 424-437.

R. Cavada, A. Cimatti, A. Franzén, K. Kalyanasundaram, M. Roveri, and
R. K. Shyamasundar, “Computing predicate abstractions by integrating
BDDs and SMT solvers,” in FMCAD. 1EEE C. S., 2007, pp. 69-76.

A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: A
new symbolic model checker,” STTT, vol. 2, no. 4, pp. 410-425, 2000.
R. Alur, T. Dang, and F. Ivanci¢, “Predicate abstraction for reachability
analysis of hybrid systems,” ACM Transactions on Embedded Computing
Systems, vol. 5, no. 1, pp. 152-199, 2006.

, “Counterexample-guided predicate abstraction of hybrid systems,”
Theoretical Computer Science, vol. 354, pp. 250-271, 2006.

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theor. Comp. Sci., vol. 138, pp. 3-34, 1995.
R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic symbolic verification
of embedded systems,” IEEE Trans. on Sw. Eng., vol. 22, no. 3, pp. 181—
201, 1996.

T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: a model checker
for hybrid systems,” STTT, vol. 1, pp. 110-122, 1997.

“HyTech: The HYbrid TECHnology tool,” May 2009, http://embedded.
eecs.berkeley.edu/research/hytech/.

J. R. Burch, E. M. Clarke, and D. E. Long, “Symbolic model checking
with partitioned transition relations,” in VLSI 91, ser. IFIP Transactions.
North-Holland, 1991, pp. 49-58.

R. K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. K. Brayton,
“Efficient BDD algorithms for FSM synthesis and verification,” in
IEEE/ACM Proc. International Workshop on Logic Synthesis, May 1995.
D. Geist and I. Beer, “Efficient model checking by automated ordering
of transition relation partitions,” in CAV, ser. LNCS, no. 818. Springer,
1994, pp. 299-310.

K. L. McMillan, “Applying SAT methods in unbounded symbolic model
checking,” in CAV, ser. LNCS, vol. 2404. Springer, 2002, pp. 250-264.
M. K. Ganai, A. Gupta, and P. Ashar, “Efficient SAT-based Unbounded
Symbolic Model Checking Using Circuit Cofactoring,” in /CCAD.
IEEE Computer Society / ACM, 2004, pp. 510-517.

O. Grumberg, A. Schuster, and A. Yagdar, “Hybrid BDD and All-SAT
Method for Model Checking,” in Symposium on Satisfiability Solvers
and Program Verification (SSPV), Seattle, USA, Aug. 2006.

E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and
abstraction,” ACM Trans. Program. Lang. Syst., vol. 16, no. 5, pp. 1512—
1542, 1994.

S. K. Lahiri, R. E. Bryant, and B. Cook, “A symbolic approach to
predicate abstraction,” in CAV, ser. LNCS, vol. 2725. Springer, 2003,
pp. 141-153.

S. K. Lahiri, T. Ball, and B. Cook, “Predicate abstraction via symbolic
decision procedures,” in CAV, ser. LNCS, vol. 3576. Springer, 2005,
pp. 24-38.

D. Kroening and N. Sharygina, “Image computation and predicate
refinement for RTL Verilog using word level proofs,” in DATE. ACM,
2007, pp. 1325-1330.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstrac-
tion,” in POPL. ACM, 2002, pp. 58-70.

E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “SATABS:
SAT-based predicate abstraction for ANSI-C,” in TACAS, ser. LNCS,
vol. 3440. Springer, 2005, pp. 570-574.

M. Segelken, “Abstraction and counterexample-guided construction of
w-automata for model checking of step-discrete linear hybrid models,”
in CAV 2007, ser. LNCS, vol. 4590. Springer, 2007, pp. 433-448.

S. Kemper and A. Platzer, “Sat-based abstraction refinement for real-
time systems,” ENTCS, vol. 182, pp. 107-122, 2007.

A. Tiwari, “Abstractions for hybrid systems,” Formal Methods in System
Design, vol. 32, no. 1, pp. 57-83, 2008.

M. Frinzle, “Verification of hybrid systems,” in CAV, ser. LNCS, vol.
4590. Springer, 2007, p. 38.

R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani,
“The MathSAT 4SMT Solver,” in CAV, ser. LNCS, A. Gupta and
S. Malik, Eds., vol. 5123. Springer, 2008, pp. 299-303.

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on May 24,2010 at 08:56:30 UTC from IEEE Xplore. Restrictions apply.

