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Abstract. This paper presents a new framework for checking bounded reachabil-
ity properties of asynchronous systems by reducing the problem to satisfiability
in difference logic. The analysis is bounded by fixing a finite set of potential
events, each of which may occur at most once in any order. The events are speci-
fied using high-level Petri nets. The proposed logic encoding describes the space
of possible causal links between events rather than possible sequences of states
as in Bounded Model Checking. Independence between events is exploited in-
trinsically without partial order reductions, and the handling of data is symbolic.
Experiments with a proof-of-concept implementation of the technique show that
it has the potential to far exceed the performance of Bounded Model Checking.

1 Introduction

Design errors in concurrent hardware and software systems are notoriously difficult
to find. This is due to the tremendous number of possible interleavings of events and
combinations of data values. Symbolic model checking methods [7] attack the problem
by expressing the actual and desired behavior of a system as formulas and using the
tools of computational logic to search for a possible failure.

In this paper, we develop a new symbolic technique for verifying bounded reacha-
bility properties of asynchronous discrete-event systems. Instead of manipulating exe-
cutions as sequences of states, we take an event-centered viewpoint. First, one fixes a
collection of transitions, each of which describes one discrete step of execution. This
collection is called an unwinding of the system. We only consider finite-length execu-
tions in which each transition of the unwinding occurs at most once, in whichever order.
From the unwinding, we generate automatically a formula that is satisfiable if and only
if a predefined condition, e.g. division by zero, can be reached within this bounded set
of executions. For satisfiability checking, any SAT or SMT solver [18] can be used
as long as it can handle the data constraints of transitions. If the reachability property
holds within the bound, a witness execution can be extracted from an interpretation that
satisfies the formula. Otherwise, longer executions can be covered by adding more tran-
sitions to the unwinding and generating a new formula. This technique will be called
Bounded Event Tracing.
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The approach is similar to Bounded Model Checking (BMC) [2]. Both methods can
find bugs and report no false alarms, but they cannot be used as such to prove the
absence of bugs in realistic systems. Unlike BMC, the new technique directly exploits
the defining aspect of asynchronous systems: each transition accesses only a fraction of
the global state of the system. Although the generation of optimal unwindings is not yet
pursued in this work, Bounded Event Tracing is shown to be able to outperform BMC
on several benchmarks.

In the next section, we will go through the central concepts with an extensive ex-
ample. Section 3 defines unwindings as a class of high-level Petri nets [15] that allows
concise modeling of concurrency and software features. The logic encoding is presented
in Sect. 4, while Sect. 5 discusses the relationship to other approaches. In Sect. 6, we de-
sign one way to automatically generate unwindings for a class of state machine models
and use these unwindings in an experimental comparison to BMC.

2 Bounded Event Tracing by Example

Figure 1a presents a system with three concurrent processes that run indefinitely. Sup-
pose the reachability property in question is whether the system can ever print “equal”.
The execution in Fig. 1b shows that the property holds: after one cycle of process F
and two cycles of G, both x and y have the value 9, and process H then runs the print
statement. The circles represent the values of variables in states M1,M2, . . ., and the
rectangles f , g1, g2, and h represent the atomic execution of one cycle of process F , G,
G, and H , respectively.

Figure 1c shows a related high-level Petri net. We can interpret Fig. 1b as a finite
execution of the Petri net as follows. The transition (rectangle) named init occurs first,
producing a token in each of the places (circles) pj , px , and py , which correspond to
the variables of the system. This leads to a state M1, in which each place pj , px , and py
contains one token that carries a value 3, 2, or 5, respectively. Transition f occurs next,
consumes the token from place py and produces a new token with value 9. This results
in a state M2. Then, transition g1 simultaneously consumes a token from each place pj
and px , and uses their values to produce new tokens. Finally, the state M5 is reached.

This is an example of a one-off execution of the Petri net. Generally, a one-off ex-
ecution is a finite sequence that starts with a state in which no place contains a token.
Then, a transition occurs, consuming exactly one token with each input arc (an arrow
from a place to the transition) and producing exactly one token with each output arc (an
arrow from the transition to a place) while fulfilling the data constraints. This leads to a
new state and so on, as usual in Petri nets. The only distinctive requirement is that each
transition occurs at most once in the sequence. The transitions that occur in a one-off
execution are its events.

A Petri net whose set of one-off executions specifies a bounded portion of the be-
havior of a system is called an unwinding of the system. We assume that we are given
an unwinding whose one-off executions map easily to finite-length executions of the
original system. The unwinding of Fig. 1c has another one-off execution consisting of
the sequence init , g2, h of events. This corresponds to processG running one cycle and
then process H printing “equal”. In total, this unwinding covers all executions of the
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a) Initially: j ← 3 ; x ← 2 ; y ← 5

Process F : Process G: Process H:
while true: while true: while true:

y ← 9 x ← x + j ; j ← j + 1 if x = y: print “equal”
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Fig. 1. An example system and illustrations of its behavior

system in which process F runs at most one cycle, processG at most two cycles, andH
at most one cycle, in any possible order.

We observe that every token consumed during a one-off execution has been pre-
viously produced. Figure 1d illustrates this idea for the one-off execution of Fig. 1b.
Transition g1 consumes the token with value 2 produced by init , whereas the token
with value 5 in place pj is not consumed at all. The numeric values and dashed arrows
inside the big circles in Fig. 1d constitute an example of what we call a token trace
of the unwinding. The token trace tells us some facts about the course of events. By
following the arrows, we see that init occurs before g1, which occurs before g2, but we
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cannot infer whether f occurs before or after, say, g2. A token trace generally fixes only
a partial order of events. Figure 1e illustrates another token trace of the same unwind-
ing. This time, transitions f and g1 do not occur at all. We can check that this token
trace describes the second one-off execution discussed above.

It turns out that by specifying a simple set of rules for constructing a token trace of a
fixed unwinding, we can characterize the set of all one-off executions of the unwinding.
In other words, an unwinding induces a set of one-off executions and a set of token
traces, and there is a meaningful correspondence relation between the two sets. We
can thus reduce the search for a one-off execution with a certain property to finding
a corresponding token trace. Given an unwinding, its token traces are defined by the
following rules.

1. A token trace consists of events, links (dashed arrows), and data values.
2. A subset of the transitions of the unwinding are chosen to be events.
3. Each output arc of each event is associated with a single token with a value.
4. Each input arc of each event is linked to an output arc of an event.
5. No two input arcs are linked to the same output arc.
6. The data constraints of all events are fulfilled by the values of tokens.
7. The links impose a partial order on the events.

Figure 1f contains a third attempt at a token trace of the same unwinding. However,
there are several problems. First, transitions f and h are consuming the same token at
place py . This breaks rule 5—an input arc denotes a destructive read operation. Sec-
ond, transition h poses as an event although it gets no input from place px , breaking
rule 4. Third, there is an illegal cycle, illustrated in thick arrows, that breaks rule 7:
event g1 produces a token with value 6, then g2 consumes it and produces a token with
value 4, which in turn is consumed by g1. No chronological ordering of the occurrences
agrees with the picture. Any of these three mistakes suffices to tell that Fig. 1f does not
represent a valid token trace.

A model checking procedure. The discussion above suggests the following procedure
for checking reachability properties of an asynchronous system. Generate an unwinding
such that one-off executions of the unwinding map to finite executions of the system,
and the property corresponds to the occurrence of a designated transition t�. Generate
automatically a formula that encodes the rules for a token trace of the unwinding and
add the constraint that t� is an event. Feed the formula to an off-the-shelf satisfiability
solver. If the formula is satisfiable, convert the satisfying interpretation to a token trace
and further to an execution that witnesses the property. If the formula is unsatisfiable,
expand the unwinding to cover more executions of the system, and start over.

Assembling unwindings. Figure 1c demonstrates a rudimentary way of obtaining un-
windings, with a place for each variable and a transition or several identical transitions
for each atomic action that the system can perform. However, we expect to gain better
performance by further exploiting the versatility of Petri nets. In general, one can set up
arcs in arbitrary configurations, and the number of tokens in a place needs not be fixed.
With the multitude of possible design choices, it is generally not obvious how to find
the best way to generate unwindings for a given class of systems.
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Figure 1g shows another unwinding that covers the same set of executions as the
previous one. The labels o, o′, and e do not contribute to the semantics—they only name
some arcs for later reference. A token in place pg0, pg1, or pg2 denotes the fact that
process G has executed 0, 1, or 2 cycles, respectively. The token carries a meaningless
value denoted by •. This solution breaks the symmetry of transitions g1 and g2, and has
allowed us to inline the fixed values j1 = 3 and j2 = 4 in g1 and g2 and to eliminate
the place pj . In Sect. 6, we will use similar ideas in an automated unwinding scheme.

Another change in Fig. 1g is that transition h is incident to two test arcs (lines with
cross bars close to each end). A test arc represents a non-destructive read operation.
It is like an input arc but does not consume the token, and it is usually behaviorally
equivalent to a pair of input and output arcs. The use of test arcs is optional, but they
may result in a more efficient encoding. The following rules need to be added for token
traces. Each test arc is linked to an output arc, and multiple test arcs plus at most one
input arc can be linked to the same output arc. The partial order must be such that a
transition that tests a token occurs after the transition that produces the token. A third
transition can consume the token, but it must occur after the testing transition. The token
trace of Fig. 1g imposes a partial order that obeys these rules. In particular, because of
the links within place px , transition h occurs after g1 and before g2.

3 Semantics of Unwindings

We will use the following notations for formalizing unwindings and token traces. For
a function f : X → Y , sets A ⊆ X , B ⊆ Y , and an element y ∈ Y , we adopt
the usual notation f(A) := {f(x) | x ∈ A}, f−1(B) := {x ∈ X | f(x) ∈ B},
and f−1(y) := f−1({y}). We will use types, variables, and expressions to model data
manipulation in systems. Each type is identified with the set of elements of the type; in
particular, the Boolean type is B = {false, true}. Every variable v and expression φ has
a type type(v) or type(φ). The set of variables in an expression or a set of expressions φ
is denoted by vars(φ). A binding of a set V of variables maps each variable v ∈ V to
a value d ∈ type(v). If φ is an expression and b is a binding of (a superset of) vars(φ),
the value of φ in b, denoted by φb, is obtained by substituting b(v) for each occurrence
of a variable v ∈ vars(φ) in the expression and evaluating the result. We will not fix
a concrete language for expressions—the choice of a proper language depends on the
problem domain and on the capabilities of the satisfiability solver used.

A multiset M over a set U is a function U → N, interpreted as a collection that
contains M(u) indistinguishable copies of each element u ∈ U . A multiset M is finite
iff the sum

∑
u∈U M(u) is finite. When the base set U is clear from the context, we

will identify an ordinary set A ⊆ U with the multiset χA over U , defined as χA(u) = 1
if u ∈ A and χA(u) = 0 otherwise. If M1 and M2 are multisets over U , then M1 is a
subset of M2, denoted M1 ≤ M2, iff M1(u) ≤ M2(u) for all u ∈ U . A multiset M
contains an element u ∈ U , denoted u ∈ M , iff M(u) ≥ 1. We will use M1 + M2

and M2 − M1 with their usual meanings (as functions) to denote multiset union and
multiset difference, respectively. The latter is defined only if M1 ≤ M2.

A binary relation ≺ over a set X is a strict partial order iff it is irreflexive, asym-
metric, and transitive, that is, iff for all x, y, z ∈ X (i) x ≺ y implies not y ≺ x and
(ii) x ≺ y and y ≺ z together imply x ≺ z.
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3.1 Colored Contextual Unweighted Petri Nets

Colored Petri Nets [15] are a powerful language for the design and analysis of dis-
tributed systems. In this work however, we use Petri nets with restricted semantics to
specify a bounded portion of the behavior of a system. Our variant is called Colored
Contextual Unweighted Petri Nets, or “nets” for short. The word contextual means that
nets can contain test arcs [5], allowing compact modeling of non-destructive read oper-
ations. By unweighted we mean that each arc is associated with a single token instead
of a multiset of tokens as in Colored Petri Nets. This restriction is crucial for the encod-
ing, but does not seriously weaken the formalism. Places can still contain multisets of
tokens, and multiple arcs can be placed in parallel to move several tokens at the same
time.

Definition 1. A net is a tuple N = 〈Σ, P, T, Ain , Atest , Aout , place, trans, colors ,
guard , expr〉, where

1. Σ is a set of non-empty types (sometimes called color sets),
2. P is a set of places,
3. T is a set of transitions,
4. Ain is a set of input arcs,
5. Atest is a set of test arcs,
6. Aout is a set of output arcs,
7. P , T , Ain , Atest , and Aout are all pairwise disjoint,
8. place is a place incidence functionAin ∪Atest ∪Aout → P ,
9. trans is a transition incidence functionAin ∪Atest ∪Aout → T ,

10. the set trans−1(t) is finite for all t ∈ T ,
11. colors is a color function P → Σ,
12. guard is a guard function over T such that for all t ∈ T , guard(t) is an expression

with type(guard(t)) = B and type(vars(guard(t))) ⊆ Σ,
13. expr is an arc expression function over Ain ∪ Atest ∪ Aout such that for all

arcs a, expr(a) is an expression with type(expr (a)) = colors(place(a)) and
type(vars(expr (a))) ⊆ Σ,

A net is finite iff P and T are finite sets. For a transition or a set of transitions t and a
place or a set of places p, we use the shorthand notations

in(t) := Ain ∩ trans−1(t) , in(p) := Ain ∩ place−1(p) ,

test(t) := Atest ∩ trans−1(t) , test(p) := Atest ∩ place−1(p) ,

out(t) := Aout ∩ trans−1(t) , out(p) := Aout ∩ place−1(p) ,

vars(t) := vars(guard(t)) ∪
⋃

a∈trans−1(t)

vars(expr (a)) .

In the net of Fig. 1g, we have place(o) = py , trans(o) = init , test(py) = {e},
out(pg1) = {o′}, place(in(g2)) = {px , pg1}, colors(py) = Z, expr(e) = yh,
guard(h) = (xh=yh), vars(h) = {xh, yh}, and vars(init) = ∅. We omit vacuously
true guards, so guard(f) = true implicitly. Also, colors(pg1) is implicitly the type {•}
with only one meaningless value, and expr(o′) is the constant expression •.
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A token element is a pair 〈p, d〉, where p ∈ P is a place and d ∈ colors(p) is a value.
A marking M is a finite multiset over the set of token elements. Markings represent
states of the system. The interpretation is that if M(〈p, d〉) = n, then place p contains n
tokens of value d in state M .

A binding element is a pair 〈t, b〉, where t ∈ T is a transition and b is a binding of
vars(t). The shorthand consumed〈t,b〉 :=

∑
c∈in(t)

{
〈place(c), expr(c)

b〉
}

will mean
the multiset of token elements consumed by a binding element, while produced 〈t,b〉 :=∑

o∈out(t)
{
〈place(o), expr (o)

b〉
}

means the multiset of produced token elements. A
binding element 〈t, b〉 is enabled in a markingM iff the following conditions hold.

1. consumed〈t,b〉 ≤ M ,

2. 〈place(e), expr(e)
b〉 ∈

(
M − consumed 〈t,b〉

)
for all e ∈ test(t), and

3. guard(t)
b

= true.

The binding element can occur in the marking iff it is enabled in the marking, leading to
a new marking M ′ = M − consumed 〈t,b〉 + produced 〈t,b〉. We denote by M [t, b〉 M ′
the fact that the binding element is enabled inM and leads fromM toM ′ if it occurs. A
finite occurrence sequence of a net is a finite sequence M0 [t1, b1〉 M1 · · · [tk, bk〉 Mk

such that k ≥ 0 and Mi−1 [ti, bi〉 Mi holds for each 1 ≤ i ≤ k.

3.2 Unwindings and One-Off Executions

We define an unwinding to be any net N = 〈Σ,P, T, . . . , expr〉 that fulfills the two
constraints below.

1. Transitions do not share variables: when t ∈ T and u ∈ T are distinct, vars(t) ∩
vars(u) = ∅. We can always achieve this by renaming variables if necessary, as
done in Fig. 1c by using subscripts.

2. Every place is incident to an output arc: out(p) 
= ∅ for all p ∈ P . This is not a cru-
cial restriction either: places with no incident output arcs are useless in unwindings
and can be eliminated.

These constraints are just technicalities—the true restriction is that the transitions of
an unwinding are treated as potential events: each of them occurs once or not at all.
Thus, we define a one-off execution of an unwinding as a finite occurrence sequence
M0 [t1, b1〉 M1 · · · [tk, bk〉 Mk such that M0 = ∅ and ti 
= tj for all 1 ≤ i < j ≤ k.
The set {t1, . . . , tk} is the event set of the one-off execution. A transition t ∈ T
is one-off reachable iff it is an event in some one-off execution. For example, the
unwinding of Fig. 1c has a one-off execution M0 [init , binit 〉 M1 [f, bf〉 M2, where
M2 = {〈pj , 3〉, 〈px , 2〉, 〈py , 9〉}, the binding binit is empty, and yf

bf = 5. The initial
marking M0 is fixed to be empty, but we work around this by specifying the starting
conditions with a transition init that necessarily occurs once in the beginning of any
non-trivial one-off execution.

3.3 Token Traces

Let us formalize the rules presented in Sect. 2 for a token trace.
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Definition 2. A token trace of an unwinding N = 〈Σ,P, T, . . . , expr〉 is a tuple R =
〈E, src, b〉, where

1. E ⊆ T is a finite set of events,
2. src is a source function in(E) ∪ test(E) → out(E) such that

(a) place(a) = place(src(a)) for all arcs a ∈ in(E) ∪ test(E) and
(b) src(c1) 
= src(c2) for all input arcs c1, c2 ∈ in(E) such that c1 
= c2,

3. b is a binding of vars(E), called the total binding, such that
expr(a)b = expr(src(a))b for all arcs a ∈ in(E) ∪ test(E),

4. guard(t)
b

= true for all events t ∈ E,
5. there exists a strict partial order ≺ over the set E such that

(a) trans(src(a)) ≺ trans(a) for all arcs a ∈ in(E) ∪ test(E) and
(b) trans(e) ≺ trans(c) for all test arcs e ∈ test(E) and input arcs c ∈ in(E)

such that src(e) = src(c).

Relating to Sect. 2, the source function forms the links between the arcs, while the
total binding takes care of the data constraints. According to item 3, the arc expression
at each end of a link must evaluate to the same value, i.e. the value of the token. As
vars(E) is a disjoint union of the variables of each event, b can bind the variables of
each event independently. Item 5 above says that the events can be ordered in such a
way that each token is produced before any event consumes or tests it, and a token is
not tested during or after its consumption. Any strict partial order over (a superset of)
E that fulfills item 5 will be called a chronological partial order of the token trace.

Figure 1g portrays a token trace where E = T , yf
b = xh

b = 5, src(e) = o,
src(in(E)) ∩ out(g2) = ∅, and necessarily init ≺ g1 ≺ h ≺ g2. One of f ≺ g2 and
g2 ≺ f can be true, or both can be false, but not both true.

From a one-off executionM0 [t1, b1〉 M1 · · · [tk, bk〉 Mk, we can construct a token
trace by conjoining b1, . . . , bk to a total binding and tracing each consumed or tested
token to its source. The interleaving t1 ≺ t2 ≺ · · · ≺ tk then gives a chronological
partial order. Conversely, we can take a token trace and linearize its chronological partial
order to obtain a one-off execution. These constructions constitute the proof of the
following theorem. See the report [8] for details.

Theorem 1. Given an unwindingN and a finite subset E of transitions, there is a one-
off execution of N with event set E if and only if there is a token trace of N with event
set E.

4 Encoding Token Traces

Let N = 〈Σ,P, T, . . . , expr〉 be a finite unwinding. We are interested in whether a
transition t� ∈ T is one-off reachable, or equivalently, whether there is a token trace
of N whose event set contains t�. In this section, we will construct a formula that is
satisfiable if and only if such a token trace exists.

A formula φ is satisfiable iff there is an interpretation I such that φI is true. In
this context, an interpretation is a binding of the symbols in the formula. In proposi-
tional satisfiability (SAT), the formula only contains propositional (Boolean) symbols
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and Boolean connectives. Extensions known as SMT [18] also allow non-Boolean con-
straints. For example, an interpretation I satisfies the formula

∧
j∈J (Xj < Yj), where

the Xj and Yj are symbols of real type, if and only if Xj
I is less than Yj

I for all j ∈ J .
The formula will be built using the following set of symbols:

– for each t ∈ T , a propositional symbol Occurt (“transition t occurs”),
– for each t ∈ T , a symbol Timet of type R (“when transition t occurs”),
– for each pair o ∈ Aout , a ∈ Ain ∪Atest such that place(o) = place(a), a proposi-

tional symbol Linko,a (“arc a is linked to arc o”), and
– for each v ∈ vars(T ), a symbol Valv of type type(v) (“the value of v”).

We get an interpretation from a token trace 〈E, src, b〉 by setting Occurt
I to true iff t ∈

E, setting Linko,a
I to true iff o = src(a), letting Valv

I := vb, and assigning the values
Timet

I according to some chronological partial order ≺. Because the symbols Timet are
used for ordering and not arithmetic, we could as well type them as e.g. integers instead
of reals. The detailed constructions from a token trace to a satisfying interpretation and
vice versa are in the report version [8].

The formula ε below (denoted by ε∅ in the report [8]) encodes the rules for a token
trace in terms of the introduced symbols. Checking the existence of a token trace con-
taining the event t� then reduces to checking the satisfiability of the formula ε∧Occurt� .

ε :=
∧

t∈T

γt ∧
∧

a∈Ain∪Atest

(
βa ∧

∧

o∈out(place(a))

ψo,a

)
∧

∧

p∈P

δp . (1)

The subformulas γt and βa encode items 4 and 2a of Definition 2. For a guard or
arc expression φ, we use the special notation φvals to denote the substitution of each
variable v ∈ vars(T ) with the symbol Valv.

γt := Occurt → guard(t)
vals

,

βa := Occurtrans(a) →
∨

o∈out(place(a))

Linko,a .

The subformula ψo,a places constraints on linking arc a to output arc o, namely that
trans(o) must be an event, and items 5a and 3 of Definition 2 must hold.

ψo,a :=
(
Linko,a → Occurtrans(o)

)
∧

(
Linko,a → (Timetrans(o) < Timetrans(a))

)
∧

(
Linko,a → (expr(o)

vals
= expr (a)

vals
)
)
.

The constraints in δp are required to make sure that tokens consumed from a place p are
indeed removed. We encode items 2b and 5b of Definition 2 as

δp :=
∧

o∈out(p)

AtMostOne
({

Linko,c

∣∣ c ∈ in(p)
})

∧

∧

o∈out(p)

∧

e∈test(p)

∧

c∈in(p)

(
Linko,e ∧ Linko,c → (Timetrans(e) < Timetrans(c))

)
,

where AtMostOne (Φ) denotes a formula that is true iff exactly zero or one formulas
in the finite set Φ are true. This can be expressed in size linear in |Φ|.
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4.1 Properties of the Encoding

The principal motivation for formula (1) is that it can be used for model checking reach-
ability properties.

Theorem 2. Let N = 〈Σ,P, T, . . . , expr〉 be a finite unwinding and let t� ∈ T be
a transition. Then, t� is one-off reachable if and only if the formula ε ∧ Occurt� is
satisfiable.

The proof [8], which is based on Theorem 1, is constructive and can be used to extract
witness executions.

Concerning compactness, the formula ε contains one instance of each guard and
arc expression of the unwinding, so there is no duplication involved here. The rest of
the encoding adds a term O(|out(p)| (1 + |in(p)|)(1 + |test(p)|)) to the size for each
place p. The encoding is thus locally cubic in the number of arcs incident to a place, or
quadratic if there are no test arcs. We could generally avoid the cubic formulation by
replacing every test arc with a behaviorally equivalent pair of input/output arcs. Such a
transformation is always sound, except when it is possible that some transition accesses
a single token with two different test arcs—a presumably rare construct. However, there
are two reasons for not dropping test arcs out of the formalism. First, if the arcs inci-
dent to place p are mostly test arcs (the number of test arcs is at least of the order
|out(p)| |in(p)|), then the quadratic encoding size obtained by eliminating test arcs can
be actually larger than the original cubic size. Second, input/output arc pairs can in-
troduce unnecessary orderings of successive non-destructive read operations. Consider
duplicating transition h in Fig. 1g. In a token trace, several copies of h can have their
test arcs linked to the same output arcs without imposing an ordering of the copies.
If input/output arcs are used instead as in Fig. 1c, any token trace necessarily fixes an
ordering of the copies of h because successive copies have to be linked to each other.
Thus, a single token trace represents a smaller set of interleavings if test arcs have been
eliminated. Further experiments are needed to determine whether the smaller encoding
size compensates for the potentially larger search space in satisfiability solving.

Apart from the inner parts of guards and arc expressions, our encodings are examples
of difference logic formulas. General difference logic allows inequalities of the form
var i < varj + constant , but here the constant term is always zero. Such inequalities
offer us a very compact way to rule out all illegal cycles of the form t1 ≺ t2 ≺ · · · ≺
tn ≺ t1. Many SMT solvers support difference logic natively, and often the solver
implementation is indeed based on illegal cycle detection [13]. Another possibility is
to encode the inequalities in propositional logic [21] and use a SAT solver. As the
constant term is always zero in our formulas, the size increment using the encoding [21]
is O(|T |3) instead of exponential as in the worst case. The report [8] shows how to
further reduce the size by exploiting the absence of inequalities under negations.

5 Comparison to Related Work

A straightforward way to apply Bounded Model Checking [2] to an asynchronous sys-
tem is to unroll its interleaving transition relation k times to cover all executions of k
steps [16]. Consider a system that performs one of n possible atomic actions in each
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step. The BMC view of executions corresponds to Fig. 1b. The long horizontal lines
represent the realizations of frame conditions, which are parts of the formula that say
when a variable must maintain its value. Because of unrolling, the BMC formula de-
scribes kn potential events, and only k of them are scheduled to occur. Furthermore, the
notion of fixed time points means that insignificant reorderings of independent events,
e.g. changing the order of Fig. 1b into g1→g2→f→h, result in completely different
interpretations of the SAT formula, potentially encumbering the solver.

In contrast, the encoding of token traces contains no frame conditions for conveying
data over time steps, and no time points between independent transitions. Instead, the
inputs and outputs of transitions are directly linked to each other. The selection of links
is nondeterministic, which incurs some encoding overhead, and there are the potentially
costly constraints for ordering the transitions. Using kn potential events, we can cover
executions up to length kn instead of k, but this depends on the unwinding.

There have been several proposals for making BMC better suited to asynchronous
systems. Using alternative execution semantics [16,9], several independent actions can
occur in a single step of BMC, allowing longer executions to be analyzed without con-
siderably increasing the size of the encoding. In [22], partial order reductions are imple-
mented on top of BMC by adding a constraint that each pair of independent actions can
occur at consecutive time steps only in one predefined order. An opposite approach [14]
is to start BMC with some particular interleaving and then allow more behavior by it-
eratively removing constraints. As Bounded Event Tracing is inherently a partial order
method, there is no need for retrofitted reductions.

Ganai and Gupta present a concurrent BMC technique [12] based on a similar kind
of intuition as this paper. Individual BMC unrolling is applied to each thread of a mul-
tithreaded program, and all globally visible operations are potentially linked pairwise,
with constraints that prevent cyclic dependencies. Lockset analysis is proposed for re-
ducing the number of potential links. In the encodings of single threads, various BMC
techniques are needed to avoid blowup. Bounded Event Tracing uses places to local-
ize the communication between concurrent components, but [12] does not support this.
Instead, operations in different threads can be linked even if there is no causal relation
between them, and every thread has a local copy of all global variables. A similar, glob-
ally quadratic encoding would result from an unwinding where global communication
goes through a single place that holds a vector of all global variables, with incident
input arcs for accessing the vector and output arcs for restoring the possibly modified
vector.

The CBMC approach [6] unwinds (up to a bound) the loops of a sequential C pro-
gram, converts it to static single assignment form, and encodes the constraints on the
resulting set of variables. A version for threaded programs [20] is based on bounding
also the number of context switches. Each global read operation is conditioned on the
number of context switches that have occurred so far, with the help of explicit sym-
bols in the encoding for representing the value of each global variable x after i context
switches. This value is in turn conditioned on the location where x is assigned the last
time before the ith context switch. The encoding is geared towards the possibility of
finding a witness with a low number of context switches. As in [12], a context switch
involves copying all global variables to another thread. In contrast, the read operations
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in Bounded Event Tracing are conditioned directly on where the latest write operation
occurred, with no intermediate encoding symbols that keep the data values between
writing and reading.

CheckFence [4] is also based on CBMC-like unwinding of individual C threads
and additional constraints for modeling the communication between threads. Although
CheckFence is designed to find bugs specifically under relaxed memory models, an en-
coding of the ordinary sequential memory model is used as a baseline. Unlike in [12,20],
context switches are not made explicit in the encoding. Instead, there are symbols en-
coding the potential causal relations between individual read and write operations, much
like the potential links in Bounded Event Tracing. A global memory order plays the
same role as the chronological partial order in this paper. The proposed encoding (de-
tails in [3]) is cubic in size and is in many ways similar to what we would obtain by
consistently using test arcs for read operations and input/output arcs for write opera-
tions as in Fig. 1g. The possibility of a quadratic-size encoding or the decoupling of
producing and consuming values are not discussed in [4,3].

A completely different symbolic technique for concurrent systems is based on un-
foldings [11], which are partial-order representations of state spaces as (infinite) low-
level Petri nets of a fixed form. Model checking is performed by taking a suitable finite
prefix of an unfolding and encoding its behavior and the desired property in SAT. As
unfoldings are acyclic, the encoding is simple. Although an unfolding represents in-
terleavings implicitly, every possible control path and every nondeterministic choice
of data is explicitly present, and in practice, the generation of the unfolding prefix is
the most expensive part. We could obtain unwindings directly from unfoldings, but this
would mean to abandon symbolic data and arbitrary connections between places and
transitions.

6 Unwindings of State Machine Models

As a proof of concept, we will sketch a simple mechanical unwinding scheme for a
class of state machine models and use it in an experimental comparison to Bounded
Model Checking. Our input is a subset of the DVE modeling language, which is used
e.g. by the model checking benchmark set Beem [19].

A DVE system consists of fixed sets of communication channels and processes, and
the behavior of a process is defined by control locations connected with edges (Fig. 2a).
An action of a system is either (i) the simultaneous firing of two edges in different pro-
cesses such that one edge is labeled with ch! and the other with ch?, where ch is the
name of a channel, or (ii) the firing of a τ -edge, i.e. one not labeled with a channel.
Edges can additionally be labeled with guard expressions (in square brackets) and as-
signments to local or global variables. The treatment of other important system features,
such as arrays and buffered channels, is left for future work.

The first step is to obtain a new unwound system that contains cycle-free copies of
the original processes. For each process, we perform a depth-first search from the ini-
tial location to identify a set of retreating edges [1], i.e. those that complete a control
flow cycle (e.g. all edges leaving location wa in Fig. 2a). For each location s, the cor-
responding unwound process has the distinct locations s0, s1, . . . , sL until some loop
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Fig. 2. Process scheduler and its unwinding
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Fig. 3. Test runs of BMC (�) and Bounded Event Tracing (◦) on four benchmarks
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boundL. For each edge s → s′, the unwound process has the edges si → s′i for all i, or
si → s′i+1 in the case of a retreating edge to guarantee acyclicity. Figure 2b illustrates
the expansion. With these design choices, the unwound system behaves like the original
one but the number of cycles executed in each process is bounded.

A Petri net unwinding (Fig. 2c) is then constructed from the unwound system by
defining a pair of places s�, s⊗ for each location s of each unwound process, and a
transition for every possible action. The places contain the values of all local variables
that are live (see [1]) in the corresponding location. For example, a token with value
(1, 0) in place wa�1 or wa⊗1 in Fig. 2c means that the location wa1 is active with d = 1
and r = 0. A location s is always entered through s� and exited through s⊗, and we
add a single trivial transition in the middle (transition w in Fig. 2c). This construct
makes the encoding smaller by eliminating the quadratic number of potential links be-
tween the entering and exiting arcs. Transition t in the figure corresponds to the τ -edge
from wa1 to to2. The edge labeled with finish? is modeled with several transitions
(f and f ′ in Fig. 2c), one corresponding to each finish!-labeled edge elsewhere in the
unwound system. These transitions thus also connect to places that belong to the other
processes. In the resulting unwinding, two transitions associated with the same pro-
cess either have a fixed mutual ordering, or they exclude one another. Global variables
would be modeled as in Fig. 1g, using a single place for each variable. Assuming that
the reachability property—like in many Beem benchmarks—is whether any location
in some set {s1, . . . , sN} can become active, we add new places and transitions as in
Fig. 2d and check whether t� is a one-off reachable transition.

6.1 Experimental Evaluation

Bounded Event Tracing with the above unwinding scheme was applied to some of the
Beem benchmarks [19] that fit in the described subset, possibly after minor modifi-
cations such as replacing arrays with multiple scalar variables or adding a reachabil-
ity property. The same properties were also checked using Bounded Model Checking
with a transition relation formula that follows the structure of the interleaving encoding
in [9]. In both approaches, Yices 1.0.22 64-bit (http://yices.csl.sri.com/)
was used for solving satisfiability modulo bit vectors and difference logic, running on
one core of an Intel Xeon 5130 processor. The results for four benchmarks that exhibit
typical behavior are plotted in Fig. 3. Each triangular marker corresponds to a BMC
instance with bound k. Each circle marks a Bounded Event Tracing instance with loop
boundL, using the same value of L for all processes for simplicity. Filled markers mean
satisfiable cases, i.e. the discovery of a witness execution. The horizontal axes denote
the (non-cumulative) median CPU time used by the solver over 11 runs. The range of
fluctuation in CPU times was generally small compared to the difference between the
methods; the exceptions are specified below. Some of the instances timed out at the
limit of 900 seconds. The vertical axes show the number of states of the original system
reachable within each unwinding or BMC bound. The states were counted by running
an explicit-state model checker on an instrumented system. Selected instances are an-
notated with the bound k or L, the number of encoded potential events |T |, which in
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the case of BMC is k times the number of different actions the system can perform, and
the circuit size |ε| of the formula given to the solver.

In Fig. 3a, an unwinding with loop bound 2 is sufficient for finding a witness of more
than 30 steps, while using on average less CPU time (ranging from 1.0 to 4.9 seconds)
and covering a larger number of states than the corresponding BMC instance. Figure 3b
shows a benchmark where Bounded Event Tracing covers states faster than BMC, and
the relative speed-up increases with the bound. In Figs. 3c and 3d, BMC is the faster
method. In these cases, the number of transitions in the unwindings is much higher
than the number of states reached, which indicates that the used unwinding scheme
can result in the inclusion of many unnecessary transitions, mainly due to the design
choices of a fixed system-wide loop bound L and quadratic-size modeling of channel
synchronization. Furthermore, many of the resulting large number of transitions are
connected to a common place that models a global variable, causing unwieldy growth
in the formula size. Possibly because of this, there were also four individual Bounded
Event Tracing runs of the production cell benchmark that exceeded the median CPU
time by a factor of more than 20.

The technical report [8] presents another set of experiments, in which Bounded Event
Tracing with an alternative encoding is shown to outperform BMC on a family of mod-
els with very simple control flow but heavy dependence on a global variable.

7 Conclusions and Future Work

Bounded Event Tracing offers a new, well-defined framework for symbolically check-
ing reachability properties of asynchronous systems. The analysis is bounded by a finite
unwinding that fixes a collection of potential events that may occur but leaves the order
of occurrences open. Unwindings are formalized as high-level Petri nets because the
semantics of Petri nets rises naturally from the underlying concepts. The reachability
problem is translated to a fragment of difference logic. The hard work is done by a SAT
or SMT solver.

The technique incorporates ideas from Bounded Model Checking and unfoldings.
Like in BMC, data handling is symbolic, but we avoid many pitfalls of BMC caused by
viewing an execution of an asynchronous system as a sequence synchronized by fixed
time steps. Like unfolding methods, Bounded Event Tracing has partial order reductions
built in, but without the advance cost of explicit branching at every choice point.

Using a simple automated unwinding scheme, Bounded Event Tracing already per-
forms better than interleaving BMC on a number of benchmark systems, but evident
bottlenecks in the unwindings remain. In particular, the undirected expansion of un-
windings easily becomes impractical when processes are tightly coupled with global
variables. Interesting future research topics include better guidance of the expansion
of unwindings e.g. using reachability information from smaller unwindings, integrating
the expansion with incremental SAT solving [10], modeling interprocess communica-
tion more compactly, exploiting nested loops when unwinding control flow, modeling
collections such as arrays or message queues using a place that contains a multiset of
index-value pairs, and incorporating abstraction techniques [17] in some form to bet-
ter cope with software features. The conjecture is that the construction of unwindings
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allows for much greater flexibility than, say, adjusting the bound or the transition rela-
tion formula in BMC, and that we can gain significant improvements in speed by using
a sophisticated unwinding scheme.
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