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Abstract

A compact symbolic encoding is described for the tran-
sition relation of systems modeled with asynchronously exe-
cuting, hierarchical UML state machines that communicate
through message passing and attribute access. This enables
the analysis of such systems by symbolic model checking
techniques, such as BDD-based model checking and SAT-
based bounded model checking. Message reception, com-
pletion events, and run-to-completion steps are handled in
accordance with the UML specification. The size of the en-
coding for state machine control logic is linear in the size of
the state machine even in the presence of composite states,
orthogonal regions, and message deferring. The encoding
is implemented for the NuSMV model checker, and prelimi-
nary experimental results are presented.

1. Introduction

Model checking [7] is an automatic way of verifying that
a hardware or software system fulfills its behavioral require-
ments. In symbolic model checking, the behavior of a sys-
tem is analyzed by manipulating sets of states instead of in-
dividual states, often leading to remarkable speedup in veri-
fication time. A prerequisite for applying standard symbolic
techniques is a symbolic encoding for the transition relation
of the system.

The main contribution of this paper is a compact sym-
bolic encoding for the control logic of communicating UML
state machines [21]. This directly enables one to use state-
of-the-art symbolic model checking techniques such as
BDD-based [17] and bounded model checking [4] on UML
systems composed of asynchronously executing, message
passing state machines. The encoding is implemented in a

∗This work has been financially supported by Tekes (Finnish Fund-
ing Agency for Technology and Innovation), Nokia, Conformiq, Mipro,
Helsinki Graduate School in Computer Science and Engineering, and the
Academy of Finland (project 112016).

tool that translates UML models to the input language of
the symbolic model checker NuSMV [6]. In the perspective
of Model Driven Engineering (MDE), the presented encod-
ing is in principle sufficient for analyzing system models in
early design phases when they do not yet contain too many
data structures but only a communication skeleton. Ana-
lyzing models in later design phases requires in practice the
use of model reduction techniques such as slicing and ab-
straction in addition.

The second contribution is that we give an accurate se-
mantics for the subset of UML models we consider. The
semantics is well suited for symbolic model checking be-
cause it (i) fixes the atomicity level, (ii) does not contain
any pseudo-code but works directly on the state space level,
and (iii) handles asynchronously executing objects, classes,
and data (including signal parameters often omitted in sim-
ilar works) in an abstract yet exact level without fixing the
actual action description language or the type system. Spe-
cial care is taken to formalize run-to-completion steps in
accordance with [21, 23].

The main criterion for the selected UML subset is that
it is suitable for describing systems composed of asyn-
chronously executing objects communicating with mes-
sage passing, such as communication protocols. Therefore,
asynchronous signal events are included in the subset but
synchronous call events are not. Of UML state machine fea-
tures we support (i) state hierarchy, which is important for
compactness and clarity of models, (ii) deferring of mes-
sages, (iii) completion events, (iv) concurrent composite
states, and (v) initial and choice pseudostates. The only
restriction is that we do not allow concurrent substates to
react to the same signal because we feel that it is an inferior
way of intra-object synchronization. As a result, the seman-
tics becomes easier to understand and to use as a basis for
model checking and code generation.

Note that one way to deal with hierarchical state ma-
chines is to flatten the hierarchy away as a preprocessing
step. However, in the presence of concurrent composite
states, this can result in an exponential blowup in the num-
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ber of states of the flattened state machine. If there are no
concurrent composite states (or history pseudostates), then
flattening will not add new states but the number of transi-
tions can become quadratic in the size of the original state
machine. The encoding presented here is not based on flat-
tening but instead builds on the hierarchical structure of
states. As a result, the control logic encoding can be rep-
resented in linear size w.r.t. the original state machine.

1.1. Related Work

A lot of research has already been done both on the se-
mantics and on symbolic encodings of UML state machines,
see e.g. [3, 8] for surveys. In the following we compare our
work to the most relevant works in these areas.

The semantics presented in this paper is most closely re-
lated to that in [16]. The main difference is that while [16]
presents a pseudo-code algorithm that executes UML mod-
els, the semantics in this paper is presented as a relation be-
tween successive configurations of the system. In our opin-
ion such a relation based representation is a better basis for
developing symbolic encodings as it makes it explicit what
a single step of execution is.

A semantics for hierarchical UML state machines is pre-
sented in [14], but signal parameters and data manipulation
are not discussed. In [24], the semantics is refined and a
superlinear size symbolic encoding is presented. However,
the processing of event queues is not thoroughly explained.

As a part of a larger EU project, [9] presents a symbolic
transition relation for UML state machines (including call
events which are not considered in this paper) but does not
handle hierarchy or deferring of events.

In [2], a semantics for UML state machines and an ap-
proach for applying an interactive theorem prover is given.
Choice pseudostates, signal parameters, and deferring of
events are not supported, and the interaction between con-
currently executing state machines is not discussed. A
translation from UML state machines to NuSMV programs
is sketched in [20], but completion events are not supported
and signal parameters, deferring of events, handling of tran-
sition priorities, concurrent composite states, or the exact
semantics of state machines are not discussed in detail.

The semantics in [13] is based on translating the full
UML 2.0 state machine language to (superlinear size) “core
state machines”. The granularity of the execution seman-
tics is much finer than in this work, and we are not aware of
symbolic encodings based on [13].

Furthermore, none of [13, 9, 14, 20, 24] seem to han-
dle completion events in full accordance with [21, 23]; see
Sect. 2.2 on “quiescent states” below.

2. A UML Subset and its Semantics

This section defines the class of UML systems consid-
ered in this paper. In a nutshell, a UML system is com-
posed of a finite set of objects that are instances of classes
in the underlying UML model. The objects can communi-
cate with each other via asynchronous message passing and
by accessing each other’s attributes. The behavior of each
object is described by the hierarchical state machine associ-
ated with the class of the object.

We feel that a detailed formal definition such as the one
below is justified and valuable in order to ensure correct
handling of non-trivial features of UML state machines in-
cluding hierarchy, deferring and implicit consumption of
messages, message parameter reception, completion events,
and quiescing.

2.1. Types, Signals, and Classes

As the focus of this article is on UML state machines,
other relevant parts of UML models, e.g. data attribute ma-
nipulation, are defined only in a very abstract way.

To capture data types in UML models, a finite set T of
types is assumed, each type T ∈ T being associated with a
non-empty domain set dom(T ). In particular, the Boolean
type B with dom(B) = {false, true} belongs to T . A typed
variable is a name x associated with a type type(x) ∈ T .
The guards and effects appearing in state machines are ex-
pressed with a strongly typed action language L over the
types; LB ⊂ L denotes the set of side-effect free Boolean
valued expressions and LStmt ⊂ L the set of (possibly com-
pound) statements. One example of such an action language
is given in [10].

As usual, the set of all finite sequences over a set X is de-
noted by X∗. If a = 〈a1, . . . , ak〉 ∈ X∗, b = 〈b1, . . . , bl〉 ∈
X∗, and x ∈ X , then dequeue(a) = 〈a2, . . . , ak〉 (un-
defined if k = 0), append(a, x) = 〈a1, . . . , ak, x〉, and
concat(a, b) = 〈a1, . . . , ak, b1, . . . , bl〉.

Objects can communicate with each other by sending
messages built over a finite set Sigs of signals. Each sig-
nal sig ∈ Sigs is associated with a list params(sig) =
〈Tsig,1, . . . , Tsig,ksig 〉 ∈ T ∗ of parameter types. A mes-
sage is of the form sig [v1, . . . , vksig ], where sig ∈ Sigs
and each vi ∈ dom(Tsig,i); the set of all messages is de-
noted by Msgs . Message reception in state machines is
denoted by signal triggers of the form sig(x1, . . . , xksig ),
where sig ∈ Sigs and each xi is a typed variable with
type(xi) = Tsig,i. The set of all signal triggers is denoted
by Trigs .

A class is a pair C = 〈attrs , sm〉, where Attrs(C) =
attrs is a finite set of typed variables called attributes and
SM (C) = sm is the state machine of the class.

2



2.2. State Machines

The behavior of an instance of a class (i.e. an object)
is described by the associated state machine. Formally, a
hierarchical UML state machine is a structure

sm = 〈S, R, top, container , T , defers〉,

where

• S is a finite set of state vertices partitioned into simple
states Ssi , composite states Sco , final states Sfi , initial
pseudostates Sin , and choice pseudostates Sch ;

• R is a finite set of regions (disjoint from S);

• top ∈ R is the unique top region;

• container : (S ∪R\{top}) → (S ∪R) describes the
state hierarchy of the state machine;

• T is a finite set of transitions; and

• defers : (Ssi ∪Sco) → 2Sigs assigns each state a (pos-
sibly empty) set of deferrable signals.

For each v ∈ S ∪ R, define descendants(v) ={
v′ ∈ S ∪ R \ {top} | ∃i > 0 : container i(v′) = v

}
and

children(v) = {v′ ∈ S ∪ R \ {top} | container (v′) = v}.
The state hierarchy must be a connected tree, i.e.
descendants(top) = S ∪ R \ {top} must hold. It is
required that the container of each non-top region is a com-
posite state, and that the container of each state vertex is a
region. Furthermore, each region must contain exactly one
initial state, i.e. ∀r ∈ R : |children(r) ∩ Sin | = 1,
and each composite state at least one region,
i.e. ∀s ∈ Sco : children(s) �= ∅. If a composite
state contains more than one region, then it is called
concurrent. Two state vertices s1, s2 ∈ S are orthogonal,
denoted s1 ⊥ s2, if there are distinct regions r1, r2 ∈ R,
r1 �= r2 such that container (r1) = container(r2),
s1 ∈ descendants(r1), and s2 ∈ descendants(r2).
A set S ⊆ S of state vertices is consistent iff for any
two distinct state vertices s1, s2 ∈ S either s1 ⊥ s2,
s1 ∈ descendants(s2), or s2 ∈ descendants(s1).

As an example, consider the state machine in Fig. 1. A2

is a concurrent composite state with container (A2) = top
and children(A2) = {r1, r2}, where r1 and r2 are re-
gions. B2 is a simple state with defers(B2) = {e} and
container(B2) = r1. The choice pseudostate B3 and the
final state C4 are orthogonal. The state set {A2, B1, C2} is
consistent while {A3, D2, D3} is not.

A transition t in the set T of transitions is a tuple

〈s, σ, g, e, s′〉 ∈ (S\Sfi )×(Trigs∪{τ})×LB×LStmt×(S\Sin ).

We define source(t) = s, guard(t) = g, effect(t) = e,
and target(t) = s′. The container container(t) of t is

r1

r2

B2
B1

A2

C1
C2 C3

A3

D1

D2

D3

t11: e(p)

t14: d(x)

t7: [x!=0]

A1

B3e/defer

r3

B4

t13: e(p)

t15:

t16: q(y)/x=x+y;

t8: d(x) t9: [x==0]

t10: e(p)[p>3]/x=0;

t18: [x==3]
C4

t17: r()/send ack(x) to peer;

Figure 1. A UML state machine.

the smallest (w.r.t. the partial order induced by container )
region such that {s, s′} ⊆ descendants(r). If σ =
τ , we say that t is a completion transition and define
triggersig(t) = τ . Otherwise, σ = sig(x1, . . . , xksig )
and we define triggersig(t) = sig . In this work, the for-
mal parameters x1, . . . , xksig are required to be attributes in
the associated class. In UML, only completion transitions
can leave pseudostates: source(t) ∈ Sin ∪ Sch implies
triggersig(t) = τ . We require that transitions originating
from orthogonal states are not triggered by the same signal:
for all t1, t2 ∈ T , if triggersig(t1) = triggersig(t2) �= τ ,
then source(t1) ⊥ source(t2) must not hold.

In Fig. 1, t10 = 〈B2, e(p),p>3,x=0;, D3〉 is a transi-
tion with container(t10) = top. The completion transi-
tion t15 has container(t15) = r2, guard(t15) is implicitly
true, and effect(t15) = skip, where skip is a pseu-
dostatement that does nothing.

State Configurations. A state configuration of the state
machine is a pair

sc = 〈A, Q〉,
where the set A of active state vertices is a maximal con-
sistent subset of S and Q ⊆ A is a set of quiescent states.
The intuition is that a state is in Q if it has already con-
sumed its implicit completion event. A completion event
of a state is consumed either by firing an outgoing com-
pletion transition or, if the guards of all completion transi-
tions evaluate to false, by quiescing the state, after which
the completion transitions will not become enabled even if
the guards become true. This construction (from [16]) accu-
rately models the requirement that the guards of completion
transitions will not be evaluated again without re-entering
the state. This requirement [21, p. 572] is made more ex-
plicit in [23, p. 659]. For example, state C3 in Fig. 1 can
become quiescent if x==3 does not hold, and then t18 will
not become enabled even if the value of x is changed to 3.

Because completion events are only relevant for states
with outgoing completion transitions, we only define qui-
escence status for the set of completion sensitive states
SCS = {s ∈ Ssi ∪ Sco | ∃t ∈ T s.t. source(t) =
s and triggersig(t) = τ}. Thus, Q is always a subset of
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A ∩ SCS . A state s ∈ SCS is ready to consume its comple-
tion event in sc, denoted by ceready(sc, s), if

1. it is active but not quiescent: s ∈ A \ Q, and

2. it is either (i) a simple state: s ∈ Ssi , or (ii) a compos-
ite state with all its regions in final states: s ∈ Sco and
∀s′ ∈ A : container(container (s′)) = s ⇒ s′ ∈ Sfi .

A state configuration sc = 〈A, Q〉 is

• in compound transition, denoted by inct(sc), if it con-
tains an active pseudostate: A ∩ (Sin ∪ Sch) �= ∅,

• in run-to-completion (RTC) step, denoted by
inrtc(sc), if (i) it is in compound transition, or
(ii) there is a completion sensitive state that is ready to
consume its completion event in it, and

• stable, denoted by stable(sc), if it is not in RTC step.

A UML state machine consumes messages from its input
queue only when it is in a stable state configuration.

Consider again the state machine in Fig. 1. The state
C3 is the only completion sensitive state in it. The pair
〈{A2, B2, C3}, {C3}〉 is a stable state configuration, while
the state configuration 〈{A2, B3, C3}, {C3}〉 is in com-
pound transition. The state configuration 〈{A2, B2, C3}, ∅〉
is in RTC step (but not in compound transition) because the
state C3 is ready to consume its completion event in it.

The default entry completion of a state vertex s ∈ S, de-
noted by dec(s), is the smallest maximal consistent subset
of Sco∪Sin ∪{s} such that s ∈ dec(s). In the state machine
in Fig. 1, dec(A3) = {A3, D1}, dec(D3) = {A3, D3},
dec(C3) = {A2, B1, C3}, and dec(A2) = {A2, B1, C1}.

Given a state configuration sc = 〈A, Q〉 and a transition
t ∈ T with source(t) ∈ A, the t-successor of sc is

succ-conf (sc, t) = 〈A′, Q′〉,

where A′ = (A \ D)∪ (dec(target(t)) ∩ D), Q′ = Q \ D,
and D = descendants(container (t)). In the state ma-
chine in Fig. 1, the t10-successor of the state configura-
tion 〈{A2, B2, C3}, {C3}〉 is 〈{A3, D3}, ∅〉 while the t11-
successor of 〈{A2, B4, C3}, {C3}〉 is 〈{A3, D1}, ∅〉.

2.3. Systems and State Spaces

We consider a UML system to consist of a finite set of
objects O, each object o ∈ O being associated with the class
Class(o) that it is an instance of. A global configuration of
the system is a tuple

gc = 〈stateconf gc, attrvalsgc, inputqgc, deferqgc〉,

where

• stateconf gc maps each object o to the current state
configuration of its state machine SM (Class(o)),

• attrvalsgc maps each object o to a function giving
each attribute x ∈ Attrs(Class(o)) its current value
in dom(type(x)), and

• inputqgc, deferqgc : O → Msgs∗ describe the con-
tents of the input and deferred queues, respectively, of
each object.

For convenience, let StateConf (gc, o) = stateconf gc(o),
AttrVal(gc, o, x) = attrvalsgc(o)(x), InputQ(gc, o) =
inputqgc(o), and DeferQ(gc, o) = deferqgc(o). The set
of all global configurations is denoted by GC.

Given a side-effect free Boolean expression φ in LB,
eval(gc, o, φ) evaluates it in the context of a global con-
figuration gc and an object o, and returns false or true.
Given a statement γ in LStmt, exec(gc, o, γ) executes it in
the context of gc and o, and returns a new global con-
figuration gc′ with the restrictions that, for each o′ ∈
O, (i) the state machine configuration is not modified:
StateConf (gc′, o′) = StateConf (gc, o′), (ii) messages
cannot be removed from the input queue: InputQ(gc, o′)
is a prefix of InputQ(gc′, o′), and (iii) the deferred queue
is not modified: DeferQ(gc′, o′) = DeferQ(gc, o′).

UML requires that for each pseudostate, there is always
at least one outgoing transition whose guard is true [21,
p. 540]: ∀gc ∈ GC, ∀o ∈ O, ∀s ∈ Sin ∪ Sch : ∃t ∈ T
s.t. source(t) = s and eval(gc, o, guard(t)) = true.

State Spaces. The actual semantics of a UML system
is given by its state space that describes how the system
may evolve from one global configuration to another. Each
atomic step between global configurations corresponds to
one object either firing one transition, deferring a message,
or implicitly consuming a message or a completion event.
The UML run-to-completion semantics for individual state
machines is followed as messages can only be consumed in
stable state configurations. Formally, the state space of a
UML system is the tuple

〈GC, gc init, Δ〉,

where gc init ∈ GC is the initial configuration, and Δ ⊆
GC × A × GC is the minimal transition relation defined
by the following rules (A being a set of possible annota-
tions). Assume an object o ∈ O, that SM (Class(o)) =
〈S, R, top, container , T , defers〉 and let sc = 〈A, Q〉 =
StateConf (gc, o).

• Signal Triggered Transitions. Assume a transition
t = 〈s, sig(x1, . . . , xk), g, e, s′〉 ∈ T . The tran-
sition instance 〈o, t〉 is enabled in gc, denoted by
enabled(gc, 〈o, t〉), if
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– the state configuration is stable: stable(sc),

– the source state is active: s ∈ A,

– InputQ(gc, o) = 〈sig [v1, . . . , vk], . . .〉,
– eval (gc�, o, g) = true, where gc�

is equal to gc except that the mes-
sage sig [v1, . . . , vk] has been received:
InputQ(gc�, o) = dequeue(InputQ(gc, o)) and
∀1 ≤ i ≤ k : AttrVal(gc�, o, xi) = vi,

– no prioritized transition is enabled [21, p. 565]:
�t′ ∈ T : source(t′) ∈ descendants(s) ∩ A ∧
enabled(gc, 〈o, t′〉), and

– the message is not deferred at a deeper level:
�s′′ ∈ descendants(s) ∩ (Ssi ∪ Sco) ∩ A :
sig ∈ defers(s′′).

If enabled(gc, 〈o, t〉) holds, then 〈gc, 〈o, t〉, gc′〉 ∈
Δ, where gc′ is equal to gc ′′ = exec(gc�, o, e)
except that StateConf (gc′, o) = succ-conf (sc, t)
and the deferred queue is flushed to the input
queue: DeferQ(gc ′, o) = 〈〉 and InputQ(gc′, o) =
concat(DeferQ(gc, o), InputQ(gc ′′, o)).

• Deferring. If no transition instance is enabled, then
the first message in the input queue can be deferred.
Formally, the deferring instance 〈o, DEFER〉 is enabled
in gc, denoted by enabled(gc, 〈o, DEFER〉), if

– the state configuration is stable: stable(sc),

– InputQ(gc, o) = 〈sig [v1, . . . , vk], . . .〉,
– �t ∈ T : enabled(gc, 〈o, t〉), and

– there is an active state deferring the message:
∃s ∈ (Ssi ∪ Sco) ∩ A : sig ∈ defers(s).

If enabled(gc, 〈o, DEFER〉) holds, then
〈gc, 〈o, DEFER〉, gc′〉 ∈ Δ, where gc′ is
equal to gc except that InputQ(gc′, o) =
dequeue(InputQ(gc, o)) and DeferQ(gc ′, o) =
append(DeferQ(gc, o), sig [v1, . . . , vk]).

• Implicit consumption. If the first message in the
input queue is not consumed by a transition or de-
ferred, it can be implicitly consumed. Formally,
enabled(gc, 〈o, IMPCONS〉) holds if

– the state configuration is stable: stable(sc),

– InputQ(gc, o) = 〈sig [v1, . . . , vk], . . .〉,
– �t ∈ T : enabled(gc, 〈o, t〉), and

– enabled(gc, 〈o, DEFER〉) does not hold.

If enabled(gc, 〈o, IMPCONS〉) holds, then
〈gc, 〈o, IMPCONS〉, gc′〉 ∈ Δ, where gc′ is
equal to gc except that InputQ(gc′, o) =
dequeue(InputQ(gc, o)).

• Completion transitions. Implicit completion events
are consumed until a stable state configuration is
reached. Formally, if t = 〈s, σ, g, e, s′〉 ∈ T and
σ = τ , then the completion transition instance 〈o, t〉
is enabled in gc, denoted by enabled(gc, 〈o, t〉), if

– the source is active: s ∈ A,

– either (i) the source is a pseudostate: s ∈
Sin ∪ Sch or (ii) the state configuration is in
RTC step but not in compound transition and the
source state s ready to consume its completion
event: ¬inct(sc) ∧ inrtc(sc) ∧ s ∈ Ssi ∪ Sco ∧
ceready(sc, s), and

– the guard condition holds: eval(gc, o, g) = true.

If enabled(gc, 〈o, t〉) holds, then 〈gc, 〈o, t〉, gc′〉 ∈
Δ, where gc′ is equal to exec(gc, o, e) except that
StateConf (gc′, o) = succ-conf (sc, t).

• Quiescing. If a state s ∈ SCS is ready to con-
sume its completion event but no outgoing completion
transition is enabled, the state can quiesce (i.e. im-
plicitly consume the completion event). Formally,
enabled(gc, 〈o, QUIESCEs〉) holds if

– the state configuration is in RTC step but not in
compound transition: inrtc(sc) ∧ ¬inct(sc),

– the state is active and ready to consume its com-
pletion event: s ∈ SCS∩A ∧ ceready(sc, s), and

– �t ∈ T : source(t) = s ∧ triggersig(t) = τ ∧
enabled(gc, 〈o, t〉).

If enabled(gc, 〈o, QUIESCEs〉) holds, then
〈gc, 〈o, QUIESCEs〉, gc′〉 ∈ Δ, where gc′ is equal
to gc except that StateConf (gc′, o) = 〈A, Q ∪ {s}〉.

3. Encoding System Behavior

The symbolic encoding of the state space transition rela-
tion is based on constraints involving state variables, whose
valuation represents a global configuration, next-state vari-
ables, whose valuation represents the global configuration
after executing one step, input variables used to capture
non-determinism and whose values are only limited by the
constraints, and auxiliary derived functions defined over the
variables. All variables and functions have Boolean val-
ues unless otherwise stated. To keep the state space finite,
we assume that dom(T ) is finite for each type T and re-
strict the analysis to bounded global configurations, where
for each object, the total number of messages in its input
and deferred queues is limited by the constant QSIZE. This
implies that all non-Boolean variables have finite domains
and thus can be booleanized to enable the use of SAT- and
BDD-based techniques.
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More specifically, the encoding is such that, given a val-
uation for state variables that represents a bounded global
configuration gc, there exists a valuation for input variables
that satisfies all the constraints if and only if the valuation
for next-state variables represents a bounded global config-
uration gc′ such that 〈gc, a, gc′〉 ∈ Δ for some annotation a.

3.1. State Variables

Let gc be a bounded global configuration. Let the
state configuration of an object o ∈ O be 〈A, Q〉 =
StateConf (gc, o), the deferred queue 〈M0, . . . , Md−1〉 =
DeferQ(gc, o), and the input queue 〈Md, . . . , Mn−1〉 =
InputQ(gc, o). Because gc is bounded, we have 0 ≤ d ≤
n ≤ QSIZE. The set of state variables contains five kinds of
elements, with values derived from gc as follows.

• Active(o, s), where s is a state vertex in the state ma-
chine of o, is true if and only if s is active, i.e. s ∈ A.

• Quiescent(o, s), where s is a completion sensitive state
in the state machine of o, is true if and only if s ∈ Q.

• AttrVal(o, x), where x ∈ Attrs(Class(o)), has
domain dom(type(x)) and value AttrVal(gc, o, x).
These variables may appear in the definition of the
EvalGuard(o, t) function below, as well as in the con-
straints defining the effects of transitions, but we omit
all details of data handling.

• Queue(o, k), where 0 ≤ k < QSIZE, has do-
main Msgs ∪ none. Its value is Mk if k < n,
and none otherwise. In other words, the sequence
〈Queue(o, 0), . . . , Queue(o, QSIZE − 1)〉 consists of
the deferred queue, followed by the input queue, fol-
lowed by zero or more none entries.

• QPos(o) has domain {0, 1, . . . , QSIZE} and value d.

The corresponding next-state variables are denoted by
next (Active(o, s)), next (Quiescent(o, s)), etc.

3.2. Queues and Messages

Let o ∈ O be an object. We restrict the model so that one
transition can send at most one new message to each ob-
ject (this can be circumvented by splitting non-complying
transitions to segments and adding choice pseudostates be-
tween them). The function QNewMsg(o) with values in
Msgs ∪ {none} evaluates to the message being sent to o
during the step 〈gc, a, gc′〉, or none if no message is being
sent. The definition of QNewMsg(o) depends on the action
language statements, which are not considered here.

The function CurrentMsg(o) with domain Msgs ∪
{none} contains the first message in the input queue, or

none if the input queue is empty:

CurrentMsg(o) :=

if

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

QPos(o) = 0 : Queue(o, 0)
...

...

QPos(o) = QSIZE − 1 : Queue(o, QSIZE − 1)

else : none.

(1)

The input variable Dispatch(o) with domain Sigs ∪ {none}
determines the signal in the message (if any) being con-
sumed by o. The signal must be present in CurrentMsg(o),
so we add for each sig ∈ Sigs the constraint

(Dispatch(o) = sig) ⇒ (CurrentMsg(o) = sig [. . .]) . (2)

The queues interface with other parts via the follow-
ing operations: (i) removing the first message from the
input queue and discarding it, triggered by the predicate
QRem(o), (ii) moving the first message from the input
queue to the deferred queue, triggered by QDefer(o), (iii)
flushing the entire contents of the deferred queue to the in-
put queue, triggered by QFlush(o), and (iv) adding the new
message QNewMsg(o) to the input queue. Any combina-
tion of operations is allowed to occur in the same step as
long as their order respects the list above, and cases (i) and
(ii) do not occur in the same step. The functions QRem(o),
QDefer(o), and QFlush(o) are defined in Sect. 3.3.

Operation (iii) above corresponds to resetting QPos(o)
to zero, and operation (ii) corresponds to incrementing
QPos(o), formalized by the constraint

next (QPos(o)) = if

⎧
⎪⎨
⎪⎩

QFlush(o) : 0

QDefer(o) : QPos(o) + 1

else : QPos(o).

(3)

Operation (i) removes the element at index QPos(o)
from the queue, shifting the elements at QPos(o) + 1,
. . . , QSIZE − 1 one position to the left. Operation (iv) adds
the new message to the first free position, i.e. the position
k such that Queue(o, k − 1) �= none and Queue(o, k) =
none. However, if operation (i) has been performed in the
same step, the position must be decremented by 1. The new
queue contents for 0 ≤ k < QSIZE is thus determined by

next (Queue(o, k)) =

if

⎧
⎪⎨
⎪⎩

No(k) : QNewMsg(o)

QRem(o) ∧ QPos(o) ≤ k : Queue(o, k + 1)

else : Queue(o, k),

(4)

where

No(k) := (QRem(o) ⇔ (Queue(o, k) �= none))∧
(Queue(o, k − 1) �= none)∧(Queue(o, k + 1) = none) .
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The boundaries are defined as we set Queue(o, QSIZE) =
none and Queue(o, −1) �= none. To forbid transitions to
global configurations that are not bounded, we prevent the
queue from overflowing by setting the constraint

(QNewMsg(o) �= none) ⇒
(Queue(o, QSIZE − 1) = none) ∨ QRem(o). (5)

3.3. Control Logic of State Machines

Next we describe a compact symbolic encoding for
the semantics of UML state machines as described in
Sect. 2.3. Let o ∈ O be an object with the state machine
〈S, R, top, container , T , defers〉.

State Configuration Classification. As defined in
Sect. 2.2, a completion sensitive state s ∈ SCS is ready to
consume its completion event if it is active, not quiescent,
and all its regions (if any) are in final states:

CEReady(o, s) := Active(o, s) ∧ ¬Quiescent(o, s) ∧
∧

{F (o, r) | r ∈ children(s)}, (6)

where F (o, r) :=
∨ {Active(o, s′) | s′ ∈ children(r) ∩ Sfi}

is true iff the active child state of the region r is a final state.
Based on this, it is easy to define the predicates InCT(o)

and InRTC(o) telling whether the state configuration is in
compound transition or in RTC step, respectively:

InCT(o) :=
∨

{Active(o, s) | s ∈ Sin ∪ Sch}, and (7)

InRTC(o) := InCT(o)∨
∨

{CEReady(o, s) | s∈SCS}. (8)

Because an object can consume events from the input queue
only if its state configuration is stable, we add the constraint

InRTC(o) ⇒ (Dispatch(o) = none) . (9)

Enabledness Conditions for Transitions. We associate
with each transition t ∈ T of the state machine an input
variable Fire(o, t) that determines whether t is being fired
in o. According to the semantics, firing a transition t re-
quires that (i) the source state is active, and (ii) the guard
evaluates to true, captured by the constraint

Fire(o, t) ⇒ Active(o, source(t)) ∧ EvalGuard(o, t). (10)

We assume that EvalGuard(o, t) implements the function
eval(gc�, o, guard(t)) (or eval(gc, o, guard(t)) if t is a
completion transition) in Sect. 2.3, and omit its formula.

If t is a completion transition whose source is a simple
or composite state, it is also required that (i) the state con-
figuration is not in a compound transition and (ii) the source

state is ready to consume its completion event:

Fire(o, t) ⇒ ¬InCT(o) ∧ CEReady(o, source(t)). (11)

If t is not a completion transition, then we have to ensure
that there is no enabled prioritized transition and no active
descendant state can defer the message. For this purpose let
Ro(s, sig) := {t ∈ T | source(t)=s ∧ triggersig(t)=sig}
and define an auxiliary function

Feasible(o, s, sig) := Active(o, s) ∧
¬DescFeasible(o, s, sig) ∧ ¬DescDeferring(o, s, sig) ∧
∨

{EvalGuard(o, t) | t ∈ Ro(s, sig)} (12)

evaluating to true iff (i) there is at least one sig-triggered
transition with source s and guard satisfied, and (ii) there
is neither an active descendant of s that can defer sig nor
a prioritized enabled sig-triggered transition. The function
DescFeasible(o, v, sig) is defined simply by

DescFeasible(o, v, sig) :=
∨{

Feasible(o, v′, sig) ∨
DescFeasible(o, v′, sig) | v′ ∈ children(v)

}
, (13)

with Feasible(o, v, sig) := false for v ∈ Sin ∪ Sch ∪ Sfi ∪
R. The similar function DescDeferring(o, s, sig) is defined
later. Now we only have to constrain that if a message with
signal sig is to be consumed from the input queue and there
are enabled sig-triggered transitions leaving from an active
state s ∈ Ssi ∪ Sco , then one of them is fired:

∨{
Fire(o, t) | t ∈ Ro(s, sig)

}
⇔

(Dispatch(o) = sig) ∧ Feasible(o, s, sig). (14)

Constraint (20) below ensures that at most one such tran-
sition is fired. Due to (9), a signal triggered transition can
only be fired in a stable state configuration.

State Configuration Change due to Transition Firing.
Perhaps the most complicated part in the symbolic encod-
ing is the computation of successor state configurations as
defined in Sect. 2.2. A state vertex s ∈ S becomes active in
the next configuration if it is entered by firing a transition,
and it remains active if it is not exited by a transition:

next (Active(o, s)) ⇔
Enter(o, s) ∨ (Active(o, s) ∧ ¬Exit(o, s)) . (15)

A non-initial state vertex is entered if it is the target of a
transition being fired, or if it is a composite state whose
region is being broken in by a transition. We say that a
fired transition t breaks in a region r if the transition cuts in
through the boundary of the region in the diagram, or for-
mally, if r ∈ descendants(container(t)) and target(t) ∈
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descendants(r). In Fig. 1, the only such transition is t10,
which breaks in region r3. For each vertex s ∈ S \ Sin ,

Enter(o, s) :=
∨

{Fire(o, t) | t ∈ T ∧ target(t) = s} ∨
∨

{BreakIn(o, r) | r ∈ children(s)}, (16)

and for each region r ∈ R,

BreakIn(o, r) :=
∨

{Enter(o, s) | s∈children(r)\Sin} ∧

¬
∨

{Fire(o, t) | t ∈ T ∧ container(t) = r}. (17)

An initial pseudostate sin ∈ Sin is entered if its containing
state is entered but its containing region is not broken in:

Enter(o, sin) := Enter(o, container 2(sin )) ∧
¬BreakIn(o, container(sin )). (18)

As a special case, Enter(o, sin ) := false if sin ∈ Sin ∩
children(top). For each s ∈ S, the value of Exit(o, s) is true
iff s or one of its ancestors is being exited by a transition,
defined by

Exit(o, s) := Exit(o, container 2(s)) ∨
∨

Xo(s), (19)

where Xo(s) is the set consisting of each Fire(o, t) such
that t ∈ T and s ∈ children(container (t)) and
source(t) ∈ {s} ∪ descendants(s). Intuitively, Fire(o, t)
is in the set Xo(s) iff s is the outermost state vertex ex-
ited when t is fired. For example in Fig. 1, Xo(A2) =
{Fire(o, t10), Fire(o, t11)} and Xo(B2) = {Fire(o, t8)}.

To avoid firing several transitions from the same state at
the same time, for each s ∈ S the constraint

AtMostOne
(
{Exit(o, container2(s))} ∪ Xo(s)

)
(20)

is added that allows at most one of the disjuncts in (19) to
be true. A predicate of the form AtMostOne (P ) evaluates
to true if and only if zero or one of the predicates in set
P evaluates to true. This can be expressed with O(|P |)
binary Boolean connectives. In (19) and (20), the term
Exit(o, container 2(s)) is omitted if container(s) = top.

Quiescing. We associate with each completion sensitive
state s ∈ SCS an input variable Quiesce(o, s) that indicates
whether s is becoming quiescent. The state s becomes qui-
escent when Quiesce(o, s) is true, and it remains quiescent
until it is exited:

next (Quiescent(o, s)) ⇔
¬Exit(o, s) ∧ (Quiesce(o, s) ∨ Quiescent(o, s)) . (21)

The following constraint ensures that quiescing can only
happen when (i) there are no active pseudostates and (ii)

the state is ready to consume its completion event but none
of the outgoing completion transitions is enabled:

Quiesce(o, s) ⇒ ¬InCT(o) ∧ CEReady(o, s) ∧
¬

∨
{EvalGuard(o, t) | t ∈ Ro(s, τ)} (22)

with Ro(s, τ) := {t∈T | source(t)=s ∧ triggersig(t)=τ}.
Together with (8) this ensures that quiescing can only hap-
pen in an RTC step: Quiesce(o, s) implies InRTC(o).

Deferring. For each signal sig ∈ Sigs and each simple or
composite state s ∈ Ssi ∪ Sco , the function

Deferring(o, s, sig) :=

{
Active(o, s) if sig ∈ defers(s),

false otherwise
(23)

is true iff s is active and can defer the signal sig . Define
Deferring(o, v, sig) := false if v ∈ Sin ∪ Sch ∪ Sfi ∪ R.
Now for each v ∈ S ∪ R,

DescDeferring(o, v, sig) :=
∨{

Deferring(o, v′, sig) ∨
DescDeferring(o, v′, sig) | v′ ∈ children(v)

}
(24)

is true iff v has an active descendant that can defer sig .
The object o defers the first message in its input queue if

the message is dispatched, there is an active deferring state,
and no transition is consuming the message:

Defer(o, sig) := DescDeferring(o, top, sig) ∧
¬DescFeasible(o, top, sig) ∧ (Dispatch(o) = sig) ,

QDefer(o) :=
∨

{Defer(o, sig) | sig ∈ Sigs}.

Note that QDefer(o) implies Dispatch(o) �= none and
thus (9) ensures that deferring can only happen in a stable
state configuration, i.e. QDefer(o) implies ¬InRTC(o).

Putting it All Together. The constraints so far do not pre-
vent simultaneous firing of completion transitions or quiesc-
ing of states. This is fixed by the constraint

AtMostOne (Co ∪ Qo) , (25)

where Co = {Fire(o, t) | t ∈ T ∧ triggersig(t) = τ} and
Qo = {Quiesce(o, s) | s ∈ SCS}.

When examining the system as a whole, an object is
scheduled if it is consuming a message, firing a completion
transition, or quiescing a state. The object is ready for ex-
ecution if one of these occurrences is enabled. The system
is in a deadlock if no object is ready. These are formalized
below.

Scheduled(o) := (Dispatch(o) �= none) ∨
∨

(Co ∪ Qo) ,

Ready(o) := (CurrentMsg(o) �= none) ∨ InRTC(o),

Deadlock() := ¬
∨

{Ready(o) | o ∈ O}.
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The functions needed by input queue encoding, pre-
sented in the previous section, are defined as follows:

QFlush(o) :=
∨{

DescFeasible(o, top, sig) ∧
(Dispatch(o) = sig) | sig ∈ Sigs

}
,

QRem(o) := (Dispatch(o) �= none) ∧ ¬QDefer(o).

To obtain an interleaving execution semantics, we must
constrain that exactly one object is scheduled at a time:

∨
{Scheduled(o) | o ∈ O}, and (26)

AtMostOne ({Scheduled(o) | o ∈ O}) . (27)

Using this transition relation encoding, we can now use
symbolic model checking tools such as NuSMV [6] to
check properties of UML systems. For example, to check
that a deadlock cannot be reached, we use a model checker
to check that ¬Deadlock() is an invariant in all executions.

3.4. Analysis

Assuming that the state variables represent a bounded
global configuration and all constraints are satisfied,
there is by (26) and (27) a unique object o such that
Scheduled(o) holds. There are five mutually exclusive
cases: (i) QFlush(o) is true, consequently QRem(o) is
true, there is a unique t ∈ T such that Fire(o, t) is true,
and triggersig(t) = Dispatch(o) �= none. This corre-
sponds to the step 〈gc, 〈o, t〉, gc′〉 ∈ Δ. (ii) QDefer(o)
is true, corresponding to 〈gc, 〈o, DEFER〉, gc′〉 ∈ Δ.
(iii) QFlush(o) and QDefer(o) are both false and
Dispatch(o) �= none, which corresponds to implicit con-
sumption 〈gc, 〈o, IMPCONS〉, gc′〉 ∈ Δ. (iv) Dispatch(o) =
none and Fire(o, t) is true for some t, in which case
triggersig(t) = τ , corresponding to 〈gc, 〈o, t〉, gc′〉 ∈
Δ. (v) Dispatch(o) = none and Quiesce(o, s) is true
for a state s ∈ SCS , corresponding to the quiescing step
〈gc, 〈o, QUIESCEs〉, gc′〉 ∈ Δ.

The size of the encoding is linear in the size |M| of
the input model, which includes the definition of all sig-
nals, state vertices, transitions, and deferrable signals. We
assume that all trivial definitions have been eliminated,
i.e. those derived functions that are vacuously true or false
or equal to another function or variable, and constraints that
are vacuously true. The queue encoding of Sect. 3.2 for
a single object has size O(QSIZE · W ), where W is the
maximum bit width of a message. Consider the control
logic encoding of Sect. 3.3 for an object o. The defini-
tions (16), (17), and (19) are designed so that each vari-
able Fire(o, t) appears in exactly one definition of each
kind, so these are O(|S| + |T |) in size. The total size of
nontrivial definitions of the form (12) and (13), summed
over all s ∈ S and sig ∈ Sigs , is O(|T |). The total

Table 1. Symbolic model checking of a hier-
archical vs. flattened TV model.

BMC ZChaff BMC MiniSat BDD Invar
time time time

original 16.49–54.60 29.29–90.00 0.63–0.67
flattened 30.12–77.94 25.16–300.63 1.06–1.09

size of (23) and (24) is O(Σs∈S |defers(s)|). Other def-
initions are O(|S| + |T | + |Sigs |) in size. Summing up,
the total size of the encoding of a model without data is
O(|O|(QSIZE · W + |M|)).

3.5. Preliminary Evaluation

We have implemented the symbolic encoding described
above. The implementation1 reads a UML model, stored
in the XMI file format supported by the open-source meta-
modeling tool Coral [1], and translates it to the input lan-
guage of the NuSMV symbolic model checking tool [6].
For the experiments here we use NuSMV version 2.4.3.

To evaluate whether allowing hierarchy in the encoding
is helpful, we use a variant of the TV model in [18] that is
one of the standard example systems in UML model check-
ing literature. We try to measure only the hierarchy aspect
by model checking a deadlock-freedom property of a mod-
ified model in which the property does not hold—the TV
stops working after it has been switched off 50 times. The
symbolic encoding is evaluated on both the original hier-
archical model and the corresponding flattened model; the
original state machine has 12 state vertices and 13 transi-
tions while the flattened state machine has 11 state vertices
and 25 transitions. The results in Table 1 show the minimum
and maximum CPU times of ten runs of (i) a state-of-the-art
incremental BMC algorithm [15, 5] when ZChaff (version
64bit.2007.3.12) [19] and MiniSat2 (version 061208) [12]
are applied as the SAT solver, and (ii) the basic BDD-based
invariant checking algorithm. For this model it is clearly
beneficial not to flatten the hierarchy as a preprocessing
step. Our hypothesis for this behavior is that because flat-
tening increases the number of transitions in the model, it
also increases the search space of the SAT solver.

Furthermore, the experiments in [11] compare explicit-
state model checking using Spin to BMC using the queue
and control logic encoding presented here. The results
indicate that symbolic model checking can complement
explicit-state model checking even when analyzing asyn-
chronous protocol models. Many symbolic model checking
techniques also have the favorable feature that when a prop-
erty violation is found, the returned counterexample execu-

1Available at
http://www.tcs.hut.fi/Research/Logic/SMUML.shtml
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tion is short (or even of minimal length), making it simpler
for the user to analyze it.

Obviously, a more thorough evaluation of efficiency and
bottlenecks in symbolic model checking of asynchronous
message passing UML systems is needed.

4. Conclusions

In this paper we have defined a semantics and a compact
symbolic encoding for a class of UML models composed
of asynchronously executing, message passing hierarchical
state machines. This enables the use of state-of-the-art sym-
bolic model checking techniques for the analysis of such
models. Experimental results indicate that it may be benefi-
cial to maintain the state machine hierarchy in the encoding
instead of flattening the state machine before encoding.

The encoding presented in this paper uses the standard
interleaving semantics, i.e. at most one object can fire at
most one transition during one time step. It is also possi-
ble to extend the encoding to use so-called ∃-step seman-
tics [22] so that independent transitions in several objects
can be executed at the same time step; see [11] for such an
encoding for non-hierarchical state machines.

There are probably many ways to optimize the state ma-
chines or the encoding to make symbolic model checking
more efficient. For instance, transitions leaving the initial
state of a region could in many cases be eliminated in the
encoding phase. Furthermore, in order to analyze systems
with more data attributes, reduction techniques such as slic-
ing and data abstraction should also be applied.
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