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Chapter 1

Introduction

The subject matter of this study is inverse scattering, in which we know a
certain set of waves that scatter from an obstacle and want to reconstruct
the obstacle from this information. The scattering process can be presented
in the time domain, in which we have waves that develop in time, or in the
frequency domain, in which the waves have a constant frequency.

Our main interest in this work is to devise a reconstruction method that
uses time domain data for the reconstruction of the obstacle which we will
henceforth refer to as the "scatterer". Our approach is to use the single
frequency factorization method as a basis and then to form a time domain
method with the help of the partial "frequencies to time" Fourier transfor-
mation Fj_;. In order to facilitate the frequency analysis of the factorization
method, we consider the scatterer to have the Robin boundary conditions

(0, — (@) + B(x))u =0 (1.1)

with a(x) > ag > 0 and also the Dirichlet energy decay property, namely
that under the Dirichlet boundary conditions the waves decay exponentially
in the vicinity of the scatterer.

Assuming these conditions we derive a factorization method which works
for all wave numbers £ € R\ {0}. We also explore how the method works
for varying values of the wave number, which is useful in deriving the time
domain reconstruction.

In Section 1.1 we provide a short introduction to inverse problems in general
and linear sampling and factorization methods in particular. In Section 1.2
we set forth a more detailed introduction to the structure of this work.



1.1 Introduction to Inverse Problems

The bedrock of all sciences is the idea that there are causes and effects,
relationship of which one can uncover through use of the intellect. A forward
problem, then, in all generality, is one in which causes and the laws that
connect the causes to their effects are known and therefore one infers the
effects from their causes. In an inverse problem the chain of reasoning works
counter to the direction of causation and we are faced with a situation in
which some of the causes and effects are known, and we want to know the
rest of the causes.

As an example of an inverse problem let us take the scattering of a time
harmonic waves. In this example we have a vibration u(¢,z) in R* that is
governed by the wave equation

Ou = (87 — A)u =0, (1.2)

where A = 92 + 02,4+ 92,. Tn a scattering problem we have an impenetrable
obstacle D, which has certain boundary conditions for the wave on 9D. Let
us assume that we have the Robin boundary conditions, that is

(0 — (@), + fx))u =0, (1.3)
where a, 3 € C?(0D), a > 0 and v is the exterior surface normal of 9D.

In order to specify the direction of time, we can consider the development of
the wave only after a certain time ¢t = 0. The necessary initial information
to calculate the wave in this case is the values of u and d,u = u; at t = 0.
Altogether we require from u the following:
Ou(z,t) =0 in R, x D
(0, —a(x)0, + B(z))u =0 on (Ry U{0}) x 9D (1.4)
=0 = f1, Uili=0 = fa
We refer to (1.3) as the time domain Robin problem. This problem is
solved for example in [45, Theorem 7.6.2]. In the case of a time harmonic
wave u(t, r) = v(z)e * the conditions (1.2) and (1.3) become
—(A+E)u =0,
(0, +ika+ B)u =0.
From here on we will denote ika + 3 = A.
The scattering process for time harmonic waves is described as follows. Let
us suppose that there is a free space incident wave u; that satisfies

in R3. Let us further suppose that the total wave u;,; on D* = R®\ D
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consists of the incident wave u; and a scattered wave wu,. Since the total
wave satisfies
(O + Ntgor =0

on 0D, the scattered wave ug. satisfies

—(A+ Ky =0, in D*
(0, + Nuge = —(0, + Nu; on ID.

The above problem has multiple possible solutions for u,. We are able to
arrive at a problem with unique solution if we demand that w,. satisfies
Sommerfeld’s radiation condition

lim 7(0, — ik)use =0 uniformly w.r.t. & € S?,

r—00
where r = |z|. In the solutions that satisfy Sommerfeld’s radiation condition,
the energy flows outwards.

In the forward problem of time harmonic scattering we know the obstacle
D, together with the parameter A\, and the incident wave u; and want to
determine the scattered wave u,. that satisfies

—(A+Ek)u,e =0 in Dt
(O + Nuse =—(0y +A)u; on 0D (1.5)
lim, oo 7 (0, —ik)use =0 uniformly

One possible inverse problem would be to find the shape of the scatterer
when we know a family of incident waves {u;(-,d)} := {e**9} cs> and the
far field asymptotics of the corresponding scattered waves u (-, d). We have
solved this problem in Section 4.1.

Until the middle of the 20th century, inverse problems were not considered
to be applicable to rigorous mathematical analysis, since they are ill-posed
in the sense of J. Hadamard. Hadamard’s criterion for a problem to be
well-posed, as can be found e.g. in [21], are

i) The problem has a solution.
p
(ii) The solution is unique.

(iii) The solution depends continuously on the data.

In general these conditions are not satisfied by inverse problems. This state
of affairs can be seen to follow from the very nature of this class of problems,
since widely different causes can lead to similar effects. The first condition



can also be problematic because there is always some amount of error in
our measurements and this error can change the data so that there is no
solution to the problem given such data. For example, in the above case
of time harmonic scattering we would measure values of the scattered wave
ug(x, d) and would gain values u4(z, d) 4+ €(x), which would not necessarily be
compatible with any scatterer with Robin boundary conditions whatsoever.

On this subject a great contribution was made by A.N. Tikhonov in his
paper [54]. His idea was to regularize the problem by setting constraints
on what kind of solutions are to be considered. If the original ill-posed
problem were to solve z in the equation Ax = y, we would find the minimizer
of ||[Az — y||? + «|z||?, where the parameter « is to be chosen using good
judgement.

This regularized problem is in fact well-posed and experience has shown that
the solutions to it provide relevant information about the original problem.
An example of this, among numerous others, is the linear sampling method,
which we discuss next.

Linear sampling was invented by D. Colton and A. Kirsch and published in
the article [12]. In linear sampling one uses the far field expansion

sz, d) = 6|:|| (uoo(.%,d) +0 <|i|>> .

of the scattered waves of problem (1.5) that have plane wave e as incident
waves. One forms the far field operator F : L?(S?) — L?(S?) defined by

ikx-d

Fh(z) ::/ Uno (2, d)R(d)AH?(d).

This operator has the property of mapping the density h of an incident
Herglotz wave

up = / eFih(d)dH?(d)
S2
to the far field of the corresponding scattered wave.

The far field of a point source

o 6ik|z—z\
(z,2) = dr|z — 2|
is
Do (i, 2) = e 2, (1.6)



The function @, is in the range of the set of possible far fields of waves
scattered from D if and only if 2 € D. Hence if there is a h € L*(S?) such
that Fh = ®.(Z,z) , we see that z € D. The linear sampling method
uses the Tikhonov regularization method to calculate a regularized approx-
imation to F~1®,(#,2). When 2z € D approaches the boundary, the norm
of F71® (%, z) approaches infinity and hence we are able to determine the
boundary 9D.

The linear sampling method has been quite successful and has applications
in many areas, see e.g. [8], [15], [19], [44] and |22|. Nevertheless it is still
not completely understood why the method works as well as it does. This
aspect has been studied by M. Hanke in [24], T. Arens in [3] and also by A.
Kirsch starting in the 1990’s. Kirsch's research on the foundations for the
linear sampling method led him to invent a variant of the method, nowdays
known as the factorization method, which was first published in the article
[34].

In the factorization method one uses the operator G which maps the bound-
ary values of the scattered wave to its far field and a factorization of the

type
F = GAG* (1.7)

where the middle operator A depends on the problem.

One uses the properties of the operators F', G and A to infer that
Ran <F%> = Ran (G)
and that there exists constants ¢ and C such that for ¢ € Ran (G) one has
G el < IF2¢l < CIG "¢,

with appropriate norms.

Hence one infers that z € D if and only if &, (%,2) € Ran (F%) This

condition is amenable to a numerical calculation.

The factorization method has also found many applications and has been
elaborated on different areas. In addition to the treatment of the Dirichlet
and Neumann scattering problems of the article [34] A. Kirsch has also pro-
vided a factorization solution to the transmission problem, [33] and [31]; in
time harmonic electromagnetic scattering, [30]; and in elastics, [32]. Tn addi-
tion N. Grinberg and A.Kirsch have applied the factorization, in a modified
form, to the time harmonic Robin scattering, [20].



The time domain counterpart to the frequency domain factorization method
has been invented by Q. Chen, H. Haddar, A. Lechleiter and P. Monk in the
unpublished work [9].

The factorization was found to be applicable to electric impedance tomogra-
phy (EIT) by M. Briihl in [4] and [5]. This area has been quite active ever
since. Further elaboration was provided by M. Briihl and M. Hanke in [6]
and [7]. The Complete electrode model was used by N. Hyvénen in [25] and
the complete electrode model together with error limits was developed by A.
Lechleiter, N. Hyvonen and H. Hakula in [38].

In their work [43] A. Nachmann, A Teirild and L. Pdivirinta made a variant
of the factorization method for the anisotropic EIT problem and the obstacle
scattering. The implications of this work are still unfolding.

The previous examples of the linear sampling and factorization methods are
just a few of the most salient theoretical advances; numerous additional works
on the subject exist.

1.2 Introduction to This Work

The main idea in this work is to use the partial Fourier transformation to take
the frequency domain factorization method described in the previous section
to the time domain. This idea has been converted to an actual time domain
reconstruction method for the Robin Problem in Section 5.1, Theorems 5.7
and 5.8.

In order to derive the time domain reconstruction method, we study the single
frequency Robin problem in Chapter 4 and provide a frequency dependent
estimates for the operators F', G and A. We also develop a single frequency
reconstruction method for Robin obstacles, which is presented in Section 4.5,
Theorem 4.29. An important aspect of this part is the analysis of the time
and frequency domain Dirichlet problems presented in Chapter 3.

We define and study the time domain far field operator Fj;,,. in Sections
5.2 and 5.3. Here we also define the time domain far field and make decay
estimates for the far field and the operator Fj;,,.. These may be important for
further study of the time domain methods, though we derive them for some
less formal comments on the numerical applicability of the multi-frequency
factorization method in Section 5.4.

In the time domain Robin reconstruction we assume the following condition:



point z is in the scatterer D if and only if

lim ((d + Z)*I@.{))(t, )i, (t, B)dtdH2(Z) < oo,

e—0 RxS2

where L : L*(R x §?) — L?(R x S?) is defined by

Lu(k,7) := (KIm (Fy)u(k, ) (2),
L:= FrtLF Y, and 12)\2(157/x\> = @(t + z - 7). Here ¢ is the weight function
with which we choose the frequencies that we use in the reconstruction and
¥ = Fr-{¥}.
We use the imaginary part Im(Fy) in order to have a self-adjoint operator

and also to provide frequency dependent estimates for the "middle operator"
Im (Ag) of equation (4.68).

The function ¢ € S(R) needs to be such that ¢ € C°(R) with
/zZ(t)dt =0. (1.8)
R

The 12 function corresponds roughly to the time dependence profile of the
waves that we use to probe our obstacle. It is enough to use an anti-symmetric
profile ¢¥(—t) = —(t) in order to satisfy condition (1.8).

As background information, we have apparently developed a new class of
distributions §'(R x U) for the partial Fourier transformation Fj_; : S'(R x
U) — S(R x U). This class is constructed in appendix C in a way that
resembles strongly the construction of D'(U) of [55]. The connection Fy_; :
S'(RxU) — 8'(R x U) is our basic bridge between the time and frequency
domains, which is augmented with the Bochner integrals in Section 3.3.
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Chapter 2

Preliminaries

2.1 Distributions and Sobolev Spaces

In this section we fix our notation and introduce some basic concepts. We
follow relatively closely the presentation of Sobolev spaces found in [40].

We denote the closure of a set U with U and the interior of a set U with
int (U). If a set K is a compact subset of a set A we will use the notation
K cc A

Let © = (x1,...,2,) € R" and r > 0. We define
B(z,r):={yeR": |ly—z| <r},

where |z| := (301, w?)%

An open set U C R™ is C* smooth if for any = € U there exists r, > 0 and
a CF function v : R"~! — R such that after relabelling and re-orienting the
coordinate axis we have

U N B(ZE,T‘I) = {y S B(xﬂ”) “Un > V(yla .. 'yn—l)~
We notice that the coordinates ¢, : 90U N B(z,r,) — R"™! defined by

Ca(y1s - Y1, YW1 - Yn=1)) = (1o Y1)

give OU a manifold structure, which we will use later on. Mostly we will
be dealing with a compact set D C R®, which is a C? domain, and its open
complement D" = R3\ D, which is also C.

Let U C R™ be an open set. The test function space D(U) = C§°(U) consists
of infinitely smooth functions ¢ whose support supp(¢p) is a compact subset

11



of U. A sequence (p;);en C D(U) is said to converge to ¢ € D(U) if there is
a compact set K CC U such that for all ¢ the support supp(y;) C K and for
all multi indexes o € N” functions 0%p; converge to — 3%p uniformly. The
distributions D'(U) are linear maps from D(U) to C that are sequentially
continuous.

The space £'(U) consists of those distributions of D'(U) that have a compact
support. These distributions can be seen to be the dual of £(U) = C*>(U).

The space of tempered functions, S(R™), consists of infinitely smooth func-
tions ¢ that also satisfy for all a, 5 € N"

sup |2°0°p(z)| < oo.
TERM

A sequence of tempered functions (¢;) converges to ¢ € S(R") if for all
a, € N we have

lim sup [0 (i:(x) — ()] = 0.

100 pcR™

The tempered distributions, S’'(R"), are sequentially continuous linear maps
from S(R") to C.

Let t € R, (t) = (1+t*)2 and U C R"! be an open set. The tempered
distributions §’'(R x U) are studied in detail in Appendix C. We present here
only the following working definition, which is sufficient for our purposes:
Let (Kj)jen be a sequence of sets K; CC U such that K; C int (K1) and
U = Ujey K. We define the norms

lollkij = sup sup [()'0%p(t, 2)|

0<|a|<k teR
z€K;
and the set
SRxU) ={p € C°(RxU) : Fjs.t. supp(p) C RxK;, Vi, k: |l¢|lk:; < 0o}

We say that a sequence (¢,) C S(R x U) converges to 0 if there exists a
K cC U such that for all n we have supp(¢,) C Rx K and for all k,i,j € N

lim lgn||r,i; = 0.
n—oo

The tempered distributions S’(R x U) are linear maps from S(R x U) to C
that are sequentially continuous.

12



Let S = {& € R?: |z| = 1}. We define the norms

@Il := sup sup [(t)'0p(t, )|
la|<k teg;
e

and the space
SR x §?%) :={p € C®°(R x S?) : Vk,i : ||@||rs < 00}.
We say that (¢,) C S(R x S?) converges to 0 if for all k,i € N we have
T}LHC}O lonllk: = 0.

The distributions 8'(R x §?) from S(R x §?) to C are sequentially continuous
linear maps.

We denote the value of a distribution u at the test function ¢ with (u, ). If
there is possibility of confusion about the type of the distribution, we denote
this value with (u, ©)prxp, (U, ¢)sxs, etc. In case of possible confusion about
the domain, we use notations (u, w)D,XD(U), (u, ‘P>s'xs(U)7 etc.

All integrable functions can be seen as distributions in D', or per the defini-
tion: for u € L'(U) we define

() = / w(@)p(z)dz (2.1)

Throughout this work the brackets (-, -) stand for a complex conjugated du-
ality like the one in (2.1).

Let f € D'(R") and g € D'(R™). We define the tensor product f ® g €
D'(R™ x R™) by

(f®gv<p)1)’><D(R”+M) = (f($)> (g(y)>@(xvy))D’xD(R"))D,XD(Rm)' (2.2)

For clarity we sometimes write f ® g = f(x) ® g(y).

We next make some remarks about the convolution of distributions based on
the exposition given by V.S. Vladimirov in [56]. By [56, Section 1.4.3] the
convolution of f, g € D'(R") exists if for any R > 0 the set

Tr = {(z,y) € R* : x € supp(f),y € supp(g), |z +y| < R}

is bounded. In this case the convolution can be defined, with functions
X Xg € C®°(R") such that x; = 1 on supp(f) + B(0,¢), xy = 0 on R"\

13



(supp(f) + B(0,2¢)), x4 = 0 on supp(g) + B(0,¢) and x, = 0 on R"™\
(supp(g) + B(0, 2¢)), by setting for all o € D(R")

(f *9,0)prxp@ny = (f(@) ® 9(y), Xs(@)Xg (W) P(@ + Y))pr s pgen) -

A practical way, especially suited for the wave equation, to check if the set
Tg is bounded is by using cones. A cone is a set {2 C R™ with the property
that if z € Q then Az €  for all A > 0. A cone is acute if there is an n — 1
dimensional plane in R™ such that €2 is on one side of it and it intersects the
closure of the convex hull of Q only at 0. The conjugate of a cone 2 is the

set
O'={yeR":y-z>0, Vz € Q}.

Let © be a closed acute cone and C' = int (€2*). A surface S C R" without
an edge is C-like if for all y € R™ and x € ) the straight line y + tz; t € R
intersects S at a unique point. By [56, Lemma 1.4.4.5] for all R > 0 there
exists a R/(R) > 0 such that

Tp={(z,y) eR™:x € S,y € Qo +y| <R} (2.3)

is contained in B(0, R').

The surface S is strictly C-like if there are constants ¢ > 0 and v > 1
such that for all R > 0 the set Ty of (2.3) satisfies T C B(0, R'(R)) with
R <a(l+ R)".

Example 2.1 For ally € Q*\ {0} the plane {x € R™ : (y,x) = 0} is strictly
C-like with v = 1.For details on this example, we refer to [56, Section 1.4.4].

Let Q be a closed convex acute cone, C' = int (2*), S a C-like surface and Sy
the region on the same side of S as Q. By [56, Section 1.4.5] the convolution
of f,9 € D'(R™) exists if there is a compact set K and a cone  such that
supp(f) C Q+ K and supp(g) C Sy. If f,g € S'(R") the same criterion for
the existence of the convolution in D’(R™) applies, but there is the additional
question if fx g € §'(R™). By [56, Section 1.5.6(b)| this is the case if the
surface S is strictly C-like. We will use this result for Q = {(t,7) e R*: ¢ >
0, |z] <t} and S = {(t,z) € R*: t = 0} in the proof of Lemma 2.7.

In addition to the cone criterion, the convolution of distributions f,g €
S'(R™) exists and f*g € §'(R™) if the support of f or g is compact. For this
result we refer to [56, Section 1.5.6(a)].

For ¢ € S(R") we define the Fourier transformation

n

Fle}(§) = (277)’%/ e " p(x)da.
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The Fourier transformation maps S(R") to itself in a sequentially continuous
manner, so we can define F : §'(R") — &’(R") through

(F{uls @)gise = (u7‘7:71{99})dist'
Let K € Nand 1 < p < co. We define the Sobolev space
WhP(U) .= {u € D'(U) : V]a| < k: 0% € LP(U)}.

The space W*?(U) can be equipped with the norm

lallwes =Y~ 0%l o)

o<k

and the pair (W*2(U), || - [|wrs@r) is a Banach space.

Another approach to the Sobolev spaces is through the Fourier transforma-
tion. Let (€) := (14 |¢[2)2. For s € R the Sobolev space H*(R™) consists of
u € 8'(R™) for which the inner product

(e = [ (T

is finite. The pair (H*(R"), (-, ) us@®n)) is a Hilbert space.
The dual space of H*(R™) is isomorphic to H*(R") through the dual pairing

(U V) s o mm) ::/ U(E)o(g)de.

n

For a closed set A C R™ we define the subspace H5 C H*(R™) by
Hj :={ue H*(R") : supp(u) C A}.

The space H¥ is a closed subspace of H*(R"), so we have an orthogonal
projection P : H*(R") — H3.
For an open set U C R™ we define

H(U) ={ueD'{U):u=v|y for some v € H(R")}.

With the orthogonal projection P : H*(R") — Hg.,,;, we can give H*(U)
an inner product; for any uy,uy € H*(U) let v1,v9 € H*(R™) be such that
v1ly = w1 and va|y = uz. We define

(w1, ug) sy = (I = P)vr, (I — P)va) s mny,
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The pair (H*(U), (-, -)usw)) is a Hilbert space.

The space H§(U) is the closure of D(U) in H*(U) with respect to the metric
generated by the inner product (-, -)gs).
For k € N and U a Lipschitz domain W*2(U) = H*(U) with equivalent
norms. For details of this result we refer to [40, Theorem 3.18].
Let I' C R™ be a C? graph, i.e. there exists a C? map v : R®! — R such
that

F={zeR":x=(21,... 001,71, .. Tp_1))}
We denote (a1, ...2,-1) = (21, ... Tn1,7¥(z1, ... 2,_1)) and the Jacobian of
¢ with J,. We define for all s € [—2,2] and u,v € CZ(T) the inner product

N

_1,V0 @71 . JE*I)HS(R"’I) (24)

(u, V) gs(ry := (o o L. Jgj .

and the Sobolev space H*(T) as the completion of CZ(I") with respect to the
topology induced by the inner product (2.4). More details on the Jacobian
can be found e.g. in [18].

Let b(k) be the volume of a k dimensional ball of radius one. For all A C R,
k € N and 0 > 0 we define

HE(A) = inf{z b(k)yrk - Ac U B(xzj,r;),2r; >}
=1

j=1
The k dimensional Hausdorff measure H* is defined by

H*(A) == sup HE(A).

>0

For p € [1, 00) we define the spaces LF(T") on a k dimensional Lipschitz graph
I' with the measure H*. More details on Hausdorff measures can be found
e.g. in [18].

Let ' € R" be a C*graph and s € [0,2], u € H*(), v € H*(T) and

(ug) C CF(T) such that u; — u in H*(I"). We define
(’LL, U)H*SXHS(F) = jh_{go(ujv U)LZ(F)'

This gives an isometric realization of the dual (H*(T'))".

Let D C R™ be a bounded C? domain, s € [-2,2], {(U;, ;) }ieqi2,...61 be
an atlas of 9D and {Qﬂ%}ie{lvgwwk} a partitioning of unity subordinate to the
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atlas {(U;,¢;)}. We define the inner product (-,-)gs@p) by setting for all

u,v € C*D)
k

(U>U)H5(6D) = Z(i/)iuﬂ/)iv)fls(n):

i=1
where I'; is a C? graph that contains the chart U;. We notice that above we
chose ¥? to be the elements of the partitioning of the unity in order to get

(-, )uo@py = () 200)-
The space H*(dD) is the completion of C?(0D) with respect to the topology
induced by the inner product (-,-)gs@opy. The pair (H*(0D), (-, ") us@p)) is
a Hilbert space. For s # 0 the inner product of this space depends on the
choice of the atlas {(U;, ;) } and the partitioning of the unity {1/?}. However,
any two such choices produce equivalent metrics, so the set H*(9D) does not
depend on these choices.

Let {T;}, {¢;} be as before, s € [0,2] and ¥; € CZ(U;) be such that ¥; = 1
on supp(#;). We define for all u € H*(0D) and v € H*(0D) the dual action

k
(uvv)H*SXHS(BD) = Z (tiu, \I}iqvij)H—-?st(Fi)'

ig=1
The map j: H *(0D) — (H*(0D))" defined by

J(W)(v) = (w0, 0) sy yom)
is an isometry. If u € L?(0D) then

(4, V) s (op) = (U, V) L2(0D)-

Let U be a Lipschitz domain. We will use the trace operator tr that maps
an element u € C*(U) to the boundary value tru = u|gy € C(U). By [40,
Theorem 3.38] this operator can be extended to tr : H*(U) — H*~2(dU) for
s € (3,3). If U is a C* domain, then the trace can be defined on H*(U) for
s € (%, k]. If there is ambiguity about the domain U we will use notation tr g/
for tr : H*(U) — H* 2(0U). If u is defined on both sides of the boundary
U, we denote tr ~u for tr oy (u|y) and tr* for tr oe)(ulye).

The trace operator is surjective, so we can define one-sided inverse mapping
tr = with the property trtr ~'¢ = ¢. This operator is not uniquely defined,
but for the applications in which we use it this will not be a problem.
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If the domain U is C*, then the surface OU has the normal vector v(U), which
we will take to be the exterior normal vector that points to the complement
of U. For uin C'(R"\ U) we define the normal derivative operator 9,
by setting for all x € OU

1
yule) = lim - (u(z + hv(U)) - u(z)).

14

For u € C*(U) we define
9 yul@) = lim - (u(z) —u(z — hw(U))).

If the domain U is clear from the context, we write 0, instead of d,y. If
there is ambiguity about the variable on which the normal derivative operator
operates, we will denote it by 0, in if operates with respect to the y variable.
If there is no ambiguity as to whether 9 or 9, is meant, we will use the
notation 9,.

The notion of the normal derivative, d,, can be extended to the case where
u € H*(U) with s = 1 if some additional conditions are met. If u € H'(U)
and Au € L2(U), we define 8;u € H~2(0U) by setting for all o € Hz2(dU)

3
(a,ju, (p)H’% XH%(BU) = (Au, tr _l(p)LQ(U) + Z(amﬂh awltl‘ _199)L2(U)' (25)
i=1

This definition does not depend on the choice of the inverse map tr ~!. If v,

and vy, € H'(U) are such that tr (v; — ve) = 0, it follows that v = v; — vy

satisfies
3

(AU, U)LZ(U) + 2(817’[147 aIiU)LZ(U) = 07

i=1
since we can approximate vy — vy with C§°(U) functions.

If u € HY(R"\ U) and Au € L*(R"\ U), we define 97 u by setting for all
¢ € Hz(dU)

3
= (O 0) -4 b oy = (AUt ) oy + D (Ot Oetr 71 0) L2
i=1

We note that we have the minus sign on the right-hand side of the previous
equation since the normal v points into the interior of R™ \ U.

The space L2, (U) consists of elements u such that for all R > 0 we have
ulpo,pnu € L*(B(0,R) NU). Correspondingly Hj, (U) consists of such

18



elements u that for all R > 0 we have u|go,rrv € H'(B(0,R)NU). The
normal derivative 9 can also be defined for u € H} (R"\ U) with Au €
L2 (R"\ U). Let x € C°(R") with x = 1 on a neighbourhood of U and
define for all p € Hz(9U)

~ @)yt by = (B XITO) ) +

3
+ Z(amuv O, Xtr 7190)L2(R"\U)' (2.6)

i=1
As in (2.6), we have for all different functions x; and x»
3

(Au, (X1 — xo)tr _1%0)L2(1Rn\ﬁ) + Z(axiua D, (X1 — X2)tr _1<P>L2(Rn\ﬁ) =0.
i=1

Hence t@ definition of the normal derivative is well-defined. In the case of
C?*(R™\U)-functions, the above definition agrees with Green’s First Theorem.

Let X be a normed space. We say that an operator T : X — H} (U) is
continuous if for all R > 0 there exists a constant C'r such that for all z € X

T2 (B0, R)0) < Crllz] x-

2.2 The Free Space Solutions

We establish an existence and uniqueness result for the wave equation in
the free space, in which the solution is expressed as a convolution with the
fundamental solution E,. This result is used in Section 5.3 to establish a
formula for the far field of the solution u in the time domain.

The fundamental solution of the wave operator O = 92 — A,, is defined by
setting for all p € S(R*)

1 1
(B f)susien = 30 |, pretlel.o)de 1)
For details we refer the reader to [26, Section 6.2].

Theorem 2.2 Let H € D'(R*) be supported in the half space {(t,z) € R*:
t > 0}. The problem

_ i
{ Ou =H R (2.8)

ulico =0
has a unique solution u € D'(R*) given by

u=FE,*xH.
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Proof. The result is well known, see [26] for existence.

2.3 The Partial Fourier Transformation F;_,;

For practical reasons we take the partial Fourier transformation to map from
the frequency domain, with variable k, to the time domain, with variable t.
For u € S(R x U) the definition of the transformation is straightforward.

Definition 2.3 Let U C R® be an open set. We define the partial Fourier
transformation Fi_, for o € S(R x U) by setting for allt € R and x € U

Fi{p}(t,z) == (27) 2 /Re’iktcp(k,:c)dk.

We define the partial Fourier transformation for ¢ € S(R x S?) by setting
forallt € R and T € S?

Feodo}(t,7) = (21)°2 /R ek, 7)dk.

The transformation Fy_; : S(R x U) — S(R x U) has the inverse

Fr e}k, x) = (2m) / eMp(t, 2)dt.

R
Likewise for p € S(R x $?)

FAo}(t.7) = (2m)} / e (t,7)ds.

We can extend the partial Fourier transformation in a fashion similar to the
extension of F : S(R) — S(R) to F : S'(R) — S'(R):

Definition 2.4 For v € S'(R x U) we define Fj_{u} € S'(R x U) as
follows: for all p € S(R x U)

(Fr—e{u}, 0)srxs@ury = (“7'7:tjk{90})5fxs(RxU) :

For u € §'(R x S?) we define Fr_{u} € S'(R x S?) as follows: for all
v € S(R x S?)

(fkﬂt{u}v QO)S’XS(]RXSQ) = (ua]:tjk{(p})gzxg(ﬂgxsz) .
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The restriction of F;_, on L? is an isometry, as we see in the following lemma.

Lemma 2.5 Operators Fj_; : LA (RxU) — L*RxU), F !, : 2 (RxU) —
L*R x U), Frp : L*(R x S?*) — L*(R x S§?) and F !, : L*(R x §?) —
L*(R x S?) are isometries.

Proof. We prove the result only for L?(R x U) since the proof for L*(R x S?)

is analogous. The restriction F : L*(R) — L*(R) is an isometry, so for all
u € S(R x U) we have by Fubini’s Theorem

[Fei{ud P ooy = /U||}‘,ﬁt{u}(.,:c)||iz(mdx

/ (-, 2)| 2y
U

= lullZ2@x)- (2.9)

Since S(R x U) C L*(R x U) is dense the equality (2.9) holds for all u €
L* R x U).

The proof for ftjk is the same as for Fj_,;.
O

If we have an operator T : L*(R x §?) — L*(R x S?), then we can define
operator T : L*(R x §?) — L*(R x S?) on the Fourier side by

T=F LT Fi ..

It follows from Lemma 2.5 that Hf” = ||T|]. We will use this operator in
Subsection 5.1 to form the scattering operator in the time domain.

An integral part of this work is the connection between the fundamental
solution of the Helmholtz operator —(A + £?), denoted by @y, and the fun-
damental solution of the wave equation, E, .

Lemma 2.6 The Fourier transformation of the fundamental solution

18
Frt{ P} = (27)2E,.
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Proof. By definition of F,_; we have for all ¢ € S(R*)

I = (fkat{q)k}ﬂp)s’xS(]R“)
= (q)kaftjk{so})s/XS(]R4)'

Since &, F, !, {p} € L'(R*), we have by Fubini’s Theorem

~
\

efik\ac\ B
/R4 mﬁik{@}(k,x)dkdx

1 —ik|z| -1
/R3 47|z (/Re Fo ek, x)dk ) da.
We have

/R e Mo FL (o} (b, ) der

(2m)2 Frme [ F L (o 2) 1 ()
= (2m)ip(|z],z).

Hence

O

In the following lemma we find the partial Fourier transformations of the
distributions E, *(d® f) and Exh, where f € L?(R?) is compactly supported
and h € L'(R*) with supp(h) C R, x B(0, R) for some R > 0. We next make
a few clarificatory comments on the existence of the Fourier transformations
and explain notation used in the lemma.

By Fubini’s Theorem for almost every x € R? the restriction h(-,z) € L'(R),
so we see that for these x the Fourier transformation F, !, {h}(k,x) exists.

In addition
/ |/ eFh(t, x)dt|de < / |h(t, z)|dtdz,
rs JR R4
so F, L {h}(k,-) is in L*(R?) and for all k € R we have
1F e {h e Moy < (1Al
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Since @, is also locally integrable in L!(R3), we see by Fubini’s Theorem that
for all k the convolution @y x, F,-!, {h}(k,) is in L},.(R®). Here *, refers to
a convolution taken over the spatial variables in R3.

We use the notation @, *, F, ', {h} for a distribution in &'(R*) which maps
v € S(RY) to

(q)k *y thk{h}a SO)S/XS(]R‘l) = /]R ((I)k *y ]:tjk{h}(kv ')a so(kv ')>S/><S(R3) dk.

Lemma 2.7 Let f € L2(R3) be compactly supported, R < oo and h € L*(R*)
with supp(h) C Ry x B(0, R). Then

Fioid By = (0(t) ® )}k, z) = (2m)72 (Pi , f) (K, ),

FREL # (3(8) @ )}k, ) = (27) 7k (g 5, f) (k, )

[N

and

Proof. We prove the result only for E, * (§'(t) ® f) and provide only a few
comments on the proof for F, * h since the proofs are almost the same.

Example 2.1 on page 14 is applicable to the distributions F, and ¢’ ® f, so
the convolution E, * (§'(t) ® f) is well-defined and in §&'(R*) and we can take
the Fourier transformation of this element. By the definition of the Fourier
transformation JF,"!, and the convolution

I = (thk{E+ * (5/ ® f)}v 99)8’><S(]R4)
= (Ei(t,2) @ (0" ® f)(s,9). xa(t, 2)xa(s, ) Fre{ 0} (£ 2) + (5,9)) sresms)

= (Bet2)o (7 P60 0Fiel} ((03) + (5.9))soeszn) g e

where x1, xo € C®(R") are as specified in the definition of the convolution
on page 14.

We use the definition (2.7) of E and the fact that x; = 1 in a neighbourhood
of supp(E, ), which gives us

12/(1(@®ﬂ@%mﬂ%WHWWHhWMwﬂ%(M®
R3 47T|{E‘

Since y2 = 1 on a neighbourhood of {0} x supp(f) we see that

I:/Re L@ ((QW)—%/R_ike_ik<z|+o><p(k7x+y)dk) dyde.

47 ||
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e—iklzl T

Here the function (k,z,y) — Tmf(y)go(kw +y) is in L}(R7), so we can
use Fubini’s Theorem, from which it follows that

1 etklz|
I = (2n) 2 1k k dydxzdk
)t [ i)l +)dyds

= (2m)7% ((Dp #y (K F) (K, ), 0) s me) -

The proof for § ® f follows exactly the same steps as the one for ¢’ ® f.

Example 2.1 is also applicable to the distributions F, and h and the proof
is the same up to equation (2.10), after which we get

I = (ﬂ_—}k{EJr*h}:W)SIX.S(Rzl)

1 — 1 .
/ ——h(s,y) (2%)_5/elk(|x|+s)<p(k,x+y)dk dydsdz.
R7 47T|.T| R

For all y € B(0, R) we have an estimate

I,

so the function (k,x,s,y) — S h(s, y)e =)0k, 2 + ) is in LY(RS).

4|z

Hence we can use Fubini’s Theorem, which implies that

dz < <k—(’;2 (2.11)

1
ms@(k,x +v)

el
h= /R mﬁik{h}(m)w(hx+y)dkdydx

((‘bk *y ]:tjk{h}(k’ )) (k’ x)7 <p(k:, x))S'xs(W) :

O

We will also need the following result to prove the multi-frequency recon-
struction in Chapter 5.

Lemma 2.8 Let 2,2 € R3, r.;, = e **% and ¢p € C®(R) be integrable.
Then
Frotdbropn} () = Froe{ 0}t + 2 - 7).

Proof. We have
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Frot{tr.p}(t) = (27‘1’)_%/H{e_ikt¢<k)e—ikz-idk

(2m) "z / e~ M=y (k) dk
R
Fr{0}(t + 2 - 7).

O

The next two lemmas can be seen as continuation of Lemma 2.8. These are
used at the very end of this work, when outline arguments for the numerical
applicability of the multi-frequency method proposed in this work.

Lemma 2.9 Let U C R3 be open or U = S* and h € §'(R x U). In both
cases o
Fri{e IR}, 7) = Froi{h}(t +7 y, 7).

Proof. By the definition of the partial Fourier transformation, we have for
all p € S(R x S?)
(fket{e_iki'yh}v Lp)slxs(RXSQ) = (h’7 eikz'y]:t_—{k{w})slxs(RXSZ)
= (hFo et =7y, f)})Sfxs(Rst)
The map ¥ : R x §? — R x §? defined by ¥(t,7) = (t + 7 -y,7) is a

diffeomorphism with Jg = 1, so with the change of variables (¢',2") = (¢, 7)
we see that

(Fume{e * ¥R}, @)Slxs(mxgz) = (Feot{h}t+ 7y, 7)), 0) srxsmxs2)

O

Lemma 2.10 Let U be an open and bounded set, h € L*(R*),supp(h) C
RxU and

~ ~ 1 ik e
wsc,oo(kvx) = Z/Ue k yftjk{h}(kay)dy

:
Then )
P} (t6.9) = - [ W+ 5 y0)dy
T Ju
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Proof. By the definition of the partial Fourier transformation we have for all
v € SR xS?

I = (fkﬂt{'&)\sc,oo}(kv/x\):@)S’XS(Rsz)

1 PR
= — | eV F ARk, y)dy ...
| o [y
F L PR 1)

The integrand is in L'(R x S§? x U), so we can use Fubini’s Theorem, which
gives us

1 ikZy 1 (2171, N\ T— ~ ~
F= [ e ) A Dakare )y
U JRxS?
1 —ikZ- —
= E/ (fkﬁt{e b yj:tjk{h}(k:y)v@)s/XS(Rxgz) dy
U

By Lemma 2.9 we have

Frt{e MVF AR E) = h(t + T -y, y),

SO
1 ~ ~
I = E v (h(t +T-y, y)7 sD(t7 x))S’xS(RxS2) dy
1 ~ ~
= E (h(tv y) ® 1(1’), (p(t - Y, x))S’XS(RXSQ) dy
U

This is expressible as an integral with an L! integrand, so we can use Fubini’s
Theorem, which gives us

I = i// Rt )t + T -y, 2)dtdH2 (3)dy
A Ju Jrxs?

1
S / / R )l — -y, 2)dydtdH(3).
4 s2 JRxU

With the change of variables ¥(t,y) = (t + T -y, y) we see that

I

1 77, L ~ N ~ A
—/ / h(t+7 -y, y)e(t, T)dydtdH*(7)
AT Js2 Jrxu

1 .
= <4/h(t+x~y,y)dy,sﬁ) :
T Ju S/ xS(RxS?)
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2.4 Spectral Theory

We define a few basic concepts from spectral theory for future reference.
Spectral theory is used in Section 4.4 to analyze the single frequency factor-
ization of the imaginary part of the far field operator Im(F}) and more ex-
tensively in Section 5.1 to provide the multi-frequency factorization method.

Our operators will be mostly self-adjoint and the functions that we use to
form new operators will be continuous, so the classical treatment of spectral
theory found in [57] will be sufficient for our needs.

Let H be a Hilbert space and {P(\)}er be a family of operators from H to
H. Let T': H— H be continuous. We use the notation

s-lim P(A\) =T
Ao
if for all x € H we have
lim |P(\)z — Tx||g =0,
A=
i.e. a limit in the strong sense.

Definition 2.11 A family of projections {P(\)}aer that map objects from
a Hilbert space H to itself, is called a resolution of identity if they satisfy
the following conditions:

i) P(A\)P(p) = P(min(A, 1))
i) s-limy_._oo P(\) = 0 and s-limy_o P(\) = I
iii) P(A+0) := s-lim,~ o P(A+ p) = P(\).
For a resolution of identity {P(\)}xer we use the notation
P(A1, Ao] := P(A\2) — P(\1).

Let function f : R — C be continuous. For all x € X and «a,0 € R the

integral ;
/ FVP(\ )z

can be defined as a s-lim of Riemann sums ), f(A;) P(Aj, Ajy1]z, see [57,
Proposition XI.5.2]. In this way we can define an operator T, which is defined
on the set

Dom (H)={zeX: / N Pd||[ PNz < oo}



See [57, Theorem XI.5.2]. The value Tz itself is defined by
Ta = / FOVAP(N)a. (2.13)
It is useful to notice here that
7al? = [ 1F)Pal PO

for x € Dom (T), see [57, Corollary XI1.5.2].

If the function f is real valued, the operator T in (2.13) is self-adjoint. It
turns out, see for example [57, Theorem XI.6.1], that all self-adjoint operators
have a unique presentation as a spectral integral

7= /fo MP(N).

o0

This is called the spectral resolution of the self-adjoint operator T

These are the tools from spectral theory needed in this work. Spectral the-
ory can be extended to more exotic functions and more general classes of
operators, but these are not needed in our work. For further reading on this
subject we recommend the books [57], [16], [42] and [50] for the interested
reader.

2.5 Properties of the Single and Double Layer
Operators

We will here give a short account of the layer operators in a Sobolev space
setting. For a more detailed analysis we refer to [40].

Let s € R. We will use the volume potential operator that is defined for
u € &'(R?) by
Gru = Oy, * u.

We recall that throughout this work D is a bounded C? domain. The next
lemma provides a continuity result for the volume potential operator which is
instrumental in the proof of the continuity properties of the single and double
layer operators introduced later on. The k dependency of the estimate given
is an important aspect for this work.
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Lemma 2.12 Let R be such that D C B(0, R), x € C°(B(0, R+1)) and let
X also denote the multiplication operator u — xu. Then for all s € [—2,0] the
operator Ty, = xGrx : H*(R®) — H*"2(R3) is continuous, with the estimate

HTkHHs(Rs)ﬂHsH(Rs) < C<k>2

Proof. Let R € R, and Bgr = B(0, R). For M = f32(1~2+2) ﬁmdx it holds that
/ |Pp(z,y)|dy < M for all £k and = € Bryo
BRr42

/ |Dp(z,y)|de < M for all £ and y € Bryo.
Bryo

Hence Schur’s Test, |51], implies that Gy, : L*(Bg.o) — L*(Bryo) is continu-
ous, with with

1G] < . (214)
for all k.
Let f € L*(R3) with supp(f) C Bgy1 and u = Gy f. We have
—(A+EHu=f & —Au=f+ku,

in R3. By regularization theory for elliptic PDEs, [17, Theorem 6.3.1] , and
(2.14) we have

lullzrzriy < C (R Nulleasa + 1Fllz2sr)
< CRI Nl r2Brsa
= C<k>2||f“L2(BR+1)-
Hence ||Gillr2(Brir)—#2(Bryy) < C(k)? and T}, := xGix is continuous from
L*(R?) to H?(R?) with the estimate
[Tl L2y — r2(rsy < C(k). (2.15)

As the adjungate operator of T} is
(Th)" = XG-kx = T"r,
we also see that
| Tl 12 (m3)— L2 (m3) < C (k)2 (2.16)
By interpolation between equations (2.15) and (2.16), see [39, Theorem

1.5.1.], we see that for s € [—2, 0] the operator T}, is continuous from H*(R?)
to H**2(R3) and that

HTk| Hs(RS)_,Hs+2(R3) S C<k>2

O

In the following definition we use the dual trace tr* : H*(9U) — &'(R?)
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and dual normal derivative 9} : H*(0D) — &'(R3) operators, which are
defined through

(b1 "u, ) gigy = (u, tr (b)HSXH’S(aD)
and

(051, O)aigt = (1, 00®) e yr-s(op) -
With these we define the single and double layer operators:

Definiton 2.13 Let k € R, D C R? be a bounded C? domain and tr*,d* be
associated with OD. Then the single and double layer operators associated
with —(A + k?) are

SLk = thr* and DLk = Q,ﬁj
Whenever SLyp is in H*(OD) for s > L we define Spp := tr SLyp.

In this work the k-dependency of the single and double layer operators are
very important, so we keep the index k in their notations through the work.

For ¢» € C(0D) the single and double layer operators exist as improper
integrals. For the single layer operator we have

SLtla) = [ @)l )
and for the double layer operator

DLy (z) == /8D (Do) @i, y)) Y (y)dH(y).
For the details of this theory we refer to [13].

We need the classical representation for the single layer operator when we
prove the k-estimates for Sy : L*(0D) — H'(OD). The idea is to express

Sk = (Sk — So) + So,

use [14, Theorem 3.6], by which Sy : L?(0D) — H'(dD) is continuous, and
then prove an estimate for Sy — Sp.

In the proof of the lemma we will use the surface gradient Grad. If U
is a neighbourhood of 9D and u € C'(U), the surface gradient of u can be
defined as a projection of the gradient of u to the surface dD. If p € C'(OD)
and 9D is C? we can extend ¢ to a function in C'(U) and then define the
surface gradient as the projection of this extended function. The surface
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gradient can also be extended to elements in H*(9D) in which case the norm
¢l r1opy is equivalent to ||| r2ap) + [|Gradel| L2 ap)-

An alternative approach to the surface gradient is to use the intrinsic geome-
try of the surface and then to define the surface gradient with the help of the
first fundamental tensor g. In local coordinates, (A, ), the surface gradient
of a function u € C1(D) is

2

-1
Gradu := Z gika—ualp—

e Ox; Oxy,
where (g%*) is the inverse of the first fundamental tensor g = (g.).

Lemma 2.14 Let k € R. Then there exists a C > 0, that depends on D
but not on k, such that

C
ISk = Soll z2(op)—H1(690) < §(|k| + 2k*)H*(OD) |||l 12 (o) -

Proof. We prove first that
ISk — Soll z2(op)— 1200y < C|E|.
Let p € L?(OD). Then for all x € 9D we have

eik\zfy| -1

Sk — So) p(x z/ —(y)dH*(y).
(Se=So)ela) = [ G e
We have
|eikr—1| < sup|9,e*r|r
r>0
< |klr.
Hence _
et 1| i

|z —y| | ~ 4x
for all 2,y € R3 with 2 # y. We thus see that

Gi-soe@l < [ |
i

4z

@<y>\ ()

IN

HA(OD)? |||l 12(om)-
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Hence |
| (Sk = So) @llz20m) < ZHQ(aD)HQO”L?(@D)- (2.17)

T
We prove next that

kQ
|Grad (S — So) ¢llz2op) < gHZ(aD)H@HL%aD)-

To this end we notice that

Grad (S — So) 9l 2op) < Ve (SLi — SLo) pllzomy. (218)
For all z € R?® we have
LSt = [ T lpan
- p\r) = R A Yy
g ’ op 4|z —y|
etklz=yl — 1 — ik|z — y| 9
e(y)dH (y
L g e
ik
v [ emare) (219)

T JoD
For o] | |

erFUl — 1 —iklr — vy

P p—
k(w7y) 47T|$_y|
we have
. Pu(y) = e 1 —ikle —y| ke — ik (x/—\)
zLk\T,Y) = 47T|$_y|2 47T|l'—y| Y),
T — &y

where x —y = E—E

By Taylor’s Theorem we have for all » > 0

le*r —1 —ikr| < sup|dZe™"|r?

r>0
< k2
so we see that for all x # y we have
K k2
V. Pz, y)| < — + . 2.20
VPl < T+ (220)

Hence |V, Py(z,y)|p(y) is integrable over y € 9D and by using Lebesgue’s
Dominated Convergence Theorem we can take the gradient inside the integral
in (2.19), which yields

V. (Sk — So) () = " Vo Pz, y)p(y)dH? (y).
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With (2.20) we see that for all x € 9D

%@(y)' dH?(y)

V. (S-Sl < [
oD

K,

%H (aD)2||99||L2(aD)-

Hence 2
Ve (Sk — So) ¢l 229y < %H2(5D)||99||L2(8D)~
We combine this with equations (2.17) and (2.18) and see that
C (Il (Sk = S0) ¢llz2(@p) + [|Grad (Sy, — So) ¢l z2(om))
C
§(|k\ +2k*YH*(OD) ||| r2(0m)-

IN

| (Sk = So) @l 1 (om)

IN

O

Corollary 2.15 For all k € R and s € [—1,0] the single layer operator
Sk : H5(OD) — H*"Y(OD) is continuous and there exists a positive constant
C that depends on 0D but not on k nor s, such that

1Sk

He@D)—H=+1(0p) < C(1+ k).

In addition, for all k we have S; = S_j, where the dual is taken with respect
to the H=* x H® duality.

Proof. By [14, Theorem 3.6] operator Sy : L?(0D) — H'(OD) is bounded.
By Lemma 2.14 we have

ISkl 200y m10D) < ISk — Soll z200)— 11 (00) + IS0l L2(0D)—H1 (8D)
< C(1+FK%).

From this it follows that S} : H=1(0D) — L*(9D) is continuous and that

ISkl -100)—r2000) < C(1 + k?). (2.21)
We have
S; = (trGptr™)*
= tr g,ktr*
- S,k.
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Hence by inequality (2.21)

1 (S=&)" lz1-1 @)~ 12(0D)
< C(1+K. (2.22)

”SkHH*l(BD)HL?(BD)

By interpolation, [39, Theorem 1.5.1.], we see that for all k¥ € R and s €
[_170]
ISkl -1y —12(90) < C(1 4 K?).

O

In the interior of the domain the single and double layer potentials are much
smoother, as we will see in the next lemma.

Lemma 2.16 Let k € R, x € Dt and € < d(x,0D). Then for allm € N
the operators SLy, DLy, : L*(OD) — C™(B(x, €)) are bounded. In addition for
bounded and open U C D+ with U C D¥, the operators SLy, DLy : L?(0D) —

C™U) are continuous.

Proof. Let ¢ > € be such that ¢ < d(x,0D). The kernels of SL and
DL, ®i(z,y) and Oy ®(x,y) respectively, are C*° from 0D x B(xz,€') to
C and 9D x B(x,¢) is compact. Hence we see that SLy, DLy, : L*(0D) —
C™(B(x,€)) are continuous.

The continuity of SLy, DLy : L*(9D) — C™(U) follows from the compactness
of U and from the first part.
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Chapter 3

The Dirichlet Boundary
Conditions

3.1 The Frequency Domain

In the frequency domain we consider oscillations with a fixed frequency.
These waves satisfy the Helmholtz equation

—(A+E)u=0. (3.1)
Under the Dirichlet boundary conditions it is assumed that the waves are

zero on the boundary of the scattering obstacle, that is u|gp = 0.

The scattering is described by assuming an incident wave wu;, which is an
empty space solution and satisfies (3.1) on all of R3, and finding the scattered
wave ug. that satisfies the exterior problem

—(A+k)ue =0 in DT

Uselop = h (3.2)
lim, oo 7 (Optise — ikus.) =0 uniformly w.r.t. 7 € S?
where h = —u;|sp. The total wave wwy = u; + U, satisfies uyo; = 0 on the

boundary 9D.

The the exterior solution of (3.2) is found as a weak solution, that is wu. is
an element in H} (D") that satisfies —(A+k%)us. = 0 on D7 in the sense of
distributions, and tr spus. = —trgpu;. Since ug. satisfies —(A + k*)u = 0 in
DT it is in fact a real analytic function on this domain. Hence Sommerfeld’s
radiation condition

lim 7 (O,use — ikug) =0

T—00
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can be understood to refer to the point-wise values of u..

Theorem 3.1 For all h € H2(9D) the problem (3.2) has a unique solution
and the solution operator Uy : H2(OD) — H} (DT) is continuous.

Proof. We refer to [40, Theorem 9.11].

O
We also occasionally need the interior Dirichlet solutions, which satisfy
—(A+k)u =0 inD
3.3
{ u‘gD = h. ( )

With certain values of the k there are non-zero solutions to the problem
(3.3) with boundary values h = 0. These values of k are referred to as the
Dirichlet eigenvalues of —A in D. If k is not one of these eigenvalues,
then there exists a unique solution u; that satisfies

where the constant C' depends on k and the domain D. Since the the interior
and exterior solutions satisfy —(A + k*)u = 0 in the interior or exterior
domains, the normal derivatives can be defined; see page 18.

Definiton 3.2 Let h € H2(dD) and v and u be solutions of (3.3) and (3.2)
with the boundary value h respectively. The Dirichlet-to-Neumann maps
Ay.— and Ay 4 are defined by

Ak,_h = 81,_?}
Apih = Ofu. (3.4)

In the interior case we have for all ¢, o € H: (0D) by the definition of the
normal derivative (2.5)

(A9, 0) -4 XHZ(OD) /

D

((—k%w)% + Vi - Vuv) dz,

where u, and u, are solutions of (3.3) with tru, = ¢ and tru, = ¢ respec-
tively. We see that

M0 b b opy = (U Be=P) b -4 om)

and refer to this fact by saying that the map Ay _ is self-adjoint.
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3.2 The Time Domain — the Energy of a Solu-
tion

Let us consider the energy of a wave u. If u € C®°(R*), Ou = 0 and U is a
bounded domain with a C' boundary, we have

0 = / (0] = A)u) dyudz
3
/U <;at(6tu)2 _ Z(aﬁiu)atu> dz.

i=1

In order to write (02 u)dyu as a time derivative of something else we notice
that
and

0 (0p,u)? = 2(0y, 1), 0y, 1. (3.6)

Hence

_ /U (02 w)oudr = — /U (f)w,.((awiu)atu) — %at(awiuy) da

3t1/(az,;u)2d:v—/ Vi (0, udyu)dH?
2Ju oU

and we see that

1
3t*/ ((0w)? + |Vul?) dz = / (0yu)Bpud H>.
2 Ju U
If u(t, -) is compactly supported and supp(u(t,-)) C U for all ¢ € [ty, t5], then
the quantity

E(u,U,t) = %/U((atu)u\vu\z) du (3.7)

is a constant for ¢ € [t1,%s] We call this constant the energy of the wave u
in the volume U. TIf supp(u) ¢ U then it is possible that there is a flux of
energy
0,E(u,Ut) = / (v - Vu)dudH?
1oy

through the boundary of U. We hence see that —(Vu)0u is a vector that
points where the energy of the wave w is going and whose length gives the
density of the energy flux.
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In the case of a Dirichlet problem the wave satisfies

u=0

on the boundary 0D, so we see that the flux through 9D is zero and hence
the energy of the wave, £(u, DT, t), is conserved. We will use the energy of
a solution to establish certain norm estimates. For this reason we define

E(u,U,t) == E(u, U, t)2.

3.3 The Time Domain Dirichlet Problem

We consider the solutions of the time domain Dirichlet Problem

Ou =0 inR, xD*

U|t:0 = f

: 3.8

Ut|t:0 = fo ( )
ulopxriufoyy =0

We need a wider class of solutions than the twice differentiable ones. A
natural extension to the class of solutions is gained by using the energy (3.7)
of the solution. Hence we define the H norm of the initial data as

sl = ([ (954 1) a2)

and the space H(D™) to be the completion of C§°(D*) x C§°(DT) with
respect to the norm || - || 5.

The space H(D") = H;(D*") x Hy(D™) is a Cartesian product of the spaces
Hy (D) and Hy(D"). The space Ha(DV) is the completion of C§°(D™) with
respect to the L? norm, which produces L?(D™).

Since we need the space H; in the case of the Robin problem in a slightly
modified form, let us define the H; space in a general manner. Let U be an
open set. The space H;(U) is the completion of C§°(U) with respect to the
Dirichlet norm || - || p defined by

lullpw) = IVull 2w)-
Hence H;(U) is the set of Cauchy sequences
Hi(U) = {(¢n)nen+ : n € C3°(U), (pn) is a Cauchy seq. w.r.t. || -|p}
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equipped with the norm
len)llp = lim [lgulo-

There is a clearer and more compact way to look at H;(U), which we unfold
in the next two lemmas.

Lemma 3.3 (Poincare’s Inequality) Let U C R"™ be an open set and
¢ € C(U). Then for all R >0

_1
el czBo,r)nvy < 272 RVl 2. (3.9)

Proof. The proof is analogous to the proof of [46, Lemma IV.1.1].

Lemma 3.3 gives us a way to embed H;(U) into L% .(U):

Lemma 3.4 Let U C R? be an open set, p € C(U), (p) = (p,0,...) €
Hy(U) and the map I defined by I((p)) = ¢. The map I can be continuously
extended into a map I : Hi(U) — L2 (U). In addition for all u € Hy(U) we

Loc

have VI(u) € L2, (U), I : H(U) — (Ran (1), | - |lp) is an isometry, and for
all w € Ran (I) and R > 0 the inequality
lull 2so.mn0) < 272 RVl ).
holds.
Proof. Let (¢,) € H1(U). It follows from Lemma 3.3 that for all R > 0 the

sequence (¢,) is a Cauchy sequence in L?*(B(0, R) N U) and hence converges
to some v € L (U).

Loc

As a distribution
v = lim ¢,

n—oo

That is, for all ¢ € C§°(U)
(v, @)D/xD(U) = nh_{f)lo (en, W)D/xD(U) :
We have for all 7 € {1,2,3}

(Or;v, (p)D/xD(U) = 73520 (0P @)D/xD(U)

(vi, @)DfxD(U) )
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where v; € L2(U) since (¢,) is a Cauchy sequence with respect to the norm
| - |lp- Hence v € L2, .(U), Vv € L*(U), » — v with respect to the norm
Il - lp and for all R >0

vl 2B, R)ND)y = T}LH;O”%”L?(B(O,RWU)
. _1
S lim 2 2R||<anD(U)
n—oo
_1
= 272R|v|pw). (3.10)

In L2 (U) the semi-norm || - || p is not a norm since for a constant function c,
c(x) = ¢, we have ||c||p = 0. In Ran (I), however, equation (3.10) holds and
hence for all v € Ran (T") the condition [|v||p = 0 implies that ||v||z2p,) =0

for all R. From this it follows that v = 0 and hence || - ||p is a norm on
Ran (I).
To see that I is an isometry we notice that for all (¢,,) € H;(D") we have
H((ea)llp = lim [lgnllp
= [lten)llm @)

O

In the future we identify v € H;(U) and I(u) and state that by Poincare’s
inequality we have for all w € H,(U) and R > 0

lullL2(pg) < 272 Rl|ull p.

In passing we notice that the above scheme fails in dimension 2, since the
completion of C§°(D*) with respect to the Dirichlet norm is not contained
in the class of distributions. An example of this phenomenon made by Soga
can be found e.g. in [45, p.30].

We return now to the time domain problem (3.8). By [45, Theorem 7.1.2]
the problem has a solution in the following sense:

Definiton 3.5 Let (fi, fo) € H(D™). Distribution u(t,z) € D'(R x D%) is
a solution of (3.8) if

(i) For allt € Ry U{0} we have (u(t,-),dwu(t,-)) € H(D') and the func-
tions
t— Vu(t,-), t— owul(t,-)

are continuous from Ry U {0} to L*(DT).
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(77) (u(ov ')7 atu(ov )) = (fh f?)

(#1) Ou =0 in Ry x D in the sense of distributions.

By Lemma 3.4 we know that for all ¢ € [0, c0) we also have u(t,-) € L2 (D7)
and that the inequality

_1
[ult, )lz2g) < 272 Rlult, )l p- (3.11)

holds. This will be useful with the following class of scatterers.

Definition 3.6 An obstacle D is said to have Dirichlet (respectively Robin)
local energy decay if it has the property that every solution to the problem
(3.8) (respectively (1.4)) with E(u, D*,0) < oo and compactly supported
initial data fi, fo, satisfies for all R > 0

E(u, Dg,t) < C(R)e " E(u, D*,0), (3.12)

for some positive constants C(R) and 6 which depend only on the shape of
the obstacle D, R and the supports of fi and fs.

It has been proved, [41, The Main Theorem|, that D has Dirichlet local
energy decay if the obstacle D is such that there exists a convex function
on DT with a positive normal derivative on 9D, and this function is equal
to the distance from D sufficiently far from the origin. If D is convex and
0 € D then the function |z| satisfies these conditions.

In order to use the partial Fourier transformation thk we need to extend
the solution u to negative time.

Lemma 3.7 Letu be a solution to the exterior Dirichlet problem (3.8). Then
the extension u defined by

ult, ) = { w{t) o (3.13)

satisfies as a distribution in S'(R x D7)
Ou=0(t) ® fo — ' (t) ® fi.
Proof. Let (f1, f2) € H(D") have bounded supports, @ the solution of (3.8)

with the initial data (fi, f2) and (f14, f2.) € C5°(DT) x C§°(DT) be such
that (fi:, fo;) — (fi, f2) in H(D'). For i € Ny let @; be the solution of
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(3.8) with initial data (f1;, fa;) and u; be the corresponding zero extension.
By [17, Theorem 7.2.7] we have u; € C®(R; x D¥) for all i € N and
(wi(t, ), Bpui(t,-)) — (u(t,)Ou(t,-)) in H(DT) uniformly with respect to t.
Tt follows from Poincare’s Inequality, inequality (3.11), and the conservation
of energy that u; — u in S'(R x D¥).

We integrate by parts and see that for all ¢ € S(R x D)

(8152ui’s0)$’><$(]1§><D+) = (“ivaf?@)swsmxm)

= 7/ (0, 2)0pp(0, z)dz + 8tul(0 x)p(0, z)dz +
/ / OFu(t, x)p(t x)dxdt (3.14)
D+
We have

/ /+ ui(t, x)p(t, z)dedt = (Aui, ) gy s@epns) -
o Jbp
Hence it follows from (3.14) that

Ou; =0® fo, — 8 @ fis

and
o = Jim o
= 00 f—0®f
O
Hence by Lemma 3.7 the extended element wu satisfies all in all
Ou(t,z) =) f1+0t)® fo inRx DT
ulopxr, =0 (3.15)

u =0 t <0,

where we understand the solution to have the properties (i) and (ii) of Defi-
nition 3.5 for ¢t > 0 and the equality Du(x,t) = ® fo — & ® f1 to be in the
sense of distributions in R x DT.

The Fourier transformation JF, ', {u} can also be expressed as a Bochner
integral. This will enable us to refer to the values 7, %, {u}(k,-) and it will
also be useful later in deriving a boundary source problem in the frequency
domain.
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Lemma 3.8 Let the obstacle D have the Dirichlet energy decay and u be a
solution of (3.15). Then for all R € R, such that D C B(0, R), the map
Ty : [0,00) — HY(Dg);t — e*u(t,-) is Bochner integrable. In addition

vk, ) = (27T)’% /000 eRu(t, -)dt

satisfies .ﬂjk{u} = v, when we understand v to be the distribution defined
by
v Pgnsenn = [ [ Talothz)dod (3.16)
RJD

Proof. Let R € R be such that D C B(0,R). The map T} : [0,00) —
HY(Dg);t — e*tu(t,-) is continuous and H'(Dy) is separable. In addition it
follows from the decay estimate (3.12) and Poincare’s Inequality, inequality
(3.11), that for all R there exists constants C'(R) and ¢ such that

[u(t, M2y < C(R)e™. (3.17)

Hence there exists a constant Ci(R) depending on R such that

| ettt Mot < Cn(R) (3.18)
0

and by Lemma B.4 the map T}, is Bochner integrable.
It follows from the estimate (3.18) that for all £ and R

lv(k, N z2pr) < Cint(R)

Hence v defined by equation (3.16) belongs to S'(R x D).

Now let ¢ € S(Rx D), R be so large that for all ¢ € R we have supp(p(t,-)) C
B(0,R) and x4 be the characteristic function of set A C R. We consider a
sequence of simple functions; let n € Ny, 0 € N, ,,, = %, Apy = [tne-1,tne)
and P,(t) = >0, tneXa, ,(t). The simple function

2n
salkt,) = D e Ou(Py(t), Jxa, (1)
(=1

satisfies by (3.17)
[sn(kyt, Mgy < Ce™.

It follows from the property (i) of Definition 3.5, and inequality (3.11), that
sn(k,t,-) converges pointwise to e*'u(t,-) in L*(Dg) as n — oo. Hence

43



Lebesgue’s Dominated Convergence Theorem, in the form Theorem B.5, im-
plies that the Bochner integral

/ e*tu(t,)dt = lim Sp(k,t,-)dt.
0

n—oo 0

Let
Sa(k,) = / Sk, t.-)dt
0
271
_ wt Ly
= e u(=, )~ (3.19)
(=1
and

S(k,-) = / e*u(t, -)dt.
0
We prove next that for all € > 0 there exists n. € N such that for all n,m > n.
and k € R we have
[[9n(k; ) = Sk, )l z2pg) < (k). (3.20)
Let € > 0. From equation (3.17) it follows that there is ¢, € R, such that

/ Ju(t, ) z2ppdt < / C(R)e~dt
t te

e <6
1

Since for all n € N and ¢ € R it holds that P,(t) > t, we see that
- €
| Isulht Mz < 5 321)
te

and we can concentrate to the interval [0, ¢] in proving the estimate (3.20).

The function t — u(t,-) : R — L?(Dpg) is continuous, so it is uniformly
continuous on the interval [0,¢]. Hence there exists d. such that for all
t1,ta € [0, te] with |t1 — t2| < 6. we have

€

(s, ) = ulta, )Lz (pg) < 1

Let n,m € N be such that =, 1 < §,. Then for all ¢ € [0, ] we have
l3n (s t,) = skt )lzaogy < (€ = M Oyu(Po (), llrag) +
15O (w(Po(t), ) = u(Pn(t), )| z2(0r)
€
2|k|6.C + —,
K10C + 4

IA
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where C'is the constant in inequality (3.17).

Let us demand that J. < g5 so that

€

[n (k) = skt )220y < 5, ()

and

te
/ lsn(k,t, ) = sm(k,t, )| L2(ppydt < (3.22)
0

It follows from (3.22) and (3.21) that

€
9

150k Y20 < Alm%$0—%%thmW
te
/ (ks t,2) — (s, )| oy +
0

| Isathtmde [ stz
t

te te

< e(k).

It follows from inequality (3.20) that for n > n.
1S (k) = Sk, )l2(pr) < €(k) (3.23)

also holds for all k& € R.
As ¢ € S(R x D) there exists C,, € Ry such that

lo(k, lz2wgy < Colk) ™.
We have

I, / Sn(k, x)p(k, z)dzdt —/ S(k,z)o(k, z)dxdt
RxD+ RxD+

S /
RxD+

Since supp(y) C B(0, R) we have by Holder’s inequality

(S, (k,z) — S(k, 2))p(k, x)‘ dadk

I < /RHSn(kw)*S(kv')||L2(DR)H<P(/<?7')||L2<DR)dk

€

Co T =2 By equation (3.23) we have for n > ngz

Let now € =
I, <e
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Hence

(V@) sies@xpsy = (2m)7F lim Sk, Yok, z)dxdk
= JrRx D+
AN
1
= (2m)72 li E ik k, x)dzdk.
(2m)72 lim Pu(n) ok, x)dx

e JRx Dt ]

By Fubini’s Theorem

n—oo

(U, 0)sxs@xp+) = 1M Z/D —u(—,x fkﬁt{go}(f x)dz.

It follows from the energy decay (3.17) that for all € > 0 there exists a
T. € R,, that depends on the constants C' and ¢ of equation (3.17), such
that for all ¢ > T, and a ¢; > 0

€ —a
||U( ) Fe—t{o}(t, )HLI(DR)S§C16 L

Hence for all n

—9on

—u ]:k;—»t{%@}(— z)|de < / %cle’mdt
£>nTe 0
€
Likewise -
/ / ult, ) Fiea (i} 0, )| dadt < & (3.25)
€ Dpg

On the interval ¢ € [0, T;]

on

un(t, ) = Z U(Pn(t)7 ')XAn,i(t)

(=1

converges uniformly to u(t,-) in the L?*(Dg) norm, so for every n > 0 there
exists a m,, such that for all n > m,, and t € [0, T, + 1] we have

Ui

1+ supyego 7, 41 {1 Fr—ed 0} (& )l L2 )
(3.26)

”un(t7 ) - u(t7 ')”LZ(DR) < (TE + ]_)(
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Hence for n > max{ng, n,} we have by inequalities (3.24), (3.25) and (3.26)

I, = D+ fk_,t{go} —, z)dx f/ /D+ u(t, ) Fr—e{o} (¢, z)dx
_ /T+1 /D+ o 2) —al2) Frolo) (1, x)‘da:+
- f;ﬁt{@}(— z)|dz +
ZEA
[ /D Wﬂﬂt{m,x)]dm
< nte

where A={T. +1,T.+2,...,2"}.

Hence I,, converges to zero as n goes to infinity and

(v, P)sixs@xps) = / /D+ (t, 2)Frile}(t, v)dx

= (Fo{u}, <p)$’><$(]R><D+)

O

Now we are ready to state the connection between the time and frequency
domain solutions. First in Lemma 3.9 we deal with the smooth initial data
and in Theorem 3.10 we prove the result for f; in the closure of C5°(D™)
with respect to the norm || - ||p and fo € L*(D™).

Lemma 3.9 Let f1, fo € C3°(D") and u be the solution of (3.15) with the
initial data (fy, f2). Then for all k € R the function v(k,-) := F, !, {u}(k,")

satisfies

—(A+k)(k,-) = (2m)72 (f—ikfr) in (D*)
ok, op =0 (3.27)
lim, 7 (0w — tkv) =0

Proof. Since f1, fa € Cg°(D7) thereis R € R, such that supp(f1), supp(f2) C
Dg. Tt follows from [17, Theorem 7.2.6] that u € C*°(Ry x D) with

[ule=oll oy < C (Lsllzzmp) + 1ol 1D

and
uli=ollm gy < C (I fillamer (o) + 1 f2llm(g)) -
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For all o € N? the function w = 9%u satisfies

Ow =0 in R, x DF,
wlapx(r,u0y =0 (3.28)
w|t=0 = 3au|t=07 wt|t=0 = 8taau|t=07

where 0%u;—g, 0%uli—o € C§°(DT). Hence we can apply the energy estimate
(3.12) and Poincare’s inequality to w and see that for all R such that D C
B(0,R)

lw(t, ) rzpm < CE(w, D, 0)e™.

Hence for all n € N and ¢ € R, we have u(t,-) € Wi (Dg) with the estimate

lu(t, Mwpwr) < Ce™ (| fill anripg) + 12l anor)) -

where C' depends on R and n. The Sobolev inequality, e.g. [17, Theorem
5.7.6], implies that u(t,-) € C"%(Dg) with

lu(t, Men-2pp) < Ce™ (Ifillansr o) + L fellrmom) » (3.29)
where C' depends on R and n.

Hence the partial Fourier transformation of v can be expressed as an integral
v(k,z) = F_ L {u}(k,z)
= (2m)°2 / e*u(t, z)dt. (3.30)
0

Because of the decay rate of equation (3.29) we can integrate by parts which
yields

—ko(k,z) = (2m) 2 /0 oo(afeikt)u(t,x)dt
= (21)2 < fola) — ik fy(z) + /0 h ™ o2ult, x)dt) .
Hence
—(A+ (k) = (2r)°2 (fgikfﬁr/oooe““(afA)u(t,x)dt)
= (2n)7 (fo — ikf).

On R x 0D the function u vanishes, so for all x € 9D and k € R we have

v(k,z) = / ektu(t, z)dt
0
= 0.
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Finally, we prove Sommerfeld’s radiation condition. Let Ry < R be such that
D C B(0,Ry) and y € C*®(R?) be such that y = 0 in a neighbourhood of D
and y =1 in R*\ B(0, R). We define U, := xu and extend it by zero inside
D. The zero extension, denoted by us, satisfies

O = in R*
{ Us H inR (3.31)

U2‘t<0 =0

where by Lemma 3.7

H = &)@ (xfa) = 6(t) © (xf1) + (87 x)ua + 2(0ix)Drus +
+(Ax)uz + 2Vy - Vus.

By Theorem 2.2 the unique solution of (3.31) is
uy = FE, x H.
We denote
h = (afx)u2 + 2(0ix)Orug + (Ax)us + 2V - Vus.

Since x is compactly supported, supp(h) C R x B(0, R) for some R > 0. The
decay estimate (3.12) implies that h € L'(R*) and we can apply Lemma 2.7,
by which

Fo By« HY (k) = @y (FAHY (R )) -

Here
FAHYk2) = ) 2x(fo —ikfi) + F {h}(k, x)

Since for all k the function F, !, {H}(k,) is in Cg°(R3), we see that for
|x| > R
(0, —ik)v(k,x) = (0, —ik) F; ua(k,x)

t—

/R (0@ — k) @y — ) F L H (R, y)dy.

We have
— iketklz—yl —— etklz—yl
ik —-N=F (- -1 4 T () —
(Bry = i8) ®ule ~9) = (- (=) = ) e 7 0
Here 1
e @n-n-o(L).
||
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as |z| — oo, so we see that

(O = ) e =) =0 (). (332)

Hence

(Or(w) — ik) Pz — y) F, L H(k,y)dy = O !
L ()

R
and
lim r(0, —ik)v =0

r—00

uniformly since the estimate (3.32) does not depend on the direction Z.

O

Lemma 3.10 Let f; be in the closure of C3°(D™) with respect to the || - ||p
semi-norm, fo be in L?(DV) and u be the solution of (3.15) with the initial
data (f1, f2). Then for all k € R

U(kv ) = ftjk{u}(kv )

satisfies
—~(A+R)o(k,) = (2m)72 (fo—ikfi) in (DY)
U(k7 ')|3D =0
lim, oo r (Orv —ikv) = 0.

Proof. Let R be such that D C B(0, R). By Lemma 3.8 F,!, {u}(k,-) can
be represented as the Bochner integral

Fo{u (k) = (2m) / " et dt.

Here u(t,-) is considered to be an element in H. (Dg), that is, an element of
H'(Dpg) whose trace on 0D vanishes. It follows that F, !, {u}(k, ) is also in
H! (Dg). From the energy estimate (3.12) it follows that

17 efud (B, ) oy < CE(u, DY, 0). (3.33)

Now let (f1;), (f2;) C C5°(D™) be such that fi; — fi with respect to the
semi-norm || - || p, fa; — fo in L*(D") and u; be the solution of the problem
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(3.15) with initial data (fy;, fo;). It follows from the energy decay (3.12)
that for ¢t >0

E(u—uj, Dri1,t) < Ce ™ E(u—u;, DT,0).
Poincare’s Inequality, Lemma 3.3, implies that
lu(t, ) = ui(t, Mg < Ce™ (ILf1; = fill 2oy + [ fog = Fallrzos)) -
Hence we see that for all R € R,
172w (R, ) = Fop{ud (B )l o) — 0 (3.34)
as j — co. By Lemma 3.9, !, {u;}(k,-) is the unique solution of
—(A+k)v(k,r) =F; in D"
v(k,)lop =0 (3.35)
lim, o7 (0,0 —ikv) =0
with F‘J = (271')7% (fz’] — Zkfl,j)
The solution operator of (3.35) is
ﬁk = Gi, — Uitr op Gy, (3.36)

where Uy, is the solution operator of the Dirichlet problem (3.2), referred to in
Theorem 3.1. By Theorem 3.1 operator Uy, : H~2(0D) — HJ, (D") is con-
tinuous and it follows from Lemma 2.12 that G : L*(B(0, R)) — H}, (D)
is continuous, so the operator Uy, : L*(9D) — H} (D7) is continuous.

Let F = limj_o(27)"2 (fo; — ik f1;). By equation (3.34)

Foubk) = T P () k). 331)
Since operator Uy : L2(OD) — HL (D) is continuous, we have
lim 7 {u} (k) = Jim O4F;
o0 j—o0

= U,F. (3.38)

That is, F, *,{u}(k,-) is the solution of (3.35) with F' = f, — ik f,.
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3.4 Dependency of U; on the Parameter k

Theorem 3.11 Let D have the Dirichlet local energy decay property. Then
for all R € R, the frequency domain Dirichlet solution operator Uy, : H2 (0D) —
H},.(DT) has the estimate

U]l < C(k)?

H} (D)= H (D) =

where C' depends on R and D.

Proof. Let h € H2(dD), k € R\ {0} and v be the unique solution of

—(A+k)v =0 in DT
vlop =h (3.39)
lim, o 7 (0,0 — ikv) =0.

In order to achieve a connection to the time domain solution we form a
corresponding source equation to (3.15) in the frequency domain, which is
connected to (3.39) above. To this end let R > 0 be such that D C B(0, R)
and w be the unique solution to

Aw =0 1in Dp
wlpp =h (3.40)
wlopo,r) = 0.

Furthermore let x € C§°(B(0, R)) be such that y = 1 on a neighbourhood of
D. Then v(x) := v — xw is the unique solution of

—(A+k)0 =g in DT
Top =0 (3.41)
lim, 7 (0,0 —ikv) =0,

where g := (Ax)w + 2Vx - Vw + k?xw is in L?(D™).

By Theorem 3.10 the problem (3.41) is the Fourier transform of the problem
(3.15) with Cauchy data f; = 0, f, = (27)2g. Hence o = F 1 Au}(k, ) and
estimate (3.33) yields

10l pey < CE(u, D*,0)
Cllgllzzo+)

C k) [1wl| 12 (D)
C{&)* |||

IN A

H3(8D)’
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In the last step we have used the fact that the solution operator of problem
. . 1
(3.40) is continuous from H2(9D) to H'(Dp).

Hence for all h € Hz(9D)

Uk pry = 10+ xwllmpg)
< Nollavog) + Ixwllz g
< Ol
That is,
”Uk”H%({?D)HHl(DR) < Cr(k)?,

where Cz depends on R and D.
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Chapter 4

The Robin Boundary Conditions
and the Frequency Dependency of
the Factorization Method

Throughtout this Chapter we assume that the domain D has a C? boundary
if not otherwise stated.

4.1 Existence and Uniqueness in the Frequency
Domain

We shall adopt the approach of using single and double layer operators and
their jump relations to prove the existence of the solution to the time har-
monic Robin problem. This approach has been applied to Dirichlet and
Neumann problems in [14] and [40], the results and ideas of which we also
make use here.

We note that one can find a solution to the Robin problem in the literature,
e.g. [28, Theorem 2.2]. We include a proof in the following for the sake of
completeness and also since the proof is different from the one in [28].

We recall first the continuity properties and the jump relations of the single
and double layer operators.
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Theorem 4.1 Let x € C°(R3). The following operators are continuous

XSLy, : H2(0D) — H'(R?), \DL;, : H2(9D) — H'(D%),
trSLy : H2(0D) — H2(dD), tr*DLy : H?(0D) — H?(dD),
OFSLyH 2(0D) — H 2(dD), 8,DLy : H2(0D) — H™2(9D).

In addition, the single and double layer operators satisfy the jump relations

[SLgy] = 0, and (4.1)
[0,8Lyp] = —9 (4.2)
for 1 € H"2(dD) and
[DLyp] = ¢ and (4.3)
[0,DLgp] = 0 (4.4)

for p € H%@D).
Proof. See [40, Theorem 6.11].
(]

In the case of Holder continuous functions ¢ € C%*(9D) and ¢ € CY*(9D)
the integrals

/ By (2, ) o(y)dH(y) and / (Buiy B2 1)) AH ()
oD oD

exist as improper integrals and the boundary values of the single and double
layer potentials can be expressed as

0 SLiple) = Fye@)+ [ (o Pulan) b))

1

L) = 5000+ [ @y Balen)BdH)
oD

For details we refer to [13].

We have adopted the Sobolev space approach according to [40], so we cannot
refer to the operators such as

Ty /a (@ Bale )OI < 0D (4.5)
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as easily as in the Holder theory. Our approach is to use the jump relations
and define

T, = = (tr*DLj + tr “DLy) and

(NN NN

R = = (0SLy+ 8, SLy). (4.6)

We state in the following lemma how the boundary values of the single and
double layers can be expressed with 7, and Rj and prove some mapping

properties of these operators for future reference.

Lemma 4.2 The operators Ty, Ry, : Hz (D) — Hz2(dD) are compact and
for allyy € H=2(dD) and ¢ € H2(dD) the following relations hold

O*SLyy = (q:%f + Rk) 0 (4.7)

tr*DL, e

(ii[ + Tk) Q. (4.8)

Proof. For the mapping property we refer to [53, Proposition 1.11.2].

The equations (4.7) and (4.8) can be inferred from the jump relations (4.2)
and (4.3) respectively.

O

Before the existence and uniqueness result we recall the definition of a Fred-
holm operator.

Definition 4.3 Let X and Y be a Banach spaces and T : X — 'Y a linear
operator. T is a Fredholm operator if following conditions hold:

(i) Subspace Ran (T) is closed

(ii) spaces Ker (T) and Y/Ran (T) are finite dimensional.
The index of a Fredholm operator is
index (T') := dim (Ker (7)) — dim (Y/Ran (T)) .

With these preliminary observations we are ready to prove the existence and
uniqueness for the time harmonic Robin problem.
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Theorem 4.4 Let k € R\ {0}, o, B € C*(0D), a(x) > ag > 0 and \(x) =
ika(x) + B(x). Then the time harmonic Robin boundary problem

—(A+k)u =0 in D*
(8, + Ma)tr H)u =h where he H 2(dD) (4.9)
lim, o7 (O,u —tku) =0 uniformly

has a unique solution u € Hj, (D) and the solution operator U, : H’%(aD) —
H},.(D") is continuous.

Proof. We prove first the uniqueness of the solution. To this end suppose
that w € H},.(D") is a solution of (4.4) with h = 0. Then we have J,u =

Loc

—A(z)tr Tu on the boundary 9D and we see that
(8”U’U)H*%xH%(aD) = (=ikau, u)p2op) + (=0, u) 29p)-
Hence for k£ > 0
Im (8Uu7u)H,%XH%(0D) > ka0||u\|2L2(aD) (4.10)

and for k < 0

Im (0, u,u) < kagllul|72op)- (4.11)

H-% %1% (0D)

From Sommerfeld’s radiation condition it follows, see [14, Equation 2.10],
that

lim (|0ul® + K*|ul?) dH? = —2kIm (O,u, u)

(4.12)
T JaB(0,r)

H % xH? D)’
Rellich’s Lemma, [14, Lemma 2.11], states that if the solution to the Helmholtz

equation, u, satisfies

lim lu|*dH? = 0, (4.13)

=% JoB(0,r)

then u = 0 in R*\ B(0, R) for sufficiently large R. Tt follows from the unique
continuation principle, |37, Section 4.3|, that u =0 on D™.

For k > 0, equations (4.10) and (4.12) imply (4.13) and hence v =0 on D*.
For k < 0, equations (4.11) and (4.12) imply (4.13), so again v = 0 on Dt
and the solution of (4.4) is unique for kK € R\ 0.

Next we establish the existence of the solution. We make an ansatz

u = (DL, + SLyM,) ¢,
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where ¢ € Hz (0D) and M,, defined by Myp := Ap, is continuous from
H#(0D) — H*(9D) for all s € [—2,2]. With equations (4.7) and (4.8) we
see that

1
(Of + MrT)u = 9 DLyp+ <2 + Rk) My

1
+A (2 + Tk> w+ )\SkM)\QD

= a;rDLng + (RkM)\ + M,T}, + M)\SkM)\) ©. (4.14)

By [40, Theorem 2.8] the operator 9 DLy : H2(0D) — H~2(0D) is Fred-
holm with index 0. By Lemma 4.2 operators T}, Ry, : H: (0D) — H’%((?D)
are compact and by Lemma 2.15 operator Sy, : H%@D) — H’%(GD) is com-
pact. Since My : H*(0D) — H*(9D) is continuous for s € {—3, 1} we sce
that the operator

Ki == RM, + M\T, + MyS, M, : H*(0D) — H™%(0D) (4.15)

is compact.

By [40, Theorem 2.26|, the sum of a Fredholm operator with index 0 and
a compact operator is a Fredholm operator with index 0, so we see that
9+YDLy, + K} is a Fredholm operator with index 0. By the Fredholm alterna-
tive 0 DLy, + K, is bijective if and only if it is injective. We will prove this
next.

Let us assume that for certain ¢ € H2(9D) we have
(0 DLy, + Ky) ¢ = 0. (4.16)
Then u = (DLy + SL;M,,) ¢ satisfies
—(A+k)u =0 in DF
(OF + XMrHu =0 (4.17)

lim, o7 (0, —ik)u =0 uniformly

and it follows from the uniqueness that ©w = 0 on D™.

We see from the jump relations (4.1) and (4.2) that

[u] = ¢.

As tr Tu = 0 we see that
—tr u = . (4.18)
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From the jump relations (4.3) and (4.4) we infer that
[&,u} = —M/\(p.

Since 9} u = 0, we see that
0, u = Myp. (4.19)

We use now Green’s Theorem with (4.18) and (4.19), which gives

— o e
[)DAw(—w)dH = (0, u,tr U)H’%XH%(BD)

/D (IVul* = k?|ul?) dz. (4.20)

Since for £ > 0 we have Im(\) > kay > 0 and for k£ < 0 we have Im(\) <
kog < 0 we see that

Im (/@DW(—w)dW) > kaollglZeepy k>0
o ( aDW(_WdH2) < koollglltaop) k<O
It follows from equation (4.20) that
ll¢llz2op) = 0. (4.21)

Hence the equation (4.16) has only the zero solution and the operator
B, = (9/DLy + K}) : H3(dD) — H (D) (4.22)

is bijective. By the open mapping theorem, [57, Theorem I1.5], the surjective
inverse, By ' : H~2(8D) — Hz(dD) is continuous, so the solution operator

Urob,k = (DLk + SLkM)\) B};l (423)
is continuous from H~2(AD) to H} (D).

O

We are able to establish a local k-dependence result from Theorem 4.4, which
is needed later on in the proof of Theorem 4.17 to establish the single fre-
quency factorization to all £ € R\ {0}.
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Corollary 4.5 The operator B,;l, where operator By, is given in (4.22), de-
pends continuously on k in the sense that for all ko € R\ {0}

lim |B.' — B || = 0. 4.24
lim (15,1~ B, (4:24)
Also operator U,q, ) depends continuously on k in the above sense.

Proof. The kernels of the operators SL; and DL, depend smoothly on k,
so we see that operators By : H2(0D) — H~2(dD) and (DL, + SL;M,) :
H*(0D) — Hi,

Let kg e R \ {0} A= Bko and B, = By, — Bko- Since

(D*) depend continuously on k.

A(I + A7'By) = A+ By,
we have
Blzl = (A+Bk>71
= (I+A7'By) AL (4.25)

Operator By, depends continuously on k in the sense of (4.24), so when |k — ko|
is sufficiently small we have

HA’lBkH <1
and -
(I+A7'By)™ =) (A7'By)" (4.26)
n=0

The series on the right-hand side of (4.26) depends continuously on &, so we
see from (4.25) that B, ' depends continuously on k.

Since both Bk_l and DL, + SL, M, depend continuously on k it follows from
equation (4.23) that U, ; depends continuously on k.

4.2 Sommerfeld’s Radiation Condition

In the subsequent three sections we use the family of plane waves
P = {uy(z.d) = *?: d € §*} (4.27)

rather intensively. This family gives a certain "window" to the scattering
process and obstacle itself, a window which is summarised in the far field
operator introduced at the end of section 4.3
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In the following theorem the notation Oy (\Tlc\) means that the term denoted

by this is smaller than %, where the constant C'(k) depends on k. In

addition, the term Og refers to the O term that is connected to the kernel
&y (z,y) of the single layer operator SL; and Op refers to the corresponding
term that is connected to the kernel 9,y ®(z,y) of the double layer operator
DL;. These terms do not depend on k, since we separated the k dependence
in Lemma A.1. We will use this notation in the rest of the work.

Lemma 4.6 For a fized k € R\ {0} the solution ugs. of the exterior Robin
problem (4.9) has the far field asymptotics

wn(z) = <um(§) o ( L >> (4.28)

|| []
and satisfies
. 1

In addition in the far field asymptotics of the scattered plane waves

eik‘:ﬂ‘ R 1
ug(z,d) = W U0 (T, d) + Or.a m ,

where the Oy, 4 (‘—;O terms have the estimate: for all d € S?
1 C(k
00 (1)1< - (430)
|| |z]
Sommerfeld’s radiation condition

lim 7(0, — ik)us(z,d) =0

r—00

is satisfied uniformly with respect to 7,d € S°.

Proof. Let R € Ry be such that D C B(0,R) and x € R\ B(0,2R) and
h = (0, + Atr)us.. By Theorem 4.4 the exterior solution is

Uge = (DLk + SLkM)\) B,;l]%

where X is the density of equation (4.9) and for each k& € R\ {0} the operator
B! H~2(dD) — Hz(dD) is bounded. By Lemma A.1 the kernels of
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the single and double layer operators have the following asymptotics for all
y € B(0,R) and z € R*\ B(0,2R):

eik\ac\ 1 ik 1
o) = (e mos ()

ik|z| Lo o
Do) Bl y) = © <”<y) Like P 4 (£)20p (1>>

|z 4 |z|

and

Hence

tpola) = /aD (B0 B, ) + iz )A(W)) By h(y)dHE(y)
eik|w\

= 1l o (—V(y) - Dike Y 4 eiiki'y)\(y)) B,;lh(y)dHQ(y) +

1
O (?v)

and the asymptotics (4.28) hold with

R 1

Uko0(T) = I /BD (—v(y) - Tike ™=V 4 e_ikf'y)\(y)) B th(y)dH?(y). (4.31)

We next prove equation (4.29). We observe first that

(0r — ik)use(z) = /a D(ar —ik) (Buy) Pz, y) + iz, y)A(y)) By "h(y)dH (y).

By Lemma A2
Oy — i) B(z, ) = (K)O (%2)
and
(Or(@) = ik) D) @(, y) = (k)*O <#> :
Hence we see that (4.29) holds.

We prove next the uniformity of the far field asymptotics of the scattered
plane waves. The boundary values of plane waves f; := (9, + Atr)eikd®
satisfy

sup || fall .. —1 =C < .
U il -3 o)
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Hence there exists a constant C(k) such that for all d € S?

o [ (0s (1) 200+ wron (1)) Bt tare| <

|| ]

and the estimate (4.30) holds uniformly for d € S?.

Next we prove the uniformity of Sommerfeld’s radiation condition for the
plane waves. We have by Lemma A.2

(0r — ik)Urop i fa(z) = /@D [(0r — 1K) (D) Pi(w, y) + Pulz, y)A\(y))]
B! fa(y)dH? (y)
9 1 1 2
— / (k)20 (I:v|2> B, fa(y)dH(y)
oD

1
O (mv) 7

sup ||B];1deL2(é)D) = C(k) < oo.
des?

since

This establishes an estimate for (0, — ik)U,opx fa(x) that is uniform with
respect to the d variable.

O

We notice that in Lemma 4.6 we would get an explicit expression for the
k dependence of the Oy, terms if we had a k estimate for the operator By
which, however, is unavailable.

Corollary 4.7 The far field kernel uy, (T, d) is in C=(S? x S?).

Proof. Let fq:= (9, + Atr )e*¢® be the boundary values of a plane wave. By
equation (4.31) the corresponding far field is

1

Up,oo(T, d) = yy

/aD (71/(1/) .fiikeﬂ‘kﬁy + e—ik@-y}\(y)) Bk—lfd(y)dz]_ﬂ(y).

(4.32)
The functions —v(y) - Zike ¥ and e~*¥¥ are C*° with respect to the vari-
ables T and y, so we see that u(Z,d) is C* with respect to the Z variable.

The function fy is C'**° with respect to the variable d. In addition the oper-
ator B; ! is linear and bounded from H~2(dD) to L?(dD), so we can infer
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with Lebesque’s Dominated Convergence Theorem that the derivatives with
respect to the d variable can be taken inside the integral. With a local
parametrisation d = d(¢1, ¢2) we see that for i € {1,2} we have

058 fa = By 0, fa |
= B, (9, + Mtr) 9y, e,

Since e*? is C> with respect to the d variable, we see that u.(Z,d) is C!
with respect to the d variable. Higher derivatives can be taken care of using
the same argument.

4.3 Herglotz Waves and Their Scattering

We now introduce the concept of a Herglotz wave and analyze its scattering
from an obstacle with a Robin boundary condition. The Herglotz wave is a
central concept in this work and our way of analyzing the scattering process.

As we will see below in Corollary 4.15, the Herglotz waves’ scattering can be
constructed from the scattering of plane waves and the far field of a scattered
Herglotz wave can be obtained from the Herglotz waves’ density by the far
field operator F}, which has attractive functional analytic properties. The
novel aspect of our approach is that we provide frequency dependent esti-
mates for || F}|| and later on also in the reconstruction estimates, in equation
(4.87). This is done in order to make possible the multi-frequency recon-
struction later on in Chapter 5.

The Herglotz waves will also surface in Section 5.3, where we use their coun-
terparts in the time domain in order to provide a way to calculate the time do-
main far fields and estimates for the time domain far field operator Fi;,,. = ]3,
which, in the author’s opinion, provide a way to estimate the numerical ap-
plicability of the multi-frequency reconstruction that will be in introduced in
Section 5.1.

Definition 4.8 Let h € L*(S?). A Herglotz wave uy, is defined by setting

un(z) = /S ) aH2 ),

for all x € R3.
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A Herglotz wave uy, is both incoming and outgoing as we see in the next
theorem.

Lemma 4.9 Let k € R\ {0}. The Herglotz wave
up(x) = / e*p(d)dH?(d)
S2

with h € C*°(S?) has the asymptotics

ezk|z| e—ik|z\ 1

up(z) — QWiWh(E) - ZWiWh(—EE) =0, (W) (4.33)

uniformly with respect to T = fa as |x| — oo.

We note that in (4.33) the k dependence of the O term is stated explicitly.

Proof. Proof of this result is well know, see [1], [47]. We present the proof
since it is needed for a further result in Lemma 4.10.

Let z € R*\ {0} and the coordinate system (e, 1,€e;2,€,3) be such that
€s3 = 2. We form charts: let 6 = n/10 and Uy = (0,7) x (5,%5), Uz =
(0,m) x (=6, 7 +6),Us = (0,7) x (m,27) and

Pz1(0,0) = (sinfcosp,sinfsin @, cosd)
Pz2(0,0) = (cosf,siné cosg,sinfsin )
D23(0,0) = (cosf,sinf cosp,sinfsin @)

We note that the § angle is between the e, 3 axis and the vector pointing to
p21(0, ) in the first chart and that the § angle is between the e, ; axis and
the vector in the charts p, 2 and p, 3.

We have arranged things here so that the special points 7 and —Z are only
in a single charts, the p, 5 and p, 3 respectively, and so that they are interior
points in the domain of the chart.

In addition we need a partition of unity {¢;}icq1,2,3) subordinate to the atlas
{(Us, pz,i) icpr,2,3. With these we can express

3
> / eHEEDes00) (1 6 p, ) (8, 0) (1 0 paa) (8, 9) . (6, 0) A
=1 @

= L +1,+ 1. (4.34)
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In I; the phase function is

fl = apz,l(&@)
= cosé.

On the domain U; we have Vf; # 0, so it follows from the method of sta-
tionary phase, in the form of |26, Theorem 7.7.1], that

C
L] < 3 (4.35)
(|x[)?
where the constant C' depends on the derivatives of fi, J,,, p1, hop; and op;
of degree two or less on the support of ¥ o py.

The set A = supp(t; © p,;;) and J,, , do not depend on x. Moreover there
exists a constant C' such that for all two dimensional multi-indexes |a| < 2
we have

sup |[D*(hop.1)|<C  and sup | DYy 0 pyq)| < C,
§€S2 EESZ
(0,p)€A (0,p)€A

so we see that the estimate (4.35) is uniform with respect to the direction Z.

On the chart p, » we have the phase function

f2 = i‘\'pac,2<97<)0)a
= sinfsing.

The gradient of f,
V f2(8, ) = (cos b sin @, sin 6 cos p)
is zero only at (7, 7). In addition
det(D?f)(, ¢) = sin? @ sin? p — cos® f cos® p

T T

is 1 at the point (5, 5), so we can use the method of stationary phase in the
form of [26, Theorem 7.7.5]. This yields

ciklelf2(5.5)

Iy = 2mi Z(k‘|x|)7ij(h 0 Pupth © P2y, )| <
il 2
< C(kla)) > sup | D*(h o paeoth 0 prady,,)|
|o|<4
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where « is a two dimensional multi-index, Lou = u(%,75): Lju is a linear
combination of the terms D%u(%, %) with |a| < 2j; and C' depends on the

partial derivatives of fo of degree less than 8. We move the L; term to the

right-hand-side and see that
—0 ( ! ) (4.36)
(Flal?) |

In the same manner as with the estimate (4.35) we can see that this estimate
does not depend on the direction Z.

eik‘|x|

Iy — 2m1
2T T

h(@)

With the same arguments as for the integral I and taking into account that

f3(%, %) = —1 we can see that I; satisfies
ikl 1
I3 — 2mmh(7$) =0 <(k|1’)2> (4.37)
uniformly.

We sum equations (4.35), (4.36) and (4.37), which yieds

eik‘|x| e*ik|m\ 1

up(z) — 27rimh(§) — 27rimh(*f) =0 (W) :

Later on we will need the following property of the Oy, (m) term.

Lemma 4.10 The Oy, (m) term in equation (4.33) satisfies 0,0y (m) =
1

Proof. In the proof of Lemma 4.9 the Herglotz wave was expressed with three
integrals, I3, I, I3, each of which is of the form

[:/6ik|z|i"’(9"")u(§,G,gp)dﬁdw,
U
where u is smooth. Hence

ol = / eHelEPO017 . (6, p)u(T, 0, )dOdep. (4.38)
U
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In the case of the integral I; the phase function f(6,¢) := cosf does not

have any critical points, where Vf = 0, so the method of the stationary

phase, [26, Theorem 7.7.1] implies that there exists a constant C' such that
C

1| < —.
1=

The O (W) term due to I3 is

Ohs <#) =1 (2m’)iwh(—§).

(l[)? k()
Hence
00y, ; iklals ~ N
e — / BP0 17 . (6, p)u(Z, 0, p)dAdp
| U
)ik () + (o) k() (439
+(2m )ik ————n(—x) + (2m) =5 h(—2 .
(Kl[) kf|?
We notice that at the critical point (%, 2%) of the integral in (4.39), the term

Z-p(0,p) = —1. Hence we can use the method of the stationary phase, |26,
Theorem 7.7.5] and see that the subtraction of the two first terms is O ﬁ .
Since the last term in (4.39) is O (T}le) we see that ;O3 (W) is

The I, term can be handled in a similar fashion.
O

By Theorem 4.4 to the incident wave u;(z) = ¢4 corresponds a scattered
wave

(s, d) = Upopi (—(8, + Atr )e“”'d) .

We next use a Herglotz wave as an incident field and determine what the
scattered field is. First we prove that our constructed solution is a solution
and that it satisfies Sommerfeld’s radiation condition.

Lemma 4.11 Let k € R\ {0}, h € L*(S?) and

tye() = /S (o, (), (4.40)

forx € D*. Then f(A+k2)usc = 0 and ug. satisfies Sommerfeld’s radiation
condition (3.3).
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Proof. We prove —(A + k®)us. = 0 by showing that —(A + k?) can be
evaluated inside the integral in (4.40). Let z € D*. By Theorem 4.4

Urobiy = (DL + SLi M) B )

where B, ' : H~2(dD) — Hz2(dD) and by Lemma 2.16 there is ¢ > 0 s.t.
DLy, + SLkM,\ L*(0D) — C?*(B(x,¢)).
As

sup [|(9, + Atr )e™ |
des?

< o0
H™%(5D) ’

we have

Sup HUmb k(a,, + Atr )eikz'dHCQ(B(z’e)) < 00.
des?

From this it follows, by repeated application of Lebesgue’s Dominated Con-
vergence Theorem and Hélder’s Inequality, that we can take all derivatives
of order 2 or less inside the integral in (4.40). Hence

(A + F)ue(z) = /S (A4 K)uy(a, )(d)dH(d)
= 0,

since —(A + k*)us(z,d) = 0 in DT for all d € S?.

As the derivatives can be taken inside the integral, we see that
(O — iK)ttae = / (0, — ik)us(z, dYh(d)) AH2(d).
S2

By Lemma 4.6
lim r(0, — ik)us(z,d) =0

7—00

uniformly with respect to Z and d. Hence we have

lim (0, — ik)us.(z) =0 (4.41)

T—00

uniformly with respect to Z, that is, u,. satisfies Sommerfeld’s radiation
condition.

O

Next we prove that the constructed solution has the same boundary values
as the incident Herglotz wave.
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Lemma 4.12 Let h € L*(S*). The exterior solution

toe(2) = /S (o, () AHA()
satisfies

(0, + Atr g = — / (0, + tr)e* @ h(d)dH?(d).

§2
Proof. Tet h € C®(S*), R € R be such that D C B(0,R) and Dy =
B(0,R)\ D. In Lemma B.6 we proved that the map T}, : S> — H!(Dp),
defined by
Th(d) = wus(-,d)h(d)
= Urob,k (—(&, + Atr )eikw-d) h(d),
is Bochner integrable.
We form simple functions for approximating T},(d) as follows: let

in

Va(d) = > (Usabye (—(0, + Atr)) ey n

i=1
where (Api)icf1,2,..n} is a partitioning of S* with diam(A,,;) < %, di € Ay

and xa,, is the characteristic function of A, ;. There exists a constant C
such that
sup [[vn(d)]| g1(pg) < C. (4.42)

Hence it follows from Lebesgue’s Dominated Convergence Theorem, Theorem
B.5, that
/ Th(d)AH2(d) = Tim | v (d)dH2(d). (4.43)
S2

n—oo Jg2
Let X = {u € H'(Dg) : —(A + k*)u = 0}. The normal derivative operator
Oy(p) can be defined on X by equation (2.5). We see that with this definition
the operator (9, + Atr) : X — H~2(9D) is well-defined and continuous. As
(vn) C X, it follows from (4.43) that

[ = (9,+Ar) / Th(d)dH2(d)

= lim (9, + )\tr)/ v, dH?
S2

n—:o0

lim Z (= (9, + M )e™™ %) HZ(A,)
i=1
= lim [ (0, + Mr)v,(d)dH*(d). (4.44)

n—oo [g2
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There exists C' such that for all d € S? and n € N we have

100 + Mr Jon(d)ll -4 55, < C-

Hence by Lebesgue’s Dominated Convergence Theorem, B.5, the limit in
(4.44) can be taken inside the integral. In addition, for all d € S? the func-
tions v, (d) converge to T(d), so the elements (9, + Atr)v,(d) converge in
H~2(dD) to

(0y + Atr )T (d) = (0 + Atr)ug(-, d)h(d).

We continue the reasoning from formula (4.44) and see that

[ - / (B + At Yua(-, d)(d)dH2(d)
SQ

/ (0, + Atr )R (d)AH2(d).
SQ

That is
(B + Ar Jue() = — / (B, + Mr )™= 4h(d)dAH(d).
S2

Let h € L?(OD). There is a sequence (h,) C C*(S?) such that h, — h in
L*(S?). Hence it follows from equation (B.5) that in H'(Dg)

lim [ Ty, (d)dH*(d) = / T (d)dH?(d).
n—oo SQ Sz

Moreover in H~2(0D)

lim [ —(0, + Aer)e* b, (d)dH(d) = / (0, + At )R (d)AH2(d),

n—oo sz Sz

SO

(8V+>\tr)/

S2

Ty (d)dH?(d) = /S 2 —(9, + Mtr)e* U (d)dH?(d).
O

Next we prove that the far field of the scattered wave u, is [g, too(Z, d)h(d)dH?(d).
This is a corollary of Lemma 4.6.

Corollary 4.13 The far field of the exterior solution

Uge(T) = /s? ug(x, d)h(d)dH?(d)

(@) = [ el F AR, (4.45)
S2
where ux (T, d) is the far field of us(z, d).
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Proof. By Lemma 4.6 the scattered plane waves have the far field expansion

us(w, d) = e;" (uoo(f, d) + Ok <ﬁ>> :

where the Oy 4 (\?ll) term is uniform with respect to Z and d. Hence we see
that

Uge(x) = /SZ ug(x, d)h(d)dH?

_ e ( /Ss k(T d)h(d)dH?(d) + / Ok (i> h(d)dHZ(d))

|z s ||
ezk|r|

- o (/S oo (7, ) A(d)AH2(d) + O, (%)) '

Now we introduce the far field operator, which is our main tool in solving
the inverse problem and which will be our focus in the rest of the work. We
will mainly use the imaginary part of this operator.

Definition 4.14 Let k € R\ {0}. The far field operator F}, : L*(S?) —
L2(S?) is defined by

(FL.h)(Z) = / Up 00 (T, d)R(d)AH?(d).

S2

We note that by Corollary 4.7 the kernel uy, o (Z,d) is in C*(S? x S?). From
this it follows that Fj is compact and that the inverse scattering problem is
ill-posed.

As we saw in Corollary 4.13 the far field of a scattered wave of a Herglotz
wave uy, is simply Fph. For future reference, we state this as a corollary.

Corollary 4.15 The far field operator Fy, maps an element h in L*(S?) to
the far field of the scattered wave

use(T) = /S2 u(z, d)h(d)dH?(d).

Next we prove an estimate for the norm of the far field operator Fj for
different values of k.
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Theorem 4.16 Let k € R\{0}. The far field operator Fy, : L*(S*) — L?(S?)

has the estimate 4
T
| Fll L2s2)—r2(s2) < m (4.46)

Proof. Let our incident wave be a Herglotz wave
Ui () = / e*edp(d)dH?(d)
§2

with h € C=(S?).

By Lemma (4.9) we can decompose u;, as

Ui (x) = 2mi

¢ —h(3) + QWi%h(ff) +0, (@) :

Where r = |z|.
By Lemma 4.6 and Corollary 4.15 the scattered field can be expressed as

eikr

o= ) + O ()

r

Hence we can decompose the total field into incoming and outgoing parts

Utor = Uip + Uge
ikr R —ikr N 1
= = vy (T) + . V_(Z) + Otk <7“2> , (4.47)
where
~ 27 N N 271 -
v (T) = Th(x) + (Fih)(@) ; v_(7) = Th(ﬂﬁ
and

oue () 0 () voms ().

The total field satisfies —(A + k?)uir = 0 on DT, so we have

0 = lim ((Autot)@ - utotAutot) dx
R—o0 Dg
= - / ((auutot)m - utotayutot) dH2 +
oD
+ lim ((&zutot)Wot - Utot&/utot) dH®
R—co Jop(0,R)
= IaD —+ RhHl IR. (449)
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Here v denotes the exterior unit normal vector in the both integrals.

From the boundary condition 0,u:. + Augr = 0 it follows that
I@D = —/ (—A|Ut0t|2 +X|Ut0t|2) dH2
aD
As A = ika + 3 it follows that A — A = —2ika and hence
Isp = 2ik/ | g | 2dH2. (4.50)
aD

We now turn to the integral Ig, in which the normal derivative 9, is in fact
the radial partial derivative 0,. From equation (4.48) we see that

1 1 1
87“(911015,k (7”2> = aroh (W) + a’rosc,k <T‘2> . (451)

By Lemma 4.10
1 1
201 (i) = ()

and by equations (4.30) and (4.28)

1 1

w0 () -0 (2). s
1 1

ar(’)tot <r2> = Ok <7”2) . (453)

N ) eikr N ‘ efik’r N 1
Orttyor (1) = 1k . vy (T) — ik ; v_(Z) + O .

It follows that

ikr —ikr ikr
(O tizor) Ty = (ike vy (3) — kS v_(f)) (er m@)fr m(§)>+

so we see that

Hence

ik . - 1
= 2 (07 — v 4 PRy — e 2 ) 4 0, (3> :
T T
and
(a'rutot)utot = (a'r'utot)utot

—ik , o ke
= 7 (U+U+ — v v 4 e y_vy — 62“”11,14) + O (7"*) .
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We subtract these two terms:

- 21k
(&utot)@ - (arutot)utot = 7"72

1
(007 —v_12) + O (73) .
Hence
lim Iy = Zik/ (0477 — v_T7) dH?
R—oo s2

and it follows from equations (4.49) and (4.50) that

Qik/ (Jvs]? = [v_]?) dH* = —Qik/ alu*dH?2.
§2 oD

That is

/(|v+|2—|v_|2)dH2 _ —/ afufdH?
S2 oD

< 0. (4.54)

We put v = Zh(Z) + (Fph)(Z) and v_(T) = Z*h(—7) in (4.54) and see

k
that ]
211

I
Hence for all h € C*°(S?)

211
h+ Fih| 22y < ||Th||L2(SQ)-

211 211
| Fihll22) < ||ThHL2(S2)+||Th+FthL2(S2)
21
S 2”7}2,”[12@2)

47
mllh\lmszr

Since C*°(S?) C L*(S?) is dense we have

| Exh|| 2 sz
||Fk||L2(SQ)~>L2(SQ) = sup 7( )
heC=(S2) HhHL?(SZ)

47

< .

|K|

We summarise the scattering process of a Herglotz wave as follows:
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By Lemma 4.9 a Herglotz wave u;, with density h € L*(S?) has asymptotics
up(x) — 2mwi——h(Z) — 2mi———h(—1) = O, (—) .
k|| k|| (lx])>

The corresponding scattered wave is

Use(T) = %rl <Fkh(§) + O (%)) :

so the total wave is
eik\x\ ik e*ik\x\ 1
ot = 2mi—— | [ — —Fp, | h +2mi———h(-2) + O, | —5 | . 4.55
v = 205y (1 o ) o 2m (3 £ 0k () (459

We concentrate on the I%\ terms and describe the scattering process by the
operator S : L?(S?) — L?(S?) which maps the Herglotz density h to

Sh = <[ — Zka) h.
2r

4.4 Factorization and Properties of the Con-
stituent Operators

In Grinberg’s and Kirsch’s article [20] the far field operator F' of the Robin
problem was given a factorization that we now present in the following The-
orem, the proof of which follows the one found in the article. Our interest
is mainly in the k£ dependence, so we are focusing on different aspects than
in the Kirsch article, which can be seen in Theorem 4.19 where we derive k
dependent coerciveness estimates for the operator Ay.

The Gy operator below maps the Robin boundary values of a solution u of
the exterior problem to the far field u., of the solution.

Theorem 4.17 Let k € R\ {0}. The far field operator of the Robin problem
Fy : L*(S?) — L2(S?) can be factorized as

Fp = —GLAG], (4.56)

where B
Ay = (Ak’+ + /\I)[Sk(Ak,+ + /\]) + I] (457)

If k? is not a Dirichlet eigenvalue on —A in D, the operator Ay can be written
as

Ap = (Ajy 4+ ADSp(Ap_ + A (4.58)
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Proof. When k? is not a Dirichlet eigenvalue on —A in D, we can express

the far field of the scattered plane wave with operators Gy, Ay _ as
ukm('v d) = _Gk(Ak,f + )\I)eikz-d.

If the incoming wave is a Herglotz wave
Hih(z) == / e*mip(d)dH?,
S2

with h € L*(S?), then by Corollary 4.15
*Gk(Ak7, + )\[)Hkh = Fkh.

Hence
Fk = —Gk(Akﬁ + )\[)Hk

For all ¢ € L*(9D)
o) = [ et iari),
aD
which is the far field of the single layer SLiw. Hence we see that
H; = Gp(Ag4+ + A)Sy

and
Hi =S, (Mg + + NG,

It follows from (4.60) that

F, = _Gk(Ak,f + )\I)SZ(Ak+ + /\])* 2,

(4.59)

(4.60)

which gives us the factorization with formula (4.58) for the operator Ag.

By the jump relation (4.2)

(Ap — Ay )S_p =1,

where (A_y_ — Az 4)S_y : H2(OD) — H2(AD). By taking adjungates on

both sides we see that
Sk(Ap— — Apy) =1,

where Sp(Ag_ —Ay.): H2(9D) — H~2(0D). Since Ay, _ is self-adjoint we

see that B
A = (Ak7+ + )\[)[Sk}(A}C;‘r + /\[) + I]
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Operators Sy, and Ay 1 are continuous with respect to the parameter £, so we
see from equation (4.57) that operator Ay, as well as its adjungate also depend
continuously on k. By Corollary 4.5 the operator B,;l depends continuously
on k, so it follows from equation 4.31 that operators Gj and G}, depend
continuously on k. Since Fj, = Gg(0, + Mr) we see that F} also depends
continuously on k.

The factorization
F, = —GLALG,

holds for all k € R\ {0} that are not Dirichlet eigenvalues of —A in D. All
the operators in the factorization (4.61) depend continuously on k, so we see
that the factorization holds for all k € R\ {0}.

O

We prove next a coerciveness inequality for the middle operator A;. This is
inspired by Grinberg’s Kirsch’s article [20], though we will derive the coer-
civeness from a different term of equation (4.65) than was done in Grinberg’s
and Kirsch’s article. We do it this way because our interest lies mainly in the
k dependence and we want to have a k-dependent estimate for the coercivity.

Lemma 4.18 Let oy € H=2(dD). Then for all k € R\ {0}
—Im (4 Si) -4 b o) = k|G xSkl 7262
where Gp . is the G operator of the Dirichlet problem.

Proof. Let v = SLpyp in R3. By the jump relations (4.1) and (4.2) of the
single layer operator

=0, =9 ).

Hence by the definition of the normal derivatives 3, and 97, equations (2.5)
and (2.6) respectively, we have

W, Sk¥) -4 b opy = ((3;—3J)U7trv)H_%XH%(aD)

(|Vv]* = B[vo]?) dz +

+ / (0,v)vdH?. (4.61)
0B(0,

Function v satisfies



SO

O = (0, —ik)vv — ik|v|?
1
—ik|v|* + Oy <R3) : (4.62)

since by the far field asymptotics, (4.6), we have v = O (%)
With the far field asymptotics

= — 0o 7 O —
0= (=@+0u(z))
we also see that

()2 = # <|vw<a)|2 + (30 <ﬁ> + 0 (3)0; (%) + (cok <|?1|>>2> 4

Hence

lim lo(z)[*dH*(x) = lim i/ Voo () |PdH?(T)
2B(0,R)]

R—c0 J5B(0,R) R—oo I?

= /|voo d)|PdH?(d).

and we see that by equations (4.61) and (4.62) we have

(S dny = R @ PR

k/s lso (d) PAH2(d).

Next we prove the coerciveness result for the operator Ay.

Theorem 4.19 Let k € R\ {0}. The middle operator Ay of decomposition
(4.56) satisfies for k >0 and all ¢ € H%(@D)

—Im (A0, T/J)Hfitz ©D) = ka0||¢||L2(6D) (4.63)
and for k <0

—Im (Agy, Qﬁ)Hf%XH,},(@D) < ka0||1/’||%2(ap)~ (4.64)
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Proof. We first assume that k2 is not a Dirichlet eigenvalue of —A. It follows

from the jump relation (4.2) that
(Ag— —Apy)Sk=1.
We see from equation (4.58) that
Ay = (Ao + ADSp(Aj— + A" — (A - — Ay )Sk(Ag - + AI)”

= TSI — (Ap_ + A, (4.65)
where T' = (Ag,— + AI).
By Lemma 4.18 for all ¢y € H~2(8D)
—Im (9,869) -3 3 o) = FIGD, kSl 22 s2)-

Operator Ay _ is self-adjoint, in the sense of equation (3.5), so for all ¢ €
H2(dD) we have

Im (Ag—¢; w)H’%xH%((')D) =0
Hence by (4.65) we have for k > 0

—Im (Ak%p7 @)H—% XH%(GD) = —Im (SkTI:wa T;¢)H—§ XH%(BD) +
+Im (Ag—¢, SO)H’%XH%(E)D) +Im (MA@, ©) r2(0m)
> [ Kot ar )
aD
> kOtoH@”%z(aD)- (4.66)
For k < 0 we have analogously
I (29 gy S | K@) P )
< k%H@HZL?(aD)- (4.67)

Since the operator A; is continuous with respect to the k& variable and since
the Dirichelet eigenvalues of —A form a discrete set, we see that the inequal-
ities (4.66) and (4.67) hold for all k € R\ {0}.

O

We multiply both sides of equation (4.56) with sign(—k) and take the imag-
inary parts which yields

Im (sign(—k)Fy) = Gg(sign(—k)Im A;)G5. (4.68)
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We will denote the coercive operator (sign(—k)ImAy) with By. With this
notation for £ € R\ {0} the inequalities (4.63) and (4.64) are written as

(Bits )43 = Kol 22, (4.69)

The appearence of the L? norm on the right-hand side of equation (4.69)
requires some consideration. We solve this problem by first proving in Lemma
4.23 that By is continuous from L?(dD) to itself. Then we will proceed

1
in Theorem 4.27 to prove the equality Ran (Gk|L2(3D)) = Ran (F,j) In
addition to these results we will prove norm estimates that depend on the

wave number k in order to faciliate the frequency analysis of the inverse
problem.

To prove the continuity of the operator By we need a few properties of the
Dirichlet-to-Neumann map Ay, : H2(dD) — H~2(dD) and the operator
Sk — S;, which will be discussed in Lemmas 4.20 to 4.22. We start with a
decomposition for the Dirichlet-to-Neumann map.

Lemma 4.20 For all k € R\ {0} the Dirichlet-to-Neumann map Ay :
H%((?D) — H’%((?D) satisfies Ay . = Ay and has the decomposition

Ay = 5 [(Apgr + A k) + (Mg — A y)],

N | =

where operator Ly = Mgy + Ay : H2(OD) — H~3(dD) is symmetric
and the operator Ky, = Ay — A_y 4 is continuous L*(0D) — L*(0D) and
satisfies

| Kkl 220p)—r2(80) < C(k)>.

Proof. We first show the relatlon Ay = A k> Where A; , is the dual

operator with respect to the H~2(dD) x Hz(0D) -duality. Let ¢, 0y €
H2(dD) and uy, for i € {1,2} be solutions to the exterior Dirichlet problem

(3.39) such that tru,, = ¢;. We apply Green’s Second Theorem in Dy =
B(0,R)\ D and obtain

(Aerp1,02) o1 b — (P Aiga) oy 1 =

[ (@, - w0 e (4.70)
dB(0,R)

By Sommerfeld’s radiation condition for ¢ € {1,2}

Orty, = kg, + v;,
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where v; is of order o(|z|™!). Hence

_ —_ 2
(M1, 92) o1 gy — (P A ki) 1 1= /33(0,3,) (U1, — Upyve) dH.

(4.71)
With Green’s Second Theorem and Sommerfeld’s radiation condition we can
see, as is done in [14, Equation 2.9] for C? solutions, that for all R such that
D C B(0,R) we have u,, € L?*(0B(0, R)) with |lug, | 12050,r) < C, where
C does not depend on R.

By Schwartz’s Lemma
/ vt [AH? < [0l L2080, |t | L2050, 7)) - (4.72)
OB(0,R)

On the right-hand side of equation (4.72) the first term tends to zero as
R — oo and the second term is bounded, so the integral on the left-hand
side tends to zero as R — oo. We apply this limit in (4.71) and see that

(Ap o1, Wz)Hféng = (@17A7k,+<ﬁ2)HféxH% : (4.73)
From (4.73) it follows that Ay, = A4, and we see that the operator
3 (At + Ay y) is symmetric,
We next prove that the operator 3 (Ay 4+ —A_4) : L*(0D) — L*(9D) is
continuous. To this end we consider the Dirichlet problem

~(A+k)ul =0 inDF
ullop = f
lim, o7 (arui — zkui) =0, uniformly w.r.t. 7 € S?

for f € H2(dD) and k € R\ {0}.

Let x € C3°(R?) be such that y = 1 in a neighbourhood of D and w =
X(u£ — ufk) The element w satisfies

~(A+ R =V V(e -,
+(ax) ((uf —uly)  in D

wlop =0, wl|po,r) = 0.

We denote Fy :=Vx -V ((uﬁ - ufk) + (Ay) ((u£ - ufk)
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We use elliptic regularity estimates, e.g. [17, Theorem 6.3.4], and see that

lwllzzw < CE)* (IFllz2a + wllz2on)

< OO s oy

since by Theorem 3.11 the solution operator U}, satisfies
1Ukf 1 or) < CllFl 43 o)

As

dw = (Agy —Aogs) [,
we deduce that Ky = 5 (Apr —Apy) - H2(0D) — H2(dD) is bounded
with || K| < C(k)>.
We have —K; = K}, which is by definition bounded from H~3(dD) to
H~2(dD) with || K;| < C(k)% We interpolate, [39, Theorem 1.5.1], between
Ky, : H2(0D) — H2(dD) and K : H"2(0D) — H~2(0D) and we see that
Ky, : L*(OD) — L?*(0D) is bounded with

| Kl 2 00)—12(0m) < C(k)*.

O

Lemma 4.21 Let D be a bounded C? domain. For s € [—3,3] the the
Dirichlet-to-Neumann map Ay y has an extension Ay, : H*(0D) — H*~Y(9D),
which satisfies

2

[ Ak

as(@D)—H—1(9p) < C(k)
Proof. Let ¢ € H%(GD), u, = Ugp, R be such that D c B(0,R) and
x € C°(B(0, R)) with x =1 on a neighbourhood of D. Now yu,, satisfies

{ Axuy) = (Ax)uy 4+ 2Vx - Vu, — k*xu, on Dg
(xup)lon = ¢ (xw)lopo,r = 0-

It follows from [10, Theorem 1.5.2] that

Itz < C (uglzaom + ol mo + 16l 4100
C(k)

IN

“lell 3 om) (4.74)
since by Theorem 3.11 we have

Vel o) < Cllell 3o,
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for all p € H2(9D).
It follows from equation (4.74) that

180180l 13 0y < Ol 3

Hence

([ Al < O(k)2. (4.75)

w3 @Dp)—H#6D)
From the definition of the adjoint (A)* : H~2(dD) — H~2(D) it follows
that it is continuous and that ||(Ax)*|| = ||Ax||. On the other hand by equa-
tion (4.73) Ay, = (A_g)* so we see that A, has an extension A, : H2(9D) —
H~2(dD), which satisfies

[ A [I(A—x)

- ”A*’“”H%(am—ﬂ%(am
C(k)? (4.76)

H=}@D)~H"3(9D) HHf%(aD)_’Hfg(aD)

IN

by equation (4.75). We interpolate, [39, Theorem 1.5.1], between formulas
(4.75) and (4.76) and see that

HA]C| Hs g1 < C<k>27

for s € [—3,3].
O

We will prove next a continuity result for the operator S, —Sj. This makes it
possible to use the fact that the operator By is a subtraction of an operator
and its adjungate in the proof of the continuity of By, : L*(0D) — L?(dD).

Lemma 4.22 Let D be a bounded C* domain and k € R. Then S, — S} =
S —S_i: Hﬁl(aD) — H2(8D) with

||S]C — SZ”H*(E)D)—»HZ((?D) < C(l + k‘2)2.

Proof. Let us first consider the operator Gy — G ) = (P, — ®_4)*. To
this end let R be such that D C B(0, R), v € L*(B(0,R)), w; = Gyv and
wy = G_iv. Then in R? we have

—(A+EHw, =v = —(A + k*)w,
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and u = w; — wy satisfies

—(A+k)u=0.
Next we use elliptic regularity estimates. By [17, Theorem 6.3.2] we have
C (k) |[ull 250,41

C kY |ull 2 (B0, r+2)
C{k)* 0]l L2s0,R))

since by Schur’s Test Gy, : L*(B(0, R)) — L*(B(0, R + 2)) as we saw in the
proof of Theorem 2.12.

Hence G, — G : L*(B(0, R)) — H*(B(0, R)) with

[l mr4 50, my)

VAN VAN VAN

1Gk = Gkl 2(B0.RY)— B3 (BO.RY) < C(R)". (4.77)

Let us consider the operator T, = x(Gr — G_1)x, where x denotes multiplica-
tion by function x € Cg°(B(0, R)) with the property x = 1 in a neighbour-
hood of D. From equation (4.77) it follows that

1Thll2@s)—maee)y < ClGe — Gllz2(B(0,R)—H* (BO,R)
< C{k)*. (4.78)

We have T = —T}, so we have an extension T : H*(R?) — L*(R?) with

||TkHH*4(R3)—>L2(R3) = ||Tk||L2(R3)—>H4(R3)
< Ok (4.79)

We interpolate, [39, Theorem 1.5.1], between equations (4.78) and (4.79) and
see that T}, : H—2(R®) — H3(R3) with

17| <C+E)

H 3 (9)—HI®3) =
Let us consider
Sk — S_k =tr Tktr* .

Since tr* : H-1(dD) — H~3(R®) and tr : H2(R3) — H2(dD) it follows that
S — S 4 is H-1(9D) — H*(OD) with

Sk — S—illm-100)—m2(0m) < C (k)"
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Our goal is to prove that the ranges of Im(Fj) and Gy, are the same. Hence
we need to study the operator

By, = sign(—k)Im(Ay)

1
— (A, — A
21-( k k)

sign(—k)

more closely.

Since Ay, : H2(0D) — H2(OD) and A* : H™2(0D) — H 2(0D) we see
that By : Hz(dD) — H~2(dD) is continuous. In the next lemma we de-
rive a stricter mapping property for By, that is better suited for our designs
regarding the ranges of Im (F}) and By.

Lemma 4.23 Operator By is continuous L*(0D) — L?(0D) with
||Bk||L2(8D)—>L2(0D) S C<k>8 (480)
Proof. In this proof Ay ; = A;. We use the factorization (4.57) to see that

A = (A +AD[Se(Ag + M) + 1]
Ar = [T+ (Mg + M) Sy (A + AD)™.

The decomposition A, = K} + Ly of Lemma 4.20 implies

Ap— A = [(Ag + M) — (Mg + M) + Li(Sk — S;) Ly + LeSe(K + XI) +
+(Kk + )\I)Sk(Ak +X[) + LkS};(Kk + )\I)* +
+(Kg + M)*SE(Ay + N (4.81)

Next we will prove that each term in (4.81) is bounded from L*(9D) to
L*(0D).

We have -
(Ak-l-)\]) — (Ak-f—)\f)* ZQKk-l-()\—)\)I,

where X is a C? function, so by Lemma 4.20 we have
||(Ak + )\[) — (Ak + )‘I)*HLZ((’)D)—»LZ(BD) < C<k>2

By Lemma 4.21 we have ||Ly||z2.p-1 < C{k)? and || Ly|| 12 < C(k)?. By
Lemma 4.22, ||Sy, — Si||g-1_m2 < C{k)*, so we see that

k

Li(Sy — SO Ly - L2(0D) ¥ H-Y(9D) *— H2(0D) ¥ H'(OD) — L2(9D),
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and that
1Lk (S = 85) Lillz2op)—mom) < C(R)®.

By Lemma 4.20, || K| 1212 < C{k)?, by Corollary 2.15, ||Sk|lr2—m < C(k)?
and by Lemma 4.21, || Ly g1 2 < C(k)?, so we see that

LiSu(Ky + M) - L2(0D) " 12(oD) % HY(9D) & 12(6D)
and that
| LSk (K 4 M) || 22 < C(E)S.

By Lemma 4.21, |[Ag|lp2—p—1 < C(k)?, by Corollary 2.15, ||Sk|lg-1-12 <
C({k)? and by Lemma 4.20, || K}||z2—z2 < C(k)?, so we see that

(Ky + ADSp(Ax + X1 L2(0D) 23 g=19p %5 12(0D) 8 12(9D)
and that
(K + A)Sk(Ax + M)l 22(0p)—2(00) < C(k)°.

By Lemma 4.20, || Ky|[z2—.r2 < C(k)?, by Theorem 2.15, ||Si|lp2—m < C(k)?
and by Lemma 4.21, || Lg| g1 —z2 < C(k)?, so we have

LiSi(Ky + M) : L2(0D) 2 120Dy 3 1'(9D) ™ 12(0D)

and
HLkSZ(K’ﬂ + AI)”L‘Z((’:)D)A»L‘Z(BD) S C<k’>6

Finally, by Lemma 4.21, || Ay||r2z—1 < C{k)?, by Corollary 2.15, ||St|| -1 2 <
C{k)? and by Lemma 4.20, || K|/ z2—z> < C(k)?, so we have

(K + M)'SE(A, + AD)* : L2(0D) M2 oDy & 129Dy A" 12(9D)
and
H(Kk + /\I)SZ(A]c + )\I)*HL?((?D)HLZ(BD) < C<l€>6
Hence we have
| Billz20p)~ 1200y = [|Tm A || 22(aD)—12(0D)
< C{k)S.
]
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One of the ramifications of Lemma 4.23 is that in the factorization Im (sign(—k)Fj) =
G By Gy, we can take By to be the restriction By|25p) and the operator G,

to be the adjoint of G |2(sp). This approach is taken in section 4.5 and eases

our use of the operator calculus.

With the continuity of By, : L?*(0D) — L?*(0D) we are able to prove the
coerciveness of the operator Im (sign(—k)F}), which is part of the following
lemma.

Theorem 4.24 Operator Im (sign(—k)F}) : L*(S?) — L*(S?) is self-adjoint,
compact and positive.

Proof. Operator Im (sign(—k)F},) : L*(S?) — L*(S?) is bounded and sym-
metric, so it is self-adjoint.

We proved in Corollary 4.7 that the kernel u(Z, d) of the far field operator
Fy, is in C°(S? x §%), so we see that in fact

Fy,: LA(S?) — O=(S?) — L*(S?), (4.82)
where the imbedding is compact. Hence Fj, is compact. The kernel of Fj is

Uso(d, T), so we see with the same argument that F}' is also compact. Hence
Im (sign(—Fk) F},) is compact.

Let k£ > 0. The factorization
Im (sign(—k) Fy) = GpByGj, (4.83)
and the coerciveness equation (4.69) imply that for all h € L*(S?) we have
(Im (sign(—k)Fy)h,h)r2 = (GpBpGih,h)r2
(BrGrh, Gih) 1
|kl | GAll7-

\%

O

We have seen that the operator By, : L*(0D) — L*(0D) is continuous. As it
also is self-adjoint, we can apply the spectral calculus, see e.g. [57, sections
X1.5 and X1.12]. In spectral calculus we express functions of an operator T
as an integral

s = [ " FNAP(),

where P is the unique resolution of identity that gives the spectral resolution
of the operator T.

1
We gather together a few properties of the operator B in the next lemma.
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Lemma 4.25 Let k € R\ {0}. The operator By, is invertible and has an
invertible square root B which satisfies for all ¢ € L*(0D)

1
CUN 1l r20my = 1 B2 ¢l 120 = (klao)¥ 18]l r2am)- (4.84)

Proof. TLet k € R\ {0}. From equation (4.69) and the continuity of By :
L*(0D) — L*(0D) it follows that for all ¢ € L*(9D)

(B, ) r20m) = ko9l 720p)- (4.85)
Operator By is self-adjoint and
| Bl r200)—12(00) < C{K)®,
so it follows from (4.85) that
C (k)
By, :/ sdP(s).
apk

Functions s — s, s — s2 and s — s~2 are bounded on [agk, C(k)®], so we
can form the operators B, Bz and B~2. Since the function s — s? has

1
real values on [agk, C'(k)®], the operator B} is self-adjoint and we have

1
\|B§¢|\QL2(3D) (Bry), ¥) 120y

kaoul/)H%?(aD)v

v

by inequality (4.85).

From the spectral representation

we can infer that :
1B |12 (00)—2(0m) < C (k)™

1
Hence B} satisfies (4.84).

O

The next result regarding the properties of Im(Fk)% and G}, will be useful in
proving that the ranges of these operators are the same in Theorem 4.27.
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Theorem 4.26 Let k € R\ {0}. Operators Im(F}y,) : L*(S?) — L*(S?),
Gy : L*(OD) — LA(S*) and G} : L*(S*) — L*(0D) are injective and have

dense ranges.

Proof. Suppose that for some ¢ € L*(0D) we have Grp = 0. To see what
this implies, let u, be the solution Uy ,mp. Equation G = 0 means that
the far field u, o = 0, which implies by Rellich’s Lemma, [14, Lemma 2.11],
that w, = 0 in D*. Hence also the Robin boundary values of u, are zero,
that is ¢ = 0. Hence G is injective and Ran (G}) = N(Gy)* = L*(9D),
that is the range of G is dense.

We next prove that the range of Gy is dense. To this end we define the
operator T' : L?*(B) — L?*(S?), which maps a source h € L?(B) from a
domain B CC D to the far field of

wn(z) = / By, y)h(y)dy.
B
That is,
Th = upe(Z)

- / D0 (T, y) R (y)dy,
B

where @ o (7, y) = 1= V.

The adjoint of T* : L*(S*) — L*(B) maps p € L*(S?) to

T"p(y)

[ #nGp@e @
1

- = —ikZTy, (5 22 4
in 826 p(Z)dH*(Z). (4.86)

The function T*p is real analytic, so we see by analytic continuation that
T*p = 0 on B implies that T*p = 0 on R3. By [14, Theorem 3.15| this
implies that p = 0. Hence T™ is injective and Ran (T) is dense.

The restriction of u, to DT is a solution of the Robin problem (4.4). Hence
we see that Ran (T) C Ran (G},) and also that Ran (Gy) C L*(S?) is dense.

The range of G, is dense, so it follows that Gj, is injective.

Next we will prove that Im(F}y) is injective and that it has a dense range.
By equation (4.68)
Im(Fk) = _GkBkGZ
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By Lemma 4.25 the operator By, is bijective, so Im (Fy) is injective as it is a
combination of three injective operators.

To see that the range is dense, let ¢ € L*(S?). There is a sequence (Gjp,) C
Ran (G},) such that Gyp, — . The mapping By, is bijective, so we can form
the sequence (B, 'w,) . The range of G is also dense so for every n there
exists a p, such that |Gy, — By, '¢nllr2e2) < 1. We have

|Gk BeGrpn — Grnllizszy < Gkl IIBell 1Grpn — By eonll
1
< |Gkl HBkHEv

so the sequence (G BrGjprn) converges to ¢ and the range of Im (Fy,) is dense.

O

4.5 Single Frequency Reconstruction

In this section we derive the single frequency method, which is given in
Theorem 4.29.

We start with k-dependent estimates for the operators G} ' and Im (F,)z.
It would perhaps make the calculations more concise if we used the opera-
tor [Im(F)|2 rather than Im(F})z as we do below. We use Im (F)? since
this will avoid certain difficulties in sections 5.3 and 5.4. For purely single
frequency purposes |Im (Fk)ﬁ is a viable option, perhaps even a better one.

Theorem 4.27 Let k € R\ {0}. We have Ran (Im(Fk)%) = Ran (Gj) and
for all ¢ € Ran (Gy,) it holds that

1

WH G ollr2opy- (4.87)

_ 1 1
Gyl ellzop) < Im(Fo)~2@ll2e) < 4| —
ol k|

Proof. Let k € R\ {0}. We start with the factorization

Im (sign(—k) F,) = (Glr20m)) Bk (Gilr20m))” - (4.88)

As we saw in Lemma 4.25 the operator By has a self-adjoint square root. We
use it in the factorization (4.88), which gives

GBI B:G
(Gui) (GkBé)*.
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~ 1
Operator G}, = (GxB?)* is compact, so we can apply Picard’s Theorem,
[14, Theorems 4.7 and 4.8]. Picard’s Theorem shows that G} has a singular
system:

Im (sign(—k) Fi)p = Z (95, P)12e) @

él:@ = ZSJ Pi> P L?(S?)%, (489)

Jj=1

where {;} and {s7} are the eigenvectors and eigenvalues of the compact,
positive and self-adjoint operator Im (sign(—k)Fy) and {¢;} = {L Gk%}

The eigenvectors {p;} form a basis in L?(S?) and since the range of Gy is
dense in L?(0D), the set {1;} is an orthonormal basis in L*(9D).

From (4.89) we can deduce a singular value decomposition for G, = G B
Gy = 515, 9) 120095 (4.90)
j=1
If o = Gy then

s; ' (0, Grt) r2sn) ¥

K

ZS (05, Q)2 =

=1

.
Il
—

Mg

571 (Gros ) r2o) Y

.
Il
—

(¥, 0) 200y Y5

Il
= 1M

since {¢;} is an orthonormal basis of L?(0D). We also see that
||éEI<P|\%2(3D) = i |57 (01, @) r2sn) >
=1
On the other hand, if we have
3157 Pz < o0 (191
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for ¢ € L*(S?), then we can form an element ¢ = 3 s7'(;, )20 in
L2(OD) for which Gj1) = . Hence (4.91) is equivalent to ¢ € Ran <ék)

We apply the singular value decomposition argument, which was just used
=~ 1
for Gy, to Im (sign(—k)F},)2 defined by

: 1 =

Im (sign(—k)Fy)2p = Z 5;(©j,©) 2(s2)@;- (4.92)
j=1

We see from equations (4.92) and (4.90) that Ran <ék) = Ran (Im(Fk)%)
and from (4.91) that for all ¢ € Ran (ék)

~— . _1
IGE ¢llzop) = [T (sign(—k)Fy) 2| 2(ee)
ITm (F) =2 | p2(s2)- (4.93)

1
By Lemma 4.25 the operator B} is invertible and hence surjective. We see
that

Ran (Gy) = Ran (GkBé )
= Ran (Gk) s
and by (4.93) Ran (Im(Fk)%> = Ran (Gy).
From equation (4.84) it follows that

1 -1 1
— om) < || B, ? o0y < 4| —==|1%]| : 4.94
C<k>4”w”L2(dD) = H k w”Lz(dD) = a0|k| ||'(/}HL2(8D) ( )

We use equation (4.93) in (4.94) and see that

1 1 1 [ 1 1
W”Gk <PHL2(8D) < [[Tm (Fy) 299||L2(§2) < mHGk SOHLQ({)D)»
for all ¢ € Ran (G).

O

We next form a criterion for the Robin single frequency construction and
analyze the k-dependence of this construction. We start by recalling the
function 7, 4x(7) = e **% = 47®; (T, 2), that is 47 times the far field of
the fundamental solution ®(-, z), and reproduce [34, Theorem 3.7], which
provides a way to find the obstacle when Ran (Gy,) is known.
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Lemma 4.28 Let k # 0. Then z € D if and only if r,; € Ran (Gy).

Proof. Let z € D. Then 47®,(-, 2) is a solution to the exterior Robin problem
with the far field 7, and Gg(9, + Mr)4nPr(-, 2) = 744

Let z ¢ D. If for some exterior solution u we have u,, = 7, then it follows
from Rellich’s Lemma, [14, Lemma 2.11] and the analyticity of uw on DT, that
u = 47®(-, z) in Dt \ {z}. This contradicts u € H}, .(D%), so we see that
r.x ¢ Ran (Gy).

O

We note that we have a degree of freedom in setting the test for z € D. If
z € D then the function  — (9, 4+ \)®@(z, 2) is in fact in C*°(JD), so we can
require that there exists ¢ € H*(90D) for any s € R such that Gy = .
Above we chose s = 0 and the test |G} 'r.l/r2(ap) < oo in order to obtain
a result from which a multi-frequency test is easy to develop. We note that
s = 0 is not necessarily an optimal value, but studying this point is beyond
the scope of this work.

It is also interesting to notice that the inequality (4.87) provides a way to
interpret the construction of the scatterer in a more precise manner. Suppose
that we agree on a threshold value Cp and deem the point z to be in D if

|Gy k]l < Cp. (4.95)
In our measurements we do not gain direct knowledge of the Gj-operator,
but rather an approximation of Fj. If

1

ITm (F},) 27, 4| < CDW,

then it follows from (4.87) that (4.95) is satisfied and the prediction would
be that z € D.

On the other hand if
Cp

Vaolk|

then we see again from the inequality (4.87) that

[Tm (Fy) 27, ]| >

IGx -l > Cp

and the prediction would be that z ¢ D.
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1

\k\)% (solid line) and values of

Figure 4.1: Values of k (z axis) vs. values of (
ﬁ (dashed line).

When the value of ||Im(Fk)‘%rzﬁk|| is in the interval [%, \/%] we cannot
@0

say whether the point is in D or not. Hence this forms an uncertain boundary
. . 1
for D just because of the relation of G;;' and Im (Fy)~2.

The inequalities in (4.87) are not necessarily the best possible ones, so it
might be possible to achieve a narrower gap interval.

In figure 4.5 we have plotted the function k — |k|~2 with a solid line and the
function £ — % with a dashed line. We notice that the gap between the
curves widens as k goes to 0. Hence we have a bigger uncertainty interval in
this area. In addition, when k is large the test starts to lose effectivity since
both of the borders are close to zero.

We finish this section with a theorem that provides a numerical test for the
reconstruction of the scatterer. This is an analogous result to the original fac-
torization method for Dirichlet and Neumann problems given in [34], which
has also been derived in the case of the transmission problem in [33].

Theorem 4.29 Let ()\;) be a sequence that consists of the eigenvalues of
Im (Fy,) repeated by their multiplicity and (¢;) be a corresponding sequence of

95



the eigenvectors. The point z is in the obstacle D if and only if

[o¢]

Z )\;1‘((,0“ Tz,k)LQ(SZ)P < 0. (496)

i=1

Proof. By Lemma 4.28 z € D if and only if ., € Ran (Gj) and by Theorem
4.27 Ran (Im(Fk)%) = Ran (Gy). We use the fact that Ran (Im(Fk)%) =

Dom (Im(Fk)’%) and the characterisation of [57, section XTI.2]:

Dom (Im(Fk)-%) = {pe LX(S?): /Rxldnp(A)@u? < ool

Here the integral is actually ||Tm (F) %790”%2(52), when finite. By Theorem

4.24 the operator Im(Fy) is self-adjoint and compact, so by [16, Theorem
I1.5.1] its spectrum consists of eigenvalues {\;}. Hence we see that

Ran (Gy) = Dom(lm(Fk)_%)

{ue L*(S?): ZA;”(‘%,‘P)LZ(SQ)F < oo},

i=1

and the test (4.96) holds.
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Chapter 5

Multi-Frequency Reconstruction

5.1 An Integral Method

We start by recalling the single frequency far field asymptotics for the to-
tal wave, which consist of an incident Herglotz wave and the corresponding
scattered wave,

eik|ac\ ik e*ik\ac\ 1
ot = 271 [ — —F. | h+2mi—F-h(—2)+ 0 — ). 5.1
o “m( 2 ) ATy M (|> 51)

This was derived in section 4.3, equation (4.55).

We direct our attention to the operator kF} and recall that in Theorem 4.16

we found the estimate
47

|K|

for the norm of the single frequency far field operator Fj. Hence the k-
dependence of the norm of the operator kF}, is very simple; it is bounded
by a constant. We take this operator as the basis for the analysis of the
multi-frequency scattering and introduce the notation

IE <

Since Fy, = Re(Fy) + ilm(F}) we see that for all k € R\ {0}
[kl < [1RFx|
< 4. (5.3)

We can sum up the single frequency operators L by defining an operator L
which maps an h € L*(R x S?) to

(Lh)(k, ) := (Lih(k-))(Z)- (5.4)

97



This operator is continuous from L*(R x S?) to L*(R x S?) as we will see in
the following lemma.

Lemma 5.1 Operator L : L*(R x §?*) — L*(R x S?) is continuous and

IIL|| < 4.

Proof. Let h € L*(R x S?). By Fubini’s Theorem h(k,-) € L*(S?) for almost
all k € R, so we see that Lih(k,-) is defined for almost all k¥ € R and by
equation (5.3)

VEh(h, oy < Aallhlh, )l oo

for almost all £ € R. By Fubini’s Theorem
1Ly = [ [ 1ab @I @ar

/R (42 |, ) 2o,k
(4 [l e (5.5)

IA

We hence see that L : L*(R x §?) — L*(R x §?) is continuous and that
IL]| < 4.

O

In the next lemma we prove that the spectral theory is well-behaved in the
transition from L; to L.

Lemma 5.2 For every bounded and continuous function f : R — C and
h € L*(R x S?) we have

(F(L)R) (R, ) = (f (Li)h(k, ) (2),
where the equality holds in L*(R x S?).

Proof. Operators Ly and L are self-adjoint, so by [57, Theorem XI.6.1] they
have unique resolutions P, and P respectively. By the definition of L and
the spectral resolution of L; we have

(Lh) (k,7) = (JLHQO Z Mg PelAngs Angr)h(E, ')> (7). (5.6)

J=1
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We define a new resolution of identity P on L2(R x S2) by
(POVR)(k, B) = (Pe(M)h(k, -)(@):
With P the equation (5.6) can be expressed as

Jn

’nlino]o Z )\nyjﬁ[An,j: An,j+1)h
j=1

/R AdP(\)h.

Since this is a spectral resolution, see Definition 2.11, of L and by [57, Corol-
lary XI.5.2] L has an unique resolution, we see that P = P. To finish the
proof of the lemma we infer that

( /R f(A)dﬁ(A)h) (k, %)

In
( Tim Y fug) Py, An,j+1>h> (k. 2)
j=1

Lh

(f(L)h) (k, )

(,}Lrgoif()‘”ﬂ)]gk[)\”]’)\"]H)h(k )) ()
(f(Li)h(k,-)) (Z).

O

We will also need the following connection between the Fourier transforma-
tion of f(L), defined by

F(L) = Fauf (D)FL

and the operator f(z) We use the uniqueness of the spectral resolution in
the same way as we did in Lemma 5.2.

Lemma 5.3 Let f: R — C be continuous. Then

Proof. By definition of f(L) for all h € L*(R x S?) we have
gn
FL)h= T Y fAug) PPags M) (5.7)
=1
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where P is a resolution of unity in the spectral resolution of L. Hence

F(Dh = Fuuf(L)F LR
(5.8)

Jin

,}LHSOZ FOn i) Fiest Py A ) Fihe
j=1

On the other hand by the definition of the spectral resolution of L and the

definition of L
(5.9)

Jn
Lh = 1m > Ay i FietPAn gy Anjar) .
n—o0 —
=
With a direct calculation we see that katPF;lk is a resolution of identity.
By (5.9) it is the unique spectral resolution of L, so we see by equation (5.8)

that o R
f(L) = f(L).
O
Lemma 5.4 If ¢; > g > 0, we have
[(Ter + Li) "2 h) 22y < ||(Tea + L) "2 R 122
for all h € L*(S?).
Proof. Let € > €3 > 0. We have for all e > 0
(Ze + Li) 2Rl 2(q2) = / (e+ X[ PR (5.10)
[0,00)
Hence the result follows from
(61 +A)72 < (2 + A2
O

Lemma 5.5 Let k € R\ {0}. We have for all h € Ran <L%) = Ran (Gy)

lim | (Ze + Li) "2 h| 22y = || Ly 2P 22y

If h ¢ Ran (LE) then
lim | (Ze + Li) " 2h| 22y = 0.
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Proof. Let € > 0. Operator Ly is positive, self-adjoint and by Theorem 4.16
it is bounded. Since function A — (¢ + A)~2 is bounded on all of R, the
operator (Ie + L;)"2 exists and

(Ie+ Ly) 2 = /OO (e + A)"2dPy(N).

o0

We also see from this that (Ie + Lk)’% is a bounded operator.

We use Lebesgue’s Monotone Convergence Theorem to see that for all A €
L2 (SQ)

i (e + )l = lim [ (e 2RI
_ / lim(e + A)~"d| P (Wb
Hence if h € Ran (L,]f) then

_1
lim || (Te + Li)~2hl| ey = 1Ly *Blls2goo)-
On the other hand if
lim | (7€ + Li) " 2h| 22 < 00

then we have -
/ ALd|| P2 < oo

oo

1 1 1
So in other words A € Dom (LkQ) = Ran (L,i) Hence u ¢ Ran (L,ﬁ)
implies )

III% H([(‘ + Lk)_ihHL%S?) = 0.

O

Before forming the integral test for z € D we prove the following lemma on
the property of the operator Gj.

Lemma 5.6 Let D C R? be a bounded C? domain, k € R\ {0}, z € D and
Gy : H2(0D) — L2(S?) be the map which takes the Robin boundary values
(0, + Atr)apu to the far field of the solution w of (4.9). Then

|Gy 72kl 20y < C(2)(1 + [k]) max{||als, 18]l }H(OD)?,
where C(2) depends on d(z,0D) .
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eiklz—z|

Proof. The point z is in the interior of D, so ®y(z, 2) = e o is C* on 0D
and

b(z) = (9, + \x)) B(z,2)
e (1/(1’) (= 2)(ik — W%ZR + /\(1’))

eik\mfz|
Az — 2|’
Function A is smooth, so
1G5 7 klloe = Iblloe < C(2)(1 + DA ]oos

where C(z) depends on d(z,9D). By definition of the L? norm

IG e kllizop) < C()(1 + [k]IIN<H(@D)?.

The following theorem is one of the main results of this work.

Theorem 5.7 Let ) € S(R) be such that |(k)| < C|k| in a neighbourhood
of 0. For all z € D and ¢ > 0 we have

(el + L) 72§ (k)ro k(@) F2ner) = 1 + D) 720t + 2 - B)l| s
and z € D if and only if

lim || (el + L) 245 (¢t + 2 - B) || 2(xsr) < oo

Proof. For any € > 0 the function f : [0,00) — R, f(A) = (e + A)"2 is
bounded, so operators (el + Lk)’% 0 L2(S?) — L*(S?) and (el + L)*% .
L*(R x §?) — L*(R x S?) are also bounded. Tt follows from Lemma 5.3 that
A ~
((d + L)-%) — (el +L)2.

By Lemma 2.8 we have Fy_ {¢(k)r.x} = zZ(t + z - Z) and hence

2

(eI + L) 3 (t + 2 - D)l[2ameezy = el +L) “d(t+ 2 D)l2amne)
= || Facalel + L) 2 F L Fim{ (kYo } |12
(eI + L) 2p(k)rs 4]

2
L2(RxS2?)"
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By Lemma 5.2

(el + L)~ 3(k)r-p(@) = (el + L) 36(k)ri) (@),
Hence
(el + D)2t + 2 B2 use) = / (el + Li) "2 (k) 32 g2 k.
By Corollary 5.4 for all €5 < ¢
[(er] + Lk)%?"z,kH%%SZ) < ”(62[+Lk)7%7ﬂz,k”2L?(§2)»

so it follows from Lebesque’s Monotone Convergence Theorem that

lim || (e] + 2)"2(¢ + 2 2) | 2(asr) = / GOk Ui [[(] + Li) ™27 ey IR
€— R e—

(5.11)
If z € D then by Lemma 5.5

1 .
lim || (7 + L) "7 pll7aee) = i e (@ 2gee)-

1
As L, ? = k~2Im(F,) "2, it follows from Theorem 4.27 and Lemma 5.6 that
there is a positive value C'(z) that depends on point z such that

Ity < SO (5.12)

Hence
e A
< oQ.

If z ¢ D then by Lemma 5.5

li (€] + L) ™57kl = 00
for all k£ # 0. Hence by equation (5.11)

tim (] + D)7t + 2 - ) Faganen = o0
O
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The condition |[¢(k)| < |k| in the vicinity of 0 is satisfied by the functions
¥ € C§°(R), whose Fourier transformation has a vanishing first moment, that

1S
/zZ(t)dt = 0.
R

This condition is studied in more detailAin Section 5.3 and is needed while
considering the Fourier transformation F = F;,_,FF, !, of the far field op-
erator F.

We also provide a slightly different formulation of Theorem 5.7.

Theorem 5.8 Let ) € S(R) be such that |¢(k)| < C|k| in a neighbourhood
of 0. Then z € D if and only if

Tim @d+@4@)@@@@@ﬁ&ﬂ@<m% (5.13)

e—0 RxS2

where U.(t,T) = P(t + 2 - T).

Proof. Operator L is bounded and self-adjoint, so we see that so are L and
(Ie+ L)~2 for all € > 0. Hence for all z € R? we have

~ 1~ ~ g
[(Te+ L)~ 29 Famus) = (€] + L) "z, ) r2(xcs2)

and the result follows from Theorem 5.7.

O

The condition (5.13) does not contain a square root of L and is hence a bit

-1~ ~
easier to deal with. In order to obtain (d + L) 1, we need to solve h in
the equation

<6] - %at(ﬁ - ﬁ*)) h=1. (5.14)

in the time domain. Some comments on the numerical solution of this equa-
tion are given in section 5.4 after we have studied certain aspects of the time
domain Robin problem in sections 5.2 and 5.3.
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5.2 The Time Domain Robin Problem

The purpose of the current and the following sections is to provide a short
discussion of the numerical applicability of the multi-frequency method de-
rived in the previous section. In order to keep the presentation short we
assume that the obstacle has the Robin energy decay property. This prop-
erty is not proved for any subclass of obstacles here nor is it, to the author’s
knowledge, available in the literature.

What is readily available in the literature is for example a weaker energy
decay result
liminf E(u, Dg,t) =0

t—o00
derived by Lax and Phillips in [36]. One approach would be to determine
whether this weaker condition would be enough to make the time domain /
frequency domain changes possible in a manner that could provide a frame-
work for numerics.

Another approach would be to use the Quantum Non-Trapping Condition
found e.g. in Tang and Zworski, [52], and to see if this would give a sufficient
energy decay. Both approaches are, however, beyond the scope of this work.

We return to the time domain Robin problem mentioned in the introduction
Ou(x,t) =0 inRy x Dt
u|t:0 :fl (515)

Utli=o = fo
(0, —ad+F)u =0 on (R U{0}) x9D.

We assume that for all ¢ the restriction u(t,-) is in H'(D%). The space

Hy(D%) is the completion of C§°(R® \ B(xo,7)) with respect to the || -

| &\ Blag,ry) NOTM, Where zo and r are such that B(zo,r) C D. By Lemma
3.4 all uw € Hy(D") satisfy u € L2 (D).

Loc

By [45, Theorem 7.6.2] the time domain Robin problem has a solution in the
following sense:

Definition 5.9 Let (fy, f2) € H(D"). Function u(t,x) € H}, (Rx D") is a
solution of (5.15) if

(i) For allt € Ry U{0} we have (u(t,-),du(t,-)) € H(DV) and the func-
tions
t— Vu(t,:), t— owult,-)

are continuous from Ry U {0} to L*(DT).
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(77) (u(ov ')7 atu(ov )) = (fh f?)

(i1i) Let sg > 0 be so small that the map H : 9D x [0,s0] — D%; H(z,s) =
x + sv(D) is injective. Then

u(t, z,s) == u(t, H(z,s)))

satisfies:

N

e ([0, 0], D'(R x 9D)
e HY(=T,T) x 9D x (0, 50))

<

forallT e R,.

(iv) Ou =0 in Ry x D" and u(t, x) satisfies the Robin boundary condition
in the sense of distributions.

We will next prove the exponential decay for ||u|/12(p,) from the exponential
energy decay. First we prove a version of Poincare’s Inequality and then use
this together with the energy decay.

Lemma 5.10 Let p € C°(R?), R > Ry > 0 and Ugr = B(0,R) \ B(0, Ry).
Then

_1 1
el L2wn) < 272(R? - R§)2||80||D(R3\W>' (5.16)

Proof. The proof of analogous to [46, Lemma IV.1.1].

This immediately yields a corresponding result in H; (D).

Corollary 5.11 Let R > Ry >0 and Ug = B(0, R)\ B(0, Ry). Then for all
u € Hi(DV)

_1 1
[ullz2wg) < 272(R* — RY)2 [l pas oo (5.17)

Proof. Let u € H;(D%) and (g,,) be the defining sequence of u. By Lemma
5.10

||UHL2(UR) = T}EEOHSDnHH(UR)

IA

Tim 272 (R* — R5)2|[enl| pes\ 50,0y

_1 1
= 272(R* = Ry)2|lull pes 5oy
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O

Lemma 5.12 Let u be a solution of (5.15) in the sense of Definition 5.9
and have the exponential energy decay property, that is for all R > 0 there
exist constants C' and ¢, which depend on R, D and the supports of u(0,-)
and 00, ), such that

E(u, Dp,t) < Ce ™ E(u, D", 0). (5.18)

Then for all R > 0 there exist constants C' and c, which depend on R, D and
the supports of u(0,-) and du(0,-), such that for all t € [0, 00)

[ut, 2wy < Ce™E(u, D, 0). (5.19)

Proof. Let U C D" be an open bounded set and wu(t,z) be the solution of
(5.15) in the sense of Definition 5.9. We define

uy(t) = ﬁ/[]u(t,x)dx,

where L(U) is the Lebesgue measure of U. From Holders inequality and the
exponential energy decay of u it follows that

1
< =
|Orup ()] < E(U)/Uut(t,xﬂdx
1 . \?
< : [ug(t, z)|Pdx
E(U)§ U
< #CE(U,DJ’,O)e_Ct,

L(U)2

where C' and ¢ depend on diam(U), D and the supports of u(0, -) and d;u(0, -).

Hence there is a limit
Vo = lim uy ().
t—o0

It follows from Poincare’s Inequality, [23, Theorem 1], and the energy decay
that

Cllu(t, ) pw)

[ut, 2) —ww (Dl 2w) <
< CE(u,D%,0)e (5.20)

where C and ¢ depend on diam(U), D and the supports of u(0, -) and d,u(0, -).
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Now let U; C U be an open set. We have

|u, (8) — uo (8| £(U)

Ju(t, z) =y (t) = (u(t, ©) — o, ()| 2w

< lw = w2y + 1w = wo (@)l 2w

< lw = ug, (Ol 2wy + v — wo ()l 2wy (5.21)
By equation (5.20) the right-hand side of equation (5.21) converges to zero,

so we see that for all open U; C U we have

Hm flu(t,-) = Vol 2y = 0. (5.22)

Let R >> R; > 0, Ry be such that D C B(0,R,), U = Dg and U; =

B(0,R) \ B(0,R;). By Poincare’s inequality on an annulus, Corollary 5.11,
we have

_1 1
||“(ta')”L2(B(0,R)\W) < 273 (R R%V”“”D(W\W)
< Ce “E(u,D*,0),

where C and ¢ depend on R, D and the supports of u(0,-) and 9,u(0,-).
Hence V =0 and

IN

| / Oyup, (t")dt' + 0|
t

/ Ce " E(u, DF,0)dt’
t

< Ce “E(u,D%)0),

|up, (1)

IA

where C and ¢ depend on diam(U), D and the supports of ©(0, -) and d;u(0, -).
It follows from the inequality (5.20) that

lut, Mezory < Nt ) = upr(O)llz2pp) + upr )l 22(Dg)
< Ce “E(u,D%,0),

where C' and ¢ depend on R, D and the supports of u(0,-) and d,u(0,-).

5.3 The Time Domain Far Field

In this section we derive a formula for the time domain far field and study the
time domain counterparts of the frequency domain far field operator and its
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adjungate. We do this in order to use the asymptotics attained in Section 5.4
for providing grounds for the numerical application of the multi-frequency
factorization method.

Let us consider a Herglotz wave
T (k, 2) = / R0 (1, d)dH2(d)
§2

as an incident wave in the frequency domain and the corresponding incident
wave

Win(t, ) = /S2 h(t — x - d, d)dH?*(d),

with h = fkﬁt{/}z} in the time domain. In the following we assume that
h € Cg°(R x S?), which is equivalent to the assumption that ¢ € C5°(R) in
the previous section’s notation.

The total wave is
Upot = Uipn + Use. (523)

Let R > 0 be such that D C B(0, R) and T be such that supp(h) C [T, T x
S2. Then for all x € B(0, R), t € R\[-T— R, T+ R] and d € S?, the function
h(t — x - d,d) = 0, from which we see that the support of the incident wave
intersects the set D only for a finite time interval. Hence the scattered wave
ug. satisfies

Ouse =0 in [T+ R,00) x D
(0, — a(x)0 + B(z))use =0 on [T+ R,00) x 0D
Useli=r1r = f1 Opllsc|i=r4r = f2,
(5.24)

where supp(f1), supp(f2) C B(0,2(T + R)) because of the finite propagation
speed of waves.

We assume that the obstacle D has the local Robin energy decay property
stated in Definition 3.6, from which it follows that for all R > 0and ¢t > T+R

E(uge, Drr,t) < Ce ““E(uge, DY, T + R). (5.25)
By Lemma 5.12 we have fort > T + R
[use(t, M m1(pgy < Ce™E(use, DT, T + R), (5.26)
where C and ¢ depend on R, D and the supports of u,.(T+ R, -) and Oyus.(T+
R,-).

109



We use this decay property to find an entity in the time domain which cor-
responds to the far field of the scattered wave in the frequency domain. Let
Ry > R, x € C=(R®) be such that x = 0 on a neighbourhood of B(0, R) and
X = 1 outside B(0, Ry). Let

W = YUior (5.27)

be continued by zero inside D. The function w satisfies

Ow = in R
{ w Q in R (5.28)
w|t<—T—R = Uin|t<—T—R
where Supp(Q) C [_T - R7 OO) X (B(O7 Rl) \ B(07 R))
We decompose w as
W = Wiy, + Wee, (5.29)

where w;, = xu;, and w,. = xus. The Corresponding decomposition of the
source term @ is

Q = Qm + Qsc

= D’LU,”L + Dwsc.
Since

Qsc = D(Xusc)
= Q(atx)atusc + QVX . vusc + (Dx)usm

it follows from equations (5.25) and (5.26) that for t > T + R
||Qsc(t7 ) HLQ(B(O,R)) < Ce_CtE(usm D+a T+ R>> (530)

where C' and ¢ depend on Ry, D and the supports of us.(0,-) and dyu,.(0,-).

Hence supp(Qsc) C [~ — R,00) x (B(0, R,) \ B(0, B)) and Q. € L'(RY),
which implies that we can apply Lemma 2.7, by which

Fioi{ By * Quc} = (On 1y Fi{Quc} (k. ) (K, ). (5.31)

The wave w,,. satisfies

{ wse = Qsc in R?*

wsc|t<—T—R

so by Theorem 2.2, we have
Wse = E+ * Qsc
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and by equation (5.31) the Fourier transformation

]:tjk{wsc} = ((I)k *y thk{QSC}(k7 ))(kv z)

Since for all k the element F, !, {Q..}(k,-) € L'(R®) we see that by Lemma
A1 the far field of F, !, {ws.}(k,-) is

_ ~ 1 ik e
Fowdule® = o [ Qb 692)

For all k € R we have || F, {Qs}(k, )|l n1ws) < |Qsellrmay so Frlp{wse} €
S'(R x §?) and we can define the time domain far field of w,. to be

wsc,oo(t7 EC\) = fk—»t{ftjk{wSC}OO}(tv i.\)
By Lemma 2.10
~ 1 ~
wsc,oo(t7 ZE) = 7 / Qsc(t +x- Y, y)dy (533)
AT JB(0,m)\BO.R)

With Hoélder’s inequality, Fubini’s Theorem, moving to the spherical coordi-
nates with the z-axis always aligned in the same direction as y and by using
the change of variables f : (0,7) x ((B(0, Ry)\ B(0,R)) — (t — Ry, t+ Ry) x
(B(0,R)\B(0, R)); f(a,y) := (t+y| cosa, y) we see that for all t > T+2R,

et ey < € [ Qult. ) Patay,
(t—Ru,t+R1)x(B(0,R1)\B(0,R))

where C' depends on R; and R. It follows from equation (5.30) that for
t>T+2R,

|Wse,0(t, )| r2(s2) < Ce " E(uge, D*, T + R), (5.34)
where C' and ¢ depend on Ry, R, D and the supports of u.(T + R,-) and
Owuse(T + R, -).

Since [[Wse,00(t, )|l 2(s2) is bounded for ¢t < T'+ 2R, the estimate (5.34) holds
for all ¢.

As wy. = ug on R x (R?\ B(0, Ry)) we make the following definition

Definition 5.13 Let u,. be the scattered wave of equations (5.23) and (5.24)
and wg. be the wave defined by (5.28) and (5.29). We define the time domain
far field use o of use to be

Use,00 += Wse,00
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where Wy 05 defined by equation (5.32).

Moreover we define the operator Fyp. by
Ftimeh ‘= Use,009

where Uy o 1 the far field of the scattered wave of the incident wave (5.23).

We will next determine how Fj;,,. behaves fgr large ¢ in order to facilitate
the numerical solution of the equation (eI + L)h = 1.

By Taylor’s Theorem for all » € S(R x S?) we have
h(k,d) = h(0,d) + kOph(K', d), (5.35)
where k' € [0, k]. Let kg > 0. We have

sup  |Oph(K',d)| = Cj, < 00 (5.36)
des?
ke[—ko,ko]

and it follows from equation (5.35) and Theorem 4.16 that for T for which
h(0,d) = 0 for all d € S* we have

R [=Fko,ko]

+ / | Euh(k, ) [agen b
R\[—k0,k0]

IN

47~
A7 CE 8%+ Il e -
0
We define the set
SR x §?) :={h e S(RxS?) :VdeS*: h(0,d) =0}

and the operator F : Sgo(R xS?) — L2(R xS?), which maps a h € Syo(R xS?)
to

~

Fhk,d) = (k. ) (d).
Since
h(0,d) = F{n}0,d)

— (zﬂ)—%/Rh(t,d)dt, (5.37)
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the condition E(O, d) = 0 in the frequency domain corresponds in the time
domain to the vanishing of the first moment of h(-,d). Hence F,_!, maps the
set,

&Mny):{hE&RxS%ﬁMES%(/Muadzo} (5.38)

to Spo(R x S?) and the map F := FrtFF  Sno(R x §2) — LR x §?)
is well- defined. In a similar way we see that operator (F*)" := Fy_F{F, !,
is well- defined.

In the next lemma we establish the equality between the Fj;,,. and F oper-
ators.

Lemma 5.14 For all h € S,,,0(R x $*) N C5°(R x S?) we have

Fyimeh = Fh.
Proof. Let h € 8,,0(R x $*) N C°(R x S?). We have

‘E&jk{Ftimeh}(kv 37\) = Ejk{wsc,oo}(k7 /f)
(ﬁjk{wsL,w(k ))OO (/l’\)
(Fllud (k) (@)

On the other hand for each & it holds that

ij:;f_—}k{h}(k> ) = (‘Ft_—}k{u}(lﬁ ))oo ’

so we see that
‘Ejkﬂime =I'F tjk’
that is R
Fiime = F.

O

Next we derive the decay property of the operator L. First we provide a
lemma on the commutativity of F and the operators d; and 7, that is defined
by

Tsh(t,d) :== h(t — s,d).

Lemma 5.15 Operators F, (F*)" : Spo(R x §?) — L2(R x S2) commute
with the operators T, and O;.
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Proof. We have

Fry = FouFF 7,
= FpiFe*F 1,
Fore "FFL,
ToFetFF, (5.39)

that is, F' commutes with 7,. In the same way we see that (F*)" commutes
with 7.

For all h € §'(R x S?) it holds that
KFp i@} (k) = F, 2 {ioh(t)} (k) (5.40)

and
O Fr—i{h(k)}(t) = Fr_i{—tkh(k)}(t). (5.41)
Hence
atF\ = atfk_,tFﬁjk
Fo,.

In the same way we see that

D, (F*)" = (F*)"0,.

We continue by making an estimate for the operator F;,. = E.

Theorem 5.16 Let h, ¢ € S,0(R x S?) N CE(R x S?) and T be such that
supp(h),supp(p) C [=T,T]) x S%.. There exist C,c € R, that depend on
R, Ry, T and D such that

|(Frimeh, Ts0) r2@xszy| < Ce™||hllcmxse) |l 2 @xs2), (5.42)

Proof. By equation (5.34) there are C,c € R, that depend on R, Ry, D and
the supports of us.(T + R, -) and dyus(T + R, -) such that

| Frimeh(t, )| L2(s2) < Ce " E(us, DT, T + R). (5.43)

Since the interaction of the incident wave and the obstacle starts after the
time —T — R, the supports of us.(T+ R, -) and dyus.(T+ R, -) are contained in
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B(0,2(T 4+ R) + R). Hence we can make the estimate (5.43) with constants
C' and ¢ that depend on T instead of the supports of us (T + R,-) and
Ouse(T + R, -).

For t < —T — R the incident wave w;, is zero inside B(0, R). Let xo € C5°(R?)
be such that yo = 1in B(0,4(T+ R)+ R) and x2 = 0 on R*\ B(0,4(T+R) +
R+1). Function xou;, is compactly supported, so there is an exterior Robin
solution @, with the initial data ((xouiu)(—=T — R, -), O (xouin)(—T — R, -)).
Because of the finite propagation speed of the waves, the waves w,; and U
are identical inside the cone {(¢t,z) : || < 3(T+ R)+ R—t,t > =T — R}.
Hence at ¢t = T + R we have inside the ball B(0,2(T + R) + R)

Use = Utot — Uin

= ﬂtot — Uin-
Since supp(us.(T' + R,-)) C B(0,2(T + R) + R) we see that

E(USC7D+’T+R) S E(ﬂtotvDQ(T+R)+R7T+ R) +
+E(uin, B(0,2(T+ R) + R),T + R)
2E(uin, B(0,4T+R)+ R+ 1,-T — R),

IA

because of the conservation of energy and the finite propagation speed of the
waves.

We have
Optlin(t,2) = | Oph(t — x - d,d)(—d;)dH?(d)
82
and
Ouin(t,z) = [ Oh(t —z - d, d)dH?(d).
§2
Hence

E(Uin, B(O, 4(T + R) + R + 1), T — R) S CefCtH(r“)tuHC(RxSZ),
where C depends on T and R. It follows from equation (5.43) that
| Evimeh(t, )| z2g2) < Ce™|0ph]lc@xs2),

where C' and ¢ depend on R, Ry, T and D.

The estimate (5.42) follows from Hélder’s inequality and the fact that supp(p)
is contained in [T, 7] x S2.
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Finally we get the estimate of the operator L.

Theorem 5.17 Operator L : C2(R x S2) — L*(R x S?) commutes with the
translation 75 and satisfies for all h, o € C§°(R x S?) with supp(h), supp(p) C
[-T,T] x $?

@7% Ts@)2mxs?)| < Oe_clsl(||3th||0(mxs2)||<P||L2(Rxs2) +
e ||at<p||C(IR><SQ)Hh||L2(R><S2))7
where C and ¢ depend on R, Ry, T and D.

Proof. We observe first that by (5.40)
L = —Fkm(F)F Y
1 .
= —fkﬂtQ—(F_ F)FL,i0,.

1
Since for all p € CP(R x S?) we have 0,p € Spo(R x S?), we see that
L:CP(R x S?) — L*(R x S?) is well-defined.

Since )
I--; (ﬁ - (F*)A) 0,
and by Lemma 5.15 operators F and (F*)" commute with 7, we sce that L

commutes with 7.

We have for all b, € C°(R x S?) and s € R

1

(Lh, 749) L2 xs?) = 75((13—(F*)A)ﬁth,Ts<p)Lz(Rxgz)

- % ((ﬁ@th,75g0> n (h,ﬁ@m(p)) L (5.44)

Tt follows from equation (5.42) that for all s >0

(ﬁath Tep)r2®xs?)| < Ce”“||0ih c@mxs?) 1@l L2 ®xs?)s (5.45)

where C and ¢ depend on R, R;,T and D.

By Lemma 5.15 operators F and Ts commute, so

(h, FOiTs0) r2mxs2)y = (hy ToFOu0) r2rxs2)
= (Tfsh>Fat§0)L2(]R><82)-
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For s < 0 we have by equation (5.34)

(1_sh, ﬁat@)LQ(]RXSQ) < Ce |||l r2®xs2)|0sp |l c®xs2)s (5.46)

where C'" and ¢ depend on R, Ry,T and D.

Since supp(p) C [T, T] x S? the Q.. function corresponding to the incident
wave kernel 0yp also satisfies supp(Qs.) C [-T — R,00) x B(0, R). From
equation (5.33) it follows that for ¢ < —T — Ry — R we have

(Fohp)(t,d) =0,
for all d € S%. Hence for s > 27 + R; + R we have
(7_sh, ﬁat@)B(RxSZ) =0

and by equations (5.44), (5.45) and (5.46)

(Zh, Ts‘P)LZ’(]RXSQ) S 0670\3\ (HathHC(Rsz)||§0HL2(R><S2) + ...
o llo@sen bl s ).

where C' and ¢ depend on R, Ry, T and D.

5.4 A Comment on Numerical Applicability

In this section we present few less formal comments on the implications of
the previous rigorous analysis for the possible numerical implementation of
the time domain method just presented. The numerical implementation and
testing of the method are outside the scope of this work.

We emphasise that the treatment in this section is non-rigorous.

Let us recall the reconstruction condition

lim ((e[ + Z),%) )(t, )0 (t, T)dtdH2(F) < oo

0 Jrxs?

of Theorem 5.8. In solving this numerically, we first choose a sufficiently
small € > 0 and consider the magnitude of the inner product

((ef _"z)_l&za@z)LQ(RxS?)-
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The function @Z(t, z)= {ﬁ\(t + z -, ) is compactly supported, so we need to
find the values of (eI + L)"'), on a compact set supp(v),) C I x S2.

We wish to determine what kind of error is made if we truncate the domain
L*(R x S%) to a bounded one, I x S?, while solving the equation

(el +L)f = .. (5.47)

To this end we discretise the equation (5.47) by approximating f and 1@ by
the series

finv(t = 07) V(%)

2
NE
\Mg

n=1 j=—o0

2
NE
NE

$inv(t = 65)Vn (),

n

1 j=—o00

where § > 0 is a constant, v € Cg°(R) with supp(v) C (=3, ),

/ lv|?dt = 1,
R

and {W}rez, C C5°(S?) is a orthonormal basis of L?(S?). Functions U, can
for example be the spherical harmonics {Y,}.

For fixed ng and n; the equation (5.47) has a discrete counterpart

-~ -~

(6[1] + [L]nu,m)[.ﬂn:no = [djz]n:m-,

where

Foim
[f]n:no = fO,no )
fl,ng

-~

I is an identity matrix and [L] is a matrix with the coefficients

([Z],m,m)éj = (Lot = 65) Wy, 0t — 50T, 2

’

By Theorem 5.17 operator L commutes with Ts, SO we see that
([L]no,m)e = (TéjLU\IJno: T&ZU‘Ilm)L?(]RXS‘Z)
J
= (LoV,g, 50—V Wn,) 12(Rxs?)-
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Both vW,, and 75,_;v¥,, are in Ci°(R x §?), so it follows from Theorem
5.17 that

| ([L]no,m)l . ‘ < Cle—clot=i)l (||8tU\Ijn0||Cl(R><S2)||U\Ijn1||L2(]R><S2) + ...
5J
e 00Tl et |0l 2 ). (5.48)

where C' and ¢ depend on R, Ry,0 and D.

We speculate that the e~ <=l factor dominates the overall behaviour of the
entries of [L]y, ., S0 that the entries of the matrix (e[I] + [L],,,n,) that are
far off the diagonal are very small. Since the vector [@z}n:nl has nomn-zero
values only for indices {—jm, —jm +1,...,Jm — 1, jm} we speculate that the
solution [f],, will be negligible for indices outside some interval {—M, —M +
1,...,M —1,M} with M > j,,. If this holds we can find a good solution by

solving the finite matrix equation

(el]ar + [Z]no,mM)[f]n=no,M = [{/;2]71:711,M~ (5.49)

Here [-]ps indicates a truncated (2M + 1) x (2M + 1) or (2M + 1) matrix.

We expect that the decay of the off-diagonal elements in (5.48) is uniform
enough so that a certain number M is large enough for all indices ng and n;.
In this case the equation

(61 + E)f = QZZ

can be successfully solved by limiting the calculations for some finite set
Iy X S2.

The numerical solution can be done better with some system other than the
one we used. In the above we only wanted to highlight the causal connection
between the different time slices (65 — g, 07 + %)

5.5 Conclusion

The aim of this work was to study the expansion of the factorization method
which allows information coming from several fequencies to be analyzed at
the same time. To this end a wave number analysis was made to operators
U, Fy, Gj and others in Chapters 3 and 4. Along the way a new single
frequency method with wave number dependent estimates was developed.
This method is the basis of the multi-frequency method presented Section
5.1.
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The multi-frequency method developed in this work is not directly applicable
numerically. First steps in this direction were taken in Sections 5.2 and 5.3
in which the time domain far field operator was formed while assuming that
the scatterer has a Robin energy decay property. Based on this a heuristic
discussion of how to do numerics with the multi-frequency factorization was
provided in Section 5.4.

The avenues of further research based on this work are, in the author’s view,
at least to threefold:

First, and perhaps of the highest priority, would be to complete the numerical
arguments and check how well the reconstructions truly work using actual
numerical and/or physical data.

Second one could find ways to bring rigour to the assumption of Robin energy
decay. This can be done in at least in two ways; one can find a class of
scatterers that have the Robin energy decay property or one can divide the
scattered wave into two parts, one of which is decaying and the other of
which related to the resonances of the scatterer. After that one can apply
the multi-frequency method to the decaying part and perhaps some other
method to the resonances.

Third one could study how other reconstruction methods could be subjected
to a frequency domain - time domain analysis. Many tools in this work can
be used in the other factorization methods and frequency domain methods.
Our bridge between the frequency and time domains, Fj_; : S'(R x §?) —
S'(R x S?) might have applications in an even wider class of methods.

120



Appendices

121



Appendix A

Expansion of the Kernels

Lemma A.1 Let k € R and R > 0. We have for all y € B(0,R) and
r € R?\ B(0,2R) the asymptotics

P P <41We’“ + (k)0 (lel)) (A1)

||

and

V() = (-gike = oo (7)) (a2)

z[ \ 4m Jz]

where the O (ﬁ) terms are C* with respect to x and y and do not depend

on k.

|z

Remark: When we say that the O i) terms do not depend on k£ we mean
<

that there is an estimate: ‘(9 <ﬁ>’ < ol The derivatives of this term also
have the same kind of asymptotics.

1

Proof. We use the mean value theorem on the function ¢ — (1+¢2)2 and see

that

-~ y* 1
1

= |z|—-7Z y+(’)(>.
|z
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Hence

ciklz—y] k(2= y+0 (7))

drla —y| 4w(|x|—a-y+o(i))

||

1 ezk\z\ ezk\z\ elk\z|

— +
A\ B\ =z g0 ()

.eik(—ﬁer(’)(ﬁ)).

Here . ||
ik|x HURIT 1
oy w0 ()
(el -z-y+0 (L) o 2
and
eik(—i'y+0(‘71|)) — mikTy 4 k|O (i) )
|z]
Hence klz—y| ]
ey el L ikzy 1
- —e Y L (1 ENO(— ) ). A3
e R e 000 () @
For y € B(0,R) and = € R*\ B(0, R) the functions %llﬂ, e~ Y and Z:\::Z/‘I

are C'°, so we see that the (1+ |k|)O (\71\) term in (A.3) is C'™ with respect
to xz and y.

For the other kernel we notice that

eMle—vl (/\) iketklz—yl ciklz—y]
Varle—yl T P\l =yl Amfe — g2 )
Here ol
eiklr—y 1
:=(gp)
Al —y| ]
and

so by equation (A.3)

ik|z—y| ikl|z| 7 o
e _ € <:Cik'e_””'y+ (1 +k2)0< 1 >> . (A4)

Yir|w — 9] || 47 m

ik|x|

—Tike ™Y and

For y € B(0,R) and € R®\ B(0, R) the functions S
V, S are 0, so we see that the (1 + k2)O (i) term in (A.4) is C™.

Yar|z—y| ||
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O

Lemma A.2 Let k € R and R > 0. We have for all y € B(0,R) and
r € R3\ B(0,2R) the asymptotics

(0r0) — ik) @(a.y) = (K)O (L)

and

(&(m) - Zk) qu)(év, y) = <k>20 <|xl|2> .

Proof. We have

eik|w7y\ — ikeik|m7y| L — eik|x7y\
Z-(x—y)—1

drlz —y|
(- @n-1)-0(n).

(Or@) — 1K) i ()0 <xl|2) :

dmle —y|

Here
so we see that

For the other kernel we notice that

etklz—yl

(6T(I) —ik)v :]1+]2+13:

Yar|z —y|
where

-

I, = _(a’l'(T)(x_y))<

- wo()

ikeik|:cfy| eik\xfy\
drle —y|  Axfr —yl?

— /. ‘ etklz—yl
1
_ 2 -
= 070 (1)
— ] etklz—yl
I; = —(x —v) (ar(x) - Zlf) m

- wo(k)
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Hence

(Or(z) — ik) V

etklz—yl

Vimle —y| ~
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Appendix B

Bochner Integrals

In this Appendix we present a definition of Bochner integrals and a small
application of them in Lemma B.6. Our presentation of Bochner integrals
closely follows the book [35]. We begin with the definitions of a strongly
measurable function and a Bochner integrable function.

Definition B.1 Let (Q,%, 1) be a o-finite measure space and let X be a
Banach space. Then simple functions T : Q — X are of the form

T(S) = Z aiXE@(S)v

where a; € X, u(E;) < oo and xg, is the characteristic function. Function
T :Q — X is strongly measurable if there ezists a sequence (T,,) of simple
functions that converges pointwise to T .

Definition B.2 Function T : 2 — X is Bochner integrable if there exists
a sequence of simple functions (T,,) that converges to T pointwise and satisfies

m,n— o0

lim [ [|T,(s) = Ton(s)l[x du(s) = 0.
Q
If T is Bochner integrable, we define

/T(s)du = lim [ T,du.
Q

n—oo Q

The following two Theorems are useful in proving that a function is Bochner
integrable.
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Theorem B.3 Function T : Q — X is strongly measurable if and only if for
all open U C X we have T~ (U) is measurable and T(Q) is separable.

Proof. We refer to [35, Theorem 23.2].

O

Theorem B.4 A function T : Q — X is Bochner integrable if and only if T
18 strongly measurable and

[T luts) < o
Q

In this case there exists a sequence of simple functions (T,) that converges
pointwise to T and for all s € Q andn € N

1T (s)llx < 2(T(s)lIx (B.1)
and

lim IT(s) = To(s)|| xdu(s) = 0. (B.2)
n—oo [¢)
Proof. We refer to [35, Theorem 23.16].

O

Lebesgue’s Dominated Convergence Theorem can be applied to the Bochner
integrals. For the convenience of the reader we reproduce the Theorem here
and refer to [35] for the proof.

Theorem B.5 Let T : Q — X be strongly measurable and (T,,) be a sequence
of functions such that for almost every s € Q we have T,,(s) — T(s). If there
is g € LY(Q) such that for all n € N and almost every s € Q we have

1T(s)[lx < g(s), (B.3)

then T is Bochner integrable and

/T(S)dﬂ: lim [ T,(s)du
Q

n—oo 0

Proof. We refer to [35, Theorem 23.20]. We now provide a small application
of the Bochner integral that was needed in the main text.
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Lemma B.6 Let R € R be such that D C B(0,R) and h € L*(S*). The
map T : S* — HY(Dg) defined by

T(d) = Upob i (—(Ou(p) + Atr )™ ) h(d)
1s Bochner integrable.

Proof. By Theorem B.4 the map T is Bochner integrable if and only if it is
strongly measurable and satisfies

/SZ 1T (d)[| 11y dH?(d) < oc. (B.4)

We prove first that T is strongly measurable. By Theorem B.3 the map T
is strongly measurable if and only if 1° for all U € H'(Dg) open T-1(U) is
measurable and 2° T'(S?) is separable.

1% We can decompose T as

1 Urob,k

T:8* L H2(0D) =% H'(Dg),
where

Fd) = (=(Qup) + Atr)e™)h(d)
= A(d)h(d).

Here A:S? — H-2(dD) is continuous and h € L*(S?).
There exist simple functions h,, : S — C such that for all d € S? we have

h(d) = lim;, s hy(d). For all n € N the map Ah,, is measurable and

Ah = lim Ah,.

n—o0

By [11, Proposition 8.1.8] a limit of measurable functions Ah,, from a measure
space (S?,’H?) to a metrizable topological space H’%(aD) is measurable, so
we see that f = Ah is measurable.

Since Upop i H_%((?D) — H'(Dg) is continuous we see that for all U C
H'(Dg) open, the set U, . (U) C H~2(3D) is open. Hence T(U) is mea-
surable.

20: H'(Dg) is separable, so T'(S?) is separable as a subset of a separable set.
Now we turn to the condition (B.4). The map B :S* — H'(Dpg) defined by

B(d) = Urob,k oA
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is continuous and S? is compact, so we see that

sup || B(d)|1 () = C < o0.
des?

We have

[ @l @ = [ HDIB@ (@
S2 S2

Ollhll 22y HA(S?)2, (B.5)

IN

so T is Bochner integrable.
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Appendix C

Frechet Spaces, LF Spaces and
S (R xU)

We are able to form the space S'(R x U) in exactly the same way as the
space D'(U) is formed in e.g. [55]. The only difference is that we start
with a different family of semi-norms. For the sake of completeness we give
the relevant definitions and proofs for forming the space S'(R x U). We
follow the approach of [55] rather closely, though we take topologies to be
the fundamental concept instead of filters, which are used in [55].

Let C be the Euclidean topology of the complex plane C.

Definition C.1 Let E be a vector space with a topology T and the spaces
E x E and C x E be equipped with the product topologies T x T and C x T
respectively. Then (E,T) is a topological vector space if the addition
+: E X E— FE and the scalar multiplication : C x E — E are continuous.

We note that for all x € F the map z+ : £ — E;y — x + y is a home-
omorphism and for all A € C\ {0} the map A : £ — FE;y — Ay is a
homeomorphism.

Definition C.2 Let (E,T) be a topological space. A collection of sets B C T
is a basis of the topology T if for all A € T and x € A there exists a B € B
such that x € B and B C A.

We note that if B is a basis of the topology then for any A € T there are

elements {B,},ca C B such that A = J,., B,. The next result is very
useful in determining if a collection is a basis of a topology.
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Lemma C.3 A collection B of sets is a basis of some topology if and only if
forall A, B € B andx € ANB there exists a D € B such thatx € D C ANB.

Proof. We refer to [27, Theorem 1.11]

Definition C.4 A topological vector space (E,T) is a locally convex space
if T has a basis that consists of convex sets.

The spaces of test functions are constructed as spaces induced by a set of
semi-norms. These spaces will be locally convex topological vector spaces as
we will see in the next lemma.

Lemma C.5 Let E be a vector space, P a collection of semi-norms on E
such that for all p1,ps € P there exists a p € P such that p1,ps < p. For all
pEeP and e >0 let

B,(e) ={zx € E: p(x) < €}.

Then the collection
A:={2x+By(e) :x € E,pe P,e>0}]

is a basis of a topology, denoted T on E and (E,T) is a locally conver
topological vector space.

Proof. We use the basis criterion of Lemma C.3. Hence let z1,29 € FE,
€1,€ > 0, P1,P2 € P and

2 € (21 4 By, (€1)) N (22 + By, (e2)) = A.
Let p be such that p;,p2 < p and
€= min{el — p1($ — 2)7 €2 — pz(y - Z)}

Then z + B,(¢) C A and by Lemma C.3 the collection A is a basis.

For all z € E, p € P and € > 0 the set x + B,(¢) is convex, so we see that
the space (E,7) is locally convex.

We prove next that the arithmetical operations are continuous. Let A € C,
v,y € A, f(xr) = Az, g(x,y) =2 +yand U C E be open. Let z € f~1(U).
There exist p € P and € > 0 such that Az + B,(¢) C U. Hence

2+ ATIB,(e) = 2 + B,(|\re) € AU = f7Y(U)

and f~1(U) is open.

131



Let U C E be open and (z,y) € g*(U). Hence there is p € P and an € > 0
such that
(x+y)+ By(e) CU.

It follows from the sub-additivity of p that
€ €
Bp(i) + Bp(i) C By(e),

so we see that .
§>’ Y + Bp(

Hence g~'(U) is open and g continuous.

€

(z + By( 9

)) € g~ (U).

Definition C.6 A Topological vector space (E,T) is a Frechet space if

1. It is locally conver.
2. It is metrizable.

3. It is complete.

Definition C.7 Let {E;};en be Frechet spaces, E; C E;1q for all j € N and
the inclusions i; : E; — E;i1 be an isomorphism from E; to i;(E;), where
1;(E;) is endowed with the relative topology from E;1q. Then the numerable
strict inductive limit of the Frechet spaces {E;} is the set

FE =

s

E;

1

J

together with the topology T having a basis of neighbourhoods of 0, which
consist of those convex sets V' for which 0 € V and for all j € N the inter-
section V N Ej; is open in E;. We call the space (E,T) an LF space and the
sequence {E;};en a sequence of definition of E.

In the above definition it is indeed enough to specify the neighbourhoods of
zero, as we will see in the next lemma

Lemma C.8 Let {E;};en, E and the neighbourhoods V' of zero be as in
Definition C.7. Then the collection

B:={x+V :x€E, V neighborhood of 0}

is a basis of a topology in E.
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Proof. We will use the basis criterion of Lemma C.3. To this end, let z,y € F
and V;, V,, be open neighbourhoods of zero and

z€(x+Vy)N(y+ V).
Let j be so large that x,y, 2 € E;. Then
(z—2)+Vy)NEj=x—2z+ (V. NE;),

which is an open set of E; since V;NE; C E; is open and the map p — p+x is
a homeomorphism in E;. In the same way we see that ((y—z)+V,)NE; C E;
is open, so

((z=2) +Va) N E}) N (((y — 2) + V) N Ej) C Ej

is a open neighbourhood of 0 in E;.

Let k < j. The inclusion 4y ; : Ex — iy ;(Ey) — Ej; is an isomorphism from
Ey to ix ;(Ex), so we see that the pre-image

P o= i (x=2) + Vo) N E)N((y — 2) + V) N Ey))
= (e=2)+ Vo) N E) N (((y — 2) + V) N Ex)

is an open set of E,. Hence by the criterion of the open neighbourhoods of
0in E the set ((z — z) +V,) N ((y — 2) + V) is an open neighbourhood of 0
in E. Hence (z+ V)N (y+V,) € B and by the basis criterion B is a basis
of a topology.

O

Now we are able to move to the definition of the test functions S(R x U).

Let U C R? be an open set. By [55, Lemma 10.1]| there exist compact sets
{Kj}jen of U such that for all j € N the set K is in the interior of K, and
U = U,en K. We define the semi-norms

el = sup sup [{t)'0%p(t,x)],
la|<k teR
z€K;

where a € N*, and the space

SBRxU) ={p e C°RxU): ||¢|ki; < oo Vk,i,j € N}.

By Lemma C.5 the semi-norms {|| - ||;;x} induce a topology 7 on the space

S(R x U), which makes it a locally convex topological vector space. By

3
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[55, Proposition 8.1] a topological space induced by a numerable set of semi-
norms is metrizable, so we see that g(R x U) is metrizable. To see that
S(R x U) is also complete, let (¢, )nen C S(R x U) be a Cauchy sequence.
With the norms || - ||o,0; we can see that there is a ¢ € C°(R x U) such that
for all (t,z) € R x U we have ¢, (t,7) "== ¢(t,r) and that the convergence
is uniform over compact sets K CC U. In the same way we see that for all
i € Nand a € N there exists a f, such that (t)'9%p,, — (t)f, uniformly on
R x K for all K CC U. Hence we see that ¢ € C*°(R x U) and that for all
k,i,j
ell,i5 < 00

Hence ¢ € S(Rx U), ¢, — ¢ in S(R x U) and S(R x U) is complete. Thus
S(R x U) is a Frechet space.

Let the space
SR x K;) :={p € S(Rx U) : supp(y) C K;}

be equipped with the induced topology from g(R x U), that is the topology
induced by the inclusion i : SR x Kj) — S(R x U). This is the same
topology as the one induced by the semi-norms {|| - ||.i,;}xien 0n S(R x Kj).
If a sequence (¢,) C S(R x K;) converges to an ¢ € S(R x U) then for all
z € U\ K; and t € R we have ¢,(t,2) — 0 as n — co. Hence we see that in
fact p € S(R x K;) and that S(R x Kj) is closed. Hence S(R x Kj) also is

a Frechet space.
The inclusions ¢; : S(R x K;) — S(R x K1) are also isomorphisms. Hence
we can define by Definition C.7
SR xU):=|JSRx K))
jEN
to be the countable strict inductive limit of Frechet spaces (S(R x U),T).

Now we can define the corresponding distributions.

Definition C.9 The distributions S'(RxU) are continuous maps from S(Rx
U) to C.

The following result is analogous to the one for distributions in D’(U) that
can be found e.g. in [55, Proposition 21.1.]. We reproduce this result with a
proof.

Theorem C.10 A linear map f : S(R x U) — C is continuous if and only
if one of the following equivalent conditions hold:
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(i) For every compact set K C U there are indezes k,i € N and a constant
C > 0 such that for all ¢ € S(R x U) with supp(p) C K we have
[F(@)] < sup sup | ()" 0%p(t, z)|.
la|<k teR
reK
(i1) For all sequences (¢,) C S(R x U) with supp(¢,) C R x K for some
compact K C U and with the property: for all k,i € N
lim sup sup |[{t)'0%p(t, )| = 0

" jal<k 1R
TEK;

we have
Tim [7()| = 0.

Proof. By [55, Proposition 13.1] a linear map L from a LF space F to C is
continuous if and only if for all £ in a sequence of definition of E the restric-
tion L|g; is continuous. Hence a linear map f : S(R x U) — C is continuous
if and only if for all j € N the restriction f|smxx,) is continuous. By [55,
Proposition 7.7] a map L from a locally convex space to C is continuous if
and only if there is a continuous semi-norm p in F such that for all x € FE
we have
|Lz| < p(x).

The set {]| - ||x,; }xien forms a basis of continuous semi-norms in S(R x K;),
so the restriction f|s@xy) is continuous if and only if there exists k,i € N
such that for all ¢ € S(R x K;) we have

| fls@xiy) (@) < Cllllris- (C.1)

By [55, Proposition 8.5] a map L from a metrizable space E to a topological
vector space F' is continuous if and only if it is sequentially continuous.
Hence we can rephrase the condition (C.1) for the continuity of fls@®xx;)
as follows: the map f|5(Rij) is continuous if and only if for all sequences

(¢n) C S(R x K;) such that |[p,||ri; —> 0 for all k,i € N we have
7111_{1010 flsmxi,(g;) = 0. (C.2)

Let K C U be compact. Since for all j € N the set K, is a subset of the
interior of K11, we see that U = |J;.yint (K;) and that there exists a j € N
such that K C K. Hence the condition (C.1) is equivalent to condition (i)
of the Theorem and the condition (C.2) is equivalent to condition (ii) of the
Theorem.

O

The previous theorem gives a practical condition for the continuity of a linear
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map f: S(RxU) — C. In quite a few textbooks on PDEs, e.g. [49], [40] [48]
and [26], this test is adopted as a starting point and the theory of Frechet
spaces and LF spaces is skipped. In the same way we can agree on the
following definitions, which represent the "operative end" of this theory.

Definition C.11 A sequence (¢,) C S(R x U) is said to converge to ¢ €
SR x U) if there exists a compact K C U such that for all n we have
supp(e,) C R x K and for all k,i € N.

lim sup sup |(t>i3a(§0n —)(t,x)| =0,
n—oo ‘alSk teR
z€K;

where o € N* is a multi-index.

Definition C.12 A linear map f : S(R x U) — C is continuous if for all
sequences (p,) C S(R x U) that converge to 0, in the sense of the Definition

C.11, we have
lim f(@n) =0.

n—oo

By Theorem C.10 Definition C.12 is equivalent to the following: f: S(RxU)
is continuous as a topological map when S(R x U) is equipped with the LF
topology and C is equipped with the Euclidean topology.
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Appendix D

Legend

Sets

N Numbers {0,1,2,...}

Z Numbers {...,—1,01,...}

/e Numbers {-1,-2,-3,...}

A Numbers {1,2,3,...}

R The set, of real numbers

R, The set of positive real numbers
R_ The set of negative real numbers
C The set of complex numbers

R™ The n-tuples of real numbers
B(0,7) Ball of radius r in R"

D Open and bounded set with a C? boundary in R3

A set in R”
ou The boundary of the set U
U closure of the set U

Dg Equals B(0,7)\ D

Measures

‘H® s-dimensional Hausdorff measure on R™
L™ n-dimensional Lesque measure on R"
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Spaces

cHU)
c>=(U)
Cs(U)
D(U)

5o (U)
D(U)
S(R™)
SR xU)
Smo(R X SQ)
E(U)
D)
S'(R)
S'(RxU)
g'v)

Bracets

('7 ')D’XD(U)
() ey

B H=sx HS(A)

k times differentiable functions on U. (U open)

Infinitely many times differentiable functions on U

k times differentiable functions on U with compact support
Same as C§°(U)

Infinitely many times differentiable functions on U with compact support
Test fuctions, same as C§°(U)

Rapidly vanishing functions

Rapidly decreasing functions on the set R x U

Tempered functions on R x S? with zero mean integral over time slices
Same as C*(R")

Distributions, act on testfunctions D(U)

Distributions, act on testfunctions S(R™)

Distributions on S(R x U)

Distributios, act on testfunctions £(U)

Measurable classes on U with finite || - || >y norm
Sequences a = (a;)jen s.t. [|a|[f = Doy loy|P < 00
LP-based Sobolev space on U

Sobolev Space on R™

Space of restrictions of H*(R™) on U

Closure of D(U) on H*(U)

Sobolev space on 0D

Distribution action, complex conjugate on the first element

L? innerproduct
Complex Sobolev dual action between H*(A) and H*(A)

Functions, Distributions

®(x,y) Fundamental Solution of the Helmholtz Equation

u®v  Tensorproduct of w and v

a For a function or distribution u; F{u}

uxv  Convolution of v and v

u*, v Convolution of u and v with respect to the parameter(s) y
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Operators

0
Oy

Partial derivative

Normal derivative

Interior normal derivative

Exterior normal derivative

Laplace operator

Wave operator

Range of operator T'

Domain of operator T’

Fourier transformation on R"

Inverse Fourier transformation

Trace operator

Trace operator from the inside of a domain

Trace operator from the outside of a domain

Dual of the trace operator tr

Fourier transformation with respect to one variable

in a multidimensional space

The inverse of the previous

Volume potential operator

Single layer operator

Single layer operator on the boundary

Double layer operator

Surface gradient

Gradient V = (0yy, 00y - - -, 0,)

Gradient with respect to the variable y

Strong limit of operators

Resolution of identity

Solution operator to the single frequency Dirichlet problem
Solution operator to the single frequency Robin Problem
The Diriclet to Neumann map

Interior Diriclet to Neumann map

Exterior Dirichlet to Neumann map

Double layer operator on the boundary in a Sobolev space setting
Single layer operator on the boundary in a Sobolev space setting
Imaginary part of the operator T’

Real part of the operator T’

The far field operator

Robin boundary values to the far field -map

Dirichlet boundary values to the far field -map
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Ly, Equals —kIm (F)

L Combination of L into an L*(R x S?) operator
F Combination of F}, into an L*(R x S?) operator
F Partial Fourier transformation of F’

Fiime Time side far field operator

Miscallenous notations

Exterior surface normal of OU

Equals (1 + &%)z

Functional analytic operator norm

The Jacobian of ¢. Defined for ¢ : R* — R™
Distance of x from the set U

Unit vector to the same direction as = # 0
Partial derivative w.r.t. the z; variable
Dirichlet norm

Asymptotic term bounded by C'f(x)
Imaginary part

Real part

Martix corresponding to the operator A
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