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Blow-up profiles of solutions for the exponential

reaction-diffusion equation.

A. Pulkkinen

Abstract

We consider the blow-up of solutions for a semilinear reaction diffusion equa-

tion with exponential reaction term. It is know that certain solutions that can

be continued beyond the blow-up time possess a nonconstant selfsimilar blow-up

profile. Our aim is to find the final time blow-up profile for such solutions. The

proof is based on general ideas using semigroup estimates. The same approach

works also for the power nonlinearity.

1 Introduction

We consider the following problem



ut = ∆u + f(u), x ∈ Ω, t > 0,
u = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

(1)

where Ω = BR(0) = {x ∈ RN : |x| < R} and N is supercritical, i.e., N ∈ [3, 9] and the
initial condition u0 is nonnegative and in C1(Ω). We are mainly interested in the case
f(u) = eu, but some results work with more general nonlinearities. Before stating our
results, see Theorems 2, 3 and 5 below, we give a brief introduction to the subject.

We are interested in solutions that blow up in finite time, which means that there
exists T ∈ (0,∞) such that ‖u(·, t)‖∞ <∞ for t < T and

lim sup
t→T

‖u(·, t)‖∞ = ∞.

By standard theory of parabolic regularity, this implies that u is a classical solution
for every t ∈ (0, T ). Blow-up is said to be of type I if the blow-up rate is the same as
that of the ordinary differential equation u′ = f(u). For f(u) = eu this means that

−C1 ≤ log(T − t) + ‖u(·, t)‖∞ ≤ C2,

for some constants C1 and C2. If the blow-up is not of type I then it is said to be of type
II. A point x0 ∈ Ω is a blow-up point if there exists a sequence {(xn, tn)}n ⊂ Ω×(0, T )
such that (xn, tn) → (x0, T ) and u(xn, tn) → ∞ as n→ ∞.

A solution can exist beyond the blow-up time t = T as a weak solution. To be
more precise, we give the following definition.

Definition 1.1 By an L1-solution of (1) on [0, T ] we mean a function u ∈ C([0, T ];
L1(Ω)) such that f(u) ∈ L1(QT ), QT := Ω× (0, T ) and the equality

∫

Ω

[uΨ]t2t1 dx−
∫ t2

t1

∫

Ω

uΨt dx dt =

∫ t2

t1

∫

Ω

(u∆Ψ+ f(u)Ψ) dx dt
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holds for any 0 ≤ t1 < t2 ≤ T and Ψ ∈ C2(Q̄T ), Ψ = 0 on ∂Ω× [0, T ].

Blow-up is said to be complete if the solution can not be continued as an L1-solution
beyond the blow-up time.

In this paper we want to focus on solutions that blow up at x = 0 and have a
nontrivial selfsimilar blow-up profile, i.e., the convergence (2)-(4) below holds. The
following theorem (proved in [FP]) states that every radially symmetric solution that
blows up and continues to exist as a weak solution has this property.

Theorem 1 Let f(u) = eu, N ∈ [3, 9] and let u be a radially symmetric and radially
nonincreasing L1-solution of (1) on [0, T ] that blows up at t = T < T . Then

lim
t↑T

[
log(T − t) + u(y

√
T − t, t)

]
= ϕ(y), (2)

uniformly for y in compact sets of RN , where ϕ satisfies

{
∆ϕ− y

2∇ϕ+ eϕ − 1 = 0, |y| > 0,
ϕ(0) = α, ∇ϕ(0) = 0,

(3)

and
lim

|y|→∞

(
ϕ(y) + 2 log |y|

)
= Cα, (4)

for some α > 0 and Cα ∈ R.

If the above convergence (2) holds for some function ϕ, we will refer to ϕ as the
selfsimilar blow-up profile of u.

In the last section of this paper we will slightly improve the above Theorem 1 by
showing that the assumption on u being radially nonicreasing is redundant. We will
thus obtain the following.

Theorem 2 Let u be a radially symmetric L1-solution of (1) with f(u) = eu on [0, T ]
that blows up with type I rate at (x, t) = (0, T ), where T < T . Then the convergence
(2)-(4) holds.

In this Theorem we assume that blow-up is of type I which holds if N ∈ [3, 9], u is
radially symmetric and the maximum of u is attained at the origin, see [FP].

The existence of global L1-solutions of (1) with f(u) = eu that blow-up in finite
time is proved in [LT] and [FPo]. The previous two theorems then give the asymptotic
behavior for such solutions as the blow-up time is approached.

For subcritical dimensions N ∈ [1, 2] the only solution ϕ of (3)-(4) is ϕ ≡ 0 (see [E])
and so the convergence (2) should always hold with ϕ ≡ 0. This is proved in [BBE]
under the extra assumption that u is nondecreasing in time and radially decreasing.
For general solutions the problem is how to obtain the blow-up rate.

For the power nonlinearity f(u) = u|u|p−1 blow-up is always complete and u has
a constant selfsimilar blow-up profile, i.e., the covergence (7) holds for ϕ equal to a
constant, whenever p < pS , where

pS =

{∞, if N ≤ 2,
N+2
N−2 , if N > 2,

,

see [GK].
For f(u) = eu and supercritical dimensions N ∈ [3, 9], however, there exists a

sequence {αj} of initial values tending to infinity such that the solutions ϕj satisfy
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(3)-(4) with α = αj , see [ET]. Similar result is also true for the power nonlinearity,
[BQ].

The idea of the proof of Theorem 1 is to assume that the convergence (2) holds
with ϕ ≡ 0 and then prove that the final time blow-up profile of u is given by

u(x, T ) + 2 log |x|+ log | log |x|| → C, (5)

as |x| → 0, which implies complete blow-up by the results in [Va]. Convergence to a
nontrivial ϕ is then obtained by an energy argument. In [B] the existence of solutions
with the final time profile as in (5) is proved.

In [HV1, Ve2, Ve1] the case of f(u) = up is discussed and a variety of final time
blow-up profiles is obtained by assuming constant selfsimilar blow-up profile. See also
[BB, FK] for other works in that direction. Later these methods were used in [M]
to prove Theorem 4 below, which corresponds to Theorem 1, but for the power type
nonlinearity. The exponential nonlinearity in dimension one is discussed in [HV2] and
[HV3], and final time blow-up profiles are found, provided that the solution has a
constant selfsimilar profile.

So there are many results concerning final time blow-up profiles of solutions pro-
vided that the selfsimilar blow-up profile is a constant one. The behavior of solutions
as in Theorem 1 at the blow-up moment is however not directly evident from the
asymptotics (2)-(4). Our main theorem of this paper is the following which in fact
does give the final time blow-up profile for solutions satisfying (2)-(4).

Theorem 3 Assume that u is a solution of (1) with f(u) = eu that blows up with type
I rate at (x, t) = (0, T ) for some T <∞ and verifies (2)-(4). Then the final time blow
up profile of u is given by

|u(x, T ) + 2 log |x| − Cα| → 0, as |x| → 0, (6)

where Cα is the constant from (4).

The existence of the limit limt→T u(x, t) for x 6= 0 is a consequence of the parabolic
estimates as will be seen in the proof of the above Theorem.

In this theorem we merely assume that u is a continuous solution of (1) that blows
up with type I rate at (x, t) = (0, T ) and has a nontrivial selfsimilar blow-up profile, i.e.,
convergence as in (2) with (3)-(4) holds. We do not need to assume that the solution is
decreasing or even radially symmetric. It is of course a different matter whether there
exist radially nonsymmetric solutions of (1) verifying (2)-(4) with radially symmetric
ϕ. It is also not known if there exist any radially nonsymmetric selfsimilar solutions.

Even though the above Theorem 3 is stated with f(u) = eu our analysis works
for a larger class of nonlinearities, including f(u) = up. For the algebraic nonlinearity
Theorem 2 corresponds to the following result, see [M].

Theorem 4 Let p > 1, f(u) = up and u be a radially symmetric L1-solution of (1)
on (0, T ) that blows up with type I rate at (x, t) = (0, T ), where T < T . Then

lim
t↑T

[
(T − t)1/(p−1)u(y

√
T − t, t)

]
= ϕ(y), (7)

uniformly for y in compact sets of RN , where ϕ satisfies

{
∆ϕ− y

2∇ϕ− 1
p−1ϕ+ ϕp = 0, |y| > 0,

ϕ(0) = κ+ α, ∇ϕ(0) = 0,
(8)
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with

κ =

(
1

p− 1

) 1
p−1

(9)

and
lim

|y|→∞
|y|2/(p−1)ϕ(y) = Cα, (10)

for some α > 0 and Cα > 0.

Theorem 3 stated for f(u) = up will then be the following, which is already known and
proved in [MM]. Our method, however, gives a new proof, which we do not present in
this treatise, since it proceeds very much in the same way as the proof of Theorem 3
above.

Theorem 5 Assume that u is a solution of (1) with f(u) = up for some p > 1 that
blows up with type I rate at (x, t) = (0, T ) for some T <∞ and verifies (7)-(10). Then
the final time blow up profile of u is given by

lim
x→0

|x|2/(p−1)u(x, T ) = Cα, (11)

where Cα is the same as in (10).

In a forthcoming paper [P] we will show that if u is a so-called minimal limit
L1-solution on (0, T ) that blows up at t = T < T and if the assumptions of Theo-
rem 2 hold, then u becomes regular immediately after the blow-up. Moreover, under
some additional assumptions, the regularization is asymptotically selfsimilar, i.e., u ap-
proaches a forward selfsimilar solution as t → T from above. This improves somewhat
the results in [FMP].

The question about the behaviour of the final time blow-up profiles u(x, T ) near
the blow-up point has been studied in many papers, but usually in the case where
the selfsimilar blow up profile is the constant one, see [HV1], [HV3], [Ve1], [M]. In
these cases, the final time profile u(x, T ) is greater than those in (6) and (11) near the
blow-up point and it holds that

lim
x→0

|u(x, T ) + 2 log |x|| = ∞,

if f(u) = eu, and
lim
x→0

|x|2/(p−1)u(x, T ) = ∞,

if f(u) = up. An example of this type of profiles for f(u) = eu is the one in (5).
Problems of this type have been studied by Matano and Merle in the paper [MM]

in more detail. The authors consider f(u) = |u|p−1u, sign changing solutions, and Ω
being either a ball or RN . Their result characterizes the size of the final time blow up
profile in terms of the blow up rate and the behavior of the selfsimilar profile, but their
technique does not seem to directly apply to the case with exponential nonlinearity
and possibly increasing solutions.

The result of Matano and Merle gives that for p > ps one has

lim
x→0

L−1|x|2/(p−1)u(x, T ) =





∞ or −∞ ⇔ type I with ϕ = κ or − κ,
finite but 6= ±1, 0 ⇔ type I with nonconstant ϕ,
1 or − 1 ⇔ type II,
0 ⇔ no blow up at x = 0,
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where Lp−1 = 2
p−1

(
N − 2− 2

p−1

)
and κ is defined in (9). Our Theorem 5 corresponds

to the second equivalence.
Their techniques for obtaining the results are very different from ours. They obtain

apriori bounds for the solutions and their derivatives by using some energy estimates
and super solutions. They also work with radial solutions in order to be able to use
parabolic estimates for one dimensional equations. These estimates then allow them
to obtain the final time blow-up profile both in the case where ϕ is regular and in the
case where ϕ is singular, and they prove immediate regularization with selfsimilar rate
also for nonminimal L1-solutions.

Our technique of proving Theorem 3 is based on the variation of constants formula
and certain semigroup estimates. The assumptions here are not very strong and the
ideas could be used also for different types of equations, but we cannot attack the
situation where ϕ is singular.

In paper [P], we use Theorem 5 to prove immediate regularization of solutions, but
we can only consider the so-called minimal continuations.

Nonuniqueness of L1-continuations of u for f(u) = up was proved in [FM].
The next section is devoted to a discussion on some properties of certain semi-

groups. We prove that the semigroup generated by the operator Λ = ∆− y
2∇+Φ has

specific regularization properties, similar to those of the semigroup generated by the
Hermite operator A = ∆− y

2∇, in case the function Φ = Φ(y) decays to 0 as |y| → ∞.
In the third section we prove Theorem 3 by using the variation of constants formula,

the semigroup estimates from Section 2, and some properties of the solution u of (1),
specifically, the blow-up rate and the fact that

|∇u(x, t)| ≤
√
2emaxx u(x,t)/2, (12)

for every x ∈ BR(0) and t ∈ (0, T ), see [FMc].
In the last section we demonstrate that the results in [FP] can be proved also

without the assumption that u is radially decreasing and thereby prove Theorem 2.

2 Semigroup estimates

To study the convergence (2) in more detail, we define the similarity variables s =
− log(T − t) and y = x√

T−t
and let

w(y, s) = log(T − t) + u(x, t), (13)

for |y| ≤ es/2R and s ∈ [− log(T ),∞). Here u solves (1) with f(u) = eu. Then w
satisfies

ws = ∆w − y

2
∇w +G(w), for |y| ≤ es/2R, s > − log(T ), (14)

with w(y, s) = 0 for |y| = es/2R, and

G(w) = ew − 1.

The convergence in (2) is equivalent to w → ϕ uniformly on compact sets as s → ∞.
Even though we take the equation with exponential nonlinearity to be the model
problem, all the analysis goes through for a large class of nonlinearities.

Denoting W = w − ϕ we notice that W verifies

Ws = ∆W − y

2
∇W + eϕW + eϕ(eW − 1−W ) = ΛW + eϕ(eW − 1−W ),

5



for |y| ≤ Res/2 and s > − log(T ), where we have defined the operator

Λ = ∆− y

2
∇+Φ,

with Φ = eϕ.
The idea of the proof of Theorem 3 is simple. We prove that the convergence in

(2) also holds for |y| ≤ C(T − t)−1/2 = Ces/2. The claim is then achieved by using the
asymptotics (4) of ϕ.

To obtain the convergence for |y| ≤ Ces/2, we take a look at the shifted function
W (y + es/2ξ, s) as s tends to infinity. Thus it is convenient to define the shifted and
weighted Lq-norms as follows

N q
r (ψ) = sup

|ξ|≤r

(∫

RN

|ψ(y)|qe−(y−ξ)2/4dy
)1/q

, for r ≥ 0,

and

Lq
ξ(ψ) =

( ∫

RN

|ψ(y)|qe−(y−ξ)2/4dy
)1/q

, for ξ ∈ RN .

In the following treatment we consider the semigroup generated by Λ and assume
only that Φ > 0 is bounded and verifies

Γ = max
y∈RN

Φ(y) <∞ and Φ(y) ≤ C

|y|2 , (15)

for y ∈ RN \ {0} and some constant C > 0. We want to prove the necessary estimates
that characterize the regularizing properties of the semigroup {eΛt}t. Defining A =
∆ − y

2∇ to be the standard Hermite operator, we know that A and Λ are selfadjoint
operators with domainH2

ρ(RN ), which denotes the weighted Sobolev space with weight

ρ = ρ(y) = e−|y|2/4. They generate strongly continuous semigroups in L2
ρ(RN ), which

we denote by {eAt}t≥0 and {eΛt}t≥0 respectively. We use the notation ‖ · ‖L2
ρ

for the

norm in L2
ρ(RN ).

We have the following formula for the action of the semigroup eAt on functions
ψ ∈ L2

ρ(RN ),

eAtψ(y) =
1

[4π(1− e−t)]N/2

∫

RN

exp

(
− (ye−t/2 − λ)2

4(1− e−t)

)
ψ(λ)dλ, for t > 0. (16)

Since the spectrum of A consists of nonpositive real numbers we also know that there
exists a constant C > 0 such that

‖eAtψ‖L2
ρ
≤ C‖ψ‖L2

ρ
, (17)

for every ψ ∈ L2
ρ(RN ) and t ≥ 0. Because we assumed (15), it follows that

‖eΛtψ‖L2
ρ
≤ CeΓt‖ψ‖L2

ρ
, (18)

for some constant C > 0 and every t ≥ 0.
The following regularizing property for the semigroup generated by A can be found

in [Ve1]. The semigroup {eAt}t regularizes in the sense that it maps functions from
Lβ
ρ(RN ) to Lq

ρ(RN ) for any q > β if t is large enough. The following Proposition states
this property in terms of the shifted norms.
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Proposition 2.1 Assume 1 < q, β < ∞ and r, r̃ ≥ 0. Set β′ = β
β−1 . Then for any

t > 0 and any ψ with N q
r̃ (ψ) <∞, we have

N q
r (e

Atψ) ≤ 1

(4π(1− e−t))N/2

( 4πβ(1 − e−t)

β′(β − 1 + e−t)

)N/2β′

( 4π(β − 1 + e−t)

β − 1− (q − 1)e−t

)N/2q

exp
( e−t(r − r̃et/2)2+
4(β − 1− (q − 1)e−t)

)
N β

r̃ (ψ), (19)

for t ≥ 0 such that β − 1− (q − 1)e−t > 0.

We would like to obtain an analogous regularizing property for the semigroup
generated by Λ.

This is done in different cases in Propositions 2.3 and 2.4 and Corollary 2.5 below.
We will estimate the norm Lq

es/2ξ
(eΛtψ) first when t is strictly less than s in Proposition

2.3, then with t = s in Proposition 2.4 and finally for s large and t close to s in Corollary
2.5.

Since d
dte

Λt = ΛeΛt = (A+Φ)eΛt, we know that

eΛtψ = eAtψ +

∫ t

0

eA(t−τ)ΦeΛτψdτ. (20)

The next proposition restates Proposition 2.1 using the Lq-norms instead of N q-norms.

Proposition 2.2 Assume that 1 < q, β < ∞ and |µ| ≥ 0. Then for any t̂ such that
qe−t̂

β−1+e−t̂
< 1 there exists a constant C such that

Lq
et/2µ

(eAtψ) ≤ C(1− e−t)−ǫLβ
µ(ψ),

for ǫ = N
2β and any t > t̂. The constant C is independent of µ and depends only on β,

q, N and t̂.

Proof. From the proof of Proposition 2.1. in [Ve1] one obtains that

Lq
ξ(e

Atψ)q ≤ C(β)(1 − e−t)
−Nq
2β

∫

RN

exp
(
− (y − ξ)2

4
+
qe−t(y − µet/2)2

4(β − 1 + e−t)

)
dy Lβ

µ(ψ)
q.

By taking ξ = et/2µ and by a change of variables we immediately get that

Lq

et/2µ
(eAtψ)q ≤ C(β)(1 − e−t)

−Nq
2β

∫

RN

exp
(
− y2

4
+

qe−ty2

4(β − 1 + e−t)

)
dyLβ

µ(ψ)
q

= C(β)(1 − e−t)
−Nq
2β

∣∣∣ qe−t

β − 1 + e−t
− 1
∣∣∣
−N/2

∫

RN

e−y2/4dy Lβ
µ(ψ)

q

= C(β, q,N, t̂)(1 − e−t)
−Nq
2β Lβ

µ(ψ)
q

which gives the claim provided that t > t̂(q, β), because d
dt

qe−t

β−1+e−t < 0. �
Using this result we can prove regularizing properties also for the semigroup gen-

erated by the operator Λ. The first is the following.
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Proposition 2.3 Let Φ satisfy (15). For every β > N/2, 0 < δ < β−N/2, and r > 0
there exist constants C = C(δ, β, r,Γ), ǫ = ǫ(β) > 0 and M = M(δ, β, r,Γ) > 0, such
that

Lp

es/2ξ
(eΛtψ) ≤ C(1− e−t)−ǫLβ

e(s−t)/2ξ
(ψ), (21)

which holds for every positive t and 0 < t +M < s, for every p ∈ (1, β − δ), every
|ξ| ≥ r, and nonnegative ψ ∈ Lβ(RN ).

Proof. Consider β, δ, r, Φ, ξ and ψ as in the claim. By the variation of constants
formula,

Lp
es/2ξ

(eΛtψ) ≤ Lp
es/2ξ

(eAtψ) +

∫ t

0

Lp
es/2ξ

(eA(t−τ)ΦeΛτψ)dτ. (22)

The previous Proposition 2.2 implies that

sup
p∈(1,β−δ/3)

Lp
es/2ξ

(eAtψ) ≤ C1(δ, β)(1 − e−t)−ǫLβ
e(s−t)/2ξ

(ψ), (23)

for some C1(δ, β) > 1 and ǫ = ǫ(β) = N
2β < 1 for t close to 0.

Now we want to write estimates for the integral part in (22). To that end, by using
first the previous proposition and then Hölder’s inequality, we get that there exists a
constant C2(δ, β) such that

Lp

es/2ξ
(eA(t−τ)ΦeΛτψ) ≤ C2(δ, β)(1 − e−(t−τ))−ǫ′Lβ′

e(s−t+τ)/2ξ
(ΦeΛτψ)

≤ C2(δ, β)(1 − e−(t−τ))−ǫ′Lα
e(s−t+τ)/2ξ(Φ)L

β′′

e(s−t+τ)/2ξ
(eΛτψ), (24)

for any p ≤ β − δ and β′ = β − 2δ/3, β′′ = β − δ/3, ǫ′ = N
2β′ and α = β′(1 − β′

β′′ )
−1.

Because |Φ| ≤ Γ and verifies (15), and since |ξ| ≥ r, we can estimate, for any α > 1
and t ≥ 0,

Lα
et/2ξ(Φ)

α

=

∫

|y|≤et/2|ξ|/2
Φ(y)αe−(y−et/2ξ)2/4dy +

∫

|y|>et/2|ξ|/2
. . . dy

≤ C3Γ
αeNt/2|ξ|Ne−et|ξ|2/16 + C3e

−αtCα
Φ|ξ|−2α

∫

|y|>et/2|ξ|/2
e−y2/4dy

≤ C4(r,Γ, α)e
−αt. (25)

By the boundedness of Φ, we can take K > 0 such that, using Proposition 2.2, we
have

Lβ′′

es/2ξ
(eΛτψ) ≤ Lβ′′

es/2ξ
(e(A+Γ)K/2eΛ(τ−K/2)ψ)

≤ C5(Γ,K)Lβ−δ
e(s−K/2)/2ξ

(eΛ(τ−K/2)ψ), (26)

for any s > τ ≥ K
2 . By Proposition 2.2, we may also assume that the constant

C5(Γ,K) > 1 is such that

Lβ′′

es/2ξ
(eΛτψ) ≤ Lβ′′

es/2ξ
(e(A+Γ)τψ) ≤ C5(Γ,K)(1− e−τ )−ǫLβ

e(s−τ)/2ξ
(ψ), (27)
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for all τ < K
2 and s > τ . Using (25) and assuming that M is large we obtain

∫ t

0

Lα
e(s−t+τ)/2ξ(Φ)(1 − e−(t−τ))−ǫ′(1− e−τ )−ǫdτ

≤
∫ θ

0

. . . dτ +

∫ t

t−θ

. . .dτ + C6(θ, r,Γ)

∫ t−θ

θ

e−(s−t+τ)dτ(1 − e−θ)−ǫ−ǫ′

<
1

2C2(δ, β)C5(Γ,K)
, (28)

for every s ≥ M
2 and t ∈ (0, s− M

2 ). To show (28), first take θ small and then M large.
Similarly, let M be large enough so that also
∫ t

K/2

Lα
e(s−t+τ)/2ξ(Φ)(1− e−(t−τ))−ǫ′(1− e−(τ−K/2))−ǫdτ <

1

8C2(δ, β)C5(Γ,K)
, (29)

for every s > t+M > K/2 +M .
For s > M let tB(s) be the supremum of such t ∈ (0, s−M) for which

sup
p∈(1,β−δ)

Lp
es/2ξ

(eΛtψ) ≤ 2C1(δ, β)(1− e−t)−ǫLβ
e(s−t)/2ξ

(ψ).

By inequality (23) and since the integral part in (22) tends to zero as t→ 0, we know
that tB(s) is positive. Let

t(s) = sup
s′∈(M,s)

(s′ − tB(s
′)).

We want to show that t(s) ≤ M for every s > M , which implies tB(s) ≥ s −M for
every s > M . This will give the claim by the definition of tB(s).

Let us first show that tB(s) ≥ K
2 . Assume, to obtain a contradiction, that tB(s) <

K
2 for some s > M . Then tB(s) <

M
2 < s − M

2 , since we may assume M > K. We
may estimate the integral part of (22) through

∫ tB(s)

0

Lp
es/2ξ

(eA(tB(s)−τ)ΦeΛτψ)dτ

≤ C2

∫ tB(s)

0

(1− e−(tB(s)−τ))−ǫ′Lα
e(s−tB (s)+τ)/2ξ

(Φ)Lβ′′

e(s−tB (s)+τ)/2ξ
(eΛτψ)dτ

< C2

∫ tB(s)

0

(1− e−(tB(s)−τ))−ǫ′Lα
e(s−tB (s)+τ)/2ξ

(Φ)C5(1− e−τ )−ǫLβ

e(s−tB (s))/2ξ
(ψ)dτ

<
1

2
Lβ

e(s−tB (s))/2ξ
(ψ), (30)

by inequalities (24), (27) and (28). Here the constants C2 and C5 are as above, even
though - for the sake of notation - their dependence on the parameters is not written
out explicitly. Using this, together with (22) and Proposition 2.2, we have

sup
p∈(1,β−δ)

Lp
es/2ξ

(eΛ(tB(s))ψ)

≤ C1(δ, β)(1− e−tB(s))−ǫLβ

e(s−tB (s))/2ξ
(ψ) +

1

2
Lβ

e(s−tB (s))/2ξ
(ψ)dτ

≤ 3

2
C1(δ, β)(1− e−tB(s))−ǫLβ

e(s−tB (s))/2ξ
(ψ),

9



by assuming C1(δ, β) ≥ 1. This contradicts the definition of tB(s). Therefore tB(s) ≥
K
2 for every s > M and so t(s) ≤ s−K/2.

Let us then show that t(s) ≤ M . We proceed again by contradiction and assume
that t(s) > M for some s > M , which implies t(s) ∈ (M, s − K/2]. Without loss of
generality, we may assume that t(s) = s − tB(s), which gives tB(s) ∈ [K/2, s −M).
For τ ∈ [K2 , tB(s)], we have that if ŝ = t(s)+τ−K/2, then ŝ−s = t(s)−s+τ−K/2 ∈
[−tB(s),−K/2] and so ŝ < s. Therefore t(ŝ) ≤ t(s) and defining τ̂ = τ −K/2 we have
τ̂ = ŝ− t(s) < ŝ− t(ŝ) ≤ tB(ŝ). Thus

Lβ−δ

e(s−tB (s)+τ−K/2)/2ξ
(eΛ(τ−K/2)ψ) ≤ sup

p∈(1,β−δ)

Lp
eŝ/2ξ

(eΛ(τ̂))

≤ 2C1(δ, β)(1 − e−(τ−K/2))−ǫLβ
et(s)/2ξ

(ψ), (31)

by the definition of tB(ŝ).
Precisely as in (30), we obtain

∫ K/2

0

Lp
es/2ξ

(eA(tB(s)−τ)ΦeΛτψ)dτ <
1

2
Lβ

e(s−tB (s))/2ξ
(ψ)

and, by inequalities (24), (26), (29) and (31), we can estimate

∫ tB(s)

K/2

Lp

es/2ξ
(eA(tB(s)−τ)ΦeΛτψ)dτ

≤ C2

∫ tB(s)

K/2

Lα
e(s−tB (s)+τ)/2ξ

(Φ)(1− e−(tB(s)−τ))−ǫ′Lβ′′

e(s−tB (s)+τ)/2ξ
(eΛτψ)dτ

≤ C2C5

∫ tB(s)

K/2

Lα
e(s−tB (s)+τ)/2ξ

(Φ)(1 − e−(tB(s)−τ))−ǫ′

· Lβ−δ

e(s−tB (s)+τ−K/2)/2ξ
(eΛ(τ−K/2)ψ)dτ

≤ 2C1C2C5

∫ tB(s)

K/2

Lα
e(s−tB (s)+τ)/2ξ

(Φ)(1 − e−(tB(s)−τ))−ǫ′(1 − e−(τ−K/2))−ǫdτ

· Lβ

e(s−tB (s))/2(ψ)

≤ 1

4
C1Lβ

e(s−tB (s))/2 (ψ) <
1

4
C1(1− e−tB(s))−ǫLβ

e(s−tB (s))/2ξ
(ψ),

where the dependence of C1, C2 and C5 on the parameters is not explicitly written
out.

This implies that

sup
p∈(1,β−δ)

Lp
es/2ξ

(eΛ(tB(s))ψ) ≤ (1 +
1

2
+

1

4
)C1(δ, β)(1− e−tB(s))−ǫLβ

e(s−tB (s))/2ξ
(ψ),

which contradicts the definition of tB(s). Therefore the only possibility is that t(s) ≤
M and so the claim is proved. �

In the previous proposition we assumed that t < s −M for some large M . The
next Proposition deals with the case t = s > M for some large M .
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Proposition 2.4 Let Φ satisfy (15). For every r ∈ (0, 1) there exist constants M =
M(r,Γ) and C = C(r,Γ) such that

L2
es/2ξ(e

Λsψ) ≤ C(r,Γ, N)‖ψ‖L2
ρ
,

for every s > M , |ξ| ∈ (r, 1/r), and every nonnegative ψ ∈ L2
ρ(RN ).

Proof. Fix r > 0 and take θ = log(2N). Assume that s ≥ M + θ, where M > θ
will be defined later and let |ξ| ∈ (r, 1r ).

Let us first note that for any 1 < p < q <∞ and p
q + 1

γ = 1, we have

Lp
ξ(ψ)

p =

∫

RN

|ψ|pe−p|y|2/4qe(1−
1
γ )|y|2/4e−(y−ξ)2/4dy

≤
(∫

RN

|ψ|qe−|y|2/4dy

)p/q (∫

RN

e(γ−1)|y|2/4e−γ(y−ξ)2/4dy

)1/γ

= ‖ψ‖p
Lq

ρ

(∫

RN

e−
y
2 (

y
2−γξ)−γ

4 |ξ|2dy

)1/γ

≤ ‖ψ‖p
Lq

ρ

(∫

RN

e−( y
2+

γ
2 ξ)(

y
2−

γ
2 ξ)−

γ
4 |ξ|2dy

)1/γ

= ‖ψ‖p
Lq

ρ

(∫

RN

e−|y|2/4e(γ
2−γ)|ξ|2/4dy

)1/γ

= C(p, q, r)‖ψ‖p
Lq

ρ
(32)

If t ≤ M , then s − t ≥ θ and so by using first Proposition 2.2, then Hölder’s

inequality, then the fact that L21/2

et/2ξ
(Φ) < C(r,Γ)e−t by (25), and finally the above

inequality (32), we have

L2
es/2ξ(e

A(s−t)ΦeΛtψ) ≤ C1(θ)L3/2

et/2ξ
(ΦeΛtψ) ≤ C1(θ)L21/2

et/2ξ
(Φ)L7/4

et/2ξ
(eΛtψ)

≤ C2(θ, r,Γ)e
−teΓMN 7/4

eM/2ξ
(eAtψ) ≤ C3(θ, r,Γ,M)e−t‖eAtψ‖L2

ρ

≤ C3(θ, r,Γ,M)e−t‖ψ‖L2
ρ
. (33)

If 0 < t < s− θ, then because of our choice of θ, we can use Proposition 2.2 with
q = 2 and β = 3

2 for the first inequality below and Hölders inequality for the second,
to obtain

L2
es/2ξ(e

A(s−t)ΦeΛtψ) ≤ C1(θ)L3/2

et/2ξ
(ΦeΛtψ)

≤ C1(θ)L12/2

et/2ξ
(Φ)L2

et/2ξ(e
Λtψ) ≤ C4(θ, r,Γ)e

−tL2
et/2ξ(e

Λtψ), (34)

where the last inequality is again due to (25).
If M ≤ s − θ ≤ t ≤ s, then using first Proposition 2.2 with exponents q = 2 and

β = N , then Hölder’s inequality, and finally Proposition 2.2 with exponents q = 2N
and β = 2, we obtain

L2
es/2ξ(e

A(s−t)ΦeΛtψ) ≤ C5(1− e−(s−t))−1/2LN
et/2ξ(Φe

Λtψ)

≤ C5L2N
et/2ξ(Φ)(1 − e−(s−t))−1/2L2N

et/2ξ(e
(A+Γ)θeΛ(t−θ)ψ)

≤ C6(θ, r,Γ)e
−t(1− e−(s−t))−1/2L2

e(t−θ)/2ξ(e
Λ(t−θ)ψ). (35)
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Define W (s) = L2
es/2ξ

(eΛsψ) and use the variation of constants formula (20) to-

gether with Proposition 2.1 and the above estimates (33) - (35) to observe that

W (s) ≤ L2
es/2ξ(e

Asψ) +

∫ s

0

L2
es/2ξ(e

A(s−t)ΦeΛtψ)dt

≤ C7‖ψ‖+
∫ M

0

C3e
−t‖ψ‖L2

ρ
dt

+

∫ s−θ

M

C4e
−tW (t)dt

+

∫ s

s−θ

C6e
−t(1− e−(s−t))−1/2W (t− θ)dt (36)

for every s ≥M + θ and for some C7 > 0 arising from the estimate (19).
By Proposition 2.1, we have, for every s ∈ [M,M + 2θ], the estimate

W (s) ≤ L2
es/2ξ(e

(A+Γ)sψ) ≤ eΓ(M+2 θ)N 2
es/2ξ(e

Asψ) ≤ C8e
Γ(M+2θ)‖ψ‖L2

ρ
. (37)

Take M =M(θ, r,Γ) large enough such that

C4(θ, r,Γ)e
−M + C6(θ, r,Γ)e

−M

∫ θ

0

(1 − e−t)dt <
1

3
. (38)

Then let C̃(θ, r,Γ) = C8e
Γ(M+θ) and take K = K(θ, r,Γ) > 1 large enough such that

C7

KC̃(θ, r,Γ)
+
C3(θ, r,Γ,M)

KC̃(θ, r,Γ)
<

1

3
. (39)

Let s̃ be the supremum of such s′ > M for which W (s) ≤ KC̃(θ, r,Γ)‖ψ‖L2
ρ

for every

s ∈ [M, s′]. By (37) we know that s̃ ≥M + 2 θ. Assuming that s̃ <∞, by using (36),
(38) and (39), we have for every s ∈ [M + 2θ, s̃] that

W (s) ≤ C7‖ψ‖L2
ρ
+ C3‖ψ‖L2

ρ

+ C4(e
−M − e−(s−θ))KC̃(θ, r,Γ)‖ψ‖L2

ρ

+ C6e
−MKC̃(θ, r,Γ)

∫ θ

0

(1− e−t)dt‖ψ‖L2
ρ

≤ KC̃(θ, r,Γ)‖ψ‖L2
ρ

( C7

KC̃(θ, r,Γ)
+

C3

KC̃(θ, r,Γ)
+ C4e

−M

+ C6e
−M

∫ θ

0

(1− e−t)dt
)
≤ 2

3
KC̃(θ)‖ψ‖L2

ρ
,

which contradicts the definition of s̃ and so s̃ = ∞. We have therefore obtained that

W (s) = L2
es/2ξ(e

Λsψ) ≤ K(θ, r,Γ)C̃(θ, r,Γ)‖ψ‖L2
ρ
,

for every s > M(θ, r,Γ). This gives the claim. �
The following corollary is almost a restatement of the previous proposition, but

instead of considering L2
es/2ξ

(eΛtψ) for s = t, we allow s−t to be positive and bounded.
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Corollary 2.5 Let Φ satisfy (15). For every r ∈ (0, 1), and M > 0 there exist
constants K = K(M, r,Γ) and C = C(M, r,Γ) such that

L2
e(s−s0)/2ξ(e

Λ(s−t)ψ) ≤ C(M, r,Γ)‖ψ‖L2
ρ
,

for every t ∈ [s0, s0 +M ], s > s0 +K(M, r,Γ), s0 ≥ 0, every |ξ| ≥ (r, 1r ), and every
nonnegative ψ ∈ L2

ρ(RN ).

Proof. By the previous Proposition 2.4 there exist constantsM ′(r,Γ) and C(M, r,Γ)
such that

L2
eτ/2η(e

Λτψ) ≤ C(M, r,Γ)‖ψ‖L2
ρ
,

for τ > M ′(r,Γ) and |η| ∈ (r, eM/r).
Assume that s, t and ξ are as in the claim, and let τ = s− t and η = et−s0ξ. Then

τ > K(M, r,Γ) − M > M ′(r,Γ) by choosing K large enough, and |η| ∈ (r, eM/r),
which implies that

L2
e(s−s0)/2ξ(e

Λ(s−t)ψ) = L2
eτ/2η(e

Λτψ) ≤ C(M, r,Γ)‖ψ‖L2
ρ
,

and so the claim is proved. �
We have now the desired results that describe the regularizing properties of the

semigroup generated by Λ. These results will be used in the next section to prove
Proposition 3.4.

3 The final time blow-up profile

In this section we prove Theorem 3.
Let u and ϕ be as in Theorem 3 and define the usual similarity variables through

s = − log(T − t) and y = x√
T−t

and let

W (y, s) = log(T − t) + u(x, t)− ϕ(y).

Our assumptions in Theorem 3 imply that W (y, s) → 0 uniformly for y in compact
sets as s→ ∞.

Generally speaking, to prove Theorem 3, we want to show that the L2
e(s−s0)/2ξ

-norm

of W (·, s) can be estimated by the L2
ρ-norm of W (·, s0). This is done in Proposition

3.4 below. In the proof of that Proposition we utilize the regularizing properties of
the semigroup {eΛt}t, obtained in the previous section. Using this results and the L2

- L∞ regularization of the semigroup generated by A, one has that |W (e(s−s0)/2ξ, s)|
tends to zero as s0 tends to infinity. By the definition of W and by the asymptotics
(4) of ϕ we obtain the claim at the very end of this section.

Before stating and proving Proposition 3.4, we have to consider the properties of
the function W in more detail. We also need some auxiliary results. In Proposition
3.1 we demonstrate how to move from L2

ξ -norm to N 2
|ξ| -norm, in Proposition 3.2

we consider the L2 - L∞ regularization of eAt and in Proposition 3.3 we estimate the
norm of the nonlinearity appearing in the equation for W .

Since the function W is defined on some s dependent subset of RN , we need to
extend it to RN . Because the blow-up set is a compact set of B(R), we can take
R1 ∈ (0, R) such that u(x, t) is bounded for (x, t) ∈ B(R) \ B(R1) × (0, T ). Then let
ζ be a smooth function equal to 1 for |x| ≤ R1 and equal to 0 for |x| > R and let

W̃ (y, s) = ζ(e−s/2y)W (y, s).

13



Now W̃ is defined in the whole space RN and it satisfies the equation

W̃s = ΛW̃ + h̃,

where

h̃ = −e−s∆ζW − 2e−s/2∇ζ · ∇W +
e−s/2y

2
· ∇ζW + ζeϕ(eW − 1)− eϕW̃ ,

for |y| ≤ Res/2 and h̃ ≡ 0, for |y| > Res/2. Here we use the notation ∇ζ for ∇ζ(es/2y)
and the same applies to the Laplacian of ζ.

Since the blow-up is assumed to be of type I, we obtain, by using (12),

|∇W̃ (y, s)| = |∇W (y, s)| = |
√
T − t∇u(x, t)−∇ϕ(y)| ≤ C,

for |y| ≤ R1e
s/2. For such y one also has h̃ = eϕ(eW̃ − 1 − W̃ ). Moreover, type I

blow-up implies that W is bounded from above and so the estimates |h̃| ≤ C|W̃ | and

|h̃| ≤ C|W̃ |2 are valid for some constant C > 0.
For |y| = |x|es/2 and |x| ∈ (R1, R), one has

|∇W̃ (y, s)|
≤ e−s/2|∇ζ(e−s/2y)|

(
u(x, t)+|s+ϕ(y)|

)
+|ζ(e−s/2y)||

√
T − t∇u(x, t)−∇ϕ(y)| ≤ C,

by using (12) and the asymptotic behavior (4) of ϕ. Similarly we have

|W̃ (y, s)| ≤ |W (y, s)| ≤ u(x, t) + |ϕ(es/2x) + s| ≤ C.

Therefore, we obtain the estimate

|h̃| ≤ A0,

for some finite constant A0 > 0.
For |y| > Res/2 we have that W̃ = 0 and h̃ = 0.
Defining

Z(y, s) = |W̃ (y, s)| = |ζ(e−s/2y)(−s+ u(e−s/2y, T − e−s)− ϕ(y)|,

we have obtained that Z satisfies

Zs ≤ ΛZ + h+A0χ, (40)

where χ(y, s) = χ{|y|>R1es/2}(y) is the characteristic function of the set {y ∈ RN :

|y| > R1e
s/2}. The function h verifies

h ≤ A1Z, for y ∈ RN , (41)

and, for some ϑ(y, s) ∈ (0, W̃ (y, s)),

h =
1

2
eϕ+ϑZ2 ≤ A2Z

2, for |y| ≤ R1e
s/2, (42)

for some constants A1 and A2. Since ϕ is assumed to be as in Theorem 1, we have
that

max
y∈RN

ϕ(y) = ϕ(0) = α.
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Therefore Z satisfies also the inequality

Zs ≤ (A+ Γ+A1)Z +A0χ, (43)

where Γ = eα. Since W̃ (y, s) → 0 on compact sets as s → ∞ and since |∇W̃ | ≤ C,
one has

‖Z(·, s)‖L2
ρ
≤ A3, for s ≥ 0 and ‖Z(·, s)‖L2

ρ
→ 0, (44)

as s→ ∞. Moreover,

|∇Z(·, s)| ≤ A4, for (y, s) ∈ RN × (0,∞). (45)

In what follows, we will consider the parameters {Ai}4i=0, R1 and Γ as given. The
constants below may depend on these parameters, but we will not state it explicitly.

Let us now derive some estimates for the Lq
ξ -norm of Z. To that end, let t ∈

(s− θ, s), |λ| > R1e
t/2 and |y| < R1e

s/2/2, which gives

|ye−(s−t)/2 − λ|√
1− e−s+t

>
et/2R1

2
√
1− e−θ

>
et/2R1

2
,

and so, by using the representation formula (16) for the semigroup, we have that, for
such t and y, it holds

eA(s−t)χ(y, t)

=
1

(4π(1− e−s+t))N/2

∫

RN

exp

(
− (ye−(s−t)/2 − λ)2

4(1− e−s+t)

)
χ(λ, t)dλ

=
1

(4π(1− e−s+t))N/2

∫

|λ|>R1et/2
exp

(
− (ye−(s−t)/2 − λ)2

4(1− e−s+t)

)
dλ

≤ 1

(4π)N/2

∫

|λ|> et/2R1
2

e−|λ|2/4dλ ≤ C1e
−t. (46)

Above, to be more precise, we could have written eA(s−t)χ(y, t) as [eA(s−t)χ(·, t)](y),
but we obey the former option in what follows. If t ∈ (s − θ, s) and |y| > R1e

s/2/2,
then

eA(s−t)χ(y, t) ≤ 1

(4π(1− e−s+t))N/2

∫

RN

exp

(
− (ye−(s−t)/2 − λ)2

4(1− e−s+t)

)
dλ

=
1

(4π)N/2

∫

RN

e−|λ|2/4dλ = C2.

Therefore, for any σ > 0, |ξ| ≤ max{σ, es/2R1

4 }, and t ∈ (s− θ, s), we have

Lq
ξ(e

A(s−t)χ(·, t))q

≤ Cq
1e

−qt

∫

|y|<R1es/2/2

e−(y−ξ)2/4dy + Cq
2

∫

|y|>R1es/2/2

e−(y−ξ)2/4dy

≤ C3(σ, q)
qe−qt.
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Next we use the variation of constants formula and (43) to obtain

Lq
ξ(Z(·, s)) ≤ Lq

ξ(e
(A+Γ+A1)θZ(·, s− θ)) +

∫ s

s−θ

Lq
ξ(e

(A+Γ+A1)(s−t)A0χ(·, t))dt

= Lq
ξ(e

(A+Γ+A1)θZ(·, s− θ)) +A0C3(σ, q)

∫ s

s−θ

e(Γ+A1)(s−t)e−tdt

= Lq
ξ(e

(A+Γ+A1)θZ(·, s− θ)) +
A0C3(σ, q)e

−s

Γ +A1 + 1
(e(Γ+A1+1)θ − 1), (47)

for every |ξ| ≤ max{σ, es/2R1

4 }. By Proposition 2.2, we then get

Lq
eθ/2µ

(Z(·, s)) ≤ C4(σ, q, β, θ)
(
Lβ
µ(Z(·, s− θ)) + e−s

)
, (48)

for every |eθ/2µ| ≤ max{σ, es/2R1

4 }, s > θ, and θ such that qe−θ

β−1+e−θ < 1. By Proposi-
tion 2.1 it also holds that

N 2
σ (Z(·, s)) ≤ e(Γ+A1)θN 2

σ (e
AθZ(·, s− θ)) + C′

5(θ, σ)e
−s

≤ C5(θ, σ)
(
‖Z(·, s− θ)‖L2

ρ
+ e−s

)
, (49)

for any θ, σ > 0.
We want to consider the solution W by estimating the norm L2

e(s−s0)/2ξ
(Z(·, s)) by

the norm ‖Z(·, s0)‖L2
ρ

for s0 large enough. This is done in Proposition 3.4 below. In
this proof we will need the constructed semigroup estimates from the previous section.

Let us first formulate some auxiliary results. The next Proposition is merely a
simple change of variables but it demonstrates how we are able to move from the L2

ξ

norm to the N 2
|ξ| norm.

Proposition 3.1 Let Z be as above. If s0 > 1 and s′ > 0 and

sup
s∈(s0,s0+s′)

L2
e(s−s0)/2ξ(Z(·, s+ τ)) ≤ C1,

for every |ξ| = 1 and for every τ ≥ 0, then

sup
s∈(s0,s0+s′)

sup
|ξ|≤1

L2
e(s−s0)/2ξ(Z(·, s)) < C(C1).

Proof. For any s ∈ (s0, s0 + s′), let ξ(s) ∈ RN be such that |ξ(s)| ≤ 1 and

sup
|ξ|≤1

L2
e(s−s0)/2ξ(Z(·, s)) = L2

e(s−s0)/2ξ(s)(Z(·, s)).

For s ∈ (s0, s0 + s′) define a function β through e(β(s)−s0)/2 = e(s−s0)/2|ξ(s)|. This
gives that β(s) = s+ 2 log(|ξ(s)|) ≤ s. Let I = {s ∈ (s0, s0 + s′) : β(s) > s0}.

Then, for s ∈ I and for ξ̂(s) = ξ(s)/|ξ(s)|, we have that

sup
|ξ|≤1

L2
e(s−s0)/2ξ(Z(·, s)) = L2

e(β(s)−s0)/2ξ̂(s)
(Z(·, s))

= L2
e(β(s)−s0)/2ξ̂(s)

(Z(·, β(s) + s− β(s))) ≤ C1,
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by assumption since |ξ̂(s)| = 1 and s− β(s) ≥ 0.
Consider then s ∈ (s0, s0 + s′) \ I. Because β(s) ≤ s0, we can write

sup
|ξ|≤1

L2
e(s−s0)/2ξ(Z(·, s)) = L2

e(s−s0)/2ξ(s)(Z(·, s))

≤ N 2
e(β(s)−s0)/2(Z(·, s)) ≤ C2

(
‖Z(·, s− 1)‖L2

ρ
+ e−s

)
≤ C3,

by using (44) and (49) which finishes the proof. �
In the next proposition we consider another type of regularizing property of the

semigroup generated by the operator A. It is an L2 - L∞ regularization for solutions
with bounded gradient.

Proposition 3.2 Let Z be as above. Then

Z(ξ + γ, s) ≤ C
(
L2
e−1/2ξ(Z(·, s− 1)) + |γ|+ e−s

)
,

for any γ in RN , |ξ| ≤ es/2R1/2 and s ≥ 1.

Proof. Using the variation of constants formula together with the inequality (43)
and (46), we get that, for every |ξ| ≤ es/2R1/2,

Z(ξ, s)

≤ e(A+Γ+A1)·1Z(ξ, s− 1) +A0

∫ s

s−1

sup
|ξ|≤es/2R1/2

(e(A+Γ+A1)(s−t)χ(ξ, t)dt

≤ eΓ+A1eA·1Z(ξ, s− 1) +A0C1e
(Γ+A1)s

∫ s

s−1

e−(Γ+A1)te−tdt.

By the representation formula (16) we estimate

(eA·1Z)(ξ, s− 1) =
1

(1− e−1)N/2

∫

RN

exp

(
− (e−1/2ξ − λ)2

4(1− e−1)

)
|Z(λ, s− 1)|dλ

≤ 1

(1− e−1)N/2

{∫

RN

e
− |η|2

2(1−e−1) e
|η|2
4 dη

}1/2

·
{∫

RN

|Z(e−1/2ξ+η, s−1)|2e− |η|2
4 dη

}1/2

= C2L2
e−1/2ξ(Z(·, s− 1)).

Therefore, by using (45), we have for every |ξ| ≤ es/2R1/2 that

Z(ξ + γ, s) ≤ Z(ξ, s) +A4|γ| ≤ C3

(
L2
e−1/2ξ(Z(·, s− 1)) + |γ|+ e−s

)

which gives us the claim. �
In the next Proposition, we estimate the shifted Lβ -norm of h(t) for some β > 1.

What we want to obtain is that the norm is integrable with respect to t if the shifted
L2-norm of Z is bounded.

Proposition 3.3 Let Z be as above and let R1e
s0/2 > 2 and s0 > 1. If

sup
s∈(s0,s0+s′)

L2
e(s−s0)/2ξ(Z(·, s+ τ)) ≤ B,
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for every ξ such that |ξ| = 1 and for every τ ≥ 0, then for any β > 1 there exist
constants M , θ, C and C′ such that

Lβ

e(t−s0)/2ξ
(h(·, t))

≤ C
(
e−(t−s0)/4β+C′√t−s0L2

e(t−s0−θ)/2ξ(Z(·, t− θ))2

+e−tL2
e(t−s0−θ)/2ξ(Z(·, t− θ)) + e−t

)
,

for every |ξ| = 1 and t ∈ (s0 +M, s0 + s′), provided that s′ > M . Here M and θ
depend only on the constants β, Γ, R1, N and {Ai}4i=0. The constants C and C′ may,
however, also depend on B.

Proof. By Proposition 3.1 we have that

sup
s∈(s0,s0+s′)

sup
|ξ|≤1

L2
e(s−s0)/2ξ(Z(·, s)) ≤ C1(B).

Since our assumptions imply that |e(s−s0)/2ξ| < es/2R1/2 for every |ξ| ≤ 1, Proposition
3.2 tells us that

sup
s∈(s0+1,s0+s′)

sup
|ξ|≤1

|Z(e(s−s0)/2ξ + γ, s)|

≤ C′
2 sup
s∈(s0+1,s0+s′)

sup
|ξ|≤1

(
L2
e(s−s0−1)/2ξ(Z(·, s− 1)) + |γ|+ e−s

)

< C2(B)(1 + |γ|). (50)

Assuming that M is large enough such that R−1
1 e−M/2M1/2 < 1

2 , we have that

e(t−s0)/2 + (t− s0)
1/2 = R1e

t/2(R−1
1 e−s0/2 +R−1

1 e−t/2(t− s0)
1/2) < R1e

t/2,

for every t > s0+M . For |y| > R1e
t/2 and |ξ| = 1, we also have that |y− e(t−s0)/2ξ| >

R1e
t/2/2, since we are assuming that e−s0/2 < R1/2.
Then, using the assumptions (41) and (42), we can estimate, for every |ξ| = 1 and

1 < M < t− s0 < s′, to obtain

Lβ

e(t−s0)/2ξ
(h(·, t))β

≤ 2−β

∫

|y|<e(t−s0)/2+(t−s0)1/2
eβ(ϕ(y)+ϑ(y,t))Z(y, t)2βe−|y−e(t−s0)/2ξ|2/4dy+

+Aβ
2

∫

e(t−s0)/2+(t−s0)1/2<|y|<R1et/2
Z(y, t)2βe−|y−e(t−s0)/2ξ|2/4dy

+Aβ
1

∫

|y|>R1et/2
Z(y, t)βe−|y−e−(t−s0)/2ξ|2/4dy

Above ϑ(y, s) ∈ (0, W̃ (y, s)). Thus, by using (42) and (50) with γ = (t − s0)
1/2 >

M1/2 > 1, we get that

ϑ(y, t) ≤ max{0, W̃(y, t)} ≤ 2C2(B)(t− s0)
1/2,
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for every |y| < e(t−s0)/2 + (t − s0)
1/2 and t ∈ (s0 +M, s0 + s′). This together with

Hölder’s inequality gives us the following estimate for the above expression

≤ 2−βe2βC2(B)(t−s0)
1/2L2

e(t−s0)/2ξ(e
βϕ)L2

e(t−s0)/2ξ(Z(·, t)2β)

+Aβ
2

{∫

|y|>(t−s0)1/2
e−|y|2/4dy

}1/2

L2
e(t−s0)/2ξ(Z(·, t)2β)

+Aβ
1

{∫

|y|>R1et/2/2

e−|y|2/4dy
}1/2

L2
e(t−s0)/2ξ(Z(·, t)β).

Finally, by (25) and (48), we can estimate the above by

≤ C3e
2βC2(B)(t−s0)

1/2

e−β(t−s0)L4β

e(t−s0)/2ξ
(Z(·, t))2β

+ C4e
−(t−s0)/4L4β

e(t−s0)/2ξ
(Z(·, t))2β + C5e

−βtL2β

e(t−s0)/2ξ
(Z(·, t))β

≤ C6e
2βC2(B)(t−s0)

1/2−(t−s0)/4
(
L2
e(t−s0−θ)/2ξ(Z(·, t− θ)) + e−t

)2β

+ C7e
−βt

(
L2
e(t−s0−θ)/2ξ(Z(·, t− θ)) + e−t

)β
,

for θ > 0 satisfying 4βe−θ

1+e−θ < 1. The claim follows after some simple estimations. �
Now we are ready to state the proposition which is the cornerstone of the proof of

Theorem 3. At the end of this section, we will use Proposition 3.4 to obtain Theorem
3 as a relatively simple corollary.

Proposition 3.4 Let Z be as above. Then there exist constants s0, C, K > 0, de-
pending only on {Ai}4i=0, R1 and Γ, such that

L2
e(s−s0)/2ξ(Z(·, s)) ≤ C

(
sup

s≥s0−K
‖Z(·, s)‖L2

ρ
+ e−s0

)
,

for every |ξ| = 1 and s > s0 ≥ s0.

Proof. Let Z be as above, |ξ| = 1 and define Zτ (y, s) = Z(y, s+τ) for τ ≥ 0. Then,
since χ(s+ τ) ≤ χ(s), we have that Zτ satisfies the inequality (40) with h replaced by
hτ (y, s) = h(y, s+ τ). Therefore also (41)-(45) hold for Zτ and hτ respectively, with
the same constants {Ai}4i=1.

By the previous results, there exists a constant M such that for every triplet s, t,
s0 for which s > t > s0 +M > M , the following estimates (51)-(53) hold. Firstly, we
can assume that M is large enough such that, by Proposition 2.4, we have

L2
e(s−s0)/2ξ(e

Λ(s−s0)Zτ (·, s0)) ≤ C1‖Zτ (·, s0)‖L2
ρ
, for all s ≥ s0 +M, (51)

and, by Proposition 2.3,

L2
e(s−s0)/2ξ(e

Λ(s−t)hτ (·, t))
≤ C2(1− e−(s−t))−ǫLβ

e(t−s0)/2ξ
(hτ (·, t)), for t ∈ (s0 +M, s) and s > s0 +M, (52)

for some large β and ǫ ∈ (0, 1). By Corollary 2.5 and (41),

L2
e(s−s0)/2ξ(e

Λ(s−t)hτ (·, t)|) ≤ C′
3(M)‖hτ (·, t)‖L2

ρ
≤ C3(M)‖Zτ (·, t)‖L2

ρ
, (53)
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for t ∈ [s0, s0 +M ] and s > s0 +K(M) when K(M) > M is large enough.
Then, by (49) we have

L2
e(s−s0)/2ξ(Zτ (·, s)) ≤ N 2

eK(M)/2(Zτ (·, s))

≤ C4(M)
(
‖Zτ (·, s−K(M))‖L2

ρ
+ e−s

)
(54)

for every s0 ≥ K(M) and s ∈ (s0, s0 +K(M)).
Notice that in all these estimates the constants are independent of τ ≥ 0 and depend

only on parameters such as {Ai}4i=0, Γ, β, N and M . Since all these paratemers, apart
from M , are fixed, we only point out the dependencies on M below.

Let us estimate the L2
e(s−s0)/2ξ

-norm of Z(·, s) for s > s0 +K(M) > s0 +M with

s0 ≥ K(M). The variation of constants formula and the inequality (40) give that

L2
e(s−s0)/2ξ(Zτ (·, s)) ≤ L2

e(s−s0)/2ξ(e
Λ(s−s0)Zτ (·, s0))

+

∫ s

s0

L2
e(s−s0)/2ξ(e

Λ(s−t)hτ (·, t))dt+
∫ s

s0

L2
e(s−s0)/2ξ(e

Λ(s−t)χ(·, t))dt

= T1 + T2 + T3.

First we notice that (51) gives an estimate for the term T1. Then we split the integral
in T2 in two parts and use (52) and (53) to obtain

T2 =

∫ s0+M

s0

L2
e(s−s0)/2ξ(e

Λ(s−t)hτ (·, t))dt+
∫ s

s0+M

. . . dt

≤
∫ s0+M

s0

C3(M)‖Zτ (·, t)‖L2
ρ
dt+

∫ s

s0+M

C2(1 − e−(s−t))−ǫLβ

e(t−s0)/2ξ
(hτ (·, t))dt

≤ C5(M) sup
s≥s0

‖Zτ (·, s)‖L2
ρ
+

∫ s

s0+M

C2(1− e−(s−t))−ǫLβ

e(t−s0)/2ξ
(hτ (·, t))dt.

Similar estimates for the term T3 imply

T3 ≤
∫ s0+M

s0

C3(M)‖χ(·, t)‖L2
ρ
dt+

∫ s

s0+M

C2(1 − e−(s−t))−ǫLβ

e(t−s0)/2ξ
(χ(·, t))dt

≤ C6(M)

(∫ s0+M

s0

e−tdt+

∫ s

s0+M

(1− e−(s−t))−ǫe−tdt

)
≤ C7(M)e−s0 ,

which holds because we may assume that |e(t−s0)/2ξ| ≤ et/2R1/2 and since we have
that

Lq
ξ(χ(·, t)) ≤ Ce−t,

for every q ≥ 1 and |ξ| ≤ et/2R1/2.
Therefore, we have proved that

L2
e(s−s0)/2ξ(Zτ (·, s))

≤ C8(M)

(
sup
s≥s0

‖Zτ (·, s)‖L2
ρ
+ e−s0

)
+

∫ s

s0+M

C2(1−e−(s−t))−ǫLβ

e(t−s0)/2ξ
(hτ (t))dt.

(55)
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Let B = max{C4(M), C8(M)} ≥ 1 and define, for every s0 ≥ K(M),

s(s0)

= sup

{
s′ ≥ s0 : L2

e(s−s0)/2ξ(Zτ (·, s)) ≤ 2B

(
sup

s≥s0−K(M)

‖Z(·, s)‖L2
ρ
+ e−s0/2

)
,

for every s ∈ (s0, s
′) and τ > 0

}
.

Notice that because of the inequality (54) we have s(s0) ≥ s0 +K(M). We want to
show that there exists s0 such that s(s0) = ∞ whenever s0 ≥ s0.

By the previous Proposition, we may assume that M is large enough such that

Lβ

e(t−s0)/2ξ
(hτ (t)) ≤ C9(M)

(
e−(t−s0)/4β+C9(M)

√
t−s0L2

e(t−s0−θ)/2ξ(Zτ (·, t− θ))2

+e−tL2
e(t−s0−θ)/2ξ(Zτ (·, t− θ)) + e−t

)
, (56)

for every s0 +M < t < s(s0) and es0/2R1 > 2 and for some θ < M .
We may also chooseK(M) to be such that all the previous inequalities in this proof

hold and in addition 2βe−K(M)

1+e−K(M) < 1. Then we can use Hölder’s inequality and (48) to

verify that, for t ∈ (s(s0), s(s0) + δ) and δ ∈ (0, 1), we have

Lβ

e(t−s0)/2ξ
(Zτ (t))

β =

∫

RN

|Zτ (t)|βe−|y−e(t−s0)/2ξ|2/4dy

≤ ‖Zτ (t)‖β
L2β

ρ

(∫

RN

ey
2/4e−|y−e(t−s0)/2ξ|2/2dy

)1/2

≤ C10(M)β
(
‖Zτ (·, t−K(M))‖L2

ρ
+ e−t

)β (∫

RN

e−y2/4e|y|e
(s+1−s0)/2

dy

)1/2

≤ C10(M)β
(
sup
s≥s0

‖Zτ(·, s)‖L2
ρ
+ e−s0

)β

g(s− s0)
β ,

where the function g is defined by the last equality and s = s(s0). Therefore,

∫ s+δ

s

(1− e−(s+δ−t))−ǫLβ

e(t−s0)/2ξ
(Zτ (t))dt

≤ C10(M)δ1−ǫg(s− s0)

(
sup
s≥s0

‖Zτ (·, s)‖L2
ρ
+ e−s0

)
. (57)
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Now we use (56) to estimate the integral term in (55) with s = s+ δ, to get

I =

∫ s+δ

s0+M

(1− e−(s+δ−t))−ǫLβ

e(t−s0)ξ
(hτ (·, t))dt

≤ C9

∫ s

s0+M

(1− e−(s+δ−t))−ǫe−(t−s0)/4β+C9

√
t−s0L2

e(t−θ−s0)/2ξ(Zτ (·, t− θ))2dt

+ C9

∫ s

s0+M

(1− e−(s+δ−t))−ǫe−tL2
e(t−θ−s0)/2ξ(Zτ (·, t− θ))dt

+ C9

∫ s

s0+M

(1− e−(s+δ−t))−ǫe−tdt

+ C10δ
1−ǫg(s− s0)

(
sup
s≥s0

‖Zτ(·, s)‖L2
ρ
+ e−s0

)
.

Then use the definition of s in the two first integrals above to estimate

I ≤ 2B

(
sup

s≥s0−K(M)

‖Z(·, s)‖L2
ρ
+ e−s0/2

)

·
{
2C9B

∫ s

s0+M

(1−e−(s+δ−t))−ǫe−(t−s0)/4β+C9
√
t−s0dt

(
sup

s≥s0−K(M)

‖Z(·, s)‖L2
ρ
+ e−s0/2

)

+ C9

∫ s0+s

s0+M

(1 − e−(s+δ−t))−ǫe−tdt+ C10(M)δ1−ǫg(s− s0)

}

+ C9

∫ s

s0+M

(1− e−(s+δ−t))−ǫe−tdt.

Defining the constant C11 through

∫ s

s0+M

(1 − e−(s+δ−t))−ǫe−(t−s0)/4β+C9
√
t−s0dt

≤ C11(M)′
∫ s

s+δ−1

(1− e−s+δ−t)−ǫdt+ (1− e−1)−ǫ

∫ s+δ−1

s0+M

e−(t−s0)/4β+C9
√
t−s0dt

≤ C11(M),

and similarly ∫ s

s0+M

(1− e−(s+δ−t))−ǫe−tdt ≤ C12e
−s0 ,

we get that

I ≤ 2B

(
sup

s≥s0−K(M)

‖Z(·, s)‖L2
ρ
+ e−s0/2

)

·
{
2C9BC11

(
sup

s≥s0−K(M)

‖Z(·, s)‖L2
ρ
+ e−s0/2

)
+C9C12e

−s0 +C10(M)δ1−ǫg(s− s0)

}

+ C9C12e
−s0 . (58)
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By the assumption (44) we may take s0 such that

2C2C9BC11

(
sup

s≥s0−K(M)

‖Z(·, s)‖L2
ρ
+ e−s0/2

)
≤ 1

16
,

and

C2C9C12e
−s0/2 ≤ 1

16
, (59)

for every s0 > s0. Then, by (55) and (58), one has that

L2
e(s+δ)/2ξ(Zτ (s+ δ)) ≤ 2B

(
sup

s≥s0−K(M)

‖Z(·, s)‖L2
ρ
+ e−s0/2

)

·
{
1

2
+ 2C2C9BC11

(
sup

s≥s0−K(M)

‖Z(·, s)‖L2
ρ
+ e−s0/2

)

+ C2C9C12e
−s0 + C2C10δ

1−ǫg(s− s0)

}

+ C2C9C12e
−s0 .

≤ 2B

(
sup

s≥s0−K(M)

‖Z(·, s)‖L2
ρ
+ e−s0/2

)

{
1

2
+

1

16
+

1

16
+ C2C10δ

1−ǫg(s− s0) +
C2C9C12

2B
e−s0/2

}
. (60)

Assuming that s(s0) < ∞ for some s0 > s0 and defining δ = δ(s(s0)) to be small
enough such that

C2C10δ
1−ǫg(s− s0) <

1

16
,

inequalities (59) and (60) yield that

L2
e(s+δ)/2ξ(Zτ (s+ δ)) ≤ 2B

(
sup

s≥s0−K(M)

‖Z(·, s)‖L2
ρ
+ e−s0/2

)
· 3
4

for every τ > 0. This is in contradiction with the definition of s = s(s0). We have
thus proved the claim and reached the end of the proof of Proposition 3.4. �

Proof of Theorem 3.
Proposition 3.2 with γ = 0 gives us that, for e−s0/2|ξ| ≤ R1

2 ,

Z(e(s−s0)/2ξ, s) ≤ C
(
L2
e(s−s0−1)/2ξ(Z(·, s− 1)) + e−s

)
,

for every s− 1 > s0. Therefore, Proposition 3.4 states that

Z(e(s−s0)/2ξ, s) ≤ C

(
sup

s≥s0−K(M)

‖Z(·, s)‖L2
ρ
+ e−s0

)
,

whenever s0 > s0, for some s0 large enough.
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So, for s large, s0 > s0 and e−s0/2|ξ| ≤ R1/2, we have

Z(e(s−s0)/2ξ, s) = | − s+ u(e−s0/2ξ, T − e−s)− ϕ(e(s−s0)/2ξ)|
= | − s+ u(e−s0/2ξ, T − e−s) + 2 log(e(s−s0)/2ξ)− Cα + os→∞(1)|

= |u(e−s0/2ξ, T − e−s) + 2 log(e−s0/2ξ)− Cα + os→∞(1)|

≤ C

(
sup

s≥s0−K(M)

‖Z(·, s)‖L2
ρ
+ e−s0

)
,

where Cα is as in Theorem 1.
By the above inequality, origin is the only blow-up point in the ball Be−s0 (0).

Thereby, u(x, t) is bounded in every set Br2(0) \ Br1(0) for 0 < r1 < r2 < e−s0 and
parabolic estimates imply that also ut(x, t) is bounded in every such set. This gives
us the existence of the limit limt→T u(x, t) for x ∈ Be−s0 (0) \ {0}.

By taking the limit as s→ ∞, we get

|u(e−s0/2ξ, T ) + 2 log(e−s0/2ξ)− Cα| ≤ C

(
sup

s≥s0−K(M)

‖Z(·, s)‖L2
ρ
+ e−s0

)
.

Using the assumption (44), we obtain

lim
x→0

|u(x, T ) + 2 log |x| − Cα| = lim
s0→∞

|u(e−s0/2ξ, T ) + 2 log(e−s0/2ξ)− Cα| = 0,

and thus we have found the blow-up profile. �

4 Revisiting the case of constant selfsimilar profile

In this section we will briefly go through some results of the paper [FP] and notice that
the conclusions of Theorem 1 above hold by assuming only that u0 is radially symmetric
and blow-up takes place at the origin with type I rate, thus verifying Theorem 2 above.

In [FP] we proved Theorem 1 by showing that if u is a radially symmetric and
radially nonincreasing L1-solution of equation (1) with f(u) = eu on [0, T ] that blows
up at t = T < T and

log(T − t) + u(
√
T − ty, t) → 0,

uniformly on compact sets as t→ T , then either

lim
x→0

|u(x, T ) + 2 log |x| − log | log |x||| = C (61)

or
lim
x→0

|u(x, T ) +m log |x|| = C, (62)

for some constant C. This will then imply that the blow-up is complete by Theorem
3.6 in [Va], thereby contradicting the assumption on u being an L1-solution on [0, T ].
For an L1-solution such as in Theorem 1 the only possibility is thus a nonconstant
selfsimilar blow-up profile, see details in [FP].

We will now demonstrate that we do not actually need to assume that u is radially
nonincreasing in order for this analysis to go through.

Let
ũ(x, t) = ζ(x)u(x, t) − (log(T − t) + 1)(1− ζ(x))
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be a continuation of u to the whole space RN , where ζ ∈ C∞(RN ) and ζ(x) = 1 for
|x| ≤ R1 < R2 < R and ζ(x) = 0 for |x| > R2. It is proved in Propositions 3.4 and 3.6
in [FP] that the following is true.

Proposition 4.1 Let u be a radially symmetric solution of (1) that blows up with type
I rate at (x, t) = (0, T ) and assume that the convergence (2) holds with ϕ = 0. Then

lim
t→T

(log(T − t) + u(λ(t)y, t)) = − log


1 +

∑

|α|=m

cαy
α


 ,

uniformly for y in compact sets, for some m ≥ 2 and constants cα, where α is a multi-
index and |α| = α1+. . .+αN . The function λ(t) is defined by λ(t) = | log(T−t)|

√
T − t

if m = 2, and by λ(t) = (T − t)1/m if m > 2.

Notice that there is no assumption on u being radially nonincreasing in the above
Proposition.

We show that the above Proposition implies that either (61) or (62) holds. There-
fore the conclusion of Theorem 2 is obtained by using Theorem 3.4 in [Va] and an
energy argument as in [FP]. We will first define an auxiliary function Wτ and describe
some of its properties below. Then we prove Proposition 4.2 below, which gives that
the L2-norm of Wτ (·, s) is controlled by the L2-norm of Wτ (·, 0). Profiles (61) and
(62) are obtained at the very end of this section.

For fixed ξ with |ξ| ≤ 1, define

Wτ (y, s) = log(T − τ) + ũ(λ(τ)ξ +
√
T − τ

√
1− ty, τ + (T − τ)t)

+ log


1− t+

∑

|α|=m

cαξ
α


 ,

for y ∈ RN and s ≥ 0, where τ ∈ (0, T ) and s = − log(1− t). Then, by using the above
Proposition 4.1, Wτ satisfies

‖Wτ (·, 0)‖L2
ρ
→ 0 and ‖Wτ (·, 0)‖Lβ

ρ
→ 0, (63)

as τ → T and, by (12), there exists a constant A0 > 0 such that

|∇Wτ (y, s)| ≤ A0, (64)

for every (y, s) ∈ RN × (0,∞). It can be also verified that Wτ solves

(Wτ )s = ∆Wτ − y

2
∇Wτ + eφ̃Wτ + fτ = AWτ + eφ̃Wτ + fτ ,

where A = ∆− y
2∇ and

φ̃(s) = −s− log

(
e−s +

∑

|α|=m

cαξ
α

)
.

Above fτ is a certain function, that we do not explicitly write out here, satisfying

|fτ | ≤ A1|Wτ | and |fτ | ≤ A2|Wτ |2, (65)

for some constants A1, A2 > 0 and

|fτ | ≤ eφ̃(eWτ − 1−Wτ ), (66)

for |λ(τ)ξ +
√
T − τ

√
1− ty| ≤ R1. We have the following result.
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Proposition 4.2 Let Wτ be as above. There exist constants C and τ > 0 such that

‖Wτ (·, s)‖L2
ρ
≤ C‖Wτ (·, 0)‖L2

ρ
,

for every s ≥ 0 and τ > τ .

Proof. Let Zτ = |Wτ |. Since eφ̃ is bounded and since |fτ | ≤ A1Zτ , we have a
constant C1 > 0 such that for any s ≥ s0 ≥ 0 it holds

Zτ (·, s) ≤ e(A+C1)(s−s0)Zτ (·, s0). (67)

By (63) one has that ‖Zτ (·, 0)‖L2
ρ
≤ C, for some C > 0 independent of τ , which implies

‖Zτ (·, s)‖L2
ρ
≤ eC1s0‖Zτ (·, 0)‖L2

ρ
≤ C2(s0), (68)

for every s ≤ s0 and τ ∈ (0, T ) with C2(s0) independent of τ .
Now define

s(s0) = sup{s′ > 0 : ‖Zτ (·, s)‖L2
ρ
≤ 4eC1s0‖Zτ(·, 0)‖L2

ρ
for every s ∈ (0, s′)}

and notice that (68) implies s(s0) > s0.
Using the representation (16) and (67) together with the definition of s(s0), we

obtain

Zτ (0, s) ≤ eC1eA1Zτ (0, s− 1)

≤ C′
3

∫

RN

e
− |λ|2

4(1−e−1) |Zτ (λ, s− 1)|dλ

≤ C′
3

(∫

RN

|Zτ (λ, s− 1)|2e−|λ|2/4dy

)1/2(∫

RN

e|λ|
2/4e−|λ|2/2dλ

)1/2

≤ C3e
C1s0‖Zτ(·, 0)‖L2

ρ
≤ C4(s0), (69)

for every s ∈ (1, s(s0)). For |y| ≤ √
s we have that |λ(τ)ξ +

√
T − τe−s/2y| ≤ R1 for τ

large enough, and for such y the inequalities (64), (66) and (69) thus imply

|fτ (y, s)| ≤
1

2
eφ̃(s)+Zτ (y,s)Zτ (y, s)

2

≤ C5e
−seZτ (0,s)+A0

√
sZτ (y, s)

2 ≤ C6(s0)e
−s+A0

√
sZτ (y, s)

2. (70)

Now we can estimate the L2-norm of fτ , by using (65), (70), Hölder’s inequality,
Proposition 2.2 and the definition of s(s0), to obtain

‖fτ (·, s)‖2L2
ρ
≤ C6(s0)

2

∫

|y|≤√
s

e−2s+2A0
√
sZτ (y, s)

4e−|y|2/4dy

+

∫

|y|>√
s

A2
2Zτ (y, s)

4e−|y|2/4dy

≤ C6(s0)
2e−2s+2A0

√
s‖Zτ (·, s)‖4L4

ρ

+A2
2

(∫

|y|>√
s

e−|y|2/4dy

)1/2

‖Zτ (·, s)‖4L8
ρ

≤ C7(s0)e
−2s+2A0

√
s‖Zτ(·, s−K)‖4L2

ρ
+ C8e

−s/8‖Zτ (·, s−K)‖4L2
ρ

≤ C9(s0)
2e−s/8+2A0

√
s‖Zτ (·, 0)‖4L2

ρ
,
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for any s ∈ (K, s(s0)) and s0 > K.

Now, let C10 be such that eφ̃(s) ≤ C10e
−s and take s0 > K large enough to satisfy

C10e
−s0 <

1

4

and define τ = τ (s0) to be such that

C9(s0)

4eC1s0

∫ ∞

s0

e−t/16+A0

√
tdt‖Zτ (·, 0)‖L2

τ
<

1

4
,

for every τ > τ .
Then by using the variation of constants formula together with the previous esti-

mates, we obtain

‖Zτ (·, s)‖L2
ρ

≤ ‖eA(s−s0)Zτ (·, s0)‖L2
ρ
+

∫ s

s0

‖eA(s−t)eφ̃(t)Zτ (·, t)‖L2
ρ
dt+

∫ s

s0

‖eA(s−t)fτ (·, t)‖L2
ρ
dt

≤ ‖Zτ (·, s0)‖L2
ρ
+ C104e

C1s0

∫ s

s0

e−tdt‖Zτ (·, 0)‖L2
ρ

+ C9(s0)

∫ s

s0

e−t/16+A0

√
tdt‖Zτ (·, 0)‖2L2

ρ

≤ 4eC1s0‖Zτ (·, 0)‖L2
ρ

(
1

4
+ C10e

−s0 +
C9(s0)

4eC1s0

∫ ∞

s0

e−t/16+A0

√
tdt‖Zτ (·, 0)‖L2

ρ

)

≤ 3eC1s0‖Zτ (·, 0)‖L2
ρ
,

for every s ∈ (s0, s(s0)) and τ > τ . This proves that s(s0) = ∞ and the claim follows.
�

Using the previous Proposition and (69) we have that

|Wτ (0, s)| ≤ C‖Wτ (·, s− 1)‖L2
ρ
≤ C‖Wτ (·, 0)‖L2

ρ
,

for every τ > τ and s > 1, when τ is close enough to T . Rewriting this gives

∣∣∣ log(T −τ)+u(λ(τ)ξ, τ +(T −τ)(1−e−s))+log
(
e−s+

∑

|α|=m

cαξ
α
)∣∣∣ ≤ C‖Wτ (·, 0)‖L2

ρ
,

and by taking the limit as s→ ∞, one notices that

∣∣∣ log(T − τ) + u(λ(τ)ξ, T ) + log
( ∑

|α|=m

cαξ
α
)∣∣∣ ≤ C‖Wτ (·, 0)‖L2

ρ
→ 0,

as τ → T . The desired blow-up profiles (61) and (62) are then obtained by a change
of variables as in [FP].
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