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Nononstant selfsimilar blow-up pro�lefor the exponential reation-di�usion equationMarek Fila and Aappo Pulkkinen
AbstratWe study the blow-up pro�le of radial solutions of a semilinear heat equationwith an exponential soure term. Our main aim is to show that solutions whih anbe ontinued beyond blow-up possess a nononstant selfsimilar blow-up pro�le. Forsome partiular solutions we determine this pro�le preisely.1 IntrodutionWe onsider the following problem(1.1) 




ut = ∆u+ f(u), x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,where Ω = B(R) = {x ∈ Rn ; |x| < R}. Throughout the paper, we assume that theinitial ondition u0 ∈ C1(Ω) is radially symmetri. In the �rst part of the paper, we shallassume that(1.2) f ∈ C1, f(·) ≥ 0 in [0,∞) and lim
u→∞

e−uf(u) = 1.We shall study solutions that blow up in �nite time, by whih we mean that there is
T = T (u0) ∈ (0,∞) suh that

lim
tրT

‖u(·, t)‖L∞(Ω) = ∞.Our �rst result is the following2000 Mathematis Subjet Classi�ation. Primary 35K57; Seondary 35B40.Key words and phrases. Semilinear paraboli equation, blow-up pro�le, selfsimilar solutions.1



Theorem 1.1. Let n ∈ [3, 9]. Assume that (1.2) holds and that u is a solution of (1.1)whih blows up in a �nite time T and satis�es u(0, t) = maxΩu(·, t) for all t lose to T .Then there exists a onstant K <∞ suh that(1.3) log(T − t) + ‖u(·, t)‖L∞(Ω) ≤ K for all t ∈ [0, T ).The blow-up rate (1.3) for solutions of (1.1) with f(u) = eu was only known beforeunder the assumption that ut ≥ 0, see [16℄. In this paper, we are interested mainlyin solutions whih an be ontinued beyond blow-up as L1-solutions (see the de�nitionbelow), and suh solutions annot be nondereasing in time, sine ut ≥ 0 implies ompleteblow-up, see [1℄.To formulate our next result we introdue the de�nition of L1-solutions of problem(1.1).De�nition 1.1. By an L1-solution of (1.1) on [0, T ] we mean a funtion u ∈ C([0, T ];

L1(Ω)) suh that f(u) ∈ L1(QT ), QT := Ω× (0, T ) and the equality
∫

Ω

[uΨ]t2t1 dx−
∫ t2

t1

∫

Ω

uΨt dx dt =

∫ t2

t1

∫

Ω

(u∆Ψ+ f(u)Ψ) dx dtholds for any 0 ≤ t1 < t2 ≤ T and Ψ ∈ C2(Q̄T ), Ψ = 0 on ∂Ω × [0, T ]. By a global
L1-solution we mean an L1-solution whih exists on [0, T ] for every T > 0.The existene of global unbounded L1-solutions of (1.1) with f(u) = λeu, n ≥ 3,was shown in [23℄ for λ > 0 small enough. If 3 ≤ n ≤ 9, then these global unbounded
L1-solutions blow up in �nite time, see [14℄.Theorem 1.2. Let f(u) = eu, n ∈ [3, 9], and assume that the initial funtion u0 isradially noninreasing. Suppose u is an L1-solution of (1.1) on [0, T ] whih blows up at
t = T < T . Then

lim
t→T

[
log(T − t) + u(y

√
T − t, t)

]
= ϕ(|y|), y ∈ Rn,where ϕ satis�es(1.4) 




ϕηη +

(
n− 1

η
− η

2

)
ϕη + eϕ − 1 = 0, η > 0,

ϕ(0) = µ, ϕη(0) = 0,and(1.5) lim
η→∞

[
ϕ(η) + 2 log η

]
= Cµfor some µ > 0 and Cµ ∈ R. 2



In the ase n = 1, 2, there is no solution of (1.4) satisfying(1.6) lim
η→∞

(
1 +

η

2
ϕη(η)

)
= 0,see [9, 3℄. On the other hand, for 3 ≤ n ≤ 9, there exists an inreasing sequene {µi}∞i=0,

µi → ∞, suh that the solution ϕi of (1.4) with µ = µi satis�es (1.6), see [10℄. Laey andTzanetis proved in [23℄ that for 3 ≤ n ≤ 9 the solution φ0 of (1.4) with µ = µ0 satis�es(1.7) lim
η→∞

(
ϕ0(η) + log

η2

2(n− 2)

)
= −c0, c0 > 0,and the equation(1.8) ϕ0(η) + log

η2

2(n− 2)
= 0has two roots.For some partiular solutions u (the L1-onnetions from a stationary solution φ2 toanother stationary solution φ0, see Proposition 4.3) we show (see Theorem 4.4) that

lim
t→T

[
log(T − t) + u(y

√
T − t, t)

]
= ϕ0(|y|), y ∈ Rn,where ϕ0 satis�es (1.4), (1.7) and (1.8) has two roots. As far as we know, this is the �rstexample of a solution of (1.1) with a preisely determined nononstant selfsimilar blow-uppro�le. The existene of a lass of solutions of (1.1) with nononstant selfsimilar blow-uppro�les was known before for f(u) = up and some p > (n + 2)/(n − 2), n > 2, see [24℄.But no haraterization of the limit selfsimilar pro�le for any suh solution was given in[24℄.The paper is organized as follows. In Setions 2 and 3 we prove Theorems 1.1 and 1.2.Setion 4 is devoted to determining the exat pro�le of some speial solutions mentionedabove.Aknowledgment. Part of this work was done while A. Pulkkinen was a predo at theComenius University supported by European Community's Human Potential Programmeunder ontrat HPRN-CT-2002-00274, Fronts - Singularities. M. Fila aknowledges alsothe support of the VEGA Grant 1/3021/06 and of the Finnish Mathematial SoietyInternational Visitor Programme. A. Pulkkinen was also supported by the Magnus Ehrn-rooth Foundation during this work. The authors are indebted to the referee for helpfulomments.2 Blow-up rateIn this setion we prove Theorem 1.1. We shall use the method from [7℄ that has to bemodi�ed and ombined with an estimate from [16℄ beause the resalings employed here3



and in [7℄ are di�erent. In partiular, the present resaling does not preserve positivity.This fat is also a reason why the arguments from [24℄ do not seem to apply easily toProblem (1.1) with a nonlinearity like f(u) = eu.In the following lemma we will onsider the equation(2.1) vrr +
n− 1

r
vr + f(v) = 0, vr ≤ 0 < v, in (0, ǫ),where n ≥ 3 and ǫ > 0 is small.Lemma 2.1. Assume that f ∈ C(R) and limu→∞ e−uf(u) = 1 and n ≥ 3. Then thereexists a singular solution v = v∗ of (2.1) satisfying(2.2) lim

r→0

(
v∗(r) + log r2

)
= log(2(n− 2)).Proof. The proof of the lemma is similar to the proof of an analogous lemma in [7℄and so further details an be found there. Set s = log r and W (s) = v(r)− φ∗(r), where

φ∗(r) = log
(
2(n− 2)r−2

). Then v is a solution to (2.1) if and only if W satis�es
Wss + (n− 2)Ws + 2(n− 2)W + h = 0 in (−∞, log ǫ),where the nonlinearity h = h(s,W ) = h1(W ) + h2(s,W ) and

h1(W ) = 2(n− 2)(eW − 1−W ), h2(s,W ) = e2sf(W + φ∗)− 2(n− 2)eW .Moreover, v veri�es the asymptoti behavior (2.2) if and only if W (s) → 0 as s → −∞.If the solution W exists, it an be written by the variation of onstants as
W (s) =

∫ s

−∞

eλ1(s−τ) − eλ2(s−τ)

λ1 − λ2
h(τ,W (τ))dτ,where λ1 and λ2 are the two roots to the harateristi equation λ2+(n−2)λ+2(n−2) = 0.The existene of a solution an now be proved using Shauder's �xed point theorem.Therefore, de�ne

X = {φ ∈ C((−∞, log ǫ) ; ‖φ‖X = sup
s<log ǫ

|φ(s)| <∞}.Let B(δ) be the losed ball of radius δ entered at 0 in X , and let
Tiφ(s) =

∫ s

−∞

eλ1(s−τ) − eλ2(s−τ)

λ1 − λ2
hi(τ, φ(τ))dτfor i = 1, 2. We need to show that the operator (I − T1)

−1T2 is well de�ned and that ithas a �xed point. 4



Sine, for every |W1|, |W2| ≤ δ and for some η ∈ (W1,W2), we have
|h1(W1)− h1(W2)| = 2(n− 2)|eW1 − eW2 +W2 −W1|

= 2(n− 2)(eη − 1)|W1 −W2| ≤ Cδ|W1 −W2|,we know that ‖T1φ‖ ≤ (1/2)‖φ‖, for δ small enough, and hene the operator (1− T1)
−1 :

B(δ/2) → B(δ) exists with ‖(I − T1)
−1φ‖ ≤ 2‖φ‖.De�ne then a nonnegative and nondereasing funtion

ω(s) = sup
u≥−s

∣∣∣∣
f(u)

eu
− 1

∣∣∣∣ .So for any W ∈ B(δ), we have
|h2(s,W (s))| = 2(n− 2)eW (s)

(
f(W (s)− 2s+ log(2(n− 2))

eW (s)−2s+log(2(n−2))
− 1

)
≤ 2(n− 2)eδω(s)and also |T2W (s)| ≤ C1ω(s) and |dT2W (s)/ds| ≤ C2ω(s). It an easily be seen that T2is ontinuous. Therefore, T2B(δ) ⊂ B̂ = {φ ∈ X ; |φ(s)| + |φ′(s)| ≤ (C1 + C2)ω(s) forevery s ≤ log ǫ}. Taking ǫ small enough, we get that B̂ is a ompat subset of B(δ), andso (I − T1)

−1T2 is ontinuous operator from B(δ) to itself, and by Shauder's �xed pointtheorem it has a �xed point W ∈ B(δ). Showing that |W (s)| → 0 as s → −∞, we an�nish the proof. �The following result is already known. For the proof we refer to [21℄.Proposition 2.2. Assume that 3 ≤ n ≤ 9. Then there is a unique solution φ to




φrr +
n− 1

r
φr + eφ = 0, r ∈ (0,∞),

φr(0) = 0,

φ(0) = 0.The solution satis�es φr < 0 in (0,∞) and for φ∗(r) = log (2(n− 2)r−2), there are in-�nitely many roots of the equation φ− φ∗ = 0.We will also need an estimate for the gradient of the solution u of (1.1). This lemmaan be found in [16℄.Lemma 2.3. Assume that f satis�es (1.2), and that the solution u of (1.1) blows up at
t = T . Then, for uM(t) = maxx∈Ω u(x, t) and t0 lose to T , we have that

1

2
|∇u(x, t)|2 ≤

∫ uM (t0)

u(x,t)

f(u)dufor every t < t0 and x ∈ Ω. 5



Now that we have the above preliminary results, we are ready to prove Theorem 1.1,whih gives the blow-up rate of the solution u. The proof is a modi�ed version of that in[7℄. Notie that by integrating the inequality ut(0, t) ≤ eu(0,t) from t to T , we have(2.3) log(T − t) + u(0, t) ≥ 0.Proof of Theorem 1.1. Let v∗ be as in Lemma 2.1, extended to its maximum existeneinterval (0, ǫ∗], and de�ne R∗ = min{ǫ∗, R}. By the zero number diminishing property (see[8℄), it an be veri�ed that both Z[0,R](ut(·, t)) and Z[0,R∗](u(·, t)−v∗(·)) are noninreasingin t ∈ [0, T ) so that they are onstant for all t ∈ [T1, T ) and for some T1 ∈ [0, T ). Herewe used the usual notation(2.4) ZI(g) = #{r ∈ I ; g(r) = 0}de�ned for an arbitrary interval I and a funtion g ∈ C(I). Let now Z[0,R∗](u(·, t)− v∗) =

N∗, for t ∈ [T1, T ).We will set
M(t) = u(0, t) and δ = lim inf

t→T

ut(0, t)

eu(0,t)
= lim inf

t→T

M ′(t)

eM(t)
,and laim that δ > 0.By ontradition, assume that δ = 0. Then there exists a sequene ti → T as i → ∞suh that limi→∞M ′(ti)e−M(ti) = 0. Moreover, we may assume that

f(u(0, t))

eu(0,t)
∈ (1/2, 2)for every t ≥ t0. De�ne

Ri = e−u(0,ti)/2 and wi(ρ, τ) = u(Riρ,R
2
i τ + ti) + 2 logRi.Then wi satis�es

wiτ −∆wi = R2
i f(wi − 2 logRi) in B(R/Ri)× (−tiR−2

i , 1/4).Moreover, we have that
wiτ (0, 0) = R2

i ut(0, ti) =
M ′(ti)

eM(ti)
→ 0 as i→ ∞.By Lemma 2.3, we get that ur(r, t)2 ≤ 2f(u(0, ti))(u(0, ti)−u(r, t)) for every t < ti and

r ∈ [0, R), assuming that u(0, t0) is large enough. Therefore, by integrating the inequality
|ur(r, t)|(u(0, ti)− u(r, t))−1/2 ≤

√
2f(u(0, ti))6



from 0 to r, we have(2.5) u(0, ti)− u(r, t) ≤ 4f(u(0, ti))r
2 ≤ 8eu(0,ti)r2for every t ≤ ti and r ∈ [0, R]. With the above estimate we an write

wi(ρ, τ) = u(Riρ,R
2
i τ + ti)− u(0, ti) ≥ −8eu(0,ti)R2

i ρ
2 = −8ρ2 ≥ −8C,whenever ρ ≤

√
C. Sine learly wi(ρ, τ) ≤ 0 for every τ < 0 and r ∈ [0, R/Ri], we knowthat the family {wi}i is uniformly bounded in L∞([0,

√
C]× (−tiR−2

i , 0)).Beause of the assumption that u attains the maximum at the origin, we know that
ut(0, t) ≤ f(u(0, t)) ≤ 2eu(0,t) for every t > t0. Integrating this inequality with respet to
t from ti to ti + τR2

i (where τ > 0), we obtain
−(e−u(0,ti+τR2

i ) − e−u(0,ti)) ≤ 2τR2
i = 2τe−u(0,ti),whih then yields(2.6) u(0, ti + τR2

i ) ≤ u(0, ti) + log
1

1− 2τ
≤ u(0, ti) + log 2,for every τ ∈ [0, 1/4]. Hene we have that wi(0, τ) = u(0, ti + τR2

i ) − u(0, ti) ≤ log 2 forevery τ ∈ [0, 1/4].By using the inequalities (2.5) and (2.6), we get that for τ ∈ [0, 1/4] and ρ ∈ [0,
√
C]:

wi(ρ, τ) = u(Riρ,R
2
i τ + ti)− u(0, ti)

= u(Riρ,R
2
i τ + ti)− u(0, R2

i τ + ti) + u(0, R2
i τ + ti)− u(0, ti)

≥ u(Riρ,R
2
i τ + ti)− u(0, R2

i τ + ti) ≥ −8eu(0,R
2
i τ+ti)R2

i ρ
2

= −8eu(0,R
2
i τ+ti)−u(0,ti)ρ2 ≥ −16ρ2 ≥ −16C.Therefore we now know that wi(ρ, τ) ≤ wi(0, τ) ≤ log 2 and wi(ρ, τ) ≥ −16C for every

ρ ∈ [0,
√
C] and τ ∈ [0, 1/4]. Altogether we have that {wi}i is uniformly bounded in

L∞([0,
√
C]× [−tiR−2

i , 1/4]).It follows from the paraboli estimates that {wi}i is a uniformly bounded family in
C2,1. Therefore, along a subsequene, it onverges uniformly in any ompat subset of
B(

√
C)× (−∞, 1/4) to a radially symmetri limit w. Beause

lim
i→∞

R2
i f(wi − 2 logRi) = lim

i→∞
e−wi+2 logRif(wi − 2 logRi)e

wi = ew,we have that w satis�es




wτ −∆w = ew in B(
√
C)× (−∞, 1/4),

w(0, 0) = 0, wτ(0, 0) = 0.7



Exatly the same arguments as in [7℄ show that atually wτ ≡ 0 and so w(·, τ) = φ(·),where φ is the unique solution to the problem in Proposition 2.2. Taking now ρ∗ large,we an assume that Z[0,ρ∗](φ−φ∗) = N∗+1, where φ∗(r) = log[2(n−2)r−2]. Taking then
C suh that √C ≥ ρ∗, we an show, in the same manner as in [7℄, that Z[0,R∗](u(·, ti) −
v∗(·)) ≥ N∗ + 1, whih is a ontradition and therefore δ > 0.Now we know that there exists T2 ∈ [T1, T ) suh that

M ′(t)

eM(T )
≥ δ

2for every t ∈ [T2, T ). By integrating this inequality over the interval (t, T ), we obtain thelaim. �Combining the tehniques of the proofs of Theorem 1.1 above and Theorem 1 in [7℄,it is straightforward to prove the following theorem.Theorem 2.4. If u is a global lassial solution of (1.1), then u is uniformly bounded.3 Convergene to a bakward selfsimilar solutionThe aim of this setion is to prove Theorem 1.2. Most of the work is needed to show thefollowing:Theorem 3.1. Let f(u) = eu and assume that the initial funtion u0 is radially nonin-reasing. If u is a solution of (1.1) that blows up at t = T , and(3.1) lim
t→T

[
log(T − t) + u(y

√
T − t, t)

]
= 0uniformly for y in ompat sets, then(3.2) u(x, T ) = −2 log |x|+ log | log |x||+ log 8 as x→ 0.It was shown in [2℄ that (3.2) holds for solutions of(3.3) 




ut = ∆u+ eu, x ∈ Rn, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Rn,provided u is radially symmetri, ur ≤ 0, ut ≥ 0. In [20℄ it was proved that either (3.2)holds or(3.4) u(x, T ) = −m log |x|+ Cm as x→ 0holds for some integer m ≥ 4 and Cm ∈ R for solutions of (3.3) under the assumptionsthat n = 1, u0 is ontinuous, bounded, it has a single maximum and x = 0 is the blow-up8



point. The existene of solutions of (1.1) whih blow up at x = 0 ∈ Ω, t = T , and havethe pro�le (3.2) was established in [4℄ when Ω is onvex. The existene of initial data suhthat (3.4) ours with m = 4 was shown in [20℄ for Problem (3.3) with n = 1, for anyinteger m ≥ 4 see [5℄. In our ase the pro�le (3.4) does not our sine we assume that uis radially dereasing. This is beause in [3℄ it is proved that if u veri�es the assumptionsof Theorem 3.1, then(3.5) u(x, t) ≤ −2 log |x|+ log | log |x||+ C,for some onstant C and for any t ∈ (0, T ) and x in B(R).As in [26℄, the �rst thing we will have to do, is to extend the solution u to thewhole spae Rn in order to be able to use semigroup methods in appropriate weighted L2spaes. We will also derive some useful estimates for the new nonlinearity and disuss thefuntional analyti framework.Throughout this setion we will adopt the assumptions of Theorem 3.1. Take ζ ∈
C∞(Rn) suh that ζ(x) = 1 for |x| ≤ R1, ζ(x) ∈ (0, 1) for |x| ∈ (R1, R2) and ζ(x) = 0 for
|x| ≥ R2, where 0 < R1, R2 < R. Then de�ne(3.6) ũ(x, t) = ζ(x)u(x, t)− (log(T − t) + 1)(1− ζ(x))for x ∈ Rn and t ∈ [0, T ). This gives us that the new extended funtion satis�es

ũt = ∆ũ+ f, x ∈ Rn, t ∈ (0, T ),where
f = f(x, t) = (T − t)−1(1− ζ)− (1 + log(T − t) + u)∆ζ − 2∇ζ · ∇u+ ζeu.Notie that Theorem 1.1 and Lemma 2.3, now applied to f(u) = eu, imply that(3.7) |(T − t)f(x, t)| ≤ Cfor every (x, t) ∈ Rn× [0, T ) and for some onstant depending only on the hoie of ζ andthe onstant appearing in Theorem 1.1. As above, we heneforth denote by C a generionstant possibly hanging from line to line and depending only on some �xed funtionsor parameters like u0 or the dimension of the spae.Following the usual method, we use the similarity variables to de�ne the resaledfuntion

w̃(y, s) = log(T − t) + ũ(x, t),where y = (T − t)−1/2x and s = − log(T − t). Then w̃ satis�es(3.8) w̃t = ∆w̃ − 1

2
y · ∇w̃ + (T − t)f − 1 = Aw̃ + h, y ∈ Rn, s > − logT,9



where A = ∆− y/2 · ∇ + I and h(y, s) = (T − t)f(x, t)− 1− w̃(y, s). Using Lemma 2.3and Theorem 1.1, it is easy to verify that |∇w̃| ≤ C and hene (2.3) implies that(3.9) |w̃| ≤ C(1 + |y|).In what follows, we will give some estimates for the funtion h. Assume �rst that
|y| ≤ es/2R1. Then w̃ = log(T − t) + u and h = e ew − 1− w̃. Therefore

|h| ≤ e| ew||w̃|2 ≤ eK |w̃|2,where K is the onstant appearing in Theorem 1.1. We an also argue that either −1 ≤
w̃ ≤ K, whih implies that |h| ≤ eKK|w̃|, or w̃ ≤ −1, in whih ase |h| = |e ew − 1− w̃| ≤
2 + |w̃| ≤ 3|w̃|.Assume then that |y| ∈ (es/2R1, e

s/2R2). Beause u(x, t) ≤ C for every |x| ∈ (R1, R2)and t ∈ [0, T ), there exists s0 > 0 suh that
w̃ = −1 + ζ(u+ log(T − t) + 1) ≤ −1for every s ≥ s0. Therefore we an estimate

|h| ≤ |(T − t)f |+ 1 + |w̃| ≤ C + |w̃| ≤ (C + 1)|w̃| ≤ (C + 1)|w̃|2in Rn × [s0,∞), where we used the estimate (3.7).Sine, for |y| > es/2R2, it holds that h = −w̃ and w̃ = −1, we an ollet the aboveestimates together to obtain that(3.10) |h| ≤ C1|w̃| and |h| ≤ C2|w̃|2 in Rn × [s0,∞)for some onstants C1 and C2. In a similar way we an also show that(3.11) ∣∣∣∣h− 1

2
w̃2

∣∣∣∣ ≤ C3|w̃|3 in Rn × [s0,∞).We will next disuss the operator A. A onvenient spae to work in is the weightedspae
L2
ρ(Rn) =

{
f ∈ L2lo(Rn) ;

∫

Rn

|f(y)|2e−|y|2/4dy <∞
}
.It is well-known that A is a self-adjoint operator in L2

ρ(Rn) with domain H2
ρ(Rn) andit has a omplete family of orthogonal eigenfuntions {Hα}α∈Nn with the orrespondingeigenvalues λα = 1− |α|/2, where |α| = α1 + . . .+αn. The eigenfuntions an be writtenas Hα(y) = Πn

i=1Hαi
(yi), where Hm is the standard Hermite polynomial of order m ∈ N.We will denote by {S(s)}s the semigroup generated by A.10



Sine u, and so also w̃, is assumed to be radially symmetri, we only need to onsiderradially symmetri eigenfuntions. The �rst ones are h0(y) = 1 ∈ span{H0} orrespondingto the eigenvalue λ0 = 1 and h2(y) = |y|2− 2n ∈ span{Hα ; |α| = 2, αi even} orrespond-ing to the eigenvalue λ2 = 0. Therefore we an deompose(3.12) w̃ = π+w̃ + πcw̃ + π−w̃ = a(s) + b(s)(|y|2 − 2n) + θ(y, s),where π+w̃ and πcw̃ are the projetions to the eigenspaes spanned by h0 and h2, and
π−w̃ = w̃ − π+w̃ − πcw̃ ∈ span{Hα ; |α| > 2}.A well-known fat is the regularizing property of the semigroup (see [30℄), namely, forevery p, q ∈ (1,∞) there exists R = R(p, q) and C = C(R) suh that(3.13) ‖S(R)φ‖Lp

ρ
≤ C‖φ‖Lq

ρ
for every φ ∈ Lp

ρ(Rn),where the de�nition of Lp
ρ(Rn) is analogous to that of L2

ρ(Rn). Using the �rst inequalityin (3.10) and applying the above inequality to w̃, we obtain(3.14) ‖w̃(·, s)‖Lp
ρ
≤ eC1R‖S(R)w̃(·, s− R)‖Lp

ρ
≤ eC1RC‖w̃(·, s− R)‖Lq

ρ
.Also, the reversed inequality is known in L2

ρ. Assuming that there exists a onstant β > 0suh that a(s)2 + ‖θ(·, s)‖2 ≤ β b(s)2, we an use Lemma 3.1 in [19℄ to obtain that(3.15) ‖w̃(·, s)‖ ≤ C(R, β)‖w̃(·, s+R)‖,where we used the notation ‖ · ‖ = ‖ · ‖L2
ρ
.The assumption (3.1) implies that(3.16) lim

s→∞
w̃(y, s) = 0uniformly for y in ompat sets. In the following Lemma and two Propositions, we willassume that the onvergene (3.16) is not exponential in rate, that is, we assume that forevery C, ǫ > 0 we have(3.17) ‖w̃(·, s)‖ > Ce−ǫsfor some s > − logT .The following lemma is proved in the ase of f(u) = up in [15℄ and it states that theunstable and stable part of the solution w̃ are dominated by the enter part of it. Theproof in our ase is almost the same as in [15℄ and therefore we do not repeat it here.The only di�erene is that [15℄ assumes the boundedness of w̃, and we use the inequality

|h| ≤ C1|w̃| whenever the boundedness is needed.11



Lemma 3.2. Let w̃ satisfy (3.16) and (3.17). Then for every ǫ > 0 there exists s0 suhthat
‖π−w̃‖L2

ρ
+ ‖π+w̃‖L2

ρ
≤ ǫ‖πcw̃‖L2

ρfor any s ≥ s0.In what follows, we will derive di�erential equations for the funtions a and b appearingin the expansion (3.12). Inserting (3.12) in Equation (3.8), and projeting to the unstablesubspae, we have
‖1‖2L2

ρ
a′(s) = ‖1‖2L2

ρ
a(s) + P+h,where we use the notation (P+h) h0 = π+h. We an write h = (π+w̃+πcw̃)

2/2+ g, where
g = (π+w̃ + πcw̃)π−w̃ +

1

2
(π−w̃)

2 + h− 1

2
w̃2.Using Lemma 3.2 and inequalities (3.11), (3.14) and (3.15), we an estimate

|P+g| ≤ (ǫ2 + ǫ)‖πcw̃‖2 + 1
2
ǫ2‖πcw̃‖2 + C3‖w̃3‖ ≤ 2ǫ ‖πcw̃‖2 + C‖w̃(·, s−R)‖3

≤ 2ǫ ‖πcw̃‖2 + C‖w̃(·, s)‖3 ≤ 2ǫ ‖πcw̃‖2 + C‖πcw̃‖3 = 2ǫ b2 + Cb3for s large enough. Therefore, a satis�es
a′(s) = a(s) +

‖1‖−2
L2
ρ

2
P+(π+w + πcw)

2 + P+g.Sine we know that |w̃(y, s)| ≤ C(1 + |y|) and w̃(y, s) → 0 as s → ∞ pointwise forevery y, it follows from the Lebesgue dominated onvergene theorem that w̃(·, s) → 0 as
s → ∞ also in L2

ρ(Rn). Hene a(s) → 0 and b(s) → 0 as s → ∞, and we an write for
s ≥ s0

a′(s) = a(s) +
1

2
(a(s)2 + 8nb(s)2) + ǫO(b(s)2),where the seond term on the right is easily obtained from P+(π+w + πcw)

2 by simpleintegration. In the same way, we an prove that b satis�es
b′(s) = a(s)b(s) + 4b(s)2 + ǫO(b(s)2)for s ≥ s0.Using now Lemma 3.2 and the above di�erential equations for the funtions a and b,we an repeat the arguments used in Theorem 2.6 in [2℄ and so we obtain the followingresult.Proposition 3.3. Let w̃ satisfy (3.16) and (3.17). Then

w̃(y, s) = − 1

4s
(|y|2 − 2n) + o

(1
s

) in L2
ρ(Rn).12



By the regularizing e�et of the semigroup {S(s)}s, we an onlude that the aboveonvergene holds also uniformly on ompat sets. However, we need to onsider theonvergene in larger sets, namely, when |y| ≤ √
sR. This is done in the propositionbelow, whih follows [26, 30℄.Proposition 3.4. Let w̃ satisfy (3.16) and (3.17). Then it holds that(3.18) lim

t→T

[
log(T − t) + ũ(ξ(T − t)1/2| log(T − t)|1/2, t)

]
= − log

(
1 +

|ξ|2
4

)uniformly for |ξ| ≤ R.Proof. To get started, de�ne
G(ξ) = − log

(
1 +

|ξ|2
4

)and
φ(y, s) = G

( y√
s

)
+
n

2s
.Then G(ξ) = −|ξ|2/4 + R(ξ), where |R(ξ)| ≤ C|ξ|4. Therefore we have that

‖w̃(·, s) −φ(·, s)‖L2
ρ

≤ o
(1
s

)
+
{∫

Rn

∣∣∣− 1

4s
(|y|2 − 2n) +

|y|2
4s

− R
( y√

s

)
− n

2s

∣∣∣
2

e−|y|2/4dy
}1/2

≤ o
(1
s

)
+ C

{∫

Rn

|y|8
s4
e−|y|2/4dy

}1/2

= o
(1
s

)
.De�ning W = w̃ − φ and using the equations

φs(y, s) = − ξ

2s
· ∇G(ξ)− n

2s2and
−ξ
2
· ∇G(ξ) = 1− eG,we get that W satis�es(3.19) Ws = AW + g +

ξ

2s
· ∇G+

n

2s2
+ L,where

g = h+ 1 + φ− eφ and L =
∆G

s
+ eφ − eG,and h is as in (3.8). Multiplying the above equation (3.19) by sgn(W ), de�ning Z = |W |and using Kato's inequality, we get that(3.20) Zs ≤ AZ + sgn(W )g + sgn(W )

( ξ
2s

· ∇G+
n

2s2

)
+ sgn(W )L

≤ AZ + sgn(W )g + C
( |ξ|2
s

+
1

s2

)
+ sgn(W )L.13



Next, we want to get estimates for the terms in the right hand side of (3.20). Beause
|∆G(ξ)−∆G(0)| ≤ C|ξ|2, we get that

|L(y, s)| =
∣∣∣∆G(ξ)−∆G(0)

s
+ eG+n/2s − eG − n

2s

∣∣∣

≤ C
|ξ|2
s

+
1

1 + |ξ|2/4
( n
2s

+O(s−2)− n

2s
(1 + |ξ|2/4)

)
≤ C

|ξ|2
s

+O
( 1

s2

)
.To estimate the funtion g, onsider �rst the subset |y| ≤ es/2R1. Then (T − t)f = e ewand we have by the mean value theorem that for some Θ ∈ (0,W )sgn(W )g = sgn(W )

(
eφ+W −W − eφ

)
= sgn(W )

(
eφ + (eφ − 1)W + 1

2
eφ+ΘW 2 − eφ

)

=
(
− |ξ|2/4

1 + |ξ|2/4 +
en/2s − 1

1 + |ξ|2/4
)
Z +

1

2
eφ+ΘZ2 ≤ n

2s
Z + CZ2,sine learly eφ+Θ ≤ eK . Notie that we also have

|g| =
∣∣eφ + (eφ+Θ − 1)W − eφ

∣∣ ≤ CZ.Assume then that |y| ∈ (es/2R1, e
s/2R2). Beause (T − t)f(x, t) and eφ are uniformlybounded, we have thatsgn(W )g = sgn(W )(T − t)f(x, t)− Z + sgn(W )eφ ≤ C ≤ C(Z2 + 1).Clearly, we also have that sgn(W )g ≤ C(Z + 1).Finally, for |y| ≥ es/2R2, we have that (T − t)f(x, t) = 1 and w̃ = −1. Therefore

W ≥ −1 + log (1 + esR2
2/4s)− n/2s > 1 for s large enough, and we getsgn(W )g ≤ C ≤ CZ ≤ CZ2.Colleting the above results, we know that Z satis�es the di�erential inequalities(3.21) Zs ≤ AZ + C

( |y|2 + 1

s2
+ Z2 +

Z

s
+ χ

) in [s0,∞)×Rnand(3.22) Zs ≤ AZ + C
( |y|2 + 1

s2
+ Z + χ

) in [s0,∞)× Rn,where χ = χ(y, s) = 1 if |y| ∈ (es/2R1, e
s/2R2) and χ = 0 otherwise, and s0 is largeenough.The proof an now be �nished by using the above inequalities and proeeding as in[30, Proposition 2.3℄. �In what follows, we shall handle the ase where the onvergene (3.16) is exponential.Therefore we shall assume that(3.23) ‖w̃(·, s)‖ = o(e−ǫs)for some ǫ > 0. The proof of the following proposition is the same as in [29℄.14



Proposition 3.5. Assume that (3.23) holds. Then either there existsm ≥ 3 and onstants
Cα, not all equal to zero, suh that

w̃(y, s) = −e(1−m/2)s
∑

|α|=m

CαHα(y) + o(e(1−m/2)s) in L2
ρ(Rn),or w̃ is the trivial solution w̃(·, s) = 0.Notie that the term∑|α|=mCαHα has to be radially symmetri, and so m is atuallyeven. Sine Hα(y) = Πn

i=1Hαi
(yi) and Hαi

(yi) =
∑αi/2

k=0 c2k(αi)y
2k
i for some onstants

ck(αi) and αi even, we have that(3.24) |Hα(y)− cαy
α| ≤ C(1 + |y|m−2),where cα =

∑n
i=1 cαi

(αi). Moreover, it has to hold that ∑|α|=mCαHα → ∞ as |y| → ∞and therefore ∑|α|=m aαy
α > 0 for every y 6= 0, where aα = Cαcα.Following [29℄, we shall next prove an analogue of Proposition 3.4 and extend theonvergene to larger sets.Proposition 3.6. Let w̃ and m ≥ 4 be as in Proposition 3.5. Then(3.25) lim

t→T

[
log(T − t) + ũ(ξ(T − t)1/m, t)

]
= − log

(
1 +

∑

|α|=m

aαξ
α
)uniformly for |ξ| ≤ R, where the onstants aα = Cαcα are as above.Proof. De�ne

G(ξ) = − log
(
1 +

∑

|α|=m

aαξ
α
)
, ξ = e(1/m−1/2)sy,and

φ(y, s) = G(ξ)− e(1−m/2)s
∑

|α|=m

Cα[Hα(y)− cαy
α] = G− L.Then it is easily seen that

‖w̃ − φ‖L2
ρ
= o(e(1−m/2)s).Sine

ξ · ∇G
m

= eG − 1,we get, by de�ning W = w̃ − φ, that
Ws = ∆W − y

2
∇W +W + h− φs +∆φ− y

2
∇φ+ φ

= AW + h−
{(

1

m
− 1

2

)
ξ∇ξG−

(
1− m

2

)
L

}

+
{
e(2/m−1)s∆ξG−∆L

}
−
{ξ
2
∇ξG− y

2
∇L
}
+G− L

= AW + (T − t)f − w̃ − eG +G + e(2/m−1)s∆ξG−∆L+
y

2
∇L− m

2
L.15



Using now the fats that ∆Hα− (y/2)∇Hα = −(|α|/2)Hα and (y/2)∇yα = (|α|/2)yα, weget that
∆L− y

2
∇L = −m

2
L− e(1−m/2)s

∑

|α|=m

aα∆y
α.Writing then Z = |W | and

∆G = −
∑

|α|=m aα∆ξξ
α

1 +
∑

|α|=m aαξ
α
+

(∑
|α|=m aααiξ

α−1i

1 +
∑

|α|=m aαξ
α

)2

= (∆G)1 + (∆G)2,where we use the notation α− 1i = (α1, . . . , αi − 1, . . . , αn), we have that
Zs ≤ AZ + sgn(W )K1 + |K2|+ |e( 2

m
−1)s(∆G)2|,where

K1 = (T − t)f − w̃ − eG +Gand
K2 = e(2/m−1)s(∆G)1 + e(1−m/2)s

∑

|α|=m

aα∆y
α.Clearly, it holds that

e(2/m−1)s(∆G)2 = e(2/m−1)s

(∑
|α|=m aααie

(1/m−1/2)(m−1)syα−1i

1 +
∑

|α|=m aαξ
α

)2

≤ e2(1−m/2)s|y|2m−2.Estimating then K2 using the equality e(2/m−1)s∆ξξ
α = e(1−m/2)s∆yα, we obtain

|K2| = e(1−m/2)s
n∑

i=1

∣∣∣∣∣

(∑
|α|=m aαξ

α
)(∑

|α|=m aα∆y
α
)

1 +
∑

|α|=m aαξ
α

∣∣∣∣∣

= e2(1−m/2)s

n∑

i=1

∣∣∣∣∣

(∑
|α|=m aαy

α
)(∑

|α|=m aααi(αi − 1)yα−2i
)

1 +
∑

|α|=m aαξ
α

∣∣∣∣∣

≤ Ce2(1−m/2)s(1 + |y|2m−2).To give some estimates for K1, de�ne Ω1(s) = {y; |y|m−2e(1−m/2)s ≤ R1} and Ω2(s) =

{y; |y|me(1−m/2)s ≤ R̃}, where R̃ is large enough suh that
eCL(1+R1)

1 +
∑

|α=m aαξ
α
< 1for every |ξ|m = |y|me(1−m

2
)s > R̃, and CL = C

∑
|α|=mCα with C as in (3.24). Then

Ω2(s) ⊂ Ω1(s) for s large enough, and we have that
|L| ≤ CLe

(1−m/2)s(1 + |y|m−2) ≤ CL(1 +R1) for y ∈ Ω1(s),16



and
|L| ≤ CLe

(2/m−1)s(1 + [e(1/m−1/2)s|y|]m−2) ≤ CLe
(2/m−1)s(1 + R̃(m−2)/m) ≤ C

sfor y ∈ Ω2(s), and
eφ =

e−L

1 +
∑

|α|=m aαξ
α
< 1 for y ∈ Ω1(s) \ Ω2(s).Consider y ∈ Ω1(s). In this domain, we have that

K1 = e ew− w̃−eG+G = eW+φ−W −φ−eG+G = (eφ−1)W +
1

2
eφ+ΘW 2+eG−L+L−eGfor some Θ ∈ (0,W ). Nowsgn(W )(eφ − 1)W = −

∑
|α|=m aαξ

α

1 +
∑

|α|=m aαξ
α
Z +

e−L − 1

1 +
∑

|α|=m aαξ
α
Z <

C

s
Zfor y ∈ Ω2(s) and sgn(W )(eφ − 1)W ≤ 0 ≤ C

s
Zfor y ∈ Ω1(s) \ Ω2(s).For Θ ∈ (0, L) and y ∈ Ω1(s), we also have the estimate eG−Θ ≤ eG+|L| ≤ C, and so

|eG−L +L− eG| =
∣∣∣∣(1− eG)L+

1

2
eG−ΘL2

∣∣∣∣

≤
∑

|α|=m aαξ
α

1 +
∑

|α|=m aαξ
α
CLe

(1−m/2)s(1 + |y|m−2) + Ce2(1−m/2)s(1 + |y|m−2)2

≤ Ce2(1−m/2)s(1 + |y|2m−2).Hene we havesgn(W )K1 ≤
C

s
Z + CZ2 + Ce2(1−

m
2
)s(1 + |y|2m−2) for y ∈ Ω1(s).Consider then y ∈ {|y| ≤ es/2R2} \ Ω1(s). It yields that |ξ| ∈ (es/mR

1/(m−2
1 , es/mR2)and we an easily estimate

|K1| =
∣∣∣(T − t)f + s− ũ(x, t)− s− log

(
e−s +

∑

|α|=m

aα(e
−s/mξ)α

)
− eG

∣∣∣ ≤ C.Finally, let y ∈ Rn \ {|y| ≥ es/2R2}. In this domain we have that (T − t)f = 1 and
w̃ = −1 and therefore

|K1| = |2− eG +G| ≤ 1 + |eG − 1−G| ≤ 1 +
1

2
eΘG217



for some Θ ∈ (0, G). Sine |L| ≤ CLe
(1−m/2)s(1 + |y|m−2) and G = w̃ + L−W , we get

G2 ≤ C(W 2 + (L− 1)2) ≤ C(W 2 + L2 + 1) ≤ C
(
W 2 + 1 + e2(1−m/2)s(1 + |y|2m−2)

)
.Altogether we have obtained that

Zs ≤ AZ +
C

s
Z + CZ2 + Ce2(1−m/2)s(1 + |y|2m−2) + Cχ,where χ = χ(y, s) = 1, for |y| ≥ es/2R2 and χ = 0 otherwise. Now we an �nish the proofexatly as in [30℄. �In what follows, our aim is to desribe the asymptoti blow-up pro�le of u. In otherwords, we want to show that either (3.2) or (3.4) holds. To that end, de�ne for τ ∈ [0, T ]

ψτ (x, t) = log(T − τ) + ũ(λ(τ)ξ + x
√
T − τ , τ + (T − τ)t),where λ(τ) = √

T − τ | log(T − τ)|1/2 if the ase as in Proposition 3.4 ours and λ(τ) =
(T − τ)1/m if the onvergene of u is as in Proposition 3.6. Here ξ is �xed, x ∈ Rn and
t ∈ [0, 1]. Moreover, let

φτ(y, s) = log(1− t) + ψτ (x, t),where y = (1− t)−1/2x and s = − log(1− t). Then we have that
(ψτ )t = ∆ψτ + (T − τ)f, x ∈ Rn, t ∈ (0, 1)and
(φτ)s = ∆φτ −

y

2
· ∇φτ + hτ , y ∈ Rn, s > 0,where hτ (y, s) = (T − τ)(1 − t)f(λ(τ)ξ + x

√
T − τ , τ + (T − τ)t) − 1. By the abovePropositions 3.4 and 3.6, we know that

φτ (y, 0) = ψτ (x, 0) = log(T − τ) + ũ(λ(τ)ξ + x
√
T − τ , τ)

= − log


1 +

∑

|α|=m

aα

(
ξ +

x
√
T − τ

λ(τ)

)α

+ γτ (x),where m ≥ 2 and ∑|α|=m aαξ

α = |ξ|2/4 if (3.18) holds, and otherwise m ≥ 3 and theonstants aα are as in Proposition 3.6. Above |γτ (x)| → 0 uniformly for |x| ≤ C(T −
τ)−1/2λ(τ) as τ → T . Therefore

lim
τ→T

ψτ (x, 0) = − log


1 +

∑

|α|=m

aαξ
α


 ,pointwise for every x ∈ Rn. Beause of Propositions 3.4 and 3.6, we also know that

|ψτ (0, 0)| ≤ C as τ → T and therefore Proposition 2.3 yields that ψτ (x, 0) ≤ C +18



|∇ψτ ||x| ≤ C(1 + |x|) ∈ L2
ρ(Rn). By the dominated onvergene theorem we then obtainthat(3.26) wwwψτ (·, 0) + log

(
1 +

∑

|α|=m

aαξ
α
)www

L2
ρ

≤ γτ → 0as τ → T .De�ne also
φ̃(s) = log(1− t)− log

(
1− t+

∑

|α|=m

aαξ
α
)
, Wτ = φτ − φ̃ and Zτ = |Wτ |,where m ≥ 2. Then Wτ veri�es the equation(3.27) (Wτ )s = ∆Wτ −

y

2
· ∇Wτ + hτ + 1− e

eφ = ÃWτ + e
eφWτ + fτ ,where Ã = ∆− (y/2) · ∇ and

fτ (y, s) = (T − τ)(1− t)f
(
λ(τ)ξ + x

√
T − τ , τ + (T − τ) t

)
− e

eφWτ − e
eφ,and so Zτ satis�es respetively the equation(3.28) (Zτ)s ≤ ÃZτ + e

eφZτ + |fτ |and by (3.26) also(3.29) ‖Zτ(·, 0)‖L2
ρ
≤ γτ → 0 as τ → T.Now, for |λ(τ)ξ + x

√
T − τ | ≤ R1, we have fτ = eφτ − e

eφWτ − e
eφ and so we have forsome Θτ = Θτ (y, s) ∈ [0,Wτ (y, s)] that(3.30) fτ = e

eφ(eWτ −Wτ − 1) =
1

2
e

eφ+ΘτW 2
τ .Clearly, φ̃+Θτ ≤ φ̃+max{0,Wτ} ≤ max{φ̃, φτ} ≤ K and so the inequality(3.31) |fτ | ≤ CZτholds as well.For |λ(τ)ξ + x

√
T − τ | > R1, we have that Wτ ≤ −1, at least for τ lose to T , andtherefore the uniform bound (3.7) gives us that |fτ | ≤ C ≤ CZτ ≤ CZ2

τ . Thus theinequality (3.31) holds for every s > 0, y ∈ Rn and τ lose to T with some onstant Cdepending only on the onstant appearing in Theorem 1.1 and the hoie of ζ .In the forthoming statements and proofs C denotes again a generi onstant, possiblyhanging from line to line, depending only on the solution u, our hoie of ζ and ξ ∈ Rnand the dimension n. 19



Lemma 3.7. Let fτ be as above and assume that sups≤s ‖Zτ (·, s)‖ ≤ ǫτ , where ǫτ → 0 as
τ → T . Then there exist a onstant C ′ > 0 suh that

‖fτ (·, s)‖L2
ρ
≤ C ′e−sǫτfor every s ≤ s.Proof. We will �rst estimate the part of the norm where |y| is large. Reall that, usingthe regularizing e�et of the semigroup together with the inequalities (3.28) and (3.31),we know that there exists a onstant R > 0 depending only on p ≥ 1 and the dimensionof the spae suh that(3.32) ‖Zτ (·, s)‖Lp

ρ
≤ ‖eCRS̃(R)Zτ (·, s− R)‖Lp

ρ
≤ C‖Zτ(·, s−R)‖L2

ρ
.Then de�ne Ω1(s, τ) = {y ∈ Rn ; |y| > es/2λ(τ)|ξ|

2
√
T−τ

} and use the inequality (3.31) togetherwith Hölder's inequality and the above inequality (3.32) to obtain
∫

Ω1(s,τ)

|fτ (y, s)|2e−|y|2/4dy

≤
{∫

Ω1(s,τ)

|fτ (y, s)|4e−|y|2/4dy

}1/2{∫

|y|≥es/2
e−|y|2/4dy

}1/2

≤ C‖Zτ (·, s)‖2L4
ρ
e−es ≤ Ce−2s‖Zτ (·, s− R)‖2L2

ρ
≤ Ce−2sǫ2τfor s ≤ s and τ lose to T . Here we used the fat that

∫

|y|≥R

e−|y|2dy ≤ Ce−R2

.In what follows, we onsider the part of the integral where y ∈ Ω2(s, τ) = Rn \Ω1(s, τ)and notie that then fτ = e
eφ(eWτ −1−Wτ ) = e

eφ+ΘτZ2
τ for Θτ ∈ (0,Wτ) and τ su�ientlylose to T . By taking τ lose to T and y in Ω2(s, τ), we have that |λ(τ)ξ +√

T − τx| >
1
2
λ(τ)|ξ| and (T − τ)| log(λ(τ))/λ(τ)2 ≤ 1. By using the estimate (3.5), we then get
Wτ (y, s) = log(T − τ) + ũ(λ(τ)ξ +

√
T − τx, τ + (T − τ)t) + log

(
1− t+

∑

|α|=m

aαξ
α
)

≤ log
(4(T − τ)| log(λ(τ)|ξ|/2)|

(λ(τ)|ξ|)2
)
+ C ≤ C.Therefore fτ ≤ e

eφ+CZ2
τ and

∫

Ω2(s,τ)

|fτ (y, s)|2e−|y|2/4dy ≤ e2(
eφ+C)

∫

Ω2(s,τ)

|Zτ(y, s)|4e−|y|2/4dy

≤ Ce−2s‖Z(·, s)2‖2 ≤ C(R)e−2s‖Z(·, s− R)‖4 ≤ Ce−2sǫ4τ ,20



whih �nishes the proof. �Now we are ready to prove that the norm of Zτ stays small forever if it is initiallysmall enough, using an idea from [29℄. This will then allow us to pass to the limit as
s→ ∞ and omplete the proof onerning the blow-up pro�le.Proposition 3.8. Let Zτ be as above. Then there exists a onstant C > 0 independentof s suh that

‖Zτ(·, s)‖L2
ρ
≤ Cγτand(3.33) sup

|y|≤R

Z(y, s) ≤ Cγτ .Proof. Let τ be lose to T and s0 be large enough so that all the above estimates hold.Let now {S̃(s)}s be the semigroup generated by Ã. It is lear that beause of (3.28),(3.29) and (3.31), we have that(3.34) ‖Zτ (·, s0)‖L2
ρ
≤ eCs0‖S̃(s0)Zτ(·, 0)‖L2

ρ
≤ eCs0γτfor some onstant C > 0. De�ne

s = sup{s ; ‖Zτ (·, s)‖L2
ρ
≤ 4eCs0γτ}and assume that s <∞. Take then s0 large enough so that both(3.35) 2C ′e−s0 <

1

4
and e−s0 +

∑
|α|=m aαξ

α

∑
|α|=m aαξ

α
< 2,where C ′ is the onstant appearing in Lemma 3.7.Using Lemma 3.7, the previous inequalities (3.34) and (3.35) together with the de�-nition of s and the variation of onstants formula, we obtain

‖Z(·, s)‖L2
ρ

≤
(
‖S̃(s− s0)Zτ (·, s0)‖L2

ρ
+

∫ s

s0

‖S̃(s− t)fτ (·, t)‖L2
ρ
dt

)
exp

(∫ s

s0

e
eφ(t)dt

)

≤
(
‖Zτ (·, s0)‖L2

ρ
+ C ′

∫ s

s0

e−t
(
4eCs0γτ

)
dt

)
e−s0 +

∑
|α|=m aαξ

α

e−s +
∑

|α|=m aαξ
α

≤ 2
(
eCs0γτ + C ′(e−s0 − e−s)4eCs0γτ

)
<

3

4
· 4eCs0γτ ,whih ontradits the hoie of s. Therefore it has to hold that s = ∞, whih yields the�rst part of the laim. 21



Beause of the estimate (3.31), we obtain also the seond part of the laim by
sup
|y|≤R

Zτ (y, s) ≤ sup
|y|≤R

|eCLS̃(L)Zτ (y, s− L)|

≤ C sup
|y|≤R

eCL

(1− e−L)n/2

∫

Rn

exp
(
− (ye−L/2 − λ)2

4(1− e−L)

)
Zτ (λ, s− L)dλ

≤ C sup
|y|≤R

{∫

Rn

exp
(
− (ye−L/2 − λ)2

2(1− e−L)

)
e|λ|

2/4dλ

}1/2

·
{∫

Rn

Zτ (λ, s− L)2e−|λ|2/4
}1/2

≤ C‖Zτ(·, s− L)‖L2
ρ
≤ Cγτ ,and the proof is omplete. �Proof of Theorem 3.1. Passing to the limit as s → ∞ in (3.33), whih orresponds totaking t = 1 and x = 0, we have

log(T − τ) + ũ(λ(τ), T ) + log


∑

|α|=m

aαξ
α


 ≤ Cγτ → 0as τ → ∞. Set x = λ(τ)ξ and follow the estimates in [2℄, for instane, to notie that theabove onvergene implies that

lim
|x|→0

[
u(x, T ) + 2 log |x| − log | log |x|| − log 8

]
= 0if (3.18) holds, and

lim
|x|→0


u(x, T ) +m log |x|+ log


∑

|α|=m

aαξ̂
α




 = 0if (3.25) holds, where ξ̂ = x/|x|. The latter onvergene is however impossible beause ofthe estimate (3.5) and so we have the laim. �Proof of Theorem 1.2. We shall �rst prove that if w̃(·, sn) → ϕ(·) uniformly on ompatsets for some sequene sn → ∞, then ϕ is a stationary solution of the orrespondingresaled equation, that is, it satis�es (1.4) with 0 ≤ µ < ∞. The argument is similar tothat in [13℄ (see also [18℄).Beause of the inequality (3.9) and paraboli regularization, we know that w̃ is on-tained in a ompat subset of C2,1(BM(0) × [s0,∞)) with uniformly Hölder ontinuousderivatives, where M > 0 is arbitrary. Using then the inequality

∫ s

s0

∫

B
R1e

t/2(0)

|w̃s(y, t)|2e−|y|2/4dy dt ≤ E[w](0)− E[w](s),22



where
E[w](s) :=

∫ R1es/2

0

(
1

2
w2

y − ew + w

)
e−|y|2/4 dyis the energy funtional orresponding to the resaled equation, and proving that E[w](s)is bounded from below, we obtain that w̃s(y, s) onverges to zero uniformly on ompatsets and hene ϕ is a stationary solution. Clearly ϕη(0) = 0 and sine w̃(0, s) ≥ 0 by(2.3), we also have that µ ≥ 0.Following then [25℄, it is straightforward to show that suh ϕ exists and w̃(·, s) → ϕ(·)uniformly on ompat sets for s→ ∞. In the proof one �rst argues that the set of possible

ϕ an be written as
ω(w̃) =

⋂

s

⋃

σ≥s

{w̃(·, s)}in a suitable topology. Then it is fairly simple to see that the above set is nonempty,ompat and onneted. Taking then ϕ as above and using the zero number property, wean see that w̃(0, s) − ϕ(0) never hanges sign for s large enough. Assuming then that
ω(w̃) ontains at least three solutions of (1.4), denoted by ψi, i ∈ {1, 2, 3}, it has to holdthat w̃(0, s) ∈ (ψi(0), ψi+1(0)) for i equal to 1 or 2 and s large enough, whih ontraditsthe fat that w̃(·, s) → ψj(·), for j /∈ {i, i+ 1}.Theorem 3.1 enables us to onlude that µ > 0 by applying the following proposition[28, Theorem 3.6℄.Proposition 3.9. There exists a onstant C > 0 suh that there is no nonnegative L1-solution of (1.1) with f(u) = eu and

u0(|x|) ≥ −2 log |x|+ log(2(n− 2)) + Cfor |x| lose to 0.Namely, if ϕ ≡ 0 then u annot be ontinued beyond t = T as an L1-solution.It is known, see [3℄, that if ϕ is a nontrivial solution of (1.4), then either ϕ(η) =

−2 log η + C + o(1) or ϕ(η) = −Cη−3eη
2/4 + o(1) as η → ∞. Sine (3.9) holds, ϕ annothave the exponential deay at in�nity and the laim is proved. �4 Pro�le of L1-onnetionsIn this setion we onsider the problem(4.1) 




ut = urr +
n− 1

r
ur + λeu, r ∈ (0, 1), t > 0,

ur(0, t) = u(1, t) = 0, t > 0,

u(r, 0) = u0(r) ≥ 0, r ∈ [0, 1],23



where λ > 0 and n ∈ [3, 9].We �rst reall some known properties of equilibria of (4.1). The stationary problemorresponding to (4.1) is:(4.2) 



φrr +
n− 1

r
φr + λeφ = 0, r ∈ (0, 1),

φr(0) = 0, φ(1) = 0.Proposition 4.1 ([17, 21℄, see Figure 1). Denote by S the solution set of the parameterizedproblem (4.2):
S = {(φ, λ) : λ ∈ R+ and φ is a solution of (4.2)}.Then there exists a smooth urve

s 7→ (φ(s), λ(s)) : R+ → C([0, 1])×R+suh that S = {(φ(s), λ(s)) ; s > 0} and that
sup

x∈B1(0)

φ(s)(x) = φ(s)(0) = s.Moreover, the following holds:(i) lims→0 λ(s) = 0, lims→∞ λ(s) = λ∞ := 2(n− 2).(ii) The set of all zeros of λ′(·) is given by a sequene 0 < s1 < s2 < s3 < · · · → ∞ andthe ritial values λj = λ(sj), j = 1, 2, 3, . . . , satisfy
λ1 > λ3 > · · · > λ2j+1 ց λ∞, λ2 < λ4 < · · · < λ2j+2 ր λ∞.(iii) For eah λ ≤ λ1 de�ne

φλ
i = φ(s̃i), i = 0, 1, . . . ,where s̃0 < s̃1 < · · · is the sequene of all points s with λ(s) = λ. This sequene is�nite if λ 6= λ∞ and in�nite if λ = λ∞. In the latter ase we have

φλ
i (r) → φλ

∞(r) := log r
2(n− 2)

λr2
in C1

loc((0, 1]).For the number of intersetions of two equilibria and of equilibria with φλ
∞ the followingholds.Proposition 4.2.(i) If λ < λ1 and k > j are suh that φλ

k and φλ
j are both de�ned, then φλ

k − φλ
j hasexatly j + 1 zeros in [0, 1], all of them simple.24
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Figure 1.(ii) If λ = λ∞ and j ≥ 0, then φλ
∞ − φλ

j has j + 1 zeros in [0, 1].(iii) If λ < λ∞ and j ≥ 0 are suh that φλ
j is de�ned, then φλ

∞ − φλ
j has j + 1 zeros in

[0, 1] when j is odd, and j zeros in [0, 1] when j is even.(iv) If λ∞ < λ ≤ λ1 and j ≥ 0 are suh that φλ
j is de�ned, then φλ

∞ − φλ
j has j zeros in

[0, 1] when j is odd, and j + 1 zeros in [0, 1] when j is even.All of the zeros of φλ
∞ − φλ

j are simple.Proof. For the proof of (i) we refer to [14℄. From (i) and Proposition 4.1 (iii) it follows that(ii) holds. To prove (iii) and (iv) one an then use the bifuration diagram (Figure 1), thesimpliity of zeros and ontinuation of φλ
j , taking into aount that the zero of φλ

∞ − φλ
jat r = 1, λ = λ∞, either moves inside or disappears when λ 6= λ∞ and λ is lose to λ∞.

� Next we reall the existene of a speial blow-up solution whih an be ontinuedglobally as an L1-solution.Proposition 4.3. For any λ ∈ (λ2, λ3] and T > 0 there is u0 suh that the solution u(·, t)of (4.1) has the following properties:(i) u(·, t) blows up at t = T .(ii) u(·, t) is a global L1-solution.(iii) u(·, t) is de�ned (as a lassial solution of (4.1)) on the interval (−∞, T ) and
u(·, t) → φλ

2 in C1([0, 1]) as t→ −∞.25



(iv) u(·, t) is a lassial solution of (4.1) on the interval (T,∞) and u(·, t) → φλ
0 in

C1([0, 1]) as t→ ∞.(v) There is a sequene {ui} of lassial onnetions from φλ
2 to φλ

0 suh that un(r, t) ր
u(r, t) pointwise for (r, t) ∈ [0, 1] × R. Here a lassial onnetion from φλ

2 to φλ
0is a lassial solution of (4.1) on the interval (−∞,∞) suh that u(·, t) → φλ

2 in
C1([0, 1]) as t→ −∞, and u(·, t) → φλ

0 in C1([0, 1]) as t→ ∞.We all the solution u an L1-onnetion from φλ
2 to φλ

0 .For the proofs see Theorem 3.4 in [14℄ and Setion 6 in [13℄.Theorem 4.4. Let λ ∈ (λ2, λ3]. Suppose u is an L1-onnetion from φλ
2 to φλ

0 as inProposition 4.3. Then
lim
t→T

[
log(T − t) + u(η

√
T − t, t)

]
= ϕ0(η), η ∈ [0,∞),where ϕ0 satis�es





ϕηη +

(
n− 1

η
− η

2

)
ϕη + λeϕ − 1 = 0, η > 0,

ϕ(0) = µ0, ϕη(0) = 0for some µ0 > 0 and
lim
η→∞

(ϕ0(η)− φλ
∞(η)) = −c0for some c0 > 0. Moreover, the equation

ϕ0(η)− φλ
∞(η) = 0has two roots.For the proof we shall need the following lemma.Lemma 4.5 ([27℄). Let λ∞ < λ ≤ λ3. Denote the three zeros of φλ

∞−φλ
2 by 0 < r1 < r2 <

r3 < 1. Let u be an L1-onnetion from φλ
2 to φλ

0 as in Proposition 4.3. Then u(·, t)− φλ
∞has at most two zeros in (0, r1) for t < T .Proof. We use the notation (2.4). Sine u(·, t) → φλ

2 in C1 as t → −∞ and Z(0,1)(φ
λ
∞ −

φλ
2) = 3, it follows that there is t0 < 0 suh that Z(0,1)(φ

λ
∞ − u(·, t)) = 3 for t < t0.Therefore, Z(0,1)(φ

λ
∞ − u(·, t)) ≤ 3 for t < T .We now proeed by ontradition. Suppose there is t1 < T suh that Z(0,r1)(φ

λ
∞ −

u(·, t1)) = 3. Then there is a positive integer i and a lassial onnetion ui from φλ
2 to

φλ
0 (f. Proposition 4.3 (v)) suh that Z(0,r1)(φ

λ
∞ − ui(·, t1)) = 3. This means that(4.3) ui(r, t1) > φλ

∞(r), r ∈ [r1, 1],26



beause Z(0,1)(φ
λ
∞ − ui(·, t)) ≤ 3 for all t ∈ R.We laim that then(4.4) Z(r3,1)(φ

λ
2 − ui(·, t1)) = 1.Indeed, otherwise either(4.5) Z[0,1](φ
λ
2 − ui(·, t1)) > 2or(4.6) Z[0,1)(φ
λ
2 − ui(·, t1)) = 0.Sine ui(·, t1) belongs to the unstable manifold of φλ

2 , we must have (f. Theorem 2.1 in[6℄)(4.7) Z[0,1](φ
λ
2 − ui(·, t)) ≤ 2, t ∈ R.(We remark here that Theorem 2.1 in [6℄ onerns the zero number on the unstablemanifold of an equilibrium of a semilinear paraboli equation in one spae-dimension.But this result an be extended in a straightforward way to radially symmetri solutionsin higher spae-dimension using Theorem 2.1 from [8℄.) It follows from (4.7) that (4.5)annot our. On the other hand, (4.6) would imply that ui blows up in a �nite time (f.[22℄). Hene (4.4) holds. Therefore, we obtain that(4.8) ui(r, t1) > φλ

2(r), r ∈ [0, r3].We next show that(4.9) ui(r, t) > max{φλ
2(r), φ

λ
∞(r)}, (r, t) ∈ [r1, r3]× [t1,∞).From (4.3) and (4.8) we have

ui(r, t1) > max{φλ
2(r), φ

λ
∞(r)}, r ∈ [r1, r3].If (4.9) does not hold, then there is t2 > t1 suh that

ui(r, t) > max{φλ
2(r), φ

λ
∞(r)}, (r, t) ∈ [r1, r3]× [t1, t2),and either(4.10) ui(r1, t2) = φλ

∞(r1)(= φλ
2(r1)),or(4.11) ui(r3, t2) = φλ

∞(r3)(= φλ
2(r3)).27



Note that Z(r3,1)(φ
λ
2 − ui(·, t)) = 1 for t ∈ [t1, t2], so (4.10) is impossible beause then

Z[0,1](φ
λ
2 − ui(·, t2)) = 3.On the other hand, for t ∈ [t1, t2] all intersetions of φ∞ and ui(·, t) are ontained in [0, r1].Thus (4.11) annot our.Sine φλ

2 > φλ
0 in [r1, r3], (4.9) yields a ontradition with the onvergene of ui(·, t) to

φλ
0 as t→ ∞. �Proof of Theorem 4.4. Consider �rst the ase λ2 < λ ≤ λ∞. Then Z(0,1)(φ

λ
∞ − φλ

2) = 2and by the zero number diminishing property, it has to hold that Z[0,R](u(·, t)− φλ
∞) ≤ 2for every t ∈ (−∞, T ). After resaling, we then get that Z[0,es/2](w̃(·, s) − φλ

∞) ≤ 2 forevery s ∈ (−∞,∞). Theorem 1.2 now states that w̃(·, s) → ϕ uniformly on ompat setsin y, where ϕ has the deay (1.5) and intersets φλ
∞ at most twie. It follows then from[3℄ that ϕ has to interset φλ

∞ exatly twie.If λ∞ < λ ≤ λ3, then Z(0,1)(φ
λ
∞ − φλ

2) = 3, but Lemma 4.5 yields that Z(0,r1)(φ
λ
∞ −

u(·, t)) ≤ 2 for t < T and we an proeed as before. �The existene of L1-onnetions between two equilibria φλ
k and φλ

j was studied in[11, 12℄, and it was shown there that a singular L1-onnetion from φλ
k to φλ

j exists if andonly if k ≥ j + 2. By Theorem 1.1 any suh L1-onnetion blows up with the selfsimilarrate and by Theorem 1.2 it onverges (after resaling) to a nononstant selfsimilar solution.It would be interesting to determine how this limit selfsimilar solution depends on k and
j. Theorem 4.4 answers this question only for k = 2 and j = 0. To prove a more generalresult one has to be able to ontrol the number of intersetions with φλ
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