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Nonconstant selfsimilar blow-up profile

for the exponential reaction-diffusion equation

MAREK FILA AND AAPPO PULKKINEN

Abstract

We study the blow-up profile of radial solutions of a semilinear heat equation
with an exponential source term. Our main aim is to show that solutions which can
be continued beyond blow-up possess a nonconstant selfsimilar blow-up profile. For

some particular solutions we determine this profile precisely.

1 Introduction

We consider the following problem
up = Au+ f(u), reQ, t>0,
(1.1) u=0, x e, t>0,
u(z,0) =up(z) >0, z€Q,
where Q = B(R) = {# € R"; |z] < R}. Throughout the paper, we assume that the

initial condition ug € C'(€) is radially symmetric. In the first part of the paper, we shall
assume that
(1.2) fec f(-)>0in[0,00) and lim e “f(u) = 1.

uU—00

We shall study solutions that blow up in finite time, by which we mean that there is
T =T(up) € (0,00) such that

li -, )=o) = ox.

Our first result is the following
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Theorem 1.1. Let n € [3,9]. Assume that (1.2) holds and that u is a solution of (1.1)
which blows up in a finite time T and satisfies u(0,t) = mazqu(-,t) for all t close to T.
Then there exists a constant K < oo such that

(1.3) log(T — &) + () [~y < K for allt € [0,7).

The blow-up rate (1.3) for solutions of (1.1) with f(u) = e* was only known before
under the assumption that w, > 0, see [16]. In this paper, we are interested mainly
in solutions which can be continued beyond blow-up as L'-solutions (see the definition
below), and such solutions cannot be nondecreasing in time, since w; > 0 implies complete
blow-up, see [1].

To formulate our next result we introduce the definition of L'-solutions of problem

(1.1).

Definition 1.1. By an L!'-solution of (1.1) on [0, 7] we mean a function v € C([0,T];
L'(Q2)) such that f(u) € L'(Q7), Q7 :=Q x (0,7) and the equality

to ta
/[u\I/]Z dx —/ /u\Ift dx dt :/ /(uA\I! + f(w)V)dzdt
Q ty Q t1 Q

holds for any 0 < t; <ty < T and ¥ € C*(Q7), ¥ = 0 on 992 x [0,T]. By a global
L*-solution we mean an L'-solution which exists on [0, 7] for every T > 0.

The existence of global unbounded L'-solutions of (1.1) with f(u) = Xe*, n > 3,
was shown in [23] for A > 0 small enough. If 3 < n <9, then these global unbounded
L*-solutions blow up in finite time, see [14].

Theorem 1.2. Let f(u) = e*, n € [3,9], and assume that the initial function ug is

radially nonincreasing. Suppose u is an L'-solution of (1.1) on [0, T] which blows up at
t=T <T. Then

lim [log(T —t) + u(yvVT —t,t)] = ¢(ly),  ye€R",
t—T

where @ satisfies

(P Y e —1—0 >0
(1'4) P 0 5 ®n =y, n ,
©(0) = p, ¢y(0) =0,
and
(1.5) lim [p(n) + 2logn] = C,

7—00

for some 1 >0 and C,, € R.



In the case n = 1,2, there is no solution of (1.4) satisfying

(1.6) lim (1 + 3@7,(n)) —0,

n—00
see [9, 3]. On the other hand, for 3 < n <9, there exists an increasing sequence {p;}2,,
1; — 00, such that the solution ¢; of (1.4) with u = u, satisfies (1.6), see [10]. Lacey and
Tzanetis proved in [23] that for 3 < n <9 the solution ¢y of (1.4) with 1 = po satisfies

2
. n _
(17) 'r]li)Igo (@0(7]) + log 2(7’L2)> = —Cp, Co > 0,
and the equation
n?
L. log ———— =
(1.8) @o(n) + log 2 =2) 0

has two roots.
For some particular solutions u (the L!-connections from a stationary solution ¢, to
another stationary solution ¢g, see Proposition 4.3) we show (see Theorem 4.4) that

lim [log(T —t) +u(yVT —t.0)] =@o(lyl), v €R",

where g satisfies (1.4), (1.7) and (1.8) has two roots. As far as we know, this is the first
example of a solution of (1.1) with a precisely determined nonconstant selfsimilar blow-up
profile. The existence of a class of solutions of (1.1) with nonconstant selfsimilar blow-up
profiles was known before for f(u) = u? and some p > (n+ 2)/(n — 2), n > 2, see [24].
But no characterization of the limit selfsimilar profile for any such solution was given in
[24].

The paper is organized as follows. In Sections 2 and 3 we prove Theorems 1.1 and 1.2.
Section 4 is devoted to determining the exact profile of some special solutions mentioned
above.
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2 Blow-up rate

In this section we prove Theorem 1.1. We shall use the method from [7] that has to be
modified and combined with an estimate from [16] because the rescalings employed here
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and in [7] are different. In particular, the present rescaling does not preserve positivity.
This fact is also a reason why the arguments from [24] do not seem to apply easily to
Problem (1.1) with a nonlinearity like f(u) = e

In the following lemma we will consider the equation

~1
(2.1) e+ 2

v+ f(v)=0, v, <0<wv, in(0,¢),
where n > 3 and € > 0 is small.

Lemma 2.1. Assume that f € C(R) and lim, oo e “f(u) =1 and n > 3. Then there
exists a singular solution v = v* of (2.1) satisfying

. * 2\ __ _
(2.2) ll_r)r(l) (v*(r) +log r?) = log(2(n — 2)).

Proof. The proof of the lemma is similar to the proof of an analogous lemma in [7]
and so further details can be found there. Set s = logr and W (s) = v(r) — ¢*(r), where
¢*(r) =log (2(n — 2)r~2). Then v is a solution to (2.1) if and only if W satisfies

Wes+(n—=2)Ws+2(n—2)IW+h=0 in (—o0,loge),
where the nonlinearity h = h(s, W) = hy(W) + ha(s, W) and
(W) =2n—2)(" =1 W),  hy(s, W) =e*f(W +¢*) — 2(n — 2)e".

Moreover, v verifies the asymptotic behavior (2.2) if and only if W(s) — 0 as s — —oc.
If the solution W exists, it can be written by the variation of constants as

S 6)\1(377’) _ e)\z(é‘*‘r)
W) = [ Sk W),

where \; and Ay are the two roots to the characteristic equation A>+(n—2)A+2(n—2) = 0.
The existence of a solution can now be proved using Schauder’s fixed point theorem.
Therefore, define

X ={¢ € C((—00,loge); [|¢]lx = sup [¢(s)] < oo}
s<loge

Let B(d) be the closed ball of radius § centered at 0 in X, and let

s e)\l(s—‘r) . 6)\2(5—7')
To(s) = | = huln olr)dr

for i = 1,2. We need to show that the operator (I — T1)~'T5 is well defined and that it
has a fixed point.



Since, for every |W|,|Ws| < 6 and for some n € (W, Ws), we have

(

|h1(W1) — by (W5)] n—
(n— 2)(e" — 1)| Wi — Wa| < C8| Wi — W,

=2 2)|6W1—€W2+W2—W1|
=2
we know that ||T1¢| < (1/2)]|¢]], for § small enough, and hence the operator (1 —T;)":
B(6§/2) — B(9) exists with [|(I — T1) o] < 2||¢].
Define then a nonnegative and nondecreasing function

w(s) = sup

u>—s ev

So for any W € B(¢), we have
f(W(s) — 25 +log(2(n — 2))

eW (s)—2s+log(2(n—2))

|ha(s, W (s))| = 2(n — 2)e"®) ( - 1> < 2(n — 2)elw(s)

and also |ToW (s)| < Ciw(s) and [dToW (s)/ds| < Cow(s). It can easily be seen that 75
is continuous. Therefore, T,B(8) C B = {¢ € X; |o(s)| + |¢/(s)| < (C1 + Cy)w(s) for
every s < loge}. Taking e small enough, we get that Bisa compact subset of B(d), and
so (I —T1)~'T, is continuous operator from B(6) to itself, and by Schauder’s fixed point
theorem it has a fixed point W € B(¢d). Showing that |[W(s)| — 0 as s — —o0, we can
finish the proof. O

The following result is already known. For the proof we refer to [21].

Proposition 2.2. Assume that 3 <n < 9. Then there is a unique solution ¢ to

bt "o ke =0, e (0,00),
¢-(0) =0,
¢(0) = 0.

The solution satisfies ¢, < 0 in (0,00) and for ¢*(r) = log (2(n — 2)r~2), there are in-
finitely many roots of the equation ¢ — ¢* = 0.

We will also need an estimate for the gradient of the solution « of (1.1). This lemma
can be found in [16].

Lemma 2.3. Assume that [ satisfies (1.2), and that the solution u of (1.1) blows up at
t =T. Then, for upy(t) = max,cqu(zr,t) and ty close to T, we have that

1 ) upr (to)
§|Vu(x,t)| < / fluw)du

u(w,t)

for every t <ty and x € Q.



Now that we have the above preliminary results, we are ready to prove Theorem 1.1,
which gives the blow-up rate of the solution u. The proof is a modified version of that in
[7]. Notice that by integrating the inequality u,(0,t) < e*®! from t to T, we have

(2.3) log(T —t) + u(0,t) > 0.

Proof of Theorem 1.1. Let v* be as in Lemma 2.1, extended to its maximum existence
interval (0, €*], and define R* = min{e*, R}. By the zero number diminishing property (see
[8]), it can be verified that both Zg g)(u:(-,t)) and Zjo g+ (u(-,t) —v*(-)) are nonincreasing
in t € [0,T) so that they are constant for all ¢ € [T7,T) and for some T; € [0,T). Here
we used the usual notation

(2.4) Zi(g)=#{rel;g(r)=0}

defined for an arbitrary interval I and a function g € C(I). Let now Zjo g+j(u(-,t) —v*) =
N*, for t € [T1,T).
We will set

M(t) =u(0,t) and 0= hfglj{lf o)) hrtgljpf PSTIOR

and claim that 6 > 0.
By contradiction, assume that 6 = 0. Then there exists a sequence ¢; — T as i — oo

such that lim;_,., M’(t;)e"®) = 0. Moreover, we may assume that

f(u(0,1))

S € (1/2,2)

for every t > ty. Define
Ry = e O/ and  wi(p,7) = u(Rip, R?1 4+ t;) + 2log R;.
Then w; satisfies
wi; — Aw; = R2f(w; —2log R;)  in B(R/R;) x (—t;R;%,1/4).

Moreover, we have that

M(t:)

M(5:)

w;r(0,0) = Riuy (0, ;) = —0 asi— 0.

By Lemma 2.3, we get that u,(r, )2 < 2f(u(0,%))(u(0,t;) —u(r,t)) for every t < t; and
r € [0, R), assuming that u(0,¢y) is large enough. Therefore, by integrating the inequality

Jn (r, )] (u (0, 5) = u(r, 1) ™% < V/2f (u(0, 1))
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from 0 to r, we have
(2.5) w(0,t;) — u(r,t) < 4f(u(0,t;))r? < 8e (0:ti)y2
for every t < t; and r € [0, R]. With the above estimate we can write
wi(p,7) = w(Rip, RiT + ;) —u(0,t;) > —8e"“ R p* = —8p* > —8C,

whenever p < v/C. Since clearly w;(p,7) < 0 for every 7 < 0 and r € [0, R/R;], we know
that the family {w;}; is uniformly bounded in L>=([0,+/C] x (—t;R;2,0)).

Because of the assumption that u attains the maximum at the origin, we know that
uy(0,1) < f(u(0,t)) < 2“0 for every t > t,. Integrating this inequality with respect to
t from t; to t; + 7R? (where 7 > 0), we obtain

7(€—u(0,ti+TRl2) o e—u(O,ti)) < 2TRZ2 — 27_6—71(0,151)7

which then yields

(2.6) u(0,t; + 7R?) < u(0,t;) + log < u(0,t;) + log 2,

1-27
for every 7 € [0,1/4]. Hence we have that w;(0,7) = u(0,t; + TR?) — u(0,t;) < log2 for
every T € [0,1/4].

By using the inequalities (2.5) and (2.6), we get that for 7 € [0,1/4] and p € [0,+/C]:

wi(p, T) u(Rip, R3T + t;) — u(0,t;)

u(Rip, R21 + ;) — u(0, R?7 + t;) + u(0, R21 + t;) — u(0, ;)
> u(Rip, R2T +t;) — u(0, R2T + t;) > —8e(OHT+t) B2 p?
_ _8€u(0,R?T+t1)7u(O,ti)p2 > _16p2 > —16C.
Therefore we now know that w;(p,7) < w;(0,7) < log2 and w;(p,7) > —16C for every
p € [0,/C] and 7 € [0,1/4]. Altogether we have that {w;}; is uniformly bounded in
Loo([o’ \/5] X [_th;2> 1/4})
It follows from the parabolic estimates that {w;}; is a uniformly bounded family in

O?!, Therefore, along a subsequence, it converges uniformly in any compact subset of
B(V/C) x (—00,1/4) to a radially symmetric limit w. Because

lim R} f(w; — 2log R;) = lim emwit2loali gy, — 2log R;)e" = e,
we have that w satisfies
wr — Aw = e¥ in B(vVC) x (=00, 1/4),
w(0,0) = 0, w-(0,0) = 0.
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Exactly the same arguments as in [7] show that actually w, = 0 and so w(-,7) = ¢(-),
where ¢ is the unique solution to the problem in Proposition 2.2. Taking now p* large,
we can assume that Zjp (¢ — ¢*) = N*+ 1, where ¢*(r) = log[2(n — 2)r~?]. Taking then
C such that v/C' > p*, we can show, in the same manner as in |7], that Zio,re(ul-, ;) —
v*(+)) > N* + 1, which is a contradiction and therefore § > 0.
Now we know that there exists Ty € [T1,T) such that
M) _ 6

M) = 3

for every ¢ € [T3,T). By integrating this inequality over the interval (¢,7"), we obtain the
claim. 0

Combining the techniques of the proofs of Theorem 1.1 above and Theorem 1 in [7],
it is straightforward to prove the following theorem.

Theorem 2.4. If u is a global classical solution of (1.1), then u is uniformly bounded.

3 Convergence to a backward selfsimilar solution

The aim of this section is to prove Theorem 1.2. Most of the work is needed to show the

following:

Theorem 3.1. Let f(u) = e* and assume that the initial function ug is radially nonin-

creasing. If u is a solution of (1.1) that blows up at t =T, and

(3.1) lim [log(T —t) + u(yVT —t,1)] =0

uniformly for y in compact sets, then

(3.2) u(z, T) = —2log |z| + log|log|z|| +log8 as z — 0.
It was shown in [2] that (3.2) holds for solutions of

u; = Au + e, reR" t>0,
(3.3)
U(T,O) = Uo(.Z') > Oa VS Rna

provided u is radially symmetric, u, < 0, u; > 0. In [20] it was proved that either (3.2)
holds or

(3.4) u(z,T) = —mlog|z|+ C,, asz —0

holds for some integer m > 4 and C,, € R for solutions of (3.3) under the assumptions

that n = 1, ug is continuous, bounded, it has a single maximum and = = 0 is the blow-up
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point. The existence of solutions of (1.1) which blow up at x =0 € Q, t = T, and have
the profile (3.2) was established in [4] when © is convex. The existence of initial data such
that (3.4) occurs with m = 4 was shown in [20] for Problem (3.3) with n = 1, for any
integer m > 4 see [5]. In our case the profile (3.4) does not occur since we assume that
is radially decreasing. This is because in [3] it is proved that if u verifies the assumptions
of Theorem 3.1, then

(3.5) u(z,t) < —2log|z| + log |log |z[| + C,

for some constant C' and for any ¢ € (0,7) and z in B(R).

As in [26], the first thing we will have to do, is to extend the solution w to the
whole space R™ in order to be able to use semigroup methods in appropriate weighted L2
spaces. We will also derive some useful estimates for the new nonlinearity and discuss the
functional analytic framework.

Throughout this section we will adopt the assumptions of Theorem 3.1. Take ( €
C*°(R™) such that ((z) =1 for |z] < Ry, ((x) € (0,1) for |x| € (R, R2) and {(x) = 0 for
|z| > Ry, where 0 < Ry, Ry < R. Then define

(3-6) u(z,t) = ¢(z)u(z, t) — (log(T — 1) + 1)(1 = ((v))
for x € R” and ¢t € [0,T). This gives us that the new extended function satisfies
u=Au+f, xzeR" te(0,T),
where
f=Fflx,t)=(T—t)" (1 =¢) — (1 +1log(T —t) + u)A{ — 2V - Vu + Ce".
Notice that Theorem 1.1 and Lemma 2.3, now applied to f(u) = e*, imply that
(3.7) (T =) f(z, 1) <C

for every (z,t) € R" x [0,7T) and for some constant depending only on the choice of ¢ and
the constant appearing in Theorem 1.1. As above, we henceforth denote by C' a generic
constant possibly changing from line to line and depending only on some fixed functions
or parameters like ug or the dimension of the space.
Following the usual method, we use the similarity variables to define the rescaled
function
w(y, s) = log(T —t) + u(x, 1),

where y = (T —)"'/?x and s = —log(T — t). Then @ satisfies
_ _ 1 ~ ~
(3.8) wtzAw—§y~Vw+(T—t)f—1:Aw+h, yeR" s> —logT,
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where A=A —y/2-V+ 1T and h(y,s) = (T —t)f(z,t) — 1 — w(y,s). Using Lemma 2.3
and Theorem 1.1, it is easy to verify that [Vw| < C' and hence (2.3) implies that

(3.9) o] < C(1+ [y]).

In what follows, we will give some estimates for the function h. Assume first that
ly| < e*2R,. Then @ = log(T — t) + u and h = e” — 1 — @w. Therefore

] < e™w]* < eXla)?,

where K is the constant appearing in Theorem 1.1. We can also argue that either —1 <
w < K, which implies that |h| < eX K|w|, or @ < —1, in which case |h| = [e” — 1 —w| <
2+ |w| < 3|w).

Assume then that |y| € (e/?Ry, e*/?Ry). Because u(x,t) < C for every |z| € (R, Ry)
and ¢ € [0,7T), there exists so > 0 such that

w=—-14+(ut+log(T—1t)+1) < -1
for every s > sg. Therefore we can estimate
W < (T —=t)f|+ 14 |w] < C+u| < (C+Dw| < (C+1)|wf?

in R™ X [sp, 00), where we used the estimate (3.7).
Since, for |y| > e*/?R,, it holds that h = —w and @ = —1, we can collect the above
estimates together to obtain that

(3.10) |h| < Ci|lw| and |h] < Cylw|? in R™ x [sg, 00)
for some constants C; and Cs. In a similar way we can also show that

1
(3.11) ‘h - 5@2 < Cslwl* in R™ x [sg, 00).

We will next discuss the operator A. A convenient space to work in is the weighted
space

@) = {F € @) [ 1f)Pe ey < o).

It is well-known that A is a self-adjoint operator in L2(R") with domain H}(R") and
it has a complete family of orthogonal eigenfunctions {H,}aen with the corresponding
eigenvalues A\, = 1 — |a|/2, where |a| = a; + ...+ a,,. The eigenfunctions can be written
as H,(y) = I, H,,(y;), where H,, is the standard Hermite polynomial of order m € N.
We will denote by {S(s)}s the semigroup generated by A.
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Since u, and so also w, is assumed to be radially symmetric, we only need to consider
radially symmetric eigenfunctions. The first ones are ho(y) = 1 € span{Hpy} corresponding
to the eigenvalue \g = 1 and hy(y) = |y|* — 2n € span{H,; |a| = 2, a; even} correspond-
ing to the eigenvalue Ay = 0. Therefore we can decompose

(3.12) W= T4W+ mw+ 7w = a(s) + b(s)(|ly|* — 2n) + 0(y, s),

where 7, w and 7.w are the projections to the eigenspaces spanned by hg and hs, and

T_W =W —TLW — W € span{H,; |a| > 2}.
A well-known fact is the regularizing property of the semigroup (see [30]), namely, for
every p,q € (1,00) there exists R = R(p, q) and C' = C(R) such that

(3.13) IS(R)¢llrp < Cliolly for every ¢ € LY(R"),

where the definition of L?(R") is analogous to that of L2(R"). Using the first inequality
in (3.10) and applying the above inequality to @, we obtain

(3.14) 1@(, $)ll2p < € FIS(R)T(, s = Ry < €M FOT(-, 5 — B)| g

Also, the reversed inequality is known in Li. Assuming that there exists a constant 5 > 0
such that a(s)? + ||0(-, s)||* < Bb(s)?, we can use Lemma 3.1 in [19] to obtain that

(3.15) [w (- s)l < C(R, B)l[w(-,s + R,

where we used the notation || - [[ = [| - || z2.
The assumption (3.1) implies that
(3.16) lim w(y,s) =0

5—00

uniformly for y in compact sets. In the following Lemma and two Propositions, we will
assume that the convergence (3.16) is not exponential in rate, that is, we assume that for

every C, e > 0 we have
(3.17) lw (-, s)|| > Ce™

for some s > —logT.

The following lemma is proved in the case of f(u) = «? in [15] and it states that the
unstable and stable part of the solution w are dominated by the center part of it. The
proof in our case is almost the same as in [15] and therefore we do not repeat it here.
The only difference is that [15] assumes the boundedness of w, and we use the inequality
|h| < Ci|w| whenever the boundedness is needed.
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Lemma 3.2. Let w satisfy (3.16) and (3.17). Then for every e > 0 there exists so such
that

7wz + llmp @l < el|mew]| iz
for any s > sg.

In what follows, we will derive differential equations for the functions a and b appearing
in the expansion (3.12). Inserting (3.12) in Equation (3.8), and projecting to the unstable
subspace, we have

111250/(s) = ILlZ2a(s) + P:h,
where we use the notation (P, h) hg = 7w h. We can write h = (7w + 7.w)?/2 + g, where

~ SO | - 1_
g = (m0 + mw)T_w + 5(7Lw)2 +h— §w2.

Using Lemma 3.2 and inequalities (3.11), (3.14) and (3.15), we can estimate
[Prgl < (€ + @)llme|]® + 3e*||med|® + Cs[|w?|| < 2e|lmad|® + Cll@(, s — R)|?
< 2¢||m.wl|]? + Cllw(-, 8)|]? < 2¢||m.w]|? + C||wew|)® = 2e b* + Cb?
for s large enough. Therefore, a satisfies

Iz:
d'(s) = a(s) + 5 * Py (myw + maw)? + Pyg.

Since we know that |w(y,s)| < C(1 + |y|) and w(y,s) — 0 as s — oo pointwise for
every y, it follows from the Lebesgue dominated convergence theorem that w(-, s) — 0 as
5 — oo also in L2(R"). Hence a(s) — 0 and b(s) — 0 as s — oo, and we can write for
s > So

a'(s) = a(s) + %(G(S)2 +8nb(s)?) + €O(b(s)*),

where the second term on the right is easily obtained from P, (7 w + m.w)? by simple

integration. In the same way, we can prove that b satisfies
V(s) = a(s)b(s) + 4b(s)* + eO(b(s)?)

for s > sg.
Using now Lemma 3.2 and the above differential equations for the functions a and b,
we can repeat the arguments used in Theorem 2.6 in [2] and so we obtain the following

result.

Proposition 3.3. Let w satisfy (3.16) and (3.17). Then
w(y,s) = L (lyl* — 2n) (*1> in Ly(R")
w(y, s n)+o n L7 (R").
v 45 s r
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By the regularizing effect of the semigroup {S(s)}s, we can conclude that the above
convergence holds also uniformly on compact sets. However, we need to consider the
convergence in larger sets, namely, when |y| < /s R. This is done in the proposition
below, which follows [26, 30].

Proposition 3.4. Let w satisfy (3.16) and (3.17). Then it holds that
2
(3.18) lim [log(T — ) + u(&(T — t)/*|log(T — t)|*/%,t)] = —log (1 + @)
t—=T 4

uniformly for || < R.

Proof. To get started, define
G(€) = —log (1 + ‘ﬂz)
and
augzaﬁ%)+%.
Then G(£) = —[€]?/4 + R(E), where |R(§)| < C|¢[*. Therefore we have that
(- 8) — ()l

o+,
o) el [ Bl o)

Defining W = @ — ¢ and using the equations

IA

1, ly|? y ni2 e 1/2
- —9 ——R(—)——‘ lvl*/44q }
4s(|y| n)+ 4s NG 25| 4

IN

— B ¢ n

¢5(y7 S) - 25 VG(f) 252
and

L ova =1,
we get that W satisfies
(3.19) W, = AW+g+£ VG+—+L
where
AG <

g=h+1+$—e$ and L=—""+¢
s
and h is as in (3.8). Multiplying the above equation (3.19) by sgn(W), defining Z = |W|

and using Kato’s inequality, we get that

Zs < AZ +sgn(W)g + sgn(W) (£ VG + —) +sgn(W)L
(3.20) ,
< AZ 4 sgn(W )g+C(|€| ) + sgn(W) L.

13



Next, we want to get estimates for the terms in the right hand side of (3.20). Because
|AG(E) — AG(0)| < CIE]?, we get that

— AG(E) - AG(O) + 6G+n/25 _ G n ‘

|L(y78)| (&

s 2s
[ 1 n -2 n 2 [ 1
<0 7(— 0 - —(1 4)<C— O(—).
-~ s +1+|§\2/4 25 (s7) 25( TP = s 9%
To estimate the function g, consider first the subset |y| < e¥?R,. Then (T —t)f = e
and we have by the mean value theorem that for some © € (0, W)

sgn(W)g = sgu(W)(e?W — W — e?) = sgu(W) (e + (e — 1)W + Le?tOW?2 — ¢9)

|§|2/4 en/%_l) l 510,02 _ 1 2
= - + Z+ -7 < 74 073,
( T+1€12/4  1+]€12/4 2 ~ 2s

since clearly e#+0 < eX. Notice that we also have

lg| = ’€$+ (@ — W —¢f| < CZ.

Assume then that |y| € (e¥/2Ry, e*/2Ry). Because (T — t)f(x,t) and e? are uniformly

bounded, we have that

sgn(W)g = sgn(W)(T —t)f(x,t) — Z +sgn(W)e? < C < C(Z* + 1).

Clearly, we also have that sgn(W)g < C(Z + 1).
Finally, for |y| > e*/2R,, we have that (T —t)f(z,t) = 1 and w = —1. Therefore
W > —1+log (1 + e*R5/4s) — n/2s > 1 for s large enough, and we get

sgn(W)g<C <CZ<CZ%

Collecting the above results, we know that Z satisfies the differential inequalities

241 z
(3.21) Zy < AZ+C(‘y|82+ +Z2+§+X) in [sp,00) x R"
and
241
(3.22) 7. < AZ+C(|y|82+ +Z+X) in [so, 00) X R,

where x = x(y,s) = 1if |y| € (e¥?Ry,e*?R,) and x = 0 otherwise, and s, is large
enough.
The proof can now be finished by using the above inequalities and proceeding as in
[30, Proposition 2.3]. O
In what follows, we shall handle the case where the convergence (3.16) is exponential.

Therefore we shall assume that
(3.23) [@(-, s)|| = o(e™)

for some ¢ > 0. The proof of the following proposition is the same as in [29].

14



Proposition 3.5. Assume that (3.23) holds. Then either there exists m > 3 and constants

Cy, not all equal to zero, such that

Wy, s) = =TSN CuHa(y) + o(e %) in LY(R"),

|a|=m
or w s the trivial solution w(-,s) = 0.

Notice that the term Z|a|:m CqH,, has to be radially symmetric, and so m is actually

even. Since Hy(y) = I H, (y;) and Hy, () = 32072 cop(a;)y?* for some constants
cx(ei) and «; even, we have that
(3.24) |Ha(y) — cay®| < C(1+ [y[™),

where ¢, = > ¢q, (). Moreover, it has to hold that Z‘a‘:m CoH, — 00 as |y| — o0
and therefore Z‘a‘:m aqy® > 0 for every y # 0, where a, = CyCy,.
Following [29], we shall next prove an analogue of Proposition 3.4 and extend the

convergence to larger sets.

Proposition 3.6. Let w and m > 4 be as in Proposition 3.5. Then
: _ ~ _ n\l/m _ e
(3.25) th_r)r% [log(T t)+u((T—1) 715)} log (1 + llz: ané )

uniformly for |£] < R, where the constants a, = CyCq are as above.

Proof. Define
G(f) _ 710g (1 4 Z aafa)v 5 — e(l/’ﬂl—l/?)sy7
lal=m
and
By, s) = G(E) — ™D N " Co[Ha(y) — Cay] = G — L.
|al=m
Then it is easily seen that
[ =z = ofe=/2").
Since
£-VG g
— =e
m
we get, by defining W = @ — ¢, that

_]_7

W, :AW—%VW—%W—HL—ES—FAE—%Va—i—E

:AW+h{<%%)§VfG(1%)L}

@/m-Vs A1 _ So.a Y _
+{e AG-AL} - {5vG-Ivil+a-1L
— AW + (T —t)f — @ — € + G + @™ DAG — AL + gVL— %L‘

15



Using now the facts that AH, — (y/2)VH, = —(|a|/2)H, and (y/2)Vy® = (|a|/2)y*, we
get that
_ y — _@ _ (1-m/2)s a
AL-SVL=—-TL—e > aay.

la|=m

Writing then Z = |[W| and

2
Z|a\*m aaAgfa Z\a\*m awaiga_li
AG = — =12 + = = (AG)1 + (AG)s,
L4 Dlajem @€\ 14 Xjajzm Gal®
where we use the notation a — 1; = (ay,...,; — 1,...,ay), we have that

Z, < AZ +sgn(W) Ky + |Ka| + e (AG),,
where
Ki=(T—-t)f —w—ef+G

and
Ky = e(2/m71)s(ACTV)1 + e(lfm/Q)s Z awAyoz
|al=m

Clearly, it holds that

6(2/7"71)5(AG)2 _ e(

(1/m—=1/2)(m—1)s, a—1; \ 2
2/m—1)s Zla\=m Qi€ Y
1+ Z|Oz\:m Claga

< e2(17m/2)s |y|2m72.

Estimating then K, using the equality e?/™~DsA£* = 0=m/2s Ay we obtain

(Xlam 108*) (Ejajzm %AY?)
1427 ajmm ad®
( Z\a\:m aaya) ( Z\a|:m aqoi(a; — 1)ya—2i)
1+ Z|Oz|:m aaga

n

|K2| _ 6(1—'m/2)5 Z

i=1

n

_ 62(1—777,/2)5 Z

i=1
< 062(17m/2)s(1 + ‘y|2m72).

To give some estimates for K, define Q;(s) = {y; [y|™ 2e(~™/2* < R;} and Qy(s) =

{y; |y|med=m/2s < R} where R is large enough such that
eCrL(1+R1)

1 + Z|a:m aag"‘

for every |¢[™ = |y|me=%)* > R, and O}, = O jaj=m Ca with C as in (3.24). Then
Qa(s) C Qy(s) for s large enough, and we have that

<1

L] < CLe(l_m/2>s(1 +[yl"?) < CL(1+ Ry) fory € N(s),
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and

|L| < CLe(Q/m—l)s(l + [e(l/m—1/2)5|y|]m72) < OLB(Q/m71)5(1 + é(m72)/m) <

| Q

for y € Qs(s), and

—L
o ___° 1 f Q Q .
C Ty 2 jaj=m Ga&® <1 fory € )\ ffs)

Consider y € Q4 (s). In this domain, we have that
o — _ _ 1 =
Ki=e¢"—w—e+G=e""-W-9¢-e"+G = (e‘f’—1)W+§e¢+@W2+eG’L+L—eG
for some © € (0, ). Now

b al=m Qo “ L 1
sgn(W)(e? — )W = 2fel=m 1o ‘

c
- + < =7
1+ Z|a|:m aaga 1+ Z|a|:m aafa s
for y € Qy(s) and

sgn(W)(e? —1)W <0< —Z

s
for y € Q1(s) \ Qa2(s).
For © € (0, L) and y € ©,(s), we also have the estimate ¢©~© < ¢*I < O, and so

1
€75 L= e = (1= )L 4 e OL?
2 jaf=m %"

1+ Z|a\:m aafo‘
< 062(1—771/2)3(1 + |y|2m—2)4

CLe(lfm/Q)s(l + |y|m72) _~_062(17m/2)s(1 + |y‘mf2)2

Hence we have
C my.
sen(WYK, < —Z 4 CZ% + C2=2135(1 4 [y*™ %) for y € Q(s).
s

Consider then y € {|y| < e*/2 Ry} \ Qu(s). It yields that [¢] € (/™ R)/"" 2 e*/™ Ry)

and we can easily estimate

K| =|(T —t)f +s—u(z,t) — s —log (678 + Z aa(efs/mé)“) - ec‘ < C.

|al=m

Finally, let y € R" \ {|y| > €*/2R,}. In this domain we have that (T —¢)f = 1 and

w = —1 and therefore
1
|Ki| =2 —e“+ G| g1+|eG—1—G|§1+§e%‘2

17



for some © € (0,G). Since |L| < Cpre®"/23(1 4 |y|™2) and G = @ + L — W, we get
GZ<OW 4+ (L—12) <CW2+L2+1) < C(W2 1 e2ems(p 4 |y|2m*2)).
Altogether we have obtained that
Z, < AZ + %Z +CZ% 4+ CUTMD (1 4 |yPm2) + C,
where x = x(y,s) = 1, for |y| > e*/?R, and x = 0 otherwise. Now we can finish the proof

exactly as in [30]. O

In what follows, our aim is to describe the asymptotic blow-up profile of u. In other
words, we want to show that either (3.2) or (3.4) holds. To that end, define for 7 € [0, T

Ur(z,t) =log(T — 7) + a( M)+ 2vVT — 7,7+ (T — 1)),

where \(7) = /T — 7|log(T — 7)|*/? if the case as in Proposition 3.4 occurs and \(7) =
(T — 7)Y™ if the convergence of u is as in Proposition 3.6. Here ¢ is fixed, x € R™ and
t € [0,1]. Moreover, let

&-(y,s) =log(1l —t) + ¥, (x,1),

where y = (1 — )"z and s = —log(1 — t). Then we have that
(Vr)e =AY, + (T —7)f, z€R" te€(0,1)

and

(¢T)5:A¢T_%'V¢T+hr7 yeRn7 s>0,
where h.(y,s) = (T — 7)(1 — ) f(AN(7)§ + /T — 7,7 + (T — 7)t) — 1. By the above
Propositions 3.4 and 3.6, we know that

¢r(y,0) = (,0) =log(T — 7) + UA(7T)§ + 2v/T —7,7)

= —log 1+Zaa(§+T>a + (),

where m > 2 and 37, _,, a.€* = [¢[*/4 if (3.18) holds, and otherwise m > 3 and the
constants a, are as in Proposition 3.6. Above |y,(z)] — 0 uniformly for |z| < C(T —
7)7Y2X\(7) as T — T. Therefore

lim ¢ (2,0) = —log 1+ > ang ),

|a|=m

pointwise for every x € R™. Because of Propositions 3.4 and 3.6, we also know that
[¢-(0,0)] < C as 7 — T and therefore Proposition 2.3 yields that ¢,(z,0) < C +

18



|V, ||z] < C(1 4+ [2]) € L2(R™). By the dominated convergence theorem we then obtain
that

(3.26) wa(-70) +log (1 + 3 aaga) HL <y =0
|a|=m 4
as T — T.
Define also
Os) =log(1— 1) ~log (1=t + > aa€®), Wy =06,—6 and Z. =|W,],
la|=m

where m > 2. Then W, verifies the equation
(3.27) (W), = AW, — % VW, + hy +1— ¢ = AW, + *W, + f,,

where A = A — (y/2) - V and

Fly5) = (T =)A= f(ND)E+ VT — 7,7+ (T = 1)t) — "W, — €,
and so Z, satisfies respectively the equation
(3.28) (Z)s < AZ: + 7, + | ]
and by (3.26) also
(3.29) 1Z-(0)lez <7 =0 as7—T.

Now, for |\(7)¢ + 2v/T — 7| < Ry, we have f, = e — e‘gWT — ¢? and so we have for
some O, = O.(y, s) € [0, W,(y, s)] that

~ 1 ~
(3.30) fr=e" =W, - 1) = §e¢+@*Wf.
Clearly, <E+ 0, < ¢+ max{0, W, } < max{g, ¢-} < K and so the inequality
(3.31) fl<cz,

holds as well.

For [\(1)¢ + 2v/T — 7| > Ry, we have that W, < —1, at least for 7 close to T, and
therefore the uniform bound (3.7) gives us that |f,| < C < CZ, < CZ2 Thus the
inequality (3.31) holds for every s > 0, y € R" and 7 close to T" with some constant C'
depending only on the constant appearing in Theorem 1.1 and the choice of (.

In the forthcoming statements and proofs C' denotes again a generic constant, possibly
changing from line to line, depending only on the solution u, our choice of ¢ and £ € R™

and the dimension n.
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Lemma 3.7. Let f. be as above and assume that sup,s || Z:(-, s)|| < €, where e, — 0 as
7 — T. Then there exist a constant C" > 0 such that

1f-(o8)llpz < Cee;
for every s < 3.

Proof. We will first estimate the part of the norm where |y| is large. Recall that, using
the regularizing effect of the semigroup together with the inequalities (3.28) and (3.31),
we know that there exists a constant R > 0 depending only on p > 1 and the dimension
of the space such that

(3.32) 1Z:( 92y < [€7*S(R)Z2 (5 = R)l1g < C Ze (-5 = R) 2

Then define Q,(s,7) = {y € R"; |y| > PQMAT\/@E‘} and use the inequality (3.31) together

with Holder’s inequality and the above inequality (3.32) to obtain

/ £+ (y, 5)| 2P/ dy
Qq(s,7)

1/2 1/2
2 2
N T R Y
1 (s,7) ly|>es/?

< OZ,(, )3y e < Ce 25— R)[3 < Ce e

for s <5 and 7 close to T. Here we used the fact that

/ e“y‘Qdy < Ce R,
[y|>R

In what follows, we consider the part of the integral where y € Qa(s,7) =R\ Q4 (s, 7)
and notice that then f, = e?(eV" —1—W,) = e?*97 Z2 for ©, € (0, W,) and 7 sufficiently
close to T. By taking 7 close to T" and y in Q(s, 7), we have that |N(7)§ + T — 7| >
SA(7)|€] and (T — 7)|log(A(7))/A(7)* < 1. By using the estimate (3.5), we then get

Wr(y, 5) =log(T = 7) + GA(T)E + VT — 7,7+ (T = 7)) +log (1= t+ > aag?)
|al=m
A(T — 7)[log(A(7)I£]/2)]
(A7)[€])?

§log( )+C§C’.

Therefore f, < e#+CZ2 and

—|y|? g gl
/ [ (y. s) %™ty < 20O / |Z:(y, 5)[*e Wy
Qa(s,T)

Qa(s,7)

< Ce |20, 8)* < CR)e™(Z2(,s = R)|* < Ce™er,
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which finishes the proof. O

Now we are ready to prove that the norm of Z, stays small forever if it is initially
small enough, using an idea from [29]. This will then allow us to pass to the limit as
s — oo and complete the proof concerning the blow-up profile.

Proposition 3.8. Let Z. be as above. Then there ezists a constant C > 0 independent
of s such that
1Z2(,8)ll2z < Cyz

and

(3.33) sup Z(y,s) < Cv,.

ly|<R

Proof. Let 7 be close to T and sq be large enough so that all the above estimates hold.
Let now {S(s)}, be the semigroup generated by A. It is clear that because of (3.28),
(3.29) and (3.31), we have that

(3.34) 1Z:-(-, 50) 122 < €7 [[S(50) Z(-,0)|2 < e“*0
for some constant C' > 0. Define
s = Sup{s; ||Z7'(7 S)HL?7 < 46050'77—}

and assume that s < co. Take then sq large enough so that both

€7 4 3 = @ak”
Z\a\:m aaga
where C” is the constant appearing in Lemma 3.7.

Using Lemma 3.7, the previous inequalities (3.34) and (3.35) together with the defi-

nition of § and the variation of constants formula, we obtain

1
(3.35) 2C"e™ < 1 and <2,

12¢,9)l < (||§<s ) Z:( o)Lz + / N t)fr('at)HLgdt) exp ( / | W)

> €7+ Djafem Gt

e~ + Z\a\:m &afa
- 3

< 2[00, + Ol — My, ) < T4y,

< (”Z‘r(a SO)”L% + Cﬂ/ e_t (4665077) dt

S0

which contradicts the choice of 5. Therefore it has to hold that § = oo, which yields the
first part of the claim.
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Because of the estimate (3.31), we obtain also the second part of the claim by

sup Z,(y,s) < sup |e“LS(L)Z.(y,s — L)

[y|I<R [y|<R

oCL (yeL/2 — 2)?
<Csup ——— — 2 ) Z (A s — L)dA
S R ey /Rnexp( o) 5= D)

e—L/2 _ )\)2 ) 1/2
< C sup {/ exp ( — @2(1_76_”))6)\ /4d/\}

[y|I<R

1/2
. {/ Z:(A s — L)Zel’\lz/4}

< OHZ7'(79 - L)HL,Z, < v,
and the proof is complete. O

Proof of Theorem 3.1. Passing to the limit as s — oo in (3.33), which corresponds to

taking t = 1 and z = 0, we have

log(T —7) +W(A(7), T) +log | Y ael® | <Cyr—0
|a|=m
as T — 00. Set x = A(7)¢ and follow the estimates in [2], for instance, to notice that the
above convergence implies that

lim [u(z,T)+ 2log|z| — log | log ||| — log8] =0

|z|—0

if (3.18) holds, and

li 2, T log || +1 Lol =0
Jim u(z,T) +mlog |z| + log llz_af

if (3.25) holds, where & = z/|z|. The latter convergence is however impossible because of

the estimate (3.5) and so we have the claim. O

Proof of Theorem 1.2. We shall first prove that if @w(-, s,) — ¢(-) uniformly on compact
sets for some sequence s, — oo, then ¢ is a stationary solution of the corresponding
rescaled equation, that is, it satisfies (1.4) with 0 < pu < oo. The argument is similar to
that in [13] (see also [18]).

Because of the inequality (3.9) and parabolic regularization, we know that w is con-
tained in a compact subset of C%*!(By(0) x [sp,00)) with uniformly Hélder continuous

derivatives, where M > 0 is arbitrary. Using then the inequality

/ | / @y, )2y dt < Elw](0) — Eluw](s),
so /By /2(0)
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where
Ries/? 1 )
Elw](s) := / <2w§ —e¥ + w) e WP/ qy
0

is the energy functional corresponding to the rescaled equation, and proving that E[w](s)
is bounded from below, we obtain that w,(y, s) converges to zero uniformly on compact
sets and hence ¢ is a stationary solution. Clearly ¢,(0) = 0 and since w(0,s) > 0 by
(2.3), we also have that p > 0.

Following then [25], it is straightforward to show that such ¢ exists and w(-, s) — ¢(-)

uniformly on compact sets for s — co. In the proof one first argues that the set of possible

w@) = J{a(5)})

s 0>s

( can be written as

in a suitable topology. Then it is fairly simple to see that the above set is nonempty,
compact and connected. Taking then ¢ as above and using the zero number property, we
can see that w(0,s) — ¢(0) never changes sign for s large enough. Assuming then that
w(w) contains at least three solutions of (1.4), denoted by v, 7 € {1,2,3}, it has to hold
that w(0, s) € (;(0),1;:41(0)) for ¢ equal to 1 or 2 and s large enough, which contradicts
the fact that w(-,s) — ;(-), for j & {i,i+ 1}.

Theorem 3.1 enables us to conclude that x> 0 by applying the following proposition
[28, Theorem 3.6].

Proposition 3.9. There exists a constant C > 0 such that there is no nonnegative L'-
solution of (1.1) with f(u) = e* and

wo(|2]) > —2log|] +log(2(n — 2)) + C
for |x| close to 0.

Namely, if ¢ = 0 then u cannot be continued beyond ¢t = T’ as an L'-solution.
It is known, see [3], that if ¢ is a nontrivial solution of (1.4), then either p(n) =
—2logn + C 4 o(1) or p(n) = —Cy~3e™/* + 0(1) as n — oo. Since (3.9) holds, ¢ cannot

have the exponential decay at infinity and the claim is proved. 0

4 Profile of L'-connections

In this section we consider the problem

-1
uz:uMJrn u.+ e, re(0,1), t>0,
(4.1) u, (0,1) = u(1,t) = 0, t>0,
u(r,0) = up(r) > 0, r € [0,1],
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where A > 0 and n € [3,9].
We first recall some known properties of equilibria of (4.1). The stationary problem
corresponding to (4.1) is:
n—1
¢rr + 79257“ + )‘6¢ = 07 re (Oa 1)7
r
¢,(0)=0,  ¢(1)=0.

(4.2)

Proposition 4.1 ([17, 21], see Figure 1). Denote by S the solution set of the parameterized
problem (4.2):
S ={(¢,\) : A€ RT and ¢ is a solution of (4.2)}.

Then there exists a smooth curve
s (o(s),A(s)) : RT — C([0,1]) x RT
such that S = {(¢(s), A\(s)) ;s > 0} and that

sup o(s)(z) = ¢(s)(0) = s.

z€B1(0)

Moreover, the following holds:
(1) limgo A(s) = 0, limg 00 A(S) = Ao 1= 2(n — 2).

(il) The set of all zeros of N(-) is given by a sequence 0 < 81 < §3 < 83 < -+ — 00 and
the critical values \; = X(s;), 7 =1,2,3,..., satisfy

M > A3 > > i N Ao Ao <Ay <o < Agjgo N Ao

(iii) For each A < X\ define
¢i‘:¢(§l)7 7:20717"'7

where 8y < §; < --- is the sequence of all points s with A\(s) = X. This sequence is
finite if X # Ao and infinite if A = A\y. In the latter case we have

) = o) =toer 282 i gl (0.1)),

For the number of intersections of two equilibria and of equilibria with ¢ the following
holds.

Proposition 4.2.

(i) If A < Xy and k > j are such that ¢y and ¢} are both defined, then ¢ — ¢} has
exactly j + 1 zeros in [0,1], all of them simple.
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)\2 )\oo A3 )\1 )\
Figure 1.

(i) If A = Ao and j > 0, then ¢}, — (b;\ has j + 1 zeros in [0,1].

(ili) If X < A and j > 0 are such that ¢} is defined, then ), — ¢} has j + 1 zeros in

[0,1] when j is odd, and j zeros in [0,1] when j is even.

(iv) If Ao <A< Xy and j > 0 are such that ¢} is defined, then ¢, — ¢} has j zeros in
[0,1] when j is odd, and j+ 1 zeros in [0, 1] when j is even.

All of the zeros of ¢, — gf); are simple.

Proof. For the proof of (i) we refer to [14]. From (i) and Proposition 4.1 (iii) it follows that
(ii) holds. To prove (iii) and (iv) one can then use the bifurcation diagram (Figure 1), the
simplicity of zeros and continuation of gzb;\, taking into account that the zero of ¢} — gzb;\
at 7 = 1, A = A, either moves inside or disappears when A # A\, and A is close to A.
d

Next we recall the existence of a special blow-up solution which can be continued

globally as an L!-solution.

Proposition 4.3. For any A € (A, A3] and T > 0 there is ug such that the solution u(-,t)
of (4.1) has the following properties:

(i) w(-,t) blows up at t =T.
(i) u(-,t) is a global L'-solution.

(iil) w(-,t) s defined (as a classical solution of (4.1)) on the interval (—oo,T) and
u(-,t) = ¢ in C1([0,1]) as t — —oo0.
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(iv) u(-,t) is a classical solution of (4.1) on the interval (T,00) and u(-,t) — @} in
C*([0,1]) as t — oc.

(v) There is a sequence {u;} of classical connections from ¢4 to ¢} such that u,(r,t)
u(r,t) pointwise for (r,t) € [0,1] x R. Here a classical connection from ¢3 to ¢}

is a classical solution of (4.1) on the interval (—oo,00) such that u(-,t) — @3 in
CY([0,1]) as t — —o0, and u(-,t) — ¢} in C*([0,1]) as t — oo.

We call the solution u an L'-connection from ¢3 to ¢;.
For the proofs see Theorem 3.4 in [14] and Section 6 in [13].

Theorem 4.4. Let A\ € (M, \3]. Suppose u is an L*-connection from ¢y to ¢ as in

Proposition 4.3. Then
lim [log(T — ) + u(nvV'T — t,t)] = go(n), 1€ [0,00),

where gy satisfies

n—1
go,m+<T—g)go,7+)\e‘p—1=O, n >0,

©(0) = po, y(0) =0
for some py > 0 and
Jim (o(n) = 6%, (n) = —co

for some ¢y > 0. Moreover, the equation

has two roots.
For the proof we shall need the following lemma.

Lemma 4.5 (|27]). Let Ao < A < A3. Denote the three zeros of g5, — ¢y by 0 <1y <1y <
r3 < 1. Let u be an L'-connection from ¢3 to ¢y as in Proposition 4.3. Then u(-,t) — ¢,

has at most two zeros in (0,r1) fort <T.

Proof. We use the notation (2.4). Since u(-,t) = ¢3 in C* as t — —oo and Zg1)(¢, —
#3) = 3, it follows that there is ¢y < 0 such that Zgq1) (¢ — u(-,t)) = 3 for t < t,.
Therefore, Z(1)(¢, —u(-,t)) < 3fort < T.

We now proceed by contradiction. Suppose there is ¢; < T such that Z(o,n)(¢éo —
u(+, 1)) = 3. Then there is a positive integer i and a classical connection wu; from ¢3 to
@y (cf. Proposition 4.3 (v)) such that 2 ,,)(¢5 — w(+,¢1)) = 3. This means that

(4.3) ui(r,t1) > ¢ (1), r € [r,1],
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because Zg1)(¢h, — u;(-,t)) < 3 forallt € R.
We claim that then

(4.4) Z(ra,l)(qb;\ —u(, ) = 1.

Indeed, otherwise either

(4.5) Zio1)(05 — uil- t1)) > 2
or
(4.6) Zo1)(¢3 — wi(-, 1)) = 0.

Since u;(+,¢;) belongs to the unstable manifold of ¢3, we must have (cf. Theorem 2.1 in
[6])
(4.7) Zio(05 — wil- 1) <2, teR.

(We remark here that Theorem 2.1 in [6] concerns the zero number on the unstable
manifold of an equilibrium of a semilinear parabolic equation in one space-dimension.
But this result can be extended in a straightforward way to radially symmetric solutions
in higher space-dimension using Theorem 2.1 from [8].) It follows from (4.7) that (4.5)
cannot occur. On the other hand, (4.6) would imply that u; blows up in a finite time (cf.
[22]). Hence (4.4) holds. Therefore, we obtain that

(4.8) ug(r,ty) > ¢ (r), r € [0,73).
We next show that
(4.9) ui(r,t) > max{g3(r), e, (r)}, (1) € [r1,73] % [t1, 00).
From (4.3) and (4.8) we have
ui(r, 1) > max{@3(r), o3,(r)}, v € [r1,73].
If (4.9) does not hold, then there is t2 > ¢; such that

ui(r,t) > max{d3(r), o, (r)}, (1) € [r1,73] % [t t2),

and either
(4.10) ui(r1, 1) = 92, (1) (= ¢5(r)),
(4.11) ui(rs, to) = ¢ (rs)(= ¢3(r3)).
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Note that Z(,1)(#3 — u;(-,t)) = 1 for ¢ € [t1, 5], so (4.10) is impossible because then
Zo)(65 — il 1)) = 3.

On the other hand, for ¢ € [t1, #5] all intersections of ¢, and u;(+, t) are contained in [0, r].
Thus (4.11) cannot occur.
Since ¢35 > ¢ in [ry, 73], (4.9) yields a contradiction with the convergence of u;(+,t) to

@) as t — oo. O

Proof of Theorem 4.4. Consider first the case Ay < A < M. Then Z1) (¢, — ¢3) = 2
and by the zero number diminishing property, it has to hold that Zj z)(u(-,t) — L) <2
for every t € (—oo,T). After rescaling, we then get that Zo ./ (0(-,s) — ¢3,) < 2 for
every s € (—00,00). Theorem 1.2 now states that w(-, s) — ¢ uniformly on compact sets
in y, where ¢ has the decay (1.5) and intersects ¢ at most twice. It follows then from
[3] that ¢ has to intersect ¢ exactly twice.

If Ao < A < A3, then Z(g1)(¢d — ¢3) = 3, but Lemma 4.5 yields that Z,,)(¢3 —
u(+,t)) <2 for t < T and we can proceed as before. d

The existence of L!-connections between two equilibria ¢ and qﬁg\ was studied in
[11, 12], and it was shown there that a singular L'-connection from ¢, to ¢} exists if and
only if k¥ > j + 2. By Theorem 1.1 any such L'-connection blows up with the selfsimilar
rate and by Theorem 1.2 it converges (after rescaling) to a nonconstant selfsimilar solution.
It would be interesting to determine how this limit selfsimilar solution depends on k& and
j. Theorem 4.4 answers this question only for £ = 2 and 7 = 0. To prove a more general
result one has to be able to control the number of intersections with ¢ that disappear

at the moment of blow-up.
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