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Non
onstant selfsimilar blow-up pro�lefor the exponential rea
tion-di�usion equationMarek Fila and Aappo Pulkkinen
Abstra
tWe study the blow-up pro�le of radial solutions of a semilinear heat equationwith an exponential sour
e term. Our main aim is to show that solutions whi
h 
anbe 
ontinued beyond blow-up possess a non
onstant selfsimilar blow-up pro�le. Forsome parti
ular solutions we determine this pro�le pre
isely.1 Introdu
tionWe 
onsider the following problem(1.1) 




ut = ∆u+ f(u), x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,where Ω = B(R) = {x ∈ Rn ; |x| < R}. Throughout the paper, we assume that theinitial 
ondition u0 ∈ C1(Ω) is radially symmetri
. In the �rst part of the paper, we shallassume that(1.2) f ∈ C1, f(·) ≥ 0 in [0,∞) and lim
u→∞

e−uf(u) = 1.We shall study solutions that blow up in �nite time, by whi
h we mean that there is
T = T (u0) ∈ (0,∞) su
h that

lim
tրT

‖u(·, t)‖L∞(Ω) = ∞.Our �rst result is the following2000 Mathemati
s Subje
t Classi�
ation. Primary 35K57; Se
ondary 35B40.Key words and phrases. Semilinear paraboli
 equation, blow-up pro�le, selfsimilar solutions.1



Theorem 1.1. Let n ∈ [3, 9]. Assume that (1.2) holds and that u is a solution of (1.1)whi
h blows up in a �nite time T and satis�es u(0, t) = maxΩu(·, t) for all t 
lose to T .Then there exists a 
onstant K <∞ su
h that(1.3) log(T − t) + ‖u(·, t)‖L∞(Ω) ≤ K for all t ∈ [0, T ).The blow-up rate (1.3) for solutions of (1.1) with f(u) = eu was only known beforeunder the assumption that ut ≥ 0, see [16℄. In this paper, we are interested mainlyin solutions whi
h 
an be 
ontinued beyond blow-up as L1-solutions (see the de�nitionbelow), and su
h solutions 
annot be nonde
reasing in time, sin
e ut ≥ 0 implies 
ompleteblow-up, see [1℄.To formulate our next result we introdu
e the de�nition of L1-solutions of problem(1.1).De�nition 1.1. By an L1-solution of (1.1) on [0, T ] we mean a fun
tion u ∈ C([0, T ];

L1(Ω)) su
h that f(u) ∈ L1(QT ), QT := Ω× (0, T ) and the equality
∫

Ω

[uΨ]t2t1 dx−
∫ t2

t1

∫

Ω

uΨt dx dt =

∫ t2

t1

∫

Ω

(u∆Ψ+ f(u)Ψ) dx dtholds for any 0 ≤ t1 < t2 ≤ T and Ψ ∈ C2(Q̄T ), Ψ = 0 on ∂Ω × [0, T ]. By a global
L1-solution we mean an L1-solution whi
h exists on [0, T ] for every T > 0.The existen
e of global unbounded L1-solutions of (1.1) with f(u) = λeu, n ≥ 3,was shown in [23℄ for λ > 0 small enough. If 3 ≤ n ≤ 9, then these global unbounded
L1-solutions blow up in �nite time, see [14℄.Theorem 1.2. Let f(u) = eu, n ∈ [3, 9], and assume that the initial fun
tion u0 isradially nonin
reasing. Suppose u is an L1-solution of (1.1) on [0, T ] whi
h blows up at
t = T < T . Then

lim
t→T

[
log(T − t) + u(y

√
T − t, t)

]
= ϕ(|y|), y ∈ Rn,where ϕ satis�es(1.4) 




ϕηη +

(
n− 1

η
− η

2

)
ϕη + eϕ − 1 = 0, η > 0,

ϕ(0) = µ, ϕη(0) = 0,and(1.5) lim
η→∞

[
ϕ(η) + 2 log η

]
= Cµfor some µ > 0 and Cµ ∈ R. 2



In the 
ase n = 1, 2, there is no solution of (1.4) satisfying(1.6) lim
η→∞

(
1 +

η

2
ϕη(η)

)
= 0,see [9, 3℄. On the other hand, for 3 ≤ n ≤ 9, there exists an in
reasing sequen
e {µi}∞i=0,

µi → ∞, su
h that the solution ϕi of (1.4) with µ = µi satis�es (1.6), see [10℄. La
ey andTzanetis proved in [23℄ that for 3 ≤ n ≤ 9 the solution φ0 of (1.4) with µ = µ0 satis�es(1.7) lim
η→∞

(
ϕ0(η) + log

η2

2(n− 2)

)
= −c0, c0 > 0,and the equation(1.8) ϕ0(η) + log

η2

2(n− 2)
= 0has two roots.For some parti
ular solutions u (the L1-
onne
tions from a stationary solution φ2 toanother stationary solution φ0, see Proposition 4.3) we show (see Theorem 4.4) that

lim
t→T

[
log(T − t) + u(y

√
T − t, t)

]
= ϕ0(|y|), y ∈ Rn,where ϕ0 satis�es (1.4), (1.7) and (1.8) has two roots. As far as we know, this is the �rstexample of a solution of (1.1) with a pre
isely determined non
onstant selfsimilar blow-uppro�le. The existen
e of a 
lass of solutions of (1.1) with non
onstant selfsimilar blow-uppro�les was known before for f(u) = up and some p > (n + 2)/(n − 2), n > 2, see [24℄.But no 
hara
terization of the limit selfsimilar pro�le for any su
h solution was given in[24℄.The paper is organized as follows. In Se
tions 2 and 3 we prove Theorems 1.1 and 1.2.Se
tion 4 is devoted to determining the exa
t pro�le of some spe
ial solutions mentionedabove.A
knowledgment. Part of this work was done while A. Pulkkinen was a predo
 at theComenius University supported by European Community's Human Potential Programmeunder 
ontra
t HPRN-CT-2002-00274, Fronts - Singularities. M. Fila a
knowledges alsothe support of the VEGA Grant 1/3021/06 and of the Finnish Mathemati
al So
ietyInternational Visitor Programme. A. Pulkkinen was also supported by the Magnus Ehrn-rooth Foundation during this work. The authors are indebted to the referee for helpful
omments.2 Blow-up rateIn this se
tion we prove Theorem 1.1. We shall use the method from [7℄ that has to bemodi�ed and 
ombined with an estimate from [16℄ be
ause the res
alings employed here3



and in [7℄ are di�erent. In parti
ular, the present res
aling does not preserve positivity.This fa
t is also a reason why the arguments from [24℄ do not seem to apply easily toProblem (1.1) with a nonlinearity like f(u) = eu.In the following lemma we will 
onsider the equation(2.1) vrr +
n− 1

r
vr + f(v) = 0, vr ≤ 0 < v, in (0, ǫ),where n ≥ 3 and ǫ > 0 is small.Lemma 2.1. Assume that f ∈ C(R) and limu→∞ e−uf(u) = 1 and n ≥ 3. Then thereexists a singular solution v = v∗ of (2.1) satisfying(2.2) lim

r→0

(
v∗(r) + log r2

)
= log(2(n− 2)).Proof. The proof of the lemma is similar to the proof of an analogous lemma in [7℄and so further details 
an be found there. Set s = log r and W (s) = v(r)− φ∗(r), where

φ∗(r) = log
(
2(n− 2)r−2

). Then v is a solution to (2.1) if and only if W satis�es
Wss + (n− 2)Ws + 2(n− 2)W + h = 0 in (−∞, log ǫ),where the nonlinearity h = h(s,W ) = h1(W ) + h2(s,W ) and

h1(W ) = 2(n− 2)(eW − 1−W ), h2(s,W ) = e2sf(W + φ∗)− 2(n− 2)eW .Moreover, v veri�es the asymptoti
 behavior (2.2) if and only if W (s) → 0 as s → −∞.If the solution W exists, it 
an be written by the variation of 
onstants as
W (s) =

∫ s

−∞

eλ1(s−τ) − eλ2(s−τ)

λ1 − λ2
h(τ,W (τ))dτ,where λ1 and λ2 are the two roots to the 
hara
teristi
 equation λ2+(n−2)λ+2(n−2) = 0.The existen
e of a solution 
an now be proved using S
hauder's �xed point theorem.Therefore, de�ne

X = {φ ∈ C((−∞, log ǫ) ; ‖φ‖X = sup
s<log ǫ

|φ(s)| <∞}.Let B(δ) be the 
losed ball of radius δ 
entered at 0 in X , and let
Tiφ(s) =

∫ s

−∞

eλ1(s−τ) − eλ2(s−τ)

λ1 − λ2
hi(τ, φ(τ))dτfor i = 1, 2. We need to show that the operator (I − T1)

−1T2 is well de�ned and that ithas a �xed point. 4



Sin
e, for every |W1|, |W2| ≤ δ and for some η ∈ (W1,W2), we have
|h1(W1)− h1(W2)| = 2(n− 2)|eW1 − eW2 +W2 −W1|

= 2(n− 2)(eη − 1)|W1 −W2| ≤ Cδ|W1 −W2|,we know that ‖T1φ‖ ≤ (1/2)‖φ‖, for δ small enough, and hen
e the operator (1− T1)
−1 :

B(δ/2) → B(δ) exists with ‖(I − T1)
−1φ‖ ≤ 2‖φ‖.De�ne then a nonnegative and nonde
reasing fun
tion

ω(s) = sup
u≥−s

∣∣∣∣
f(u)

eu
− 1

∣∣∣∣ .So for any W ∈ B(δ), we have
|h2(s,W (s))| = 2(n− 2)eW (s)

(
f(W (s)− 2s+ log(2(n− 2))

eW (s)−2s+log(2(n−2))
− 1

)
≤ 2(n− 2)eδω(s)and also |T2W (s)| ≤ C1ω(s) and |dT2W (s)/ds| ≤ C2ω(s). It 
an easily be seen that T2is 
ontinuous. Therefore, T2B(δ) ⊂ B̂ = {φ ∈ X ; |φ(s)| + |φ′(s)| ≤ (C1 + C2)ω(s) forevery s ≤ log ǫ}. Taking ǫ small enough, we get that B̂ is a 
ompa
t subset of B(δ), andso (I − T1)

−1T2 is 
ontinuous operator from B(δ) to itself, and by S
hauder's �xed pointtheorem it has a �xed point W ∈ B(δ). Showing that |W (s)| → 0 as s → −∞, we 
an�nish the proof. �The following result is already known. For the proof we refer to [21℄.Proposition 2.2. Assume that 3 ≤ n ≤ 9. Then there is a unique solution φ to




φrr +
n− 1

r
φr + eφ = 0, r ∈ (0,∞),

φr(0) = 0,

φ(0) = 0.The solution satis�es φr < 0 in (0,∞) and for φ∗(r) = log (2(n− 2)r−2), there are in-�nitely many roots of the equation φ− φ∗ = 0.We will also need an estimate for the gradient of the solution u of (1.1). This lemma
an be found in [16℄.Lemma 2.3. Assume that f satis�es (1.2), and that the solution u of (1.1) blows up at
t = T . Then, for uM(t) = maxx∈Ω u(x, t) and t0 
lose to T , we have that

1

2
|∇u(x, t)|2 ≤

∫ uM (t0)

u(x,t)

f(u)dufor every t < t0 and x ∈ Ω. 5



Now that we have the above preliminary results, we are ready to prove Theorem 1.1,whi
h gives the blow-up rate of the solution u. The proof is a modi�ed version of that in[7℄. Noti
e that by integrating the inequality ut(0, t) ≤ eu(0,t) from t to T , we have(2.3) log(T − t) + u(0, t) ≥ 0.Proof of Theorem 1.1. Let v∗ be as in Lemma 2.1, extended to its maximum existen
einterval (0, ǫ∗], and de�ne R∗ = min{ǫ∗, R}. By the zero number diminishing property (see[8℄), it 
an be veri�ed that both Z[0,R](ut(·, t)) and Z[0,R∗](u(·, t)−v∗(·)) are nonin
reasingin t ∈ [0, T ) so that they are 
onstant for all t ∈ [T1, T ) and for some T1 ∈ [0, T ). Herewe used the usual notation(2.4) ZI(g) = #{r ∈ I ; g(r) = 0}de�ned for an arbitrary interval I and a fun
tion g ∈ C(I). Let now Z[0,R∗](u(·, t)− v∗) =

N∗, for t ∈ [T1, T ).We will set
M(t) = u(0, t) and δ = lim inf

t→T

ut(0, t)

eu(0,t)
= lim inf

t→T

M ′(t)

eM(t)
,and 
laim that δ > 0.By 
ontradi
tion, assume that δ = 0. Then there exists a sequen
e ti → T as i → ∞su
h that limi→∞M ′(ti)e−M(ti) = 0. Moreover, we may assume that

f(u(0, t))

eu(0,t)
∈ (1/2, 2)for every t ≥ t0. De�ne

Ri = e−u(0,ti)/2 and wi(ρ, τ) = u(Riρ,R
2
i τ + ti) + 2 logRi.Then wi satis�es

wiτ −∆wi = R2
i f(wi − 2 logRi) in B(R/Ri)× (−tiR−2

i , 1/4).Moreover, we have that
wiτ (0, 0) = R2

i ut(0, ti) =
M ′(ti)

eM(ti)
→ 0 as i→ ∞.By Lemma 2.3, we get that ur(r, t)2 ≤ 2f(u(0, ti))(u(0, ti)−u(r, t)) for every t < ti and

r ∈ [0, R), assuming that u(0, t0) is large enough. Therefore, by integrating the inequality
|ur(r, t)|(u(0, ti)− u(r, t))−1/2 ≤

√
2f(u(0, ti))6



from 0 to r, we have(2.5) u(0, ti)− u(r, t) ≤ 4f(u(0, ti))r
2 ≤ 8eu(0,ti)r2for every t ≤ ti and r ∈ [0, R]. With the above estimate we 
an write

wi(ρ, τ) = u(Riρ,R
2
i τ + ti)− u(0, ti) ≥ −8eu(0,ti)R2

i ρ
2 = −8ρ2 ≥ −8C,whenever ρ ≤

√
C. Sin
e 
learly wi(ρ, τ) ≤ 0 for every τ < 0 and r ∈ [0, R/Ri], we knowthat the family {wi}i is uniformly bounded in L∞([0,

√
C]× (−tiR−2

i , 0)).Be
ause of the assumption that u attains the maximum at the origin, we know that
ut(0, t) ≤ f(u(0, t)) ≤ 2eu(0,t) for every t > t0. Integrating this inequality with respe
t to
t from ti to ti + τR2

i (where τ > 0), we obtain
−(e−u(0,ti+τR2

i ) − e−u(0,ti)) ≤ 2τR2
i = 2τe−u(0,ti),whi
h then yields(2.6) u(0, ti + τR2

i ) ≤ u(0, ti) + log
1

1− 2τ
≤ u(0, ti) + log 2,for every τ ∈ [0, 1/4]. Hen
e we have that wi(0, τ) = u(0, ti + τR2

i ) − u(0, ti) ≤ log 2 forevery τ ∈ [0, 1/4].By using the inequalities (2.5) and (2.6), we get that for τ ∈ [0, 1/4] and ρ ∈ [0,
√
C]:

wi(ρ, τ) = u(Riρ,R
2
i τ + ti)− u(0, ti)

= u(Riρ,R
2
i τ + ti)− u(0, R2

i τ + ti) + u(0, R2
i τ + ti)− u(0, ti)

≥ u(Riρ,R
2
i τ + ti)− u(0, R2

i τ + ti) ≥ −8eu(0,R
2
i τ+ti)R2

i ρ
2

= −8eu(0,R
2
i τ+ti)−u(0,ti)ρ2 ≥ −16ρ2 ≥ −16C.Therefore we now know that wi(ρ, τ) ≤ wi(0, τ) ≤ log 2 and wi(ρ, τ) ≥ −16C for every

ρ ∈ [0,
√
C] and τ ∈ [0, 1/4]. Altogether we have that {wi}i is uniformly bounded in

L∞([0,
√
C]× [−tiR−2

i , 1/4]).It follows from the paraboli
 estimates that {wi}i is a uniformly bounded family in
C2,1. Therefore, along a subsequen
e, it 
onverges uniformly in any 
ompa
t subset of
B(

√
C)× (−∞, 1/4) to a radially symmetri
 limit w. Be
ause

lim
i→∞

R2
i f(wi − 2 logRi) = lim

i→∞
e−wi+2 logRif(wi − 2 logRi)e

wi = ew,we have that w satis�es




wτ −∆w = ew in B(
√
C)× (−∞, 1/4),

w(0, 0) = 0, wτ(0, 0) = 0.7



Exa
tly the same arguments as in [7℄ show that a
tually wτ ≡ 0 and so w(·, τ) = φ(·),where φ is the unique solution to the problem in Proposition 2.2. Taking now ρ∗ large,we 
an assume that Z[0,ρ∗](φ−φ∗) = N∗+1, where φ∗(r) = log[2(n−2)r−2]. Taking then
C su
h that √C ≥ ρ∗, we 
an show, in the same manner as in [7℄, that Z[0,R∗](u(·, ti) −
v∗(·)) ≥ N∗ + 1, whi
h is a 
ontradi
tion and therefore δ > 0.Now we know that there exists T2 ∈ [T1, T ) su
h that

M ′(t)

eM(T )
≥ δ

2for every t ∈ [T2, T ). By integrating this inequality over the interval (t, T ), we obtain the
laim. �Combining the te
hniques of the proofs of Theorem 1.1 above and Theorem 1 in [7℄,it is straightforward to prove the following theorem.Theorem 2.4. If u is a global 
lassi
al solution of (1.1), then u is uniformly bounded.3 Convergen
e to a ba
kward selfsimilar solutionThe aim of this se
tion is to prove Theorem 1.2. Most of the work is needed to show thefollowing:Theorem 3.1. Let f(u) = eu and assume that the initial fun
tion u0 is radially nonin-
reasing. If u is a solution of (1.1) that blows up at t = T , and(3.1) lim
t→T

[
log(T − t) + u(y

√
T − t, t)

]
= 0uniformly for y in 
ompa
t sets, then(3.2) u(x, T ) = −2 log |x|+ log | log |x||+ log 8 as x→ 0.It was shown in [2℄ that (3.2) holds for solutions of(3.3) 




ut = ∆u+ eu, x ∈ Rn, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Rn,provided u is radially symmetri
, ur ≤ 0, ut ≥ 0. In [20℄ it was proved that either (3.2)holds or(3.4) u(x, T ) = −m log |x|+ Cm as x→ 0holds for some integer m ≥ 4 and Cm ∈ R for solutions of (3.3) under the assumptionsthat n = 1, u0 is 
ontinuous, bounded, it has a single maximum and x = 0 is the blow-up8



point. The existen
e of solutions of (1.1) whi
h blow up at x = 0 ∈ Ω, t = T , and havethe pro�le (3.2) was established in [4℄ when Ω is 
onvex. The existen
e of initial data su
hthat (3.4) o

urs with m = 4 was shown in [20℄ for Problem (3.3) with n = 1, for anyinteger m ≥ 4 see [5℄. In our 
ase the pro�le (3.4) does not o

ur sin
e we assume that uis radially de
reasing. This is be
ause in [3℄ it is proved that if u veri�es the assumptionsof Theorem 3.1, then(3.5) u(x, t) ≤ −2 log |x|+ log | log |x||+ C,for some 
onstant C and for any t ∈ (0, T ) and x in B(R).As in [26℄, the �rst thing we will have to do, is to extend the solution u to thewhole spa
e Rn in order to be able to use semigroup methods in appropriate weighted L2spa
es. We will also derive some useful estimates for the new nonlinearity and dis
uss thefun
tional analyti
 framework.Throughout this se
tion we will adopt the assumptions of Theorem 3.1. Take ζ ∈
C∞(Rn) su
h that ζ(x) = 1 for |x| ≤ R1, ζ(x) ∈ (0, 1) for |x| ∈ (R1, R2) and ζ(x) = 0 for
|x| ≥ R2, where 0 < R1, R2 < R. Then de�ne(3.6) ũ(x, t) = ζ(x)u(x, t)− (log(T − t) + 1)(1− ζ(x))for x ∈ Rn and t ∈ [0, T ). This gives us that the new extended fun
tion satis�es

ũt = ∆ũ+ f, x ∈ Rn, t ∈ (0, T ),where
f = f(x, t) = (T − t)−1(1− ζ)− (1 + log(T − t) + u)∆ζ − 2∇ζ · ∇u+ ζeu.Noti
e that Theorem 1.1 and Lemma 2.3, now applied to f(u) = eu, imply that(3.7) |(T − t)f(x, t)| ≤ Cfor every (x, t) ∈ Rn× [0, T ) and for some 
onstant depending only on the 
hoi
e of ζ andthe 
onstant appearing in Theorem 1.1. As above, we hen
eforth denote by C a generi

onstant possibly 
hanging from line to line and depending only on some �xed fun
tionsor parameters like u0 or the dimension of the spa
e.Following the usual method, we use the similarity variables to de�ne the res
aledfun
tion

w̃(y, s) = log(T − t) + ũ(x, t),where y = (T − t)−1/2x and s = − log(T − t). Then w̃ satis�es(3.8) w̃t = ∆w̃ − 1

2
y · ∇w̃ + (T − t)f − 1 = Aw̃ + h, y ∈ Rn, s > − logT,9



where A = ∆− y/2 · ∇ + I and h(y, s) = (T − t)f(x, t)− 1− w̃(y, s). Using Lemma 2.3and Theorem 1.1, it is easy to verify that |∇w̃| ≤ C and hen
e (2.3) implies that(3.9) |w̃| ≤ C(1 + |y|).In what follows, we will give some estimates for the fun
tion h. Assume �rst that
|y| ≤ es/2R1. Then w̃ = log(T − t) + u and h = e ew − 1− w̃. Therefore

|h| ≤ e| ew||w̃|2 ≤ eK |w̃|2,where K is the 
onstant appearing in Theorem 1.1. We 
an also argue that either −1 ≤
w̃ ≤ K, whi
h implies that |h| ≤ eKK|w̃|, or w̃ ≤ −1, in whi
h 
ase |h| = |e ew − 1− w̃| ≤
2 + |w̃| ≤ 3|w̃|.Assume then that |y| ∈ (es/2R1, e

s/2R2). Be
ause u(x, t) ≤ C for every |x| ∈ (R1, R2)and t ∈ [0, T ), there exists s0 > 0 su
h that
w̃ = −1 + ζ(u+ log(T − t) + 1) ≤ −1for every s ≥ s0. Therefore we 
an estimate

|h| ≤ |(T − t)f |+ 1 + |w̃| ≤ C + |w̃| ≤ (C + 1)|w̃| ≤ (C + 1)|w̃|2in Rn × [s0,∞), where we used the estimate (3.7).Sin
e, for |y| > es/2R2, it holds that h = −w̃ and w̃ = −1, we 
an 
olle
t the aboveestimates together to obtain that(3.10) |h| ≤ C1|w̃| and |h| ≤ C2|w̃|2 in Rn × [s0,∞)for some 
onstants C1 and C2. In a similar way we 
an also show that(3.11) ∣∣∣∣h− 1

2
w̃2

∣∣∣∣ ≤ C3|w̃|3 in Rn × [s0,∞).We will next dis
uss the operator A. A 
onvenient spa
e to work in is the weightedspa
e
L2
ρ(Rn) =

{
f ∈ L2lo
(Rn) ;

∫

Rn

|f(y)|2e−|y|2/4dy <∞
}
.It is well-known that A is a self-adjoint operator in L2

ρ(Rn) with domain H2
ρ(Rn) andit has a 
omplete family of orthogonal eigenfun
tions {Hα}α∈Nn with the 
orrespondingeigenvalues λα = 1− |α|/2, where |α| = α1 + . . .+αn. The eigenfun
tions 
an be writtenas Hα(y) = Πn

i=1Hαi
(yi), where Hm is the standard Hermite polynomial of order m ∈ N.We will denote by {S(s)}s the semigroup generated by A.10



Sin
e u, and so also w̃, is assumed to be radially symmetri
, we only need to 
onsiderradially symmetri
 eigenfun
tions. The �rst ones are h0(y) = 1 ∈ span{H0} 
orrespondingto the eigenvalue λ0 = 1 and h2(y) = |y|2− 2n ∈ span{Hα ; |α| = 2, αi even} 
orrespond-ing to the eigenvalue λ2 = 0. Therefore we 
an de
ompose(3.12) w̃ = π+w̃ + πcw̃ + π−w̃ = a(s) + b(s)(|y|2 − 2n) + θ(y, s),where π+w̃ and πcw̃ are the proje
tions to the eigenspa
es spanned by h0 and h2, and
π−w̃ = w̃ − π+w̃ − πcw̃ ∈ span{Hα ; |α| > 2}.A well-known fa
t is the regularizing property of the semigroup (see [30℄), namely, forevery p, q ∈ (1,∞) there exists R = R(p, q) and C = C(R) su
h that(3.13) ‖S(R)φ‖Lp

ρ
≤ C‖φ‖Lq

ρ
for every φ ∈ Lp

ρ(Rn),where the de�nition of Lp
ρ(Rn) is analogous to that of L2

ρ(Rn). Using the �rst inequalityin (3.10) and applying the above inequality to w̃, we obtain(3.14) ‖w̃(·, s)‖Lp
ρ
≤ eC1R‖S(R)w̃(·, s− R)‖Lp

ρ
≤ eC1RC‖w̃(·, s− R)‖Lq

ρ
.Also, the reversed inequality is known in L2

ρ. Assuming that there exists a 
onstant β > 0su
h that a(s)2 + ‖θ(·, s)‖2 ≤ β b(s)2, we 
an use Lemma 3.1 in [19℄ to obtain that(3.15) ‖w̃(·, s)‖ ≤ C(R, β)‖w̃(·, s+R)‖,where we used the notation ‖ · ‖ = ‖ · ‖L2
ρ
.The assumption (3.1) implies that(3.16) lim

s→∞
w̃(y, s) = 0uniformly for y in 
ompa
t sets. In the following Lemma and two Propositions, we willassume that the 
onvergen
e (3.16) is not exponential in rate, that is, we assume that forevery C, ǫ > 0 we have(3.17) ‖w̃(·, s)‖ > Ce−ǫsfor some s > − logT .The following lemma is proved in the 
ase of f(u) = up in [15℄ and it states that theunstable and stable part of the solution w̃ are dominated by the 
enter part of it. Theproof in our 
ase is almost the same as in [15℄ and therefore we do not repeat it here.The only di�eren
e is that [15℄ assumes the boundedness of w̃, and we use the inequality

|h| ≤ C1|w̃| whenever the boundedness is needed.11



Lemma 3.2. Let w̃ satisfy (3.16) and (3.17). Then for every ǫ > 0 there exists s0 su
hthat
‖π−w̃‖L2

ρ
+ ‖π+w̃‖L2

ρ
≤ ǫ‖πcw̃‖L2

ρfor any s ≥ s0.In what follows, we will derive di�erential equations for the fun
tions a and b appearingin the expansion (3.12). Inserting (3.12) in Equation (3.8), and proje
ting to the unstablesubspa
e, we have
‖1‖2L2

ρ
a′(s) = ‖1‖2L2

ρ
a(s) + P+h,where we use the notation (P+h) h0 = π+h. We 
an write h = (π+w̃+πcw̃)

2/2+ g, where
g = (π+w̃ + πcw̃)π−w̃ +

1

2
(π−w̃)

2 + h− 1

2
w̃2.Using Lemma 3.2 and inequalities (3.11), (3.14) and (3.15), we 
an estimate

|P+g| ≤ (ǫ2 + ǫ)‖πcw̃‖2 + 1
2
ǫ2‖πcw̃‖2 + C3‖w̃3‖ ≤ 2ǫ ‖πcw̃‖2 + C‖w̃(·, s−R)‖3

≤ 2ǫ ‖πcw̃‖2 + C‖w̃(·, s)‖3 ≤ 2ǫ ‖πcw̃‖2 + C‖πcw̃‖3 = 2ǫ b2 + Cb3for s large enough. Therefore, a satis�es
a′(s) = a(s) +

‖1‖−2
L2
ρ

2
P+(π+w + πcw)

2 + P+g.Sin
e we know that |w̃(y, s)| ≤ C(1 + |y|) and w̃(y, s) → 0 as s → ∞ pointwise forevery y, it follows from the Lebesgue dominated 
onvergen
e theorem that w̃(·, s) → 0 as
s → ∞ also in L2

ρ(Rn). Hen
e a(s) → 0 and b(s) → 0 as s → ∞, and we 
an write for
s ≥ s0

a′(s) = a(s) +
1

2
(a(s)2 + 8nb(s)2) + ǫO(b(s)2),where the se
ond term on the right is easily obtained from P+(π+w + πcw)

2 by simpleintegration. In the same way, we 
an prove that b satis�es
b′(s) = a(s)b(s) + 4b(s)2 + ǫO(b(s)2)for s ≥ s0.Using now Lemma 3.2 and the above di�erential equations for the fun
tions a and b,we 
an repeat the arguments used in Theorem 2.6 in [2℄ and so we obtain the followingresult.Proposition 3.3. Let w̃ satisfy (3.16) and (3.17). Then

w̃(y, s) = − 1

4s
(|y|2 − 2n) + o

(1
s

) in L2
ρ(Rn).12



By the regularizing e�e
t of the semigroup {S(s)}s, we 
an 
on
lude that the above
onvergen
e holds also uniformly on 
ompa
t sets. However, we need to 
onsider the
onvergen
e in larger sets, namely, when |y| ≤ √
sR. This is done in the propositionbelow, whi
h follows [26, 30℄.Proposition 3.4. Let w̃ satisfy (3.16) and (3.17). Then it holds that(3.18) lim

t→T

[
log(T − t) + ũ(ξ(T − t)1/2| log(T − t)|1/2, t)

]
= − log

(
1 +

|ξ|2
4

)uniformly for |ξ| ≤ R.Proof. To get started, de�ne
G(ξ) = − log

(
1 +

|ξ|2
4

)and
φ(y, s) = G

( y√
s

)
+
n

2s
.Then G(ξ) = −|ξ|2/4 + R(ξ), where |R(ξ)| ≤ C|ξ|4. Therefore we have that

‖w̃(·, s) −φ(·, s)‖L2
ρ

≤ o
(1
s

)
+
{∫

Rn

∣∣∣− 1

4s
(|y|2 − 2n) +

|y|2
4s

− R
( y√

s

)
− n

2s

∣∣∣
2

e−|y|2/4dy
}1/2

≤ o
(1
s

)
+ C

{∫

Rn

|y|8
s4
e−|y|2/4dy

}1/2

= o
(1
s

)
.De�ning W = w̃ − φ and using the equations

φs(y, s) = − ξ

2s
· ∇G(ξ)− n

2s2and
−ξ
2
· ∇G(ξ) = 1− eG,we get that W satis�es(3.19) Ws = AW + g +

ξ

2s
· ∇G+

n

2s2
+ L,where

g = h+ 1 + φ− eφ and L =
∆G

s
+ eφ − eG,and h is as in (3.8). Multiplying the above equation (3.19) by sgn(W ), de�ning Z = |W |and using Kato's inequality, we get that(3.20) Zs ≤ AZ + sgn(W )g + sgn(W )

( ξ
2s

· ∇G+
n

2s2

)
+ sgn(W )L

≤ AZ + sgn(W )g + C
( |ξ|2
s

+
1

s2

)
+ sgn(W )L.13



Next, we want to get estimates for the terms in the right hand side of (3.20). Be
ause
|∆G(ξ)−∆G(0)| ≤ C|ξ|2, we get that

|L(y, s)| =
∣∣∣∆G(ξ)−∆G(0)

s
+ eG+n/2s − eG − n

2s

∣∣∣

≤ C
|ξ|2
s

+
1

1 + |ξ|2/4
( n
2s

+O(s−2)− n

2s
(1 + |ξ|2/4)

)
≤ C

|ξ|2
s

+O
( 1

s2

)
.To estimate the fun
tion g, 
onsider �rst the subset |y| ≤ es/2R1. Then (T − t)f = e ewand we have by the mean value theorem that for some Θ ∈ (0,W )sgn(W )g = sgn(W )

(
eφ+W −W − eφ

)
= sgn(W )

(
eφ + (eφ − 1)W + 1

2
eφ+ΘW 2 − eφ

)

=
(
− |ξ|2/4

1 + |ξ|2/4 +
en/2s − 1

1 + |ξ|2/4
)
Z +

1

2
eφ+ΘZ2 ≤ n

2s
Z + CZ2,sin
e 
learly eφ+Θ ≤ eK . Noti
e that we also have

|g| =
∣∣eφ + (eφ+Θ − 1)W − eφ

∣∣ ≤ CZ.Assume then that |y| ∈ (es/2R1, e
s/2R2). Be
ause (T − t)f(x, t) and eφ are uniformlybounded, we have thatsgn(W )g = sgn(W )(T − t)f(x, t)− Z + sgn(W )eφ ≤ C ≤ C(Z2 + 1).Clearly, we also have that sgn(W )g ≤ C(Z + 1).Finally, for |y| ≥ es/2R2, we have that (T − t)f(x, t) = 1 and w̃ = −1. Therefore

W ≥ −1 + log (1 + esR2
2/4s)− n/2s > 1 for s large enough, and we getsgn(W )g ≤ C ≤ CZ ≤ CZ2.Colle
ting the above results, we know that Z satis�es the di�erential inequalities(3.21) Zs ≤ AZ + C

( |y|2 + 1

s2
+ Z2 +

Z

s
+ χ

) in [s0,∞)×Rnand(3.22) Zs ≤ AZ + C
( |y|2 + 1

s2
+ Z + χ

) in [s0,∞)× Rn,where χ = χ(y, s) = 1 if |y| ∈ (es/2R1, e
s/2R2) and χ = 0 otherwise, and s0 is largeenough.The proof 
an now be �nished by using the above inequalities and pro
eeding as in[30, Proposition 2.3℄. �In what follows, we shall handle the 
ase where the 
onvergen
e (3.16) is exponential.Therefore we shall assume that(3.23) ‖w̃(·, s)‖ = o(e−ǫs)for some ǫ > 0. The proof of the following proposition is the same as in [29℄.14



Proposition 3.5. Assume that (3.23) holds. Then either there existsm ≥ 3 and 
onstants
Cα, not all equal to zero, su
h that

w̃(y, s) = −e(1−m/2)s
∑

|α|=m

CαHα(y) + o(e(1−m/2)s) in L2
ρ(Rn),or w̃ is the trivial solution w̃(·, s) = 0.Noti
e that the term∑|α|=mCαHα has to be radially symmetri
, and so m is a
tuallyeven. Sin
e Hα(y) = Πn

i=1Hαi
(yi) and Hαi

(yi) =
∑αi/2

k=0 c2k(αi)y
2k
i for some 
onstants

ck(αi) and αi even, we have that(3.24) |Hα(y)− cαy
α| ≤ C(1 + |y|m−2),where cα =

∑n
i=1 cαi

(αi). Moreover, it has to hold that ∑|α|=mCαHα → ∞ as |y| → ∞and therefore ∑|α|=m aαy
α > 0 for every y 6= 0, where aα = Cαcα.Following [29℄, we shall next prove an analogue of Proposition 3.4 and extend the
onvergen
e to larger sets.Proposition 3.6. Let w̃ and m ≥ 4 be as in Proposition 3.5. Then(3.25) lim

t→T

[
log(T − t) + ũ(ξ(T − t)1/m, t)

]
= − log

(
1 +

∑

|α|=m

aαξ
α
)uniformly for |ξ| ≤ R, where the 
onstants aα = Cαcα are as above.Proof. De�ne

G(ξ) = − log
(
1 +

∑

|α|=m

aαξ
α
)
, ξ = e(1/m−1/2)sy,and

φ(y, s) = G(ξ)− e(1−m/2)s
∑

|α|=m

Cα[Hα(y)− cαy
α] = G− L.Then it is easily seen that

‖w̃ − φ‖L2
ρ
= o(e(1−m/2)s).Sin
e

ξ · ∇G
m

= eG − 1,we get, by de�ning W = w̃ − φ, that
Ws = ∆W − y

2
∇W +W + h− φs +∆φ− y

2
∇φ+ φ

= AW + h−
{(

1

m
− 1

2

)
ξ∇ξG−

(
1− m

2

)
L

}

+
{
e(2/m−1)s∆ξG−∆L

}
−
{ξ
2
∇ξG− y

2
∇L
}
+G− L

= AW + (T − t)f − w̃ − eG +G + e(2/m−1)s∆ξG−∆L+
y

2
∇L− m

2
L.15



Using now the fa
ts that ∆Hα− (y/2)∇Hα = −(|α|/2)Hα and (y/2)∇yα = (|α|/2)yα, weget that
∆L− y

2
∇L = −m

2
L− e(1−m/2)s

∑

|α|=m

aα∆y
α.Writing then Z = |W | and

∆G = −
∑

|α|=m aα∆ξξ
α

1 +
∑

|α|=m aαξ
α
+

(∑
|α|=m aααiξ

α−1i

1 +
∑

|α|=m aαξ
α

)2

= (∆G)1 + (∆G)2,where we use the notation α− 1i = (α1, . . . , αi − 1, . . . , αn), we have that
Zs ≤ AZ + sgn(W )K1 + |K2|+ |e( 2

m
−1)s(∆G)2|,where

K1 = (T − t)f − w̃ − eG +Gand
K2 = e(2/m−1)s(∆G)1 + e(1−m/2)s

∑

|α|=m

aα∆y
α.Clearly, it holds that

e(2/m−1)s(∆G)2 = e(2/m−1)s

(∑
|α|=m aααie

(1/m−1/2)(m−1)syα−1i

1 +
∑

|α|=m aαξ
α

)2

≤ e2(1−m/2)s|y|2m−2.Estimating then K2 using the equality e(2/m−1)s∆ξξ
α = e(1−m/2)s∆yα, we obtain

|K2| = e(1−m/2)s
n∑

i=1

∣∣∣∣∣

(∑
|α|=m aαξ

α
)(∑

|α|=m aα∆y
α
)

1 +
∑

|α|=m aαξ
α

∣∣∣∣∣

= e2(1−m/2)s

n∑

i=1

∣∣∣∣∣

(∑
|α|=m aαy

α
)(∑

|α|=m aααi(αi − 1)yα−2i
)

1 +
∑

|α|=m aαξ
α

∣∣∣∣∣

≤ Ce2(1−m/2)s(1 + |y|2m−2).To give some estimates for K1, de�ne Ω1(s) = {y; |y|m−2e(1−m/2)s ≤ R1} and Ω2(s) =

{y; |y|me(1−m/2)s ≤ R̃}, where R̃ is large enough su
h that
eCL(1+R1)

1 +
∑

|α=m aαξ
α
< 1for every |ξ|m = |y|me(1−m

2
)s > R̃, and CL = C

∑
|α|=mCα with C as in (3.24). Then

Ω2(s) ⊂ Ω1(s) for s large enough, and we have that
|L| ≤ CLe

(1−m/2)s(1 + |y|m−2) ≤ CL(1 +R1) for y ∈ Ω1(s),16



and
|L| ≤ CLe

(2/m−1)s(1 + [e(1/m−1/2)s|y|]m−2) ≤ CLe
(2/m−1)s(1 + R̃(m−2)/m) ≤ C

sfor y ∈ Ω2(s), and
eφ =

e−L

1 +
∑

|α|=m aαξ
α
< 1 for y ∈ Ω1(s) \ Ω2(s).Consider y ∈ Ω1(s). In this domain, we have that

K1 = e ew− w̃−eG+G = eW+φ−W −φ−eG+G = (eφ−1)W +
1

2
eφ+ΘW 2+eG−L+L−eGfor some Θ ∈ (0,W ). Nowsgn(W )(eφ − 1)W = −

∑
|α|=m aαξ

α

1 +
∑

|α|=m aαξ
α
Z +

e−L − 1

1 +
∑

|α|=m aαξ
α
Z <

C

s
Zfor y ∈ Ω2(s) and sgn(W )(eφ − 1)W ≤ 0 ≤ C

s
Zfor y ∈ Ω1(s) \ Ω2(s).For Θ ∈ (0, L) and y ∈ Ω1(s), we also have the estimate eG−Θ ≤ eG+|L| ≤ C, and so

|eG−L +L− eG| =
∣∣∣∣(1− eG)L+

1

2
eG−ΘL2

∣∣∣∣

≤
∑

|α|=m aαξ
α

1 +
∑

|α|=m aαξ
α
CLe

(1−m/2)s(1 + |y|m−2) + Ce2(1−m/2)s(1 + |y|m−2)2

≤ Ce2(1−m/2)s(1 + |y|2m−2).Hen
e we havesgn(W )K1 ≤
C

s
Z + CZ2 + Ce2(1−

m
2
)s(1 + |y|2m−2) for y ∈ Ω1(s).Consider then y ∈ {|y| ≤ es/2R2} \ Ω1(s). It yields that |ξ| ∈ (es/mR

1/(m−2
1 , es/mR2)and we 
an easily estimate

|K1| =
∣∣∣(T − t)f + s− ũ(x, t)− s− log

(
e−s +

∑

|α|=m

aα(e
−s/mξ)α

)
− eG

∣∣∣ ≤ C.Finally, let y ∈ Rn \ {|y| ≥ es/2R2}. In this domain we have that (T − t)f = 1 and
w̃ = −1 and therefore

|K1| = |2− eG +G| ≤ 1 + |eG − 1−G| ≤ 1 +
1

2
eΘG217



for some Θ ∈ (0, G). Sin
e |L| ≤ CLe
(1−m/2)s(1 + |y|m−2) and G = w̃ + L−W , we get

G2 ≤ C(W 2 + (L− 1)2) ≤ C(W 2 + L2 + 1) ≤ C
(
W 2 + 1 + e2(1−m/2)s(1 + |y|2m−2)

)
.Altogether we have obtained that

Zs ≤ AZ +
C

s
Z + CZ2 + Ce2(1−m/2)s(1 + |y|2m−2) + Cχ,where χ = χ(y, s) = 1, for |y| ≥ es/2R2 and χ = 0 otherwise. Now we 
an �nish the proofexa
tly as in [30℄. �In what follows, our aim is to des
ribe the asymptoti
 blow-up pro�le of u. In otherwords, we want to show that either (3.2) or (3.4) holds. To that end, de�ne for τ ∈ [0, T ]

ψτ (x, t) = log(T − τ) + ũ(λ(τ)ξ + x
√
T − τ , τ + (T − τ)t),where λ(τ) = √

T − τ | log(T − τ)|1/2 if the 
ase as in Proposition 3.4 o

urs and λ(τ) =
(T − τ)1/m if the 
onvergen
e of u is as in Proposition 3.6. Here ξ is �xed, x ∈ Rn and
t ∈ [0, 1]. Moreover, let

φτ(y, s) = log(1− t) + ψτ (x, t),where y = (1− t)−1/2x and s = − log(1− t). Then we have that
(ψτ )t = ∆ψτ + (T − τ)f, x ∈ Rn, t ∈ (0, 1)and
(φτ)s = ∆φτ −

y

2
· ∇φτ + hτ , y ∈ Rn, s > 0,where hτ (y, s) = (T − τ)(1 − t)f(λ(τ)ξ + x

√
T − τ , τ + (T − τ)t) − 1. By the abovePropositions 3.4 and 3.6, we know that

φτ (y, 0) = ψτ (x, 0) = log(T − τ) + ũ(λ(τ)ξ + x
√
T − τ , τ)

= − log


1 +

∑

|α|=m

aα

(
ξ +

x
√
T − τ

λ(τ)

)α

+ γτ (x),where m ≥ 2 and ∑|α|=m aαξ

α = |ξ|2/4 if (3.18) holds, and otherwise m ≥ 3 and the
onstants aα are as in Proposition 3.6. Above |γτ (x)| → 0 uniformly for |x| ≤ C(T −
τ)−1/2λ(τ) as τ → T . Therefore

lim
τ→T

ψτ (x, 0) = − log


1 +

∑

|α|=m

aαξ
α


 ,pointwise for every x ∈ Rn. Be
ause of Propositions 3.4 and 3.6, we also know that

|ψτ (0, 0)| ≤ C as τ → T and therefore Proposition 2.3 yields that ψτ (x, 0) ≤ C +18



|∇ψτ ||x| ≤ C(1 + |x|) ∈ L2
ρ(Rn). By the dominated 
onvergen
e theorem we then obtainthat(3.26) wwwψτ (·, 0) + log

(
1 +

∑

|α|=m

aαξ
α
)www

L2
ρ

≤ γτ → 0as τ → T .De�ne also
φ̃(s) = log(1− t)− log

(
1− t+

∑

|α|=m

aαξ
α
)
, Wτ = φτ − φ̃ and Zτ = |Wτ |,where m ≥ 2. Then Wτ veri�es the equation(3.27) (Wτ )s = ∆Wτ −

y

2
· ∇Wτ + hτ + 1− e

eφ = ÃWτ + e
eφWτ + fτ ,where Ã = ∆− (y/2) · ∇ and

fτ (y, s) = (T − τ)(1− t)f
(
λ(τ)ξ + x

√
T − τ , τ + (T − τ) t

)
− e

eφWτ − e
eφ,and so Zτ satis�es respe
tively the equation(3.28) (Zτ)s ≤ ÃZτ + e

eφZτ + |fτ |and by (3.26) also(3.29) ‖Zτ(·, 0)‖L2
ρ
≤ γτ → 0 as τ → T.Now, for |λ(τ)ξ + x

√
T − τ | ≤ R1, we have fτ = eφτ − e

eφWτ − e
eφ and so we have forsome Θτ = Θτ (y, s) ∈ [0,Wτ (y, s)] that(3.30) fτ = e

eφ(eWτ −Wτ − 1) =
1

2
e

eφ+ΘτW 2
τ .Clearly, φ̃+Θτ ≤ φ̃+max{0,Wτ} ≤ max{φ̃, φτ} ≤ K and so the inequality(3.31) |fτ | ≤ CZτholds as well.For |λ(τ)ξ + x

√
T − τ | > R1, we have that Wτ ≤ −1, at least for τ 
lose to T , andtherefore the uniform bound (3.7) gives us that |fτ | ≤ C ≤ CZτ ≤ CZ2

τ . Thus theinequality (3.31) holds for every s > 0, y ∈ Rn and τ 
lose to T with some 
onstant Cdepending only on the 
onstant appearing in Theorem 1.1 and the 
hoi
e of ζ .In the forth
oming statements and proofs C denotes again a generi
 
onstant, possibly
hanging from line to line, depending only on the solution u, our 
hoi
e of ζ and ξ ∈ Rnand the dimension n. 19



Lemma 3.7. Let fτ be as above and assume that sups≤s ‖Zτ (·, s)‖ ≤ ǫτ , where ǫτ → 0 as
τ → T . Then there exist a 
onstant C ′ > 0 su
h that

‖fτ (·, s)‖L2
ρ
≤ C ′e−sǫτfor every s ≤ s.Proof. We will �rst estimate the part of the norm where |y| is large. Re
all that, usingthe regularizing e�e
t of the semigroup together with the inequalities (3.28) and (3.31),we know that there exists a 
onstant R > 0 depending only on p ≥ 1 and the dimensionof the spa
e su
h that(3.32) ‖Zτ (·, s)‖Lp

ρ
≤ ‖eCRS̃(R)Zτ (·, s− R)‖Lp

ρ
≤ C‖Zτ(·, s−R)‖L2

ρ
.Then de�ne Ω1(s, τ) = {y ∈ Rn ; |y| > es/2λ(τ)|ξ|

2
√
T−τ

} and use the inequality (3.31) togetherwith Hölder's inequality and the above inequality (3.32) to obtain
∫

Ω1(s,τ)

|fτ (y, s)|2e−|y|2/4dy

≤
{∫

Ω1(s,τ)

|fτ (y, s)|4e−|y|2/4dy

}1/2{∫

|y|≥es/2
e−|y|2/4dy

}1/2

≤ C‖Zτ (·, s)‖2L4
ρ
e−es ≤ Ce−2s‖Zτ (·, s− R)‖2L2

ρ
≤ Ce−2sǫ2τfor s ≤ s and τ 
lose to T . Here we used the fa
t that

∫

|y|≥R

e−|y|2dy ≤ Ce−R2

.In what follows, we 
onsider the part of the integral where y ∈ Ω2(s, τ) = Rn \Ω1(s, τ)and noti
e that then fτ = e
eφ(eWτ −1−Wτ ) = e

eφ+ΘτZ2
τ for Θτ ∈ (0,Wτ) and τ su�
iently
lose to T . By taking τ 
lose to T and y in Ω2(s, τ), we have that |λ(τ)ξ +√

T − τx| >
1
2
λ(τ)|ξ| and (T − τ)| log(λ(τ))/λ(τ)2 ≤ 1. By using the estimate (3.5), we then get
Wτ (y, s) = log(T − τ) + ũ(λ(τ)ξ +

√
T − τx, τ + (T − τ)t) + log

(
1− t+

∑

|α|=m

aαξ
α
)

≤ log
(4(T − τ)| log(λ(τ)|ξ|/2)|

(λ(τ)|ξ|)2
)
+ C ≤ C.Therefore fτ ≤ e

eφ+CZ2
τ and

∫

Ω2(s,τ)

|fτ (y, s)|2e−|y|2/4dy ≤ e2(
eφ+C)

∫

Ω2(s,τ)

|Zτ(y, s)|4e−|y|2/4dy

≤ Ce−2s‖Z(·, s)2‖2 ≤ C(R)e−2s‖Z(·, s− R)‖4 ≤ Ce−2sǫ4τ ,20



whi
h �nishes the proof. �Now we are ready to prove that the norm of Zτ stays small forever if it is initiallysmall enough, using an idea from [29℄. This will then allow us to pass to the limit as
s→ ∞ and 
omplete the proof 
on
erning the blow-up pro�le.Proposition 3.8. Let Zτ be as above. Then there exists a 
onstant C > 0 independentof s su
h that

‖Zτ(·, s)‖L2
ρ
≤ Cγτand(3.33) sup

|y|≤R

Z(y, s) ≤ Cγτ .Proof. Let τ be 
lose to T and s0 be large enough so that all the above estimates hold.Let now {S̃(s)}s be the semigroup generated by Ã. It is 
lear that be
ause of (3.28),(3.29) and (3.31), we have that(3.34) ‖Zτ (·, s0)‖L2
ρ
≤ eCs0‖S̃(s0)Zτ(·, 0)‖L2

ρ
≤ eCs0γτfor some 
onstant C > 0. De�ne

s = sup{s ; ‖Zτ (·, s)‖L2
ρ
≤ 4eCs0γτ}and assume that s <∞. Take then s0 large enough so that both(3.35) 2C ′e−s0 <

1

4
and e−s0 +

∑
|α|=m aαξ

α

∑
|α|=m aαξ

α
< 2,where C ′ is the 
onstant appearing in Lemma 3.7.Using Lemma 3.7, the previous inequalities (3.34) and (3.35) together with the de�-nition of s and the variation of 
onstants formula, we obtain

‖Z(·, s)‖L2
ρ

≤
(
‖S̃(s− s0)Zτ (·, s0)‖L2

ρ
+

∫ s

s0

‖S̃(s− t)fτ (·, t)‖L2
ρ
dt

)
exp

(∫ s

s0

e
eφ(t)dt

)

≤
(
‖Zτ (·, s0)‖L2

ρ
+ C ′

∫ s

s0

e−t
(
4eCs0γτ

)
dt

)
e−s0 +

∑
|α|=m aαξ

α

e−s +
∑

|α|=m aαξ
α

≤ 2
(
eCs0γτ + C ′(e−s0 − e−s)4eCs0γτ

)
<

3

4
· 4eCs0γτ ,whi
h 
ontradi
ts the 
hoi
e of s. Therefore it has to hold that s = ∞, whi
h yields the�rst part of the 
laim. 21



Be
ause of the estimate (3.31), we obtain also the se
ond part of the 
laim by
sup
|y|≤R

Zτ (y, s) ≤ sup
|y|≤R

|eCLS̃(L)Zτ (y, s− L)|

≤ C sup
|y|≤R

eCL

(1− e−L)n/2

∫

Rn

exp
(
− (ye−L/2 − λ)2

4(1− e−L)

)
Zτ (λ, s− L)dλ

≤ C sup
|y|≤R

{∫

Rn

exp
(
− (ye−L/2 − λ)2

2(1− e−L)

)
e|λ|

2/4dλ

}1/2

·
{∫

Rn

Zτ (λ, s− L)2e−|λ|2/4
}1/2

≤ C‖Zτ(·, s− L)‖L2
ρ
≤ Cγτ ,and the proof is 
omplete. �Proof of Theorem 3.1. Passing to the limit as s → ∞ in (3.33), whi
h 
orresponds totaking t = 1 and x = 0, we have

log(T − τ) + ũ(λ(τ), T ) + log


∑

|α|=m

aαξ
α


 ≤ Cγτ → 0as τ → ∞. Set x = λ(τ)ξ and follow the estimates in [2℄, for instan
e, to noti
e that theabove 
onvergen
e implies that

lim
|x|→0

[
u(x, T ) + 2 log |x| − log | log |x|| − log 8

]
= 0if (3.18) holds, and

lim
|x|→0


u(x, T ) +m log |x|+ log


∑

|α|=m

aαξ̂
α




 = 0if (3.25) holds, where ξ̂ = x/|x|. The latter 
onvergen
e is however impossible be
ause ofthe estimate (3.5) and so we have the 
laim. �Proof of Theorem 1.2. We shall �rst prove that if w̃(·, sn) → ϕ(·) uniformly on 
ompa
tsets for some sequen
e sn → ∞, then ϕ is a stationary solution of the 
orrespondingres
aled equation, that is, it satis�es (1.4) with 0 ≤ µ < ∞. The argument is similar tothat in [13℄ (see also [18℄).Be
ause of the inequality (3.9) and paraboli
 regularization, we know that w̃ is 
on-tained in a 
ompa
t subset of C2,1(BM(0) × [s0,∞)) with uniformly Hölder 
ontinuousderivatives, where M > 0 is arbitrary. Using then the inequality

∫ s

s0

∫

B
R1e

t/2(0)

|w̃s(y, t)|2e−|y|2/4dy dt ≤ E[w](0)− E[w](s),22



where
E[w](s) :=

∫ R1es/2

0

(
1

2
w2

y − ew + w

)
e−|y|2/4 dyis the energy fun
tional 
orresponding to the res
aled equation, and proving that E[w](s)is bounded from below, we obtain that w̃s(y, s) 
onverges to zero uniformly on 
ompa
tsets and hen
e ϕ is a stationary solution. Clearly ϕη(0) = 0 and sin
e w̃(0, s) ≥ 0 by(2.3), we also have that µ ≥ 0.Following then [25℄, it is straightforward to show that su
h ϕ exists and w̃(·, s) → ϕ(·)uniformly on 
ompa
t sets for s→ ∞. In the proof one �rst argues that the set of possible

ϕ 
an be written as
ω(w̃) =

⋂

s

⋃

σ≥s

{w̃(·, s)}in a suitable topology. Then it is fairly simple to see that the above set is nonempty,
ompa
t and 
onne
ted. Taking then ϕ as above and using the zero number property, we
an see that w̃(0, s) − ϕ(0) never 
hanges sign for s large enough. Assuming then that
ω(w̃) 
ontains at least three solutions of (1.4), denoted by ψi, i ∈ {1, 2, 3}, it has to holdthat w̃(0, s) ∈ (ψi(0), ψi+1(0)) for i equal to 1 or 2 and s large enough, whi
h 
ontradi
tsthe fa
t that w̃(·, s) → ψj(·), for j /∈ {i, i+ 1}.Theorem 3.1 enables us to 
on
lude that µ > 0 by applying the following proposition[28, Theorem 3.6℄.Proposition 3.9. There exists a 
onstant C > 0 su
h that there is no nonnegative L1-solution of (1.1) with f(u) = eu and

u0(|x|) ≥ −2 log |x|+ log(2(n− 2)) + Cfor |x| 
lose to 0.Namely, if ϕ ≡ 0 then u 
annot be 
ontinued beyond t = T as an L1-solution.It is known, see [3℄, that if ϕ is a nontrivial solution of (1.4), then either ϕ(η) =

−2 log η + C + o(1) or ϕ(η) = −Cη−3eη
2/4 + o(1) as η → ∞. Sin
e (3.9) holds, ϕ 
annothave the exponential de
ay at in�nity and the 
laim is proved. �4 Pro�le of L1-
onne
tionsIn this se
tion we 
onsider the problem(4.1) 




ut = urr +
n− 1

r
ur + λeu, r ∈ (0, 1), t > 0,

ur(0, t) = u(1, t) = 0, t > 0,

u(r, 0) = u0(r) ≥ 0, r ∈ [0, 1],23



where λ > 0 and n ∈ [3, 9].We �rst re
all some known properties of equilibria of (4.1). The stationary problem
orresponding to (4.1) is:(4.2) 



φrr +
n− 1

r
φr + λeφ = 0, r ∈ (0, 1),

φr(0) = 0, φ(1) = 0.Proposition 4.1 ([17, 21℄, see Figure 1). Denote by S the solution set of the parameterizedproblem (4.2):
S = {(φ, λ) : λ ∈ R+ and φ is a solution of (4.2)}.Then there exists a smooth 
urve

s 7→ (φ(s), λ(s)) : R+ → C([0, 1])×R+su
h that S = {(φ(s), λ(s)) ; s > 0} and that
sup

x∈B1(0)

φ(s)(x) = φ(s)(0) = s.Moreover, the following holds:(i) lims→0 λ(s) = 0, lims→∞ λ(s) = λ∞ := 2(n− 2).(ii) The set of all zeros of λ′(·) is given by a sequen
e 0 < s1 < s2 < s3 < · · · → ∞ andthe 
riti
al values λj = λ(sj), j = 1, 2, 3, . . . , satisfy
λ1 > λ3 > · · · > λ2j+1 ց λ∞, λ2 < λ4 < · · · < λ2j+2 ր λ∞.(iii) For ea
h λ ≤ λ1 de�ne

φλ
i = φ(s̃i), i = 0, 1, . . . ,where s̃0 < s̃1 < · · · is the sequen
e of all points s with λ(s) = λ. This sequen
e is�nite if λ 6= λ∞ and in�nite if λ = λ∞. In the latter 
ase we have

φλ
i (r) → φλ

∞(r) := log r
2(n− 2)

λr2
in C1

loc((0, 1]).For the number of interse
tions of two equilibria and of equilibria with φλ
∞ the followingholds.Proposition 4.2.(i) If λ < λ1 and k > j are su
h that φλ

k and φλ
j are both de�ned, then φλ

k − φλ
j hasexa
tly j + 1 zeros in [0, 1], all of them simple.24
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Figure 1.(ii) If λ = λ∞ and j ≥ 0, then φλ
∞ − φλ

j has j + 1 zeros in [0, 1].(iii) If λ < λ∞ and j ≥ 0 are su
h that φλ
j is de�ned, then φλ

∞ − φλ
j has j + 1 zeros in

[0, 1] when j is odd, and j zeros in [0, 1] when j is even.(iv) If λ∞ < λ ≤ λ1 and j ≥ 0 are su
h that φλ
j is de�ned, then φλ

∞ − φλ
j has j zeros in

[0, 1] when j is odd, and j + 1 zeros in [0, 1] when j is even.All of the zeros of φλ
∞ − φλ

j are simple.Proof. For the proof of (i) we refer to [14℄. From (i) and Proposition 4.1 (iii) it follows that(ii) holds. To prove (iii) and (iv) one 
an then use the bifur
ation diagram (Figure 1), thesimpli
ity of zeros and 
ontinuation of φλ
j , taking into a

ount that the zero of φλ

∞ − φλ
jat r = 1, λ = λ∞, either moves inside or disappears when λ 6= λ∞ and λ is 
lose to λ∞.

� Next we re
all the existen
e of a spe
ial blow-up solution whi
h 
an be 
ontinuedglobally as an L1-solution.Proposition 4.3. For any λ ∈ (λ2, λ3] and T > 0 there is u0 su
h that the solution u(·, t)of (4.1) has the following properties:(i) u(·, t) blows up at t = T .(ii) u(·, t) is a global L1-solution.(iii) u(·, t) is de�ned (as a 
lassi
al solution of (4.1)) on the interval (−∞, T ) and
u(·, t) → φλ

2 in C1([0, 1]) as t→ −∞.25



(iv) u(·, t) is a 
lassi
al solution of (4.1) on the interval (T,∞) and u(·, t) → φλ
0 in

C1([0, 1]) as t→ ∞.(v) There is a sequen
e {ui} of 
lassi
al 
onne
tions from φλ
2 to φλ

0 su
h that un(r, t) ր
u(r, t) pointwise for (r, t) ∈ [0, 1] × R. Here a 
lassi
al 
onne
tion from φλ

2 to φλ
0is a 
lassi
al solution of (4.1) on the interval (−∞,∞) su
h that u(·, t) → φλ

2 in
C1([0, 1]) as t→ −∞, and u(·, t) → φλ

0 in C1([0, 1]) as t→ ∞.We 
all the solution u an L1-
onne
tion from φλ
2 to φλ

0 .For the proofs see Theorem 3.4 in [14℄ and Se
tion 6 in [13℄.Theorem 4.4. Let λ ∈ (λ2, λ3]. Suppose u is an L1-
onne
tion from φλ
2 to φλ

0 as inProposition 4.3. Then
lim
t→T

[
log(T − t) + u(η

√
T − t, t)

]
= ϕ0(η), η ∈ [0,∞),where ϕ0 satis�es





ϕηη +

(
n− 1

η
− η

2

)
ϕη + λeϕ − 1 = 0, η > 0,

ϕ(0) = µ0, ϕη(0) = 0for some µ0 > 0 and
lim
η→∞

(ϕ0(η)− φλ
∞(η)) = −c0for some c0 > 0. Moreover, the equation

ϕ0(η)− φλ
∞(η) = 0has two roots.For the proof we shall need the following lemma.Lemma 4.5 ([27℄). Let λ∞ < λ ≤ λ3. Denote the three zeros of φλ

∞−φλ
2 by 0 < r1 < r2 <

r3 < 1. Let u be an L1-
onne
tion from φλ
2 to φλ

0 as in Proposition 4.3. Then u(·, t)− φλ
∞has at most two zeros in (0, r1) for t < T .Proof. We use the notation (2.4). Sin
e u(·, t) → φλ

2 in C1 as t → −∞ and Z(0,1)(φ
λ
∞ −

φλ
2) = 3, it follows that there is t0 < 0 su
h that Z(0,1)(φ

λ
∞ − u(·, t)) = 3 for t < t0.Therefore, Z(0,1)(φ

λ
∞ − u(·, t)) ≤ 3 for t < T .We now pro
eed by 
ontradi
tion. Suppose there is t1 < T su
h that Z(0,r1)(φ

λ
∞ −

u(·, t1)) = 3. Then there is a positive integer i and a 
lassi
al 
onne
tion ui from φλ
2 to

φλ
0 (
f. Proposition 4.3 (v)) su
h that Z(0,r1)(φ

λ
∞ − ui(·, t1)) = 3. This means that(4.3) ui(r, t1) > φλ

∞(r), r ∈ [r1, 1],26



be
ause Z(0,1)(φ
λ
∞ − ui(·, t)) ≤ 3 for all t ∈ R.We 
laim that then(4.4) Z(r3,1)(φ

λ
2 − ui(·, t1)) = 1.Indeed, otherwise either(4.5) Z[0,1](φ
λ
2 − ui(·, t1)) > 2or(4.6) Z[0,1)(φ
λ
2 − ui(·, t1)) = 0.Sin
e ui(·, t1) belongs to the unstable manifold of φλ

2 , we must have (
f. Theorem 2.1 in[6℄)(4.7) Z[0,1](φ
λ
2 − ui(·, t)) ≤ 2, t ∈ R.(We remark here that Theorem 2.1 in [6℄ 
on
erns the zero number on the unstablemanifold of an equilibrium of a semilinear paraboli
 equation in one spa
e-dimension.But this result 
an be extended in a straightforward way to radially symmetri
 solutionsin higher spa
e-dimension using Theorem 2.1 from [8℄.) It follows from (4.7) that (4.5)
annot o

ur. On the other hand, (4.6) would imply that ui blows up in a �nite time (
f.[22℄). Hen
e (4.4) holds. Therefore, we obtain that(4.8) ui(r, t1) > φλ

2(r), r ∈ [0, r3].We next show that(4.9) ui(r, t) > max{φλ
2(r), φ

λ
∞(r)}, (r, t) ∈ [r1, r3]× [t1,∞).From (4.3) and (4.8) we have

ui(r, t1) > max{φλ
2(r), φ

λ
∞(r)}, r ∈ [r1, r3].If (4.9) does not hold, then there is t2 > t1 su
h that

ui(r, t) > max{φλ
2(r), φ

λ
∞(r)}, (r, t) ∈ [r1, r3]× [t1, t2),and either(4.10) ui(r1, t2) = φλ

∞(r1)(= φλ
2(r1)),or(4.11) ui(r3, t2) = φλ

∞(r3)(= φλ
2(r3)).27



Note that Z(r3,1)(φ
λ
2 − ui(·, t)) = 1 for t ∈ [t1, t2], so (4.10) is impossible be
ause then

Z[0,1](φ
λ
2 − ui(·, t2)) = 3.On the other hand, for t ∈ [t1, t2] all interse
tions of φ∞ and ui(·, t) are 
ontained in [0, r1].Thus (4.11) 
annot o

ur.Sin
e φλ

2 > φλ
0 in [r1, r3], (4.9) yields a 
ontradi
tion with the 
onvergen
e of ui(·, t) to

φλ
0 as t→ ∞. �Proof of Theorem 4.4. Consider �rst the 
ase λ2 < λ ≤ λ∞. Then Z(0,1)(φ

λ
∞ − φλ

2) = 2and by the zero number diminishing property, it has to hold that Z[0,R](u(·, t)− φλ
∞) ≤ 2for every t ∈ (−∞, T ). After res
aling, we then get that Z[0,es/2](w̃(·, s) − φλ

∞) ≤ 2 forevery s ∈ (−∞,∞). Theorem 1.2 now states that w̃(·, s) → ϕ uniformly on 
ompa
t setsin y, where ϕ has the de
ay (1.5) and interse
ts φλ
∞ at most twi
e. It follows then from[3℄ that ϕ has to interse
t φλ

∞ exa
tly twi
e.If λ∞ < λ ≤ λ3, then Z(0,1)(φ
λ
∞ − φλ

2) = 3, but Lemma 4.5 yields that Z(0,r1)(φ
λ
∞ −

u(·, t)) ≤ 2 for t < T and we 
an pro
eed as before. �The existen
e of L1-
onne
tions between two equilibria φλ
k and φλ

j was studied in[11, 12℄, and it was shown there that a singular L1-
onne
tion from φλ
k to φλ

j exists if andonly if k ≥ j + 2. By Theorem 1.1 any su
h L1-
onne
tion blows up with the selfsimilarrate and by Theorem 1.2 it 
onverges (after res
aling) to a non
onstant selfsimilar solution.It would be interesting to determine how this limit selfsimilar solution depends on k and
j. Theorem 4.4 answers this question only for k = 2 and j = 0. To prove a more generalresult one has to be able to 
ontrol the number of interse
tions with φλ
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