Publication I

M. Fila, A. Pulkkinen, Backward selfsimilar solutions of supercritical parabolic equations, Applied Mathematics Letters 22 (2009), 897-901.
(C) 2009 Elsevier.

Reprinted with permission.

Backward selfsimilar solutions of supercritical parabolic equations

Marek Fila ${ }^{\text {a,* }}$, Aappo Pulkkinen ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Applied Mathematics and Statistics, Comenius University, 84248 Bratislava, Slovakia
${ }^{\mathrm{b}}$ Department of Mathematics and Systems Analysis, Helsinki University of Technology, 02015 Espoo, Finland

ARTICLE INFO

Article history:

Received 10 July 2008
Accepted 10 July 2008

Keywords:

Supercritical parabolic equations
Selfsimilar solutions
Number of intersections

A B S T R A C T

We consider the exponential reaction-diffusion equation in space-dimension $n \in(2,10)$. We show that for any integer $k \geq 2$ there is a backward selfsimilar solution which crosses the singular steady state k-times. The same holds for the power nonlinearity if the exponent is supercritical in the Sobolev sense and subcritical in the Joseph-Lundgren sense.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

By a backward selfsimilar solution of the equation

$$
\begin{equation*}
u_{t}=u_{r r}+\frac{n-1}{r} u_{r}+|u|^{p-1} u, \quad r>0, p>1, \tag{1}
\end{equation*}
$$

we mean a solution of the form

$$
u(r, t)=(T-t)^{-\frac{1}{p-1}} \psi(y), \quad y=\frac{r}{\sqrt{T-t}}, T \in \mathbb{R}, t<T
$$

where ψ is a solution of the ODE

$$
\begin{equation*}
\psi^{\prime \prime}+\left(\frac{n-1}{y}-\frac{y}{2}\right) \psi^{\prime}+|\psi|^{p-1} \psi-\frac{1}{p-1} \psi=0, \quad y>0 . \tag{2}
\end{equation*}
$$

Backward selfsimilar solutions play an important role in the analysis of the asymptotic behaviour of solutions of (1) which blow up in finite time, see [1], for instance.

Bounded solutions of (2) satisfy the initial conditions

$$
\begin{equation*}
\psi(0)=\alpha, \quad \psi^{\prime}(0)=0 \tag{3}
\end{equation*}
$$

In the case $n=1,2$ or $n>2$ and $p \leq p_{s}:=(n+2) /(n-2)$, the only bounded solutions of (2) are the constants $\psi \equiv 0$, $\psi \equiv \pm \kappa, \kappa:=(p-1)^{-1 /(p-1)}$, see [2]. On the other hand, for $p_{s}<p<p^{*}$,

$$
p^{*}:=\left\{\begin{array}{l}
\infty \quad \text { if } n \leq 10, \tag{4}\\
1+\frac{4}{n-4-2 \sqrt{n-1}} \quad \text { if } n>10,
\end{array}\right.
$$

[^0]0893-9659/\$ - see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2008.07.018
there exists an increasing sequence $\left\{\alpha_{k}\right\}_{k=1}^{\infty}, \alpha_{k} \rightarrow \infty$, such that the solution $\psi=\psi_{k}$ of (2) and (3) with $\alpha=\alpha_{k}$ satisfies:

$$
\begin{equation*}
\psi(y)>0 \quad \text { for } y>0, \quad y^{2 /(p-1)} \psi(y) \rightarrow c \quad \text { as } y \rightarrow \infty \tag{5}
\end{equation*}
$$

for some $c=c_{k}>0$, see [3-5]. For $n>10$ and $p^{*} \leq p<p_{L}:=1+6 /(n-10)$ there exist solutions of (2) and (3), satisfying (5), see [6]. If $p_{S}<p<p_{L}$ then all nonconstant positive bounded solutions of (2) intersect the explicit singular solution

$$
\begin{equation*}
\psi_{\infty}(y):=L y^{-\frac{2}{p-1}}, \quad L:=\left(\frac{2}{p-1}\left(n-2-\frac{2}{p-1}\right)\right)^{\frac{1}{p-1}} \tag{6}
\end{equation*}
$$

at least twice, see [3-6]. If $n>2$ and $p_{s}<p<p^{*}$ then for every even positive integer k and for every large odd integer k there is a bounded solution of (2) which intersects the explicit singular solution k-times and satisfies (5), see [4].

In this paper we show the following:
Theorem 1.1. Assume that $n>2$ and $p_{s}<p<p^{*}$. Then for every integer $k \geq 2$ there is a bounded solution of (2) which has k intersections with the singular solution ψ_{∞} and satisfies (5) with some $c=c_{k}>0$.

We also establish a result on the existence of solutions with odd number of intersections with ψ_{∞} for some $p^{*} \leq p<p_{L}$ and $n>10$, see Corollary 2.8.

In [7], Mizoguchi showed the nonexistence of positive bounded solutions of (2) which intersect ψ_{∞} at least twice for $p>1+7 /(n-11), n>11$. A numerical study of Plecháč and Šverák ([8]) suggests that this is true if $p>p_{L}, n>10$.

By a backward selfsimilar solution of the equation

$$
\begin{equation*}
u_{t}=u_{r r}+\frac{n-1}{r} u_{r}+\mathrm{e}^{u}, \quad r>0 \tag{7}
\end{equation*}
$$

we mean a solution of the form

$$
u(r, t)=-\log (T-t)+\psi(y), \quad y=\frac{r}{\sqrt{T-t}}, T \in \mathbb{R}, t<T
$$

where ψ is a solution of the ODE

$$
\begin{equation*}
\psi^{\prime \prime}+\left(\frac{n-1}{y}-\frac{y}{2}\right) \psi^{\prime}+\mathrm{e}^{\psi}-1=0, \quad y>0 . \tag{8}
\end{equation*}
$$

We are interested in solutions of (8) which satisfy

$$
\begin{equation*}
\psi(0)=\alpha \geq 0, \quad \psi^{\prime}(0)=0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{y \rightarrow \infty}\left(1+\frac{y}{2} \psi^{\prime}(y)\right)=0 \tag{10}
\end{equation*}
$$

Condition (10) arises naturally (see [1, p. 70]) and it means in particular that if u is a backward selfsimilar solution of (7) with ψ satisfying (10) then $\lim _{t \rightarrow T-} u(r, t)$ exists and is finite for $r>0$.

In the case $n=1,2$, there is no solution of (8), (9), (10), see [1], [9]. On the other hand, for $2<n<10$, there exists an increasing sequence $\left\{\alpha_{k}\right\}_{k=1}^{\infty}, \alpha_{k} \rightarrow \infty$, such that the solution ψ_{k} of (8), (9) satisfies (10), see [10]. Lacey and Tzanetis proved in [11] that there is a solution $\psi=\psi_{\alpha}$ of (8), (9), (10) and a negative constant C such that

$$
\begin{equation*}
\lim _{y \rightarrow \infty}(\psi(y)+2 \log y-\log 2(n-2))=C \tag{11}
\end{equation*}
$$

We prove the following:
Theorem 1.2. Assume that $2<n<10$. Then for every integer $k \geq 2$ there exists $\alpha=\alpha_{k}$ such that the solution of (8), (9) has k intersections with the singular solution $\psi_{\infty}(y):=-2 \log y+\log 2(n-2)$ and satisfies (11) for some constant $C=C_{k}$.

2. Intersections with the singular steady state

Let ψ be a solution of problem (2), (3) or (8), (9). If ψ satisfies (2), we define $\phi=\psi-\kappa$ and if ψ satisfies (8), we merely let $\phi=\psi$. Therefore we are considering the solutions of the equation

$$
\begin{equation*}
\phi^{\prime \prime}+\left(\frac{n-1}{y}-\frac{y}{2}\right) \phi^{\prime}+G(\phi)=0, \quad y>0, \tag{12}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
\phi(0)=\alpha-K \geq 0, \quad \phi^{\prime}(0)=0, \tag{13}
\end{equation*}
$$

where either $G(\phi)=-\frac{1}{p-1}(\phi+K)+(\phi+K)^{p}$ and $K=\kappa$, or $G(\phi)=\mathrm{e}^{\phi}-1$ and $K=0$. We will let $\phi^{*}(y)=L y^{-2 /(p-1)}-\kappa$ if the nonlinearity G is algebraic and $\phi^{*}(y)=-2 \log y+\log 2(n-2)$ if G is exponential.

If G is algebraic then it is only defined for $\phi \geq-\kappa$. If it then happens that $\phi\left(y_{0}\right)=-\kappa$ for some $y_{0}>0$, we make a formal extension $\phi(y)=-\infty$ for $y>y_{0}$. This is just to be able to handle the exponential and power cases both at the same time. If there is a need for the explicit writing of the initial condition we will let $\phi_{\alpha}=\phi$ with $\phi(0)=\alpha-K$.

We will frequently use the following comparison lemma which is well known, see [12], for instance.
Lemma 2.1. Suppose that $-\infty<y_{0}<y_{\infty} \leq \infty, a, b \in C\left(\left[y_{0}, y_{\infty}\right)\right)$ and that $f, g \in C^{2}\left(\left[y_{0}, y_{\infty}\right)\right)$ satisfy

$$
\left\{\begin{array}{l}
f^{\prime \prime}+a f^{\prime}+b f \geq 0, \quad g^{\prime \prime}+a g^{\prime}+b g \leq 0, \quad \text { in }\left(y_{0}, y_{\infty}\right), \\
g>0, \text { in }\left(y_{0}, y_{\infty}\right), \quad f\left(y_{0}\right)=g\left(y_{0}\right), f^{\prime}\left(y_{0}\right) \geq g^{\prime}\left(y_{0}\right)>0 .
\end{array}\right.
$$

Then $f \geq g$ and $f^{\prime} g \geq f g^{\prime}$ in $\left(y_{0}, y_{\infty}\right)$.
The next proposition limits the number of zeros of ϕ near 0 .
Proposition 2.2. If ϕ satisfies (12) then it cannot have more than one zero in $(0, \sqrt{2 n})$.
Proof. Assume that $\phi\left(y_{1}\right)=\phi\left(y_{2}\right)=0$ for some $0<y_{1}<y_{2}<\sqrt{2 n}$ with $\phi(y)<0$ for $y \in\left(y_{1}, y_{2}\right)$. Let $v(y)=y^{2}-2 n$ so that it satisfies

$$
\begin{equation*}
v^{\prime \prime}+\left(\frac{n-1}{y}-\frac{y}{2}\right) v^{\prime}+v=0, \quad y>0 \tag{14}
\end{equation*}
$$

Clearly ϕ verifies

$$
\phi^{\prime \prime}+\left(\frac{n-1}{y}-\frac{y}{2}\right) \phi^{\prime}+\phi=\left(1-G^{\prime}(\eta)\right) \phi
$$

for some $\eta=\eta(y) \in[0, \phi(y)]$. Since $G^{\prime}(\phi)<1$ for every $\phi<0$, we have that

$$
\begin{equation*}
\phi^{\prime \prime}+\left(\frac{n-1}{y}-\frac{y}{2}\right) \phi^{\prime}+\phi<0 \tag{15}
\end{equation*}
$$

for $y \in\left(y_{1}, y_{2}\right)$. Let $v_{\varepsilon}=\varepsilon v$ and take $\varepsilon>0$ small enough such that it holds that $v_{\varepsilon}\left(y_{1}+\varepsilon_{1}\right)=\phi\left(y_{1}+\varepsilon_{1}\right)$ with $v_{\varepsilon}^{\prime}\left(y_{1}+\varepsilon_{1}\right)>\phi^{\prime}\left(y_{1}+\varepsilon_{1}\right)$ and $v_{\varepsilon}\left(y_{2}-\varepsilon_{2}\right)=\phi\left(y_{2}-\varepsilon_{2}\right)$ with $v_{\varepsilon}^{\prime}\left(y_{2}-\varepsilon_{2}\right)<\phi^{\prime}\left(y_{2}-\varepsilon_{2}\right)$ for some $\varepsilon_{1}, \varepsilon_{2}>0$ and $y_{1}+\varepsilon_{1}<y_{2}-\varepsilon_{2}$. Then we can use Lemma 2.1 with $y_{0}=y_{1}+\varepsilon_{1}$ and $y_{\infty}=y_{2}$ to conclude that $\phi(y)<v_{\varepsilon}(y)$ for every $y \in\left(y_{1}+\varepsilon_{1}, y_{2}\right)$ which is a contradiction since $v_{\varepsilon}\left(y_{2}\right)<0$.

Proposition 2.3. If ϕ has a zero at $y_{1}>\sqrt{2 n}$ then there exist $C>0$ and $y_{2} \geq y_{1}$ such that $\phi(y) \leq C\left(2 n-y^{2}\right)$ for $y>y_{2}$.
Proof. If $\phi^{\prime}\left(y_{1}\right)>0$ then there exists $y_{2}>y_{1}$ such that $\phi\left(y_{2}\right)=0$ and $\phi^{\prime}\left(y_{2}\right)<0$. If $\phi^{\prime}\left(y_{1}\right)<0$ then take $y_{2}=y_{1}$.
Let $M=-\infty$ if the exponential equation is under consideration and $M=-\kappa$ if we are dealing with the power equation. Let $y_{\infty}=\sup \left\{\tilde{y}>y_{2}: M \leq \phi(y)<0\right.$ in $\left.\left(y_{2}, \widetilde{y}\right)\right\}$. Let $v_{\varepsilon}=\varepsilon\left(2 n-y^{2}\right)$ and so v_{ε} satisfies (14). We also have that ϕ verifies (15) in $\left(y_{2}, y_{\infty}\right)$. Taking then $\varepsilon>0$ small enough such that $v_{\varepsilon}\left(y_{2}+\varepsilon_{2}\right)=\phi\left(y_{2}+\varepsilon_{2}\right)$ and $v_{\varepsilon}^{\prime}\left(y_{2}+\varepsilon_{2}\right)>\phi^{\prime}\left(y_{2}+\varepsilon_{2}\right)$ for some $\varepsilon_{2}>0$, we can use the comparison lemma above to obtain that $\phi(y)<v_{\varepsilon}(y)$ for every $y \in\left(y_{2}+\varepsilon_{2}, y_{\infty}\right)$.

In the exponential case, if $y_{\infty}<\infty$, then it must hold that $\phi\left(y_{\infty}\right)=0$ which is a contradiction since by comparison we have $\phi\left(y_{\infty}\right) \leq v_{\varepsilon}\left(y_{\infty}\right)<0$. Therefore the claim holds.

In the power case it holds that $y_{\infty}<\infty$ and $\phi\left(y_{\infty}\right)=-\kappa$, since $\varepsilon\left(2 n-y^{2}\right)<-\kappa$ for y large enough. Therefore $\phi(y)<\varepsilon\left(2 n-y^{2}\right)$ for $y \in\left(y_{2}+\varepsilon_{2}, y_{\infty}\right]$ and $\phi(y)=-\infty$ for $y>y_{\infty}$ which gives the claim.
Define y^{*} by the equation $\phi^{*}\left(y^{*}\right)=0$ which implies $\left(y^{*}\right)^{2}=2(n-2)-4 K^{p-1}<2 n$. Then the number of crossings of ϕ and ϕ^{*} in the interval $\left(y^{*}, \infty\right)$ is limited as follows.

Proposition 2.4. Assume that $\phi\left(y_{1}\right)=\phi^{*}\left(y_{1}\right)$ for some $y_{1}>y^{*}$. Then there is a constant $C>0$ such that $\phi(y) \leq C\left(2 n-y^{2}\right)$ for y large enough. Moreover, the following hold:
(i) If $\phi^{\prime}\left(y_{1}\right)>\left(\phi^{*}\right)^{\prime}\left(y_{1}\right)$ then there exist exactly two points $y_{2}, y_{3}>y_{1}$ such that $\phi\left(y_{2}\right)=\phi\left(y_{3}\right)=0$ and exactly one point $y_{4}>y_{1}$ such that $\phi\left(y_{4}\right)=\phi^{*}\left(y_{4}\right)$.
(ii) If $\phi^{\prime}\left(y_{1}\right)<\left(\phi^{*}\right)^{\prime}\left(y_{1}\right)$, then ϕ does not cross ϕ^{*} for $y>y_{1}$.

Proof. Assume that $\phi^{\prime}\left(y_{1}\right)>\left(\phi^{*}\right)^{\prime}\left(y_{1}\right)$. Then $y_{2}=\sup \left\{\tilde{y}>y_{1}: \phi^{*}(y)<\phi(y)<0\right.$ in $\left.\left(y_{1}, \widetilde{y}\right)\right\} \leq \infty$ is well-defined because $y_{1}>y^{*}$. Define $g=\phi^{*} \phi^{\prime}-\left(\phi^{*}\right)^{\prime} \phi$ and let $\rho=\rho(y)=y^{n-1} \mathrm{e}^{-y^{2} / 4}$. Then

$$
\begin{aligned}
(\rho g)^{\prime} & =\rho^{\prime} g+\rho g^{\prime}=\left(\frac{n-1}{y}-\frac{y}{2}\right) \rho g+\rho\left(\phi^{*} \phi^{\prime \prime}-\left(\phi^{*}\right)^{\prime \prime} \phi\right) \\
& =-\rho \phi^{*} G(\phi)+\rho \phi G\left(\phi^{*}\right)=\rho \phi \phi^{*}\left(\frac{G\left(\phi^{*}\right)}{\phi^{*}}-\frac{G(\phi)}{\phi}\right)
\end{aligned}
$$

and since the function $G(x) / x$ is increasing for $x<0$ such that $G(x)$ is defined, we obtain that $(\rho g)^{\prime}<0$ in $\left(y_{1}, y_{2}\right)$. Therefore we have that $(\rho g)(y)<(\rho g)\left(y_{1}\right)$ for every $y \in\left(y_{1}, y_{2}\right)$ and so

$$
\left(\frac{\phi}{\phi^{*}}\right)^{\prime}=\frac{g}{\left(\phi^{*}\right)^{2}}<\frac{(\rho g)\left(y_{1}\right)}{\rho\left(\phi^{*}\right)^{2}}
$$

in $\left(y_{1}, y_{2}\right)$. This implies that

$$
\frac{\phi(y)}{\phi^{*}(y)}<\frac{\phi\left(y_{1}\right)}{\phi^{*}\left(y_{1}\right)}+\int_{y_{1}}^{y} \frac{(\rho g)\left(y_{1}\right)}{\rho(s) \phi^{*}(s)^{2}} \mathrm{~d} s,
$$

for every $y \in\left(y_{1}, y_{2}\right)$ and since $(\rho g)\left(y_{1}\right)=\rho\left(y_{1}\right) \phi^{*}\left(y_{1}\right)\left(\phi^{\prime}\left(y_{1}\right)-\left(\phi^{*}\right)^{\prime}\left(y_{1}\right)\right)<0$, we have

$$
\begin{equation*}
\phi(y)>\phi^{*}(y)\left(1+(\rho g)\left(y_{1}\right) \int_{y_{1}}^{y} s^{1-n} e^{s^{2} / 4} \phi^{*}(s)^{-2} d s\right)>\phi^{*}(y) \tag{16}
\end{equation*}
$$

for every $y \in\left(y_{1}, y_{2}\right)$. Clearly $y_{2}<\infty$ since the integral part of (16) tends to ∞ as $y \rightarrow \infty$ and so it also has to hold that $\phi\left(y_{2}\right)=0$ with $\phi^{\prime}\left(y_{2}\right)>0$. On the other hand, since ϕ has to be negative for large y (see (5) and (10)), we know that ϕ crosses 0 again at some $y_{3}>y_{2}$.

By Proposition 2.2, we obtain that $y_{3}>\sqrt{2 n}$ and so by Proposition 2.3 we have that $\phi(y)<C\left(2 n-y^{2}\right)$ for y large enough. Therefore there exists y_{4} such that $\phi\left(y_{4}\right)=\phi^{*}\left(y_{4}\right)$. Using the same function g as above and precisely the same estimates but with $(\rho g)\left(y_{4}\right)>0$ and $(\rho g)^{\prime}>0$, we arrive at the inequality

$$
\begin{equation*}
\phi(y)<\phi^{*}(y)\left(1+(\rho g)\left(y_{4}\right) \int_{y_{4}}^{y} s^{1-n} \mathrm{e}^{s^{2} / 4} \phi^{*}(s)^{-2} \mathrm{~d} s\right)<\phi^{*}(y), \tag{17}
\end{equation*}
$$

for every $y \in\left(y_{4}, y_{\infty}\right)$ where $y_{\infty}=\sup \left\{\tilde{y}>y_{4}: M<\phi(y)<\phi^{*}(y)\right.$ in $\left.\left(y_{4}, \widetilde{y}\right)\right\}$, where again $M=-\infty$ for the exponential and $M=-\kappa$ for the power. Therefore we conclude that ϕ does not cross ϕ^{*} again after y_{4} and $\phi<C\left(2 n-y^{2}\right)$ for y large enough.

Assuming that $\phi^{\prime}\left(y_{1}\right)<\left(\phi^{*}\right)^{\prime}\left(y_{1}\right)$ we just replace y_{4} by y_{1} in (17) and that proves the claim.
Denote by $z_{\#}(f)$ the number of zeros of the function f in the interval $(0, \infty)$.
Proposition 2.5. Assume that $z_{\#}\left(\phi_{\alpha_{2 k}}-\phi^{*}\right)=2 k$ and that $z_{\#}\left(\phi_{\alpha}-\phi^{*}\right)>2 k$ for $\alpha-\alpha_{2 k}>0$ small enough. Then there exists $\alpha_{2 k+1}>\alpha_{2 k}$ such that $z_{\#}\left(\phi_{\alpha}-\phi^{*}\right)=2 k+2$ for $\alpha \in\left(\alpha_{2 k}, \alpha_{2 k+1}\right)$ and $z_{\#}\left(\phi_{\alpha_{2 k+1}}-\phi^{*}\right) \in\{2 k, 2 k+1\}$.
Proof. Define $I_{k}(a)=\left\{\alpha>a: z_{\#}\left(\phi_{\alpha}-\phi^{*}\right) \neq k\right\}$. Let $\left\{y_{i}(\alpha)\right\}_{i}$ be the zeros of $\phi_{\alpha}-\phi^{*}$ for any α and assume $y_{j}(\alpha)<y_{j+1}(\alpha)$ for any $j \leq z_{\#}\left(\phi_{\alpha}-\phi^{*}\right)-1$.

Since $y_{2 k+1}(\alpha)$ exists for $\alpha-\alpha_{2 k}>0$ small enough, we obtain by continuity that $y_{2 k+1}(\alpha) \rightarrow \infty$ as $\alpha \searrow \alpha_{2 k}$. Therefore for α close to $\alpha_{2 k}$, we have that $y_{2 k+1}(\alpha)>y^{*}$ and $\left(\phi_{\alpha}\right)^{\prime}\left(y_{2 k+1}(\alpha)\right)>\left(\phi^{*}\right)^{\prime}\left(y_{2 k+1}(\alpha)\right)$ (due to continuity with respect to α). So by Proposition 2.4, we have another zero $y_{2 k+2}(\alpha)$ of $\phi_{\alpha}-\phi^{*}$ and points $\widetilde{y}_{2}(\alpha), \widetilde{y}_{3}(\alpha) \in\left(y_{2 k+1}(\alpha), y_{2 k+2}(\alpha)\right)$ such that $\phi_{\alpha}\left(\breve{y}_{2}(\alpha)\right)=\phi_{\alpha}\left(\widetilde{y}_{3}(\alpha)\right)=0$. Hence there exists $\alpha_{2 k+1}=\inf I_{2 k+2}\left(\alpha_{2 k}\right)$ such that $z_{\#}\left(\phi_{\alpha}-\phi^{*}\right)=2 k+2$ for $\alpha \in\left(\alpha_{2 k}, \alpha_{2 k+1}\right)$.

Assume that $z_{\#}\left(\phi_{\alpha_{2 k+1}}-\phi^{*}\right)=2 k+2$. Then by continuity, $z_{\#}\left(\phi_{\alpha}-\phi^{*}\right)>2 k+2$ for $\alpha-\alpha_{2 k+1}>0$ small enough and by the same argument that we used above, it must hold $z_{\#}\left(\phi_{\alpha}-\phi^{*}\right) \geq 2 k+4$ for $\alpha-\alpha_{2 k+1}>0$ small enough.

Since $y_{2 k+2}(\alpha)$ is continuous in ($\alpha_{2 k}, \alpha_{2 k+1}$], there exists a constant $D(\varepsilon)>0$, such that $y_{2 k+2}(\alpha)<D(\varepsilon)$ for every $\alpha \in\left[\alpha_{2 k}+\varepsilon, \alpha_{2 k+1}\right]$. Also by continuity, $\phi^{\prime}\left(\widetilde{y}_{2}(\alpha)\right)>0$ for every $\alpha \in\left(\alpha_{2 k}, \alpha_{2 k+1}\right]$, since otherwise $\phi_{\widehat{\alpha}}\left(\tilde{y}_{2}(\widehat{\alpha})\right)=$ $\phi_{\widehat{\alpha}}^{\prime}\left(\widetilde{y}_{2}(\widehat{\alpha})\right)=0$ for some $\widehat{\alpha}$, which is clearly a contradiction. Therefore there exists a point $\widetilde{y}_{1}(\alpha)$ such that $\phi\left(\widetilde{y}_{1}(\alpha)\right)=0$ and $\widetilde{y}_{1}(\alpha)<\sqrt{2 n}<\widetilde{y}_{2}(\alpha)<\widetilde{y}_{3}(\alpha)$ for every $\alpha \in\left(\alpha_{2 k}, \alpha_{2 k+1}\right)$ by Propositions 2.2 and 2.4 above.

We have, due to $\phi_{\alpha}(0)$, thus obtained that $\sqrt{2 n} \leq \widetilde{y}_{2}(\alpha)<\widetilde{y}_{3}(\alpha)<y_{2 k+2}(\alpha)<D(\varepsilon)$ for every $\alpha \in\left[\alpha_{2 k}+\varepsilon, \alpha_{2 k+1}\right]$. However, the fact that $y_{2 k+2}\left(\alpha_{2_{k}+1}\right)>\sqrt{2 n}>y^{*}$ implies that $\phi_{\alpha}-\phi^{*}$ has at least 3 zeros after the point $y=y^{*}$ for $\alpha-\alpha_{2 k+1}>0$ small enough. This is a contradiction by Proposition 2.4.

Assume then that $z_{\#}\left(\phi_{\alpha_{2 k+1}}-\phi^{*}\right)>2 k+2$. Then by continuity, $z_{\#}\left(\phi_{\alpha}-\phi^{*}\right)>2 k$ also for $\alpha_{2 k+1}-\alpha>0$ small enough which contradicts the definition of $\alpha_{2 k+1}$.

Assume that $z_{\#}\left(\phi_{\alpha_{2 k+1}}-\phi^{*}\right)<2 k$. Then by continuity, $y_{2 k}(\alpha), y_{2 k+1}(\alpha), y_{2 k+2}(\alpha)>y^{*}$ for $\alpha_{2 k+1}-\alpha>0$ small enough. This contradicts Proposition 2.4. Now the claim is proved.

Proposition 2.6. Assume that $z_{\#}\left(\phi_{\alpha_{2 k+1}}-\phi^{*}\right)=2 k+1$ and that $z_{\#}\left(\phi_{\alpha}-\phi^{*}\right)>2 k+1$ for $\alpha-\alpha_{2 k+1}>0$ small enough. Then there exists $\alpha_{2 k+2}>\alpha_{2 k+1}$ such that $z_{\#}\left(\phi_{\alpha}-\phi^{*}\right)=2 k+2$ for $\alpha \in\left(\alpha_{2 k+1}, \alpha_{2 k+2}\right)$.

Proof. If $z_{\#}\left(\phi_{\alpha}-\phi^{*}\right)>2 k+2$ for $\alpha-\alpha_{2 k+1}>0$ small, then there exist two zeros of $\phi_{\alpha}-\phi^{*}$ that satisfy $y^{*}<$ $y_{2 k+2}(\alpha)<y_{2 k+3}(\alpha)$ and $\phi^{\prime}\left(y_{2 k+2}(\alpha)\right)<\left(\phi^{*}\right)^{\prime}\left(y_{2 k+2}(\alpha)\right)$ and $\phi^{\prime}\left(y_{2 k+3}(\alpha)\right)>\phi^{\prime}\left(y_{2 k+3}(\alpha)\right)$ which is a contradiction with Proposition 2.4.

Theorem 2.7. Assume that there exists a solution $\phi_{\alpha_{m}}$ of (12), (13) with $z_{\#}\left(\phi_{\alpha_{m}}-\phi^{*}\right)=m \geq 5$. Then for any integer $k \in[2, m-2]$ there exists $\alpha_{k}>0$ such that $z_{\#}\left(\phi_{\alpha_{k}}-\phi^{*}\right)=k$. Moreover, there is a constant $c=c_{k}>0$ such that $\psi=\phi_{\alpha_{k}}+\kappa$ satisfies (5) if G is algebraic or a constant $C=C_{k}$ such that $\psi=\phi_{\alpha_{k}}$ satisfies (11) if G is exponential.
Proof. By Propositions 2.5 and 2.6, the function $z_{\#}\left(\phi_{\alpha}-\phi^{*}\right)$ can only increase by at most 2 as α increases. By Proposition 2.4 and continuity, the function $z_{\#}\left(\phi_{\alpha}-\phi^{*}\right)$ can only decrease by at most 2 as α increases because there can be at most two crossings of ϕ_{α} and ϕ^{*} in $\left(y^{*}, \infty\right)$.

For $\alpha>0$ small enough, we know that $z_{\#}\left(\phi_{\alpha}-\phi^{*}\right)=2$, cf. [6,11]. Suppose that there exists an integer $k \in[2, m-2]$ such that there is no solution of $(12),(13)$ which intersects with the singular solution k-times. Then there exist values $\left\{\alpha_{k-1}^{(i)}\right\}_{i}$ such that $\phi_{\alpha}-\phi^{*}$ has $k-1$ zeros for $\alpha_{k-1}^{(i)}-\alpha>0$ small, and $k+1$ zeros for $\alpha-\alpha_{k-1}^{(i)}>0$ small. Since there is a solution $\phi_{\alpha_{m}}$ with m intersections with ϕ^{*}, there exist $\alpha_{k-1} \in\left\{\alpha_{k-1}^{(i)}\right\}_{i}$ and $\alpha_{k+1}>\alpha_{k-1}$ such that $z_{\#}\left(\phi_{\alpha_{k-1}}-\phi^{*}\right)=k-1$, while $z_{\#}\left(\phi_{\alpha}-\phi^{*}\right)=k+1$ for $\alpha \in\left(\alpha_{k-1}, \alpha_{k+1}\right)$ and $z_{\#}\left(\phi_{\alpha}-\phi^{k}\right)>k+1$ for $\alpha-\alpha_{k+1}>0$ small.

If $k-1$ is odd we have a contradiction by Proposition 2.6. If $k-1$ is even we obtain a contradiction by Proposition 2.5. This proves that for every integer $k \in[2, m-2]$ there is a solution $\phi_{\alpha_{k}}$ of (12) such that $\phi_{\alpha_{k}}$ crosses the singular solution k-times.

It remains to prove that there exist solutions with k intersections satisfying (5) or (11).
For the solutions ϕ_{α} that have an odd number of intersections with the singular solution ϕ^{*} this follows from [4] or [11]. For the power case the claim was proved for even k in $[4,6]$.

For the exponential nonlinearity it was proved in [10] that with $a_{2 k}=\inf J_{2 k+1}=\inf \left\{\alpha: \phi_{\alpha}\right.$ crosses the singular solution at least $2 k+1$ times $\}$ it holds that $\phi_{a_{2 k}}$ satisfies (10). By the above definition we have that $z_{\#}\left(\phi_{a_{2 k}}-\phi^{*}\right) \in\{2 k-1,2 k\}$ and $z_{\#}\left(\phi_{\alpha}-\phi^{*}\right) \in\{2 k+1,2 k+2\}$ for $\alpha-a_{2 k}>0$ small enough. If $z_{\#}\left(\phi_{a_{2 k}}-\phi^{*}\right)=2 k-1$, then by Proposition 2.6 we have that $z_{\#}\left(\phi_{\alpha}-\phi^{*}\right)=2 k$ for $\alpha-a_{2 k}>0$ small enough which is a contradiction. Therefore it has to hold that $z_{\#}\left(\phi_{a_{2 k}}-\phi^{*}\right)=2 k$. This finishes the proof.

Theorems 1.1 and 1.2 follow now from Theorem 2.7 and [4,10]. We also have the following:
Corollary 2.8. Let $m \geq 6$ be an even integer and let $p=p_{m} \in\left[p^{*}, p_{L}\right)$ and $n=n_{m}>10$ be such that there is a bounded solution of (2) which has m intersections with the singular solution ψ_{∞} and satisfies (5) with some $c=c_{m}>0$. Then for every odd $k \in\{3, \ldots, m-3\}$ there is a bounded solution of (2) which has k intersections with the singular solution ψ_{∞} and satisfies (5) with some $c=c_{k}>0$.

Proof. It was shown in [6] that for every even integer $m \geq 2$ there are $p=p_{m} \in\left[p^{*}, p_{L}\right)$ and $n=n_{m}>10$ such that for every even $k \in\{2,3, \ldots, m\}$ there is a bounded solution of (2) which has k intersections with the singular solution ψ_{∞} and satisfies (5) with some $c=c_{k}>0$. If $k \in\{3, \ldots, m-3\}$ is odd then the existence follows from Theorem 2.7.

Acknowledgments

M. Fila was partially supported by the VEGA Grant $1 / 3201 / 06$. A. Pulkkinen acknowledges the support of the Finnish Cultural Foundation. We thank the referee for helpful comments.

References

[1] J. Bebernes, D. Eberly, Mathematical Problems from Combustion Theory, Springer-Verlag, New York, 1989.
[2] Y. Giga, R.V. Kohn, Asymptotically self-similar blowup of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985) $297-319$.
[3] C.J. Budd, Y.-W. Qi, The existence of bounded solutions of a semilinear elliptic equation, J. Differential Equations 82 (1989) $207-218$.
[4] L.A. Lepin, Countable spectrum of eigenfunctions of a nonlinear heat-conduction equation with distributed parameters, Diff. Urav. 24 (1988) 1226-1234. (English translation: Diff. 24 (1988) 799-805).
[5] W.C. Troy, The existence of bounded solutions of a semilinear heat heat equation, SIAM J. Math. Anal. 18 (1987) 332-336.
[6] L.A. Lepin, Self-similar solutions of a semilinear heat equation, Math. Modelling 2 (1990) 63-74 (in Russian).
[7] N. Mizoguchi, Blowup behavior of solutions for a semilinear heat equation with supercritical nonlinearity, J. Differential Equations 205 (2004) $298-328$.
[8] P. Plecháč, V. Šverák, Singular and regular solutions of a nonlinear parabolic system, Nonlinearity 16 (2003) 2083-2097.
[9] D. Eberly, On the nonexistence of solutions to the Kassoy problem in dimensions 1 and 2, J. Math. Anal. Appl. 129 (1988) $401-408$.
[10] D. Eberly, W. Troy, On the existence of logarithmic-type solutions to the Kassoy-Kapila problem in dimensions $3 \leq N \leq 9$, J. Differential Equations 70 (1987) 309-324.
[11] A.A. Lacey, D.E. Tzanetis, Global, unbounded solutions to a parabolic equation, J. Differential Equations 101 (1993) 80-102.
[12] M. Fila, M. Winkler, Single-point blow-up on the boundary where the zero Dirichlet boundary condition is imposed, J. European Math. Society 10 (2008) 105-132.

[^0]: * Corresponding author.

 E-mail address: fila@fmph.uniba.sk (M. Fila).

