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1. Introduction

By a backward selfsimilar solution of the equation

n
U = Uy + U+ Py, r>0,p>1, (1)

we mean a solution of the form

o1 r
u(r,t)y =(T —t) p-1 s =—F—TeR, t<T,
=T =077V, y= =
where v is a solution of the ODE
b (n=1 Y\, _ 1
z//+< ——)x/x+|w W =¥ =0 y>o. @)
y 2 p—1

Backward selfsimilar solutions play an important role in the analysis of the asymptotic behaviour of solutions of (1) which
blow up in finite time, see [1], for instance.
Bounded solutions of (2) satisfy the initial conditions

YO =a Y0 =0 (3)

Inthecasen =1,20rn > 2andp < ps := (n+ 2)/(n — 2), the only bounded solutions of (2) are the constants ¢ = 0,
V¥ = %k, k = (p — 1)~/?=Y see [2]. On the other hand, for ps < p < p*,

oo ifn <10,

£ 4
=1y —— = ifns10, (4)

n—4-2vn—-1
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there exists an increasing sequence {a}p>;, ax — 00, such that the solution ¥ = v of (2) and (3) with o = o satisfies:

Yy >0 fory>0 yY® Vy@)—>c asy— oo (5)

for some ¢ = ¢y > 0, see [3-5]. Forn > 10 and p* < p < p; := 14 6/(n — 10) there exist solutions of (2) and (3), satisfying
(5), see [6].If ps < p < p; then all nonconstant positive bounded solutions of (2) intersect the explicit singular solution

_ 2 2 2 p%
TR . o
p—1 p—1

at least twice, see [3-6]. If n > 2 and ps < p < p* then for every even positive integer k and for every large odd integer k
there is a bounded solution of (2) which intersects the explicit singular solution k-times and satisfies (5), see [4].
In this paper we show the following:

Theorem 1.1. Assume that n > 2 and ps < p < p*. Then for every integer k > 2 there is a bounded solution of (2) which has k
intersections with the singular solution v, and satisfies (5) with some ¢ = ¢, > 0.

We also establish a result on the existence of solutions with odd number of intersections with ., for some p* < p < p;
and n > 10, see Corollary 2.8.

In [7], Mizoguchi showed the nonexistence of positive bounded solutions of (2) which intersect ¥, at least twice for
p>1+7/(n—11),n > 11. A numerical study of Plecha¢ and Sverik ([8]) suggests that this is true if p > p;, n > 10.

By a backward selfsimilar solution of the equation

n

Ue = Uy + u+e', r>0, (7)
we mean a solution of the form

r

u(r,t) = —log(T —t) + R =——+,TeR, t<T,

(r,0) g( )+ v ) y i
where v is a solution of the ODE

i n—1 ’

w’+( 5 —%)w+e‘”—1=0, y>0. (8)
We are interested in solutions of (8) which satisfy

Y(0)=a =0, ¥'(0) =0, 9
and

tim (1+ %w’(y)) =o. (10)

y—>oo

Condition (10) arises naturally (see [1, p. 70]) and it means in particular that if u is a backward selfsimilar solution of (7)
with y satisfying (10) then lim,_,r_ u(r, t) exists and is finite for r > 0.

In the case n = 1, 2, there is no solution of (8), (9), (10), see [1], [9]. On the other hand, for 2 < n < 10, there exists an
increasing sequence {a )2, ax — 00, such that the solution y, of (8), (9) satisfies (10), see [10]. Lacey and Tzanetis proved
in [11] that there is a solution ¥ = v, of (8), (9), (10) and a negative constant C such that

lim (¥ (y) + 2logy — log2(n —2)) =C. (11)
y—>o00
We prove the following:

Theorem 1.2. Assume that 2 < n < 10. Then for every integer k > 2 there exists « = «y such that the solution of (8), (9) has
k intersections with the singular solution vV, (y) := —2logy + log 2(n — 2) and satisfies (11) for some constant C = Cy.

2. Intersections with the singular steady state

Let v be a solution of problem (2), (3) or (8), (9). If ¥ satisfies (2), we define ¢ = ¥ — k and if ¢ satisfies (8), we merely
let ¢ = . Therefore we are considering the solutions of the equation

" n—1 y ’
o' + v 2 ¢ +G(p)=0, y>0, (12)
with initial conditions
¢0)=a—-K=>=0, ¢(0) =0, (13)

where either G(¢) = fﬁ(qb +K)+ (¢ +K)PandK = k,or G(¢) = e? —1and K = 0. We will let ¢*(y) = Ly~ 2/®=D —
if the nonlinearity G is algebraic and ¢*(y) = —2logy + log 2(n — 2) if G is exponential.

If G is algebraic then it is only defined for ¢ > —«. If it then happens that ¢(yy) = —« for some y, > 0, we make a
formal extension ¢(y) = —oo fory > yo. This is just to be able to handle the exponential and power cases both at the same
time. If there is a need for the explicit writing of the initial condition we will let ¢, = ¢ with ¢(0) =« — K.
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We will frequently use the following comparison lemma which is well known, see [12], for instance.

Lemma 2.1. Suppose that —0o < yo < Yoo < 00, a, b € C([yo, ¥o0)) and that f, g € C*([yo, yoo)) satisfy

f"+af" +bf >0, g"+ag' +bg <0, in¥o, Vo),
£>0,in Yo, Vo). f¥o) =gWo).f Vo) = g'(¥o) > 0.

Thenf > g and f'g > fg" in (yo, Yoo)-
The next proposition limits the number of zeros of ¢ near 0.
Proposition 2.2. If ¢ satisfies (12) then it cannot have more than one zero in (0, ~/2n).

Proof. Assume that ¢(y;) = ¢(y;) = 0forsome 0 < y; <y, < +/2nwith¢(y) < 0fory € (y1,y,).Letv(y) = y*> — 2nso
that it satisfies

—1
u”+<" —X> ‘4v=0, y>o. (14)
y 2

Clearly ¢ verifies

” n—1 y ’ /
¢+( —*)¢+¢=(1—G(U))¢,
y 2

for some n = n(y) € [0, ¢(¥)]. Since G'(¢) < 1 for every ¢ < 0, we have that

¢”+(" 1—X>¢’+¢><o, (15)
y 2
fory € (y1,y2). Let v, = ev and take ¢ > 0 small enough such that it holds that v.(y; + €1) = ¢(y1 + &1) with
Vi1 +€1) > ¢’ + e1) and v (y2 — &2) = P2 — &) With v (y2 — &) < @' (y2 — &) for some €1,&; > 0 and
Y1+ €1 < y2 — &. Then we can use Lemma 2.1 with yo = y; + &1 and y» = y» to conclude that ¢(y) < v.(y) for every
y € (y1 + &1, y2) which is a contradiction since v, (y,) < 0. O

Proposition 2.3. If ¢ has a zero at y; > ~/2n then there exist C > 0 and y, > y; such that ¢(y) < C(2n —y?) fory > y,.

Proof. If ¢'(y1) > 0 then there exists y, > y; such that ¢(y,) = 0 and ¢'(y») < 0.1f ¢'(y1) < 0 then take y, = y;.

Let M = —oo if the exponential equation is under consideration and M = —« if we are dealing with the power equation.
Let yoo = sup{y > y2 : M < ¢(y) < 0in (y2,¥)}. Let v, = &(2n — y?) and so v, satisfies (14). We also have that ¢ verifies
(15)in (y2, ¥oo)- Taking then & > 0 small enough such that v, (y> + €2) = ¢ (V2 + €2) and V. (y2 + &2) > ¢'(y2 + &2) for
some &, > 0, we can use the comparison lemma above to obtain that ¢ (y) < v.(y) foreveryy € (y2 + €2, ¥oo)-

In the exponential case, if yo, < oo, then it must hold that ¢ (y~,) = 0 which is a contradiction since by comparison we
have ¢ (¥oo) < v:(¥oo) < 0. Therefore the claim holds.

In the power case it holds that yo, < oo and ¢(ys) = —«, since e(2n — y?) < —« for y large enough. Therefore
o) < en—y?) fory € (y2 + &2, Yool and ¢(y) = —oo fory > y., which gives the claim. O

Define y* by the equation ¢*(y*) = 0 which implies (y*)? = 2(n — 2) — 4KP~! < 2n. Then the number of crossings of ¢
and ¢* in the interval (y*, co) is limited as follows.

Proposition 2.4. Assume that ¢(y;) = ¢*(y;) for somey; > y*. Then there is a constant C > 0 such that ¢(y) < C(2n — y?)
for y large enough. Moreover, the following hold:

(i) If ¢'(y1) > (¢*) (y1) then there exist exactly two points y,,y3 > y1 such that ¢(y2) = ¢(y3) = 0 and exactly one point
Y4 > yq such that ¢(ys) = ¢*(Va).

(ii) If ¢’ (y1) < (@*) (v1), then ¢ does not cross ¢p* for y > y;.

Proof. Assume that ¢’ (y;) > (¢*)'(y1). Theny, = sup{y > y; : ¢*(y) < ¢(¥) < 0in (y1,¥)} < oo is well-defined because

y1 > y*. Define g = ¢*¢' — (¢*)'¢ and let p = p(y) = y"'e™*/4 Then

’ ’ ’ n—1 y * 41! N
(0g) = p'g + pg =<7y —5>pg+p(¢¢ —(@")"¢)
G(*) G
- —p¢*c<¢>+p¢c<¢*)=p¢¢*< ;‘i) ——f;”)),
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and since the function G(x)/x is increasing for x < 0 such that G(x) is defined, we obtain that (pg)’ < 0in (y1, y2). Therefore
we have that (pg)(y) < (pg)(y1) foreveryy € (y1,y>) and so

(g)’: g _ (,®0)
o* @92 p@"H?’
in (y1, ¥2). This implies that
o©) é(1) [y (0g) (y1)
< + ds,
@) o) Sy p()P*(s)?

forevery y € (y1,y2) and since (pg)(y1) = p(y1)9* 1) (@' (1) — (¢*)' (1)) < 0, we have

y
¢ > 6" W) (1 +(p2) (1) s‘-”esz%*(s)-zds) > 6" (), (16)
v
for every y € (y1, y2). Clearly y, < oo since the integral part of (16) tends to co as y — oo and so it also has to hold that
¢(y2) = 0 with ¢'(y;) > 0.On the other hand, since ¢ has to be negative for large y (see (5) and (10)), we know that ¢
crosses 0 again at some y; > y,.

By Proposition 2.2, we obtain that y3 > +/2n and so by Proposition 2.3 we have that ¢(y) < C(2n—y?) for y large enough.
Therefore there exists y4 such that ¢(y4) = ¢*(v4). Using the same function g as above and precisely the same estimates
but with (pg)(y4) > 0and (pg)’ > 0, we arrive at the inequality

y
$() < ¢*() (1 + (p2)(va) s‘-”esz%*(s)-zds) < o'W, (17)
va
for every y € (Va, Yoo) Where yoo = sup{y > y4 : M < ¢(y) < ¢*(¥) in (v4,¥)}, where again M = —oo for the exponential
and M = —« for the power. Therefore we conclude that ¢ does not cross ¢* again after y, and ¢ < C(2n — y?) for y large
enough.

Assuming that ¢’(y1) < (¢*)’(y1) we just replace y, by y; in (17) and that proves the claim. O

Denote by zx(f) the number of zeros of the function f in the interval (0, c0).

Proposition 2.5. Assume that z(¢q,, — ¢*) = 2k and that z (¢, — ¢*) > 2k for oo — iz > 0 small enough. Then there exists
Qoy1 > g such that zy (g — ¢*) = 2k + 2 for @ € (o, Qorr1) and zg(Poy,,, — ¢*) € {2k, 2k + 1}.

Proof. Define Iy(a) = {a > a : z4(¢o — ¢*) # k}. Let {y;() }; be the zeros of ¢, — ¢* for any @ and assume y;(@) < yj1(@)
foranyj < zy(¢y — ¢*) — 1.

Since yok+1() exists for « — ayr > 0 small enough, we obtain by continuity that y,x11() — 00 as o N\ az. Therefore
for & close to azg, we have that yor1 (o) > y* and (¢o)' Vak+1()) > (¢*) (V2k+1()) (due to continuity with respect to o).
So by Proposition 2.4, we have another zero y,12(a) of ¢, — ¢* and points y, (@), y3(@) € (Vars1(et), Yari2(a)) such that
G V2(0)) = ¢ ¥3(x)) = 0. Hence there exists aap 1 = inf 2 (k) such that zg (¢, — ¢*) = 2k+2 fora € (oo, Aopi1)-

Assume that zg(Pay ; — ¢*) = 2k + 2. Then by continuity, zs+(¢, — ¢*) > 2k + 2 for « — a1 > 0 small enough and
by the same argument that we used above, it must hold zx (¢, — ¢*) > 2k + 4 for @ — a1 > 0 small enough.

Since yok42(a) is continuous in (agk, otak+1], there exists a constant D(¢) > 0, such that y,x2(a) < D(e) for every
a € [ay + &, axg1]. Also by continuity, ¢'(Vo()) > O for every o € (au, ari1], since otherwise ¢z (¥, (@) =
¢5 (> (@)) = 0 for some @, which is clearly a contradiction. Therefore there exists a point ¥ («) such that ¢ (¥, («)) = 0 and
Vi(or) < /21 < Vo) < y3(o) for every @ € (cwak, @ars1) by Propositions 2.2 and 2.4 above.

We have, due to ¢, (0), thus obtained that v/2n < J,(a) < V3(a) < Yoz (@) < D(e) for every o € [k + €, otarsr].
However, the fact that yy2(az, 1) > V2n > y* implies that ¢, — ¢* has at least 3 zeros after the pointy = y* for
o — azk4+1 > 0 small enough. This is a contradiction by Proposition 2.4.

Assume then that z(¢ay,,; — ¢*) > 2k + 2. Then by continuity, zs (¢, — ¢*) > 2k also for ayp+1 — o > 0 small enough
which contradicts the definition of gy 1.

Assume that zg(Pay,.,, — ™) < 2k. Then by continuity, y (@), Yar+1(@), Yak+2(er) > y* for agry1 — o > 0 small enough.
This contradicts Proposition 2.4. Now the claim is proved. O

Proposition 2.6. Assume that zy(¢a,,,, — ¢*) = 2k + 1 and that z4(¢e — ¢*) > 2k + 1 for & — az1 > 0 small enough.
Then there exists aap42 > k1 Such that zy(¢y — ¢*) = 2k + 2 for o € (@241, Xakt2)-

Proof. If zy (¢, — ¢*) > 2k + 2 for @« — a1 > 0 small, then there exist two zeros of ¢, — ¢* that satisfy y* <

Yarr2(@) < yarr3(@) and ¢’ arr2(@)) < (%) Vaks2(@)) and @' (yars3(@)) > @' (Vars3()) which is a contradiction with
Proposition 2.4. O
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Theorem 2.7. Assume that there exists a solution ¢y, of (12), (13) with z4(¢o,, — ¢*) = m > 5. Then for any integer
k € [2,m — 2] there exists op > O such that zy(¢o, — ¢*) = k. Moreover, there is a constant ¢ = ¢, > 0 such that
Y = o, + K satisfies (5) if G is algebraic or a constant C = G such that ¥ = ¢, satisfies (11) if G is exponential.

Proof. By Propositions 2.5 and 2.6, the function z4 (¢, — ¢*) can only increase by at most 2 as « increases. By Proposition 2.4
and continuity, the function z4 (¢, — ¢*) can only decrease by at most 2 as « increases because there can be at most two
crossings of ¢, and ¢* in (y*, 00).

For ¢ > 0 small enough, we know that zx (¢, — ¢*) = 2, cf. [6,11]. Suppose that there exists an integer k € [2, m — 2]
such that there is no solution of (12), (13) which intersects with the singular solution k-times. Then there exist values {a,ﬁ'll I

such that ¢, — ¢* has k — 1 zeros fora,(fll —a > Osmall, and k + 1 zeros for o — a,ﬁ'zl > 0 small. Since there is a solution

@, With m intersections with ¢*, there exist ox_1 € {a,ﬁ’ll}i and a1 > ag—q such that zg(¢e,_, — ¢*) = k — 1, while
Zu(¢py — @*) =k + 1fora € (g1, ak+1) and zu(¢dg — ¢*) > k+ 1 for @ — a1 > 0 small.

If k — 1is odd we have a contradiction by Proposition 2.6. If k — 1 is even we obtain a contradiction by Proposition 2.5.
This proves that for every integer k € [2, m — 2] there is a solution ¢, of (12) such that ¢, crosses the singular solution
k-times.

It remains to prove that there exist solutions with k intersections satisfying (5) or (11).

For the solutions ¢, that have an odd number of intersections with the singular solution ¢* this follows from [4] or [11].
For the power case the claim was proved for even k in [4,6].

For the exponential nonlinearity it was proved in [ 10] that with ay; = infJ5x+1 = inf{a : ¢, crosses the singular solution

at least 2k+1 times} it holds that ¢, satisfies (10). By the above definition we have that z; (¢q,, —¢*) € {2k—1, 2k} and
z4(¢o — @*) € {2k+1, 2k+ 2} for o — ay, > 0 small enough. If zg (¢a,, — ¢*) = 2k — 1, then by Proposition 2.6 we have that
Zy(¢po — ¢*) = 2k for @ — ay, > 0 small enough which is a contradiction. Therefore it has to hold that z4(¢q,, — ¢*) = 2k.
This finishes the proof. O

Theorems 1.1 and 1.2 follow now from Theorem 2.7 and [4,10]. We also have the following:

Corollary 2.8. Let m > 6 be an even integer and let p = p, € [p*,p;) and n = n, > 10 be such that there is a bounded
solution of (2) which has m intersections with the singular solution v, and satisfies (5) with some ¢ = ¢, > 0. Then for every
odd k € {3, ..., m — 3} there is a bounded solution of (2) which has k intersections with the singular solution V¥, and satisfies
(5) with some ¢ = ¢, > 0.

Proof. It was shown in [6] that for every even integer m > 2 there are p = p,, € [p*, p.) and n = n,, > 10 such that for

everyevenk € {2, 3, ..., m} there is a bounded solution of (2) which has k intersections with the singular solution ¥, and
satisfies (5) with some ¢ = ¢, > 0.1fk € {3, ..., m — 3} is odd then the existence follows from Theorem 2.7. O
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