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Abstract: Uncertainty related to inventory data, growth models and timber price 

fluctuation was investigated in the assessment of forest property net present value (NPV). 

The degree of uncertainty associated with inventory data was obtained from previous  

area-based airborne laser scanning (ALS) inventory studies. The study was performed, 

applying the Monte Carlo simulation, using stand-level growth and yield projection models 

and three alternative rates of interest (3, 4 and 5%). Timber price fluctuation was portrayed 

with geometric mean-reverting (GMR) price models. The analysis was conducted for four 

alternative forest properties having varying compartment structures: (A) a property having 

an even development class distribution, (B) sapling stands, (C) young thinning stands, and 

(D) mature stands. Simulations resulted in predicted yield value (predicted NPV) 

distributions at both stand and property levels. Our results showed that ALS inventory 

errors were the most prominent source of uncertainty, leading to a 5.1–7.5% relative 

deviation of property-level NPV when an interest rate of 3% was applied. Interestingly, 

ALS inventory led to significant biases at the property level, ranging from 8.9% to 14.1% 

(3% interest rate). ALS inventory-based bias was the most significant in mature stand 

properties. Errors related to the growth predictions led to a relative standard deviation in 

NPV, varying from 1.5% to 4.1%. Growth model-related uncertainty was most significant 
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in sapling stand properties. Timber price fluctuation caused the relative standard deviations 

ranged from 3.4% to 6.4% (3% interest rate). The combined relative variation caused by 

inventory errors, growth model errors and timber price fluctuation varied, depending on the 

property type and applied rates of interest, from 6.4% to 12.6%. By applying the 

methodology described here, one may take into account the effects of various uncertainty 

factors in the prediction of forest yield value and to supply the output results with levels  

of confidence. 

Keywords: forest property valuation; net present value; uncertainty; forest management 

planning; simulation; growth and yield prediction; airborne laser scanning; forest inventory 

 

1. Introduction 

Estimates of the economical value of forest property are needed for many purposes, e.g., in the real 

estate business, land divisions and exchanges and for considering forestry investment. In addition, the 

International Financial Reporting Standards (IFRS) require that forest enterprises present 

systematically computed estimates of the value of their forested land annually.  

One method for deriving the economic value of a forest stand or property is to calculate the 

difference between the present values (net present value, NPV) of all future expected revenues and 

expenses. This approach is referred to as the forestry yield value method [1] and it is based on the 

fundamental ideas of forest economics [2]. The estimation of future chains of forest stand management 

and the flow of revenues and expenses are most commonly performed on the basis of the harvest and 

silviculture recommendations presented in the respective forest management plan. Revenues and 

expenses are estimated, based on the wood production predictions that are commonly determined by 

simulation and optimization computations carried out by specific forest-planning software systems. 

Decisive issues regarding the determination of forestry yield value include determination of the 

optimal rotation length, the timing and intensity of harvests, timber stumpage prices, silvicultural costs 

and the applied interest rate. The NPV of forested land is subject to various uncertainties. The sources 

of uncertainty include growth and yield models used in the simulators, development of timber prices, 

the rate of interest used and uncertainties in the input data. 

Acquisition of forest-planning data is currently in a phase of radical change. In Finland, operative 

forest planning is evolving into a methodology by which stock characteristics are estimated by means 

of tree-wise measured sample plots and area-based statistical features of airborne laser scanning (ALS) 

data and digital aerial photographs. Estimation of forest characteristics will be performed, using the 

nonparametric k-nearest neighbor (k-NN) or k-most similar neighbor (k-MSN) method [3]. With 

respect to the estimation of stand mean characteristics (e.g., [4-7]) and tree species- or timber 

assortment-specific characteristics [8-11], it has become possible to achieve at least the same level of 

accuracy using low-pulse ALS data as that found in traditional standwise forest inventory (SWFI). 

Overviews on the use of ALS in forest inventory can be found in [12-15]. 

Currently, a crucial question that remains is how to integrate this new inventory data into  

forest-planning computations. It is then essential to be aware of how inventory data obtained at various 
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accuracies affect the simulation end results, which have a significant influence on the forest owner’s 

economic return. Thus, a starting point for the study was the state of change currently present in 

operative forest planning, in which traditional compartment inventories are being replaced by  

ALS-based inventories. 

Reliable inventory data are essential for forestry yield value simulations. In assessing the state of a 

stand, the estimates may differ significantly from the real situation, due to the inventory method used. 

This aspect can be studied using cost-plus-loss analyses, in which the expected losses due to 

suboptimal decisions are added to the total forest inventory costs ([16,17]). The cost-plus-loss 

approach was widely utilized in recent forest inventory- and planning-related research (e.g., [18-24]).  

The growth of trees or timber stock is a highly significant factor affecting forestry yield value. From 

the standpoint of forest property valuation, the rate of growth is a decisive factor with respect to 

rotation length and therefore influences yield value computations to a great extent. Since tree growth is 

difficult to measure directly, it must be estimated by models based on other measurable tree 

characteristics. Growth models can be divided into tree- and stand-level models (e.g., [25]).  

Forest growth simulators are applied for updating measured forest resource data and for predicting 

future growth to assess silvicultural measures and time of harvests. Growth simulators incorporate 

numerous models for predicting various forest characteristics and their development. These models can 

never completely portray the underlying phenomena and their output estimates therefore include a 

degree of uncertainty. The degree of uncertainty is dependent on the functioning of individual models 

and the interaction between them. Models applied for simulating forest growth form a complex entity 

that often complicates the analysis of individual model uncertainty ([25,26]).  

Uncertainty related to forest growth modeling has been studied, e.g., by Gertner and Dzialowy [27], 

Mowrer [28] and Kangas ([26,29]). These studies have mainly focused on the influence of various 

uncertainty components in growth model functioning. However, Mäkinen et al. [25] and Mäkinen [30] 

showed that instead of analyzing individual models, the model chains implemented by the simulators 

should be scrutinized as a whole.  

The development of timber assortment prices is one of the most significant factors in forest property 

valuation computations. A major part of a stand’s yield value is generated at the final harvest, in which 

case the timing of the final harvest and the prices of the most valuable timber assortments (saw-wood 

and intermediate logs) at that time are especially important. Saw-wood log outturn is, in turn, 

influenced by the (company-specific) bucking rules and quality criteria in effect at that time. Timber 

prices at the stand level are further influenced by harvest conditions, size of the logging site and  

near-hauling distance.  

When estimating the value of a forest property, the most common way to incorporate timber prices 

is to apply mean prices based on the realized prices of the past [31]. The basic assumption then is that 

future price development is in accordance with past development. A more advanced, and also 

complicated, approach is to try to predict future timber price development based on realized past price 

development, by which long-term trends can be depicted and factors causing price peaks identified. 

Such predictions can be carried out e.g., by using geometric mean-reverting (GMR, [32-34]) or 

geometric Brownian motion (GBM, [35-37]) price processes. 

This study builds on a paper by Holopainen et al. [38]. They studied uncertainties related to 

compartment level field inventories, area-based ALS-inventories, growth models and timber price 
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fluctuations when computing net present value over the rotation length on the stand level. According to 

their results, growth models applied in forest planning simulation computations proved to be the most 

significant source of uncertainty in stand level computations. However, a property (or estate) is the unit 

in operational forest value estimations produced for the purposes of e.g., real estate business, land 

exchanges and land divisions. The effects of various sources of uncertainty on the value of forest 

property cannot be obtained simply by aggregating the uncertainties observed at stand level, because 

the deviations from average or true value estimates between various stands tend to partly cancel out 

each other [38]. Thus, additional model simulations are needed to obtain the overall level of 

uncertainty for typical sized forest estates.  

2. Objective 

The objective of the study was to analyze the effect of uncertainty factors related to inventory data, 

growth models and timber price fluctuation on the prediction of forest property-level NPV. The term 

uncertainty here refers to the variation in estimated forest NPVs caused by errors in inventory data, 

random errors in growth and yield projections and random variations in timber assortment prices. The 

degree of uncertainty-related inventory data was derived from previous studies dealing with area-based 

ALS inventories at the stand level. The effects of timber price fluctuation were depicted with 

stochastic GMR price models. Forest property-level NPVs were estimated using three alternative rates 

of interest (3%, 4% and 5%). The study was carried out applying the Monte Carlo (MC) simulation 

method and using stand-level growth and yield projection models. 

3. Material and Methods 

3.1. Data 

The starting point of the investigation consisted of four simulated forest properties having varying 

compartment structures: a property having an even development class distribution (A), sapling stands 

(B), young thinning stands (C) and mature stands (D). Variation in basic stand characteristics in 

properties can be seen in Figure 1. All properties included some variation between stand development 

classes. In forest property A, where development class distribution was even, age, basal area, mean 

diameter and mean height varied from 5 to 144 years, 0 to 27.5 m2/ha, 0 to 29.0 cm and 0.6 to 26.0 m, 

respectively. In sapling-dominated forest property B, the respective variations were 5–50 years,  

0–22.0 m2/ha, 0–23.0 cm and 0.6–20.0 m. Young thinning stands predominated in forest property C 

and the variations were 15–55 years, 1.3–22.0 m2/ha, 3.2–23.0 cm and 3.2–20.0 m as in forest  

property D, which was dominated by mature stands with respective variations of 30–114 years,  

7.2–27.5 m2/ha, 8.4–29.0 cm and 7.7–25.0 m. We assumed that these stand characteristics were 

estimated with area-based ALS inventory. 
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Figure 1. Variation in stand characteristics within the forest properties: A (having an even 

development class distribution), B (sapling stands), C (young thinning stands) and D 

(mature stands). Top left: age; top right: basal area (BA); bottom left: mean diameter (Dg); 

and bottom right: mean height (Hg). 

 

3.2. Simulation of the Sources of Uncertainty 

The relative importance of the three sources of uncertainty in forest NPV computations was 

determined by simulating each stand within each forest property repeatedly with the MC  

method (e.g., [25,26,29,39]). In MC methodology, confidence estimates are obtained by generating an 

error term from the model's error distribution for each output estimate. The model is run dozens or 

hundreds of times, the results of which are used to determine the final predicted value error statistics.  

The uncertainty caused by random variation in future timber assortment prices is referred to as 

UPRICE, the uncertainty caused by input data errors UINV and the uncertainty caused by random errors in 
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growth projections is referred to as UGROWTH. The sources of uncertainty were included in the 

simulations separately and all three simultaneously, enabling us to determine how the different sources 

of uncertainty affect the NPV distributions. In addition, we simulated each combination with interest 

rates of 3%, 4% and 5%. The calculations were carried out using SIMO simulation and optimization 

software (SIMO simulation framework, [40,41]). 

UINV, UGROWTH and UPRICE were simulated in a manner similar to that in [38]. The effect of random 

variation, i.e., measurement and sampling errors, in forest inventory data was taken into account by 

generating true values from the estimates in the simulation input dataset, using so-called true value 

models. In this context the term true values refer to simulated (not actual) true stand attribute values. 

The true value models were constructed so that trends, distribution shapes and correlations between the 

various attributes were taken into account.  

Data for modeling true values of ALS inventory were based on a study area in northeastern Finland 

that included 89 stands. The values for the attributes were estimated and measured at the tree species 

stratum level and the estimates were based on the k-MSN procedure (for details see [42]. The dataset 

used is described in further detail in Mäkinen et al. [43]. The uncertainty caused by the stand-level 

growth models was taken into account by including a random variation component in the growth 

projections. A more detailed description of random component in the growth predictions can be found 

in [38]. However, the autocorrelation component included in [38] was excluded from these 

simulations. 

Timber prices were modeled using a GMR process that utilized historical price statistics on real 

stumpage prices in Finland between January 1986 and August 2008. The price statistics were given 

separately for saw logs and pulpwood for the three main commercial timber species in Finland: Scots 

pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) H. Karst.) and birch (Betula L.) [38]. 

The development of each stand was simulated until the next regeneration harvest, or a maximum of 

100 years, using a one-year timestep, and repeating the entire simulation process 100 times for each 

source of uncertainty and interest rate combination.  

The thinning schedules were based on silvicultural recommendations of the forestry extension 

organization Tapio in Finland [44]. The regeneration harvests were done as soon as the 5-year moving 

average of value growth percentage, or so-called v-value, of the stand was less than the interest rate 

chosen. To estimate the timber assortment volumes and incomes from the harvests, tree diameter 

distributions were constructed for each stand before the harvests, using the distribution models  

by [45-47]. The value of each diameter class was then predicted with the taper curve functions of [48] 

and optimal stem bucking algorithm of [49]. Decisions about when to harvest and regenerate were 

made at single stand-level and, in this case, without any property-level constraints. This is, of course, a 

simplification as in some cases the harvest and regeneration decisions are not totally independent. 

However, we believe that this kind of simplification can be justified as the decision maker aims at 

simply maximizing the NPV of the forest property.  

When summing stand level data to property level correlations were accounted for by generating 100 

alternative random timber price scenarios (one for each MC iteration) and thus stands that were 

generated during the same time step and iteration had similar timber prices. This should guarantee that 

the variation at the property-level was appropriate. 
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3.3. Analysis of the Uncertainty 

The uncertainty in the NPV simulation was analyzed by determining the distributions of the NPVs 

and comparing them with the reference NPVs simulated from true values, separately for each source of 

uncertainty and interest rate combination. The simulation computations resulted in predicted yield 

value (predicted NPV) distributions at the property level. 

For each property i, the mean and sd of the NPV distribution, meani
NPV and sdi

NPV, respectively, 

were calculated with Equations (1) and (2). 

݉݁ܽ݊௜
ே௉௏ ൌ෍ሺ݊ݒ݌௜௟ሻ ൈ

1
100

ଵ଴଴

௟ୀଵ

 (1)

௜݀ݏ
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100

ଵ଴଴
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The bias, i.e., the difference between the reference NPVs and means of the NPV distributions of 

each property i, was calculated as biasi
NPV = meani

NPV − npvi
REF and the relative, or percentual, bias 

was calculated as bias%i
NPV = (meani

NPV − npvi
REF)/npvi

REF × 100. We were also interested in the 

relative variation and thus the relative sd (%) was calculated with Equation (3). 

௜%݀ݏ
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௟ୀଵ

ଶ

ൈ
1
100

 (3) 

4. Results 

The effects of uncertainty related to inventory data, growth models and timber price fluctuation on 

forest property-level NPVs are summarized in Table 1. The effect of each individual source of error 

and the combined effect were derived for each forest property type. Computations were carried out 

using three different rates of interest (3%, 4% and 5%). The effect of the applied rate of interest on the 

per-hectare NPVs is presented in Table 2. Forest properties A, B, C, and D standwise NPV variation 

SDs and biases are presented in Figure 2 and Figure 3.  

As presented in Table 1, forest inventory-related errors were the most significant source of 

uncertainty in all of the forest property types analyzed. Inventory-related errors led to a forest  

property-level relative standard deviation ranging from 5.1% to 7.5% when an interest rate of 3% was 

applied. The respective biases varied from 8.9% to 14.1%. The effect of inventory-related bias was 

emphasized, especially in the case of the mature stand property (D). 
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Table 1. Averages of the relative biases (BIAS%NPV) and standard deviations (SD%NPV) of the simulated NPV distributions of the 25 hectare 

forest property with given source of uncertainty and interest rate combination.  

Active sources of uncertainty Interest rate 
3 % 4 % 5 % 

Forest property Uinventory Ugrowth Uprice meanNPV BIAS%NPV SD%NPV meanNPV BIAS%NPV SD%NPV meanNPV BIAS%NPV SD%NPV 

A • 142,140.9 12.2 5.1 123,038.6 14.4 6.5 112,439.9 18.1 7.6 
A • 128,507.9 1.4 1.7 109,728.8 2.1 1.3 97,236.1 2.1 1.4 
A • 124,846.2 −1.5 3.4 106,930.3 −0.5 2.4 95,661.8 0.5 2.0 
A • • • 143,469.5 13.2 6.5 125,119.5 16.4 6.4 115,839.1 21.7 6.8 
B • 87,042.1 8.9 7.4 63,659.0 16.5 9.9 49,849.9 24.3 11.1 
B • 79,864.9 −0.1 4.1 55,853.2 2.2 3.6 41,231.2 2.8 4.4 
B • 76,160.0 −4.7 5.8 52,502.4 −3.9 4.7 39,230.1 −2.1 4.8 
B • • • 84,661.3 5.9 9.3 62,515.1 14.4 9.8 49,896.3 24.5 12.6 
C • 120,940.7 13.5 7.5 95,619.7 19.7 9.4 80,878.8 29.6 12.0 
C • 107,330.0 0.7 3.2 81,492.2 2.0 3.1 64,357.0 3.2 3.3 
C • 103,493.5 −2.9 6.4 78,387.9 −1.9 4.9 62,126.2 −0.4 4.6 
C • • • 118,141.0 10.9 9.4 95,007.3 19.0 9.7 80,928.5 29.7 10.9 
D • 204,107.4 14.1 5.8 186,286.6 15.4 7.2 177,365.5 18.6 8.1 
D • 183,501.9 2.6 1.5 165,762.0 2.7 1.3 153,543.8 2.7 1.3 
D • 179,539.0 0.4 3.6 162,407.2 0.6 2.3 151,240.5 1.2 1.9 
D • • • 209,108.8 16.9 7.3 191,775.9 18.8 7.4 184,321.2 23.3 7.3 

The active uncertainty sources in each combination are marked with •. 
A = a property having an even development class distribution, 
B = a sapling stand property, 
C = a young thinning stand property, 
D = a mature stand property. 
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Table 2. Averages of the relative biases (BIAS%NPV) and standard deviations (SD%NPV
) of the simulated NPV distributions per hectare with 

given sources of uncertainty and interest rate combination.  

Active sources of uncertainty Interest rate 
3 % 4 % 5 % 

Forest property Uinventory Ugrowth Uprice meanNPV BIAS%NPV SD%NPV meanNPV BIAS%NPV SD%NPV meanNPV BIAS%NPV SD%NPV 

A • 5,685.6 12.2 25.9 4,921.5 14.4 30.4 4497.6 18.1 33.6 
A • 5,140.3 1.4 15.3 4,389.2 2.1 15.5 3889.4 2.1 18.8 
A • 4,993.8 −1.5 9.9 4,277.2 −0.5 9.1 3826.5 0.5 8.7 
A • • • 5,738.8 13.2 32.8 5,004.8 16.4 35.3 4633.6 21.7 39.3 
B • 3,481.7 8.9 22.9 2,546.4 16.5 27.7 1994.0 24.3 29.6 
B • 3,194.6 −0.1 20.6 2,234.1 2.2 20.5 1649.2 2.8 24.6 
B • 3,046.4 −4.7 12.6 2,100.1 −3.9 11.6 1569.2 −2.1 11.6 
B • • • 3,386.5 5.9 34.8 2,500.6 14.4 38.1 1995.9 24.5 41.8 
C • 4,837.6 13.5 29.7 3,824.8 19.7 35.0 3235.2 29.6 40.8 
C • 4,293.2 0.7 17.7 3,259.7 2.0 16.9 2574.3 3.2 20.2 
C • 4,139.7 −2.9 11.2 3,135.5 −1.9 9.8 2485.0 −0.4 9.3 
C • • • 4,725.6 10.9 37.1 3,800.3 19.0 41.1 3237.1 29.7 46.4 
D • 8,164.3 14.1 30.4 7,451.5 15.4 35.4 7094.6 18.6 40.9 
D • 7,340.1 2.6 8.6 6,630.5 2.7 9.2 6141.8 2.7 11.1 
D • 7,181.6 0.4 7.9 6,496.3 0.6 6.6 6049.6 1.2 6.0 
D • • • 8,364.4 16.9 31.2 7,671.0 18.8 33.7 7372.8 23.3 39.1 

The active uncertainty sources in each combination are marked with •.  
A = a property having an even development class distribution,  
B = a sapling stand property,  
C = a young thinning stand property,  
D = a mature stand property. 
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Figure 2. Variation in relative SD within stands of forest properties (25 ha, interest rate 

3%). INV = Uinv, GROWTH = Ugrowth, PRICE = Uprice, ALL = combined error. 

 
 

The growth model-related uncertainty caused a 1.5–4.1% variation in the simulated property-level 

NPV-values when an interest rate of 3% was applied. The respective variation biases ranged from  

−2.9% to 2.6%. Timber price development led to the same degree of uncertainty as the growth models 

and the relative NPV standard deviations ranged from 3.4% to 6.4% (3% rate of interest) and the 

biases from −4.7% to 0.4%. The relative combined standard deviation caused by inventory error, 

growth model error and timber price fluctuation varied, depending on forest property type, from 6.5% 

to 9.4% and biases from 5.9% to 16.9% (3% interest rate). Biases at the property level should be noted. 

The per-hectare results are presented in Table 2. Uncertainty (NPV deviation) at the per-hectare 

level is significantly higher than that on the forest property level. Uncertainty due to inventory data 

error, growth model error, and timber price fluctuation varied from 22.9% to 30.4%, 8.6% to 20.6% 

and 7.9% to 12.6%, respectively, when an interest rate of 3% was applied. The combined NPV 

deviation varies, depending on forest property type and the applied rate of interest, from  

31.2% to 46.4%. 
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Figure 3. Variation in relative BIAS within stands of forest properties (25 ha, interest rate 

3%). INV = Uinv, GROWTH = Ugrowth, PRICE = Uprice, ALL = combined error. 

 

5. Discussion 

The study involved the effects of ALS inventory, growth model errors and timber price fluctuation 

on forest property-level predicted NPVs. The results showed that the greatest source of uncertainty in 

each type of property studied was ALS inventory errors. These errors led to significant biases at the 

forest-property level NPV, which should be examined further. The effects of growth modeling errors 
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data errors.  
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Different rates of interest (3–5%) led to minor differences in predicted NPV deviation. However, 

the rate of interest applied has a pronounced influence on the predicted property value and biases (see 

Tables 1 and 2). 

The relative combined deviation caused by inventory error, growth model error and timber price 

fluctuation ranged, depending on property type and applied rate of interest, from 6.4% to 12.6%. In 

other words, the combined deviation was similar to that caused by inventory error alone. Apparently, 

the various sources of uncertainty tend to neutralize each other.  

Property size did not affect the degree of uncertainty, since stand size was set as proportional to 

property size in the study because our objective was primarily to analyze the effects of various sources 

of uncertainty on property-level predicted NPV. To determine the effect of property size, the effects of 

all other sources of uncertainty should be eliminated; these analyses will be performed in future 

studies. 

Our results are directly comparable with those presented by Holopainen et al. [38]. In their study, 

the uncertainty caused by inventory error, growth model error and timber price fluctuation was 

scrutinized in a fashion similar to that shown here, but at the stand level. Holopainen et al. [38] showed 

that the influence of a single source of uncertainty varied from 8.2% (timber price) to 33.2% (growth 

models) when an interest rate of 3% was applied. When the various sources of error were combined 

and an interest rate of 3% was applied, the resulting maximum relative NPV was 47.4%. Comparison 

of our results with those of Holopainen et al. [38] showed that the forest property level deals with a 

considerably lesser degree of NPV deviation than does stand level. This can also be noted by 

comparing the property level and per-hectare results of this study (Tables 1 and 2). Reason for 

decreased uncertainties related to forest inventory data and growth modeling errors is that if inventory 

method and growth models are unbiased, the larger and more homogeneous the inventory unit, the 

smaller the relative standard error achievable. Several remote-sensing related forest inventory studies 

have revealed that the relative root-mean squared error (rmse) value describing the accuracy of the 

inventory method is strongly dependent on the size of inventory unit examined (tree, plot, stand, 

property) and its degree of internal variation (homogeneity) (e.g., [50]).  

The reduced variation in NPV due to price fluctuations, when shifting from stand level to property 

level, is a consequence of two factors. Firstly, the timing harvests and other silvicultural activities are 

different between stands in different development stages. Secondly, the timber species in various 

stands are different. Even though the prices of different timber assortments are strongly correlated, the 

relative difference in yearly increments of prices cancels out part of the uncertainty in  

property-level computations.  

The degree of uncertainty caused by timber price fluctuation was rather small, due probably to the 

form of the stochastic price model applied. The price uncertainty is likely to increase when using e.g., 

GBM [35-37] instead of GMR [32-34] as process for future price increments. The increasing price 

variation increases also the degree of yield value prediction uncertainty. 

Regarding ALS inventory error, one must bear in mind that the related standard errors found in 

different studies vary considerably. For example, rmse of mean volume at the stand or plot level of 

area-based ALS inventory has been found to ranging between 10% and 27% (e.g., [4,5,7,41,51,52]). 

Interestingly, inventory error-related uncertainty caused significant bias in property-level NPV 

estimates. This bias is probably due to the fact that ALS inventories tend to overestimate young stand 
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timber volumes and underestimate developed and mature stand timber volumes. Regarding forest 

property mean timber volume, this phenomenon leads to more or less unbiased ALS estimates. 

However, with respect to the estimated euro-based NPVs, the bias of timber volume found in 

developed stands has a substantially more significant impact than that found in young stands, since the 

value of saw-timber is manifold to the value of pulpwood. Therefore, the NPV is clearly 

underestimated in all property types.  

Comparison of the property-level results with the per-hectare or stand-level results [38] showed that 

the smaller the computation unit the smaller the relative deviation in estimated NPV. On the other 

hand, relative bias in the estimated NPV remains. From the standpoint of operational forest property 

valuation, it is thus crucial that the relationship between various sources of uncertainty and estimated 

NPV bias be investigated in even further detail and methodologies for producing unbiased estimates  

be developed.  

Some simplifications had to be made during the study. The effects of timber quality on timber 

prices, special assortment volume or fuel wood volume on harvest revenues were not considered. We 

also assumed that all stands were treated according to traditional low-thinning methodology [44]. All 

these factors influence the forest yield value. However, uncertainties related to these aspects influence 

NPV estimates, in all likelihood, considerably less than those sources of uncertainty examined here. In 

future, the influence of these uncertainty factors on predicted forest yield values can also be taken into 

account. Furthermore, the study did not take into account the risk of natural hazards such as wind, 

snow, fire, insect and disease damages. The effects of forest damage could also be included in future 

analyses, but it would first require derivation of models describing the effect of various forest damages 

on timber growth. Such models are currently not available for conditions prevailing in Finland. 

 In practice, one decisive factor regarding the validity of predicted property-level forest yield value 

is the forest owner’s attitude to the risk. For example, a risk-neutral forest owner attempts at 

maximizing the expected net present value of cash flow obtained from timber sales and silvicultural 

activities. One approach to attempt at increasing the expected net present value under fluctuating prices 

is to employ so called reservation price (see e.g., [53]). This minimum price can be made dependent on 

value increment, present and past prices and the amount of wood. The reservation price may therefore 

vary among stands. Several studies (e.g., [35,54-56]) have shown that following the use of minimum 

prices, forestry net yields have increased markedly. 

Forest owners can involve themselves in timber price development-related speculation in various 

ways. As an extreme example, one can mention those forest owners who attempt to schedule their 

timber sales to periods of exceptionally high timber prices and those who schedule sales to regular 

periods of time independent of timber price development. The influence of forest ownership type on 

the outcome of forest yield value computations and the degree of various sources of uncertainty will be 

analysed in follow-up studies. The effects of various timber price models on the degree of timber 

price-related uncertainty will also be investigated. 

6. Conclusions 

By applying the methodology described here, it is possible to take into account the effects of 

various uncertainty factors in the prediction of forest property yield value and to supply the output 
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results with levels of confidence. The methodology also aids in the determination of forest property 

market value in which predicted forest yield value must be adjusted according to the prevailing market 

situation. The study also shed light on what to emphasize to achieve more accurate end results. This is 

especially relevant today, since new inventory methodologies are currently being adopted in  

large-scale operative forest inventories. Based on our results, valuation of forest properties consisting 

mainly of young stands should be carried out by placing special emphasis on reducing errors due to the 

applied growth models. In forest properties consisting mainly of mature stands, emphasis should, in 

turn, be placed on inventory data accuracy. 
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