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The objective of this study was to compare the relative importance of various sources of uncertainties in
determining the net present value of forest stands and forested property. This was achieved by performing
stand-level simulations that took into account: i) input data errors (airborne laser-scanning data vs. ocular
standwise field inventory data), ii) stochastic future development of timber assortment prices and iii) errors
in stand-level growth projection models. The starting point of the study was a simulated forest estate
comprising 40 stands of various types sufficiently represented (e.g. with respect to species composition,
development class distribution, and site quality). Stochastic timber price models were formulated,
employing geometric mean-reverting principles. The results showed that sources of uncertainty all had
significant effects on the probability distribution of the net present value of the stand. The relative standard
deviations of stand net present values averaged 8% for stochastic timber price, 29% for errors in standwise
field inventory data, 26% for errors in airborne laser-scanning data and 33% for errors in growth projection
models when applying a 3% discount rate. When all three sources of uncertainty were analysed
simultaneously, the highest average standard deviation was 47.4%. Interestingly, errors in the growth
projections and the quality of inventory data contributed more to the variation in stand net present value
than fluctuation in timber price did, although this result was based on the assumption that the forestry
industry maintains its competitiveness in the long run. Our modeling approach made it possible to compare
various sources of uncertainty and to set confidence intervals for net present value estimates. This approach
can also result in information on which sources of uncertainty are focused.
olopainen).
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1. Introduction

The economical value of forests is crucial information for landowners
andvarious forestry organizations. Estimatesof thevalue of forest estates
are needed for many purposes, e.g. in real estate business, land divisions
and exchanges and for considering forestry investment. The need for
determining the value and the value development of forests has become
more important since forests are increasingly considered as one possible
investment outlet amongst other real or financial assets. International
Financial Reporting Standards (IFRS) requires that forest enterprises
present systematically computed estimates of the value of their forested
land annually. The methodologies used for assessing forest value vary
among organizations. Probably, the most common method currently
used for assessing forest estate value is computing the net present value
(NPV) of forests based on predicted future cash transactions. The sales
comparison approach, inwhich the value of a forest estate is determined
usinghistorical data coveringmarket prices or realized forest estate sales
in the same region, is also used to some extent.

The market price of forested land is highly dependent on its
characteristics, e.g. the amount of timber, fertility of the soil etc. Thus,
it may not always be possible to obtain good estimates on the value of
individual estates by using information on past sales in the region. In
such cases, computing the NPV of forests based on predicted flows of
future revenues and costs gives more accurate and better justified
estimates of land value and its probability distribution.

TheNPVof forested land is subject to various uncertainties. Some of
these uncertainties are economic (e.g. price and interest rate
developments), some are related to the quality of inventory data,
while others are related to forest growth and occurrence of natural
hazards. The economic literature on forest stand management has
focused on studying the effects of stochastic timber prices (e.g. Brazee
and Mendelsohn, 1988; Thomson, 1992; Insley and Rollins, 2005) on
optimal harvesting. Most economic studies typically include only one
source of uncertainty at a time. As exceptions, Valsta (1992) accounted
for both stochastic tree growth and natural hazards, and Reed and
Haight (1996) for both price risk and tree growth uncertainty when
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predicting the NPV distributions of forest stands. Alvarez and Koskela
(2007) investigated optimal timber harvesting under both stock and
price uncertainty, using a theoretical model.

The starting point for evaluating forested property must always be
forest inventory data describing the property's timber resources, sites
and possible values other than as related to timber production. If the
computational input data are inaccurate, it will significantly affect the
functionality of the simulation models, resulting in unrealistic simula-
tion outputs and correspondingly suboptimal optimization solutions.
Various sources of error may, of course, also have countereffects. The
accuracy of this information is strongly dependent on the inventory
methodology used. In practice, ocular standwise field inventories
carried out either for forest-planning purposes or separately have
been used. Future information obtained by laser scanning and mensu-
ration of aerial photography will be utilized increasingly.

The mean errors of traditional ocular standwise field inventory
used in operational forest management planning vary for mean
volume from 16% to 38% in Finland (Poso, 1983; Haara and Korhonen,
2004; Saari and Kangas, 2005). One problem in standwise field
inventory is the poor accuracy of species-specific estimates. For
example Haara and Korhonen (2004) obtained relative root-mean-
squared errors (RMSEs) of 29%, 43% and 65%, for volumes of Scots pine
(Pinus sylvestris L.), Norway spruce (Picea abies L.H Karst.) and birch
(Betula L. spp.), respectively. In addition, standwise field inventory
often contains significant bias (0–25%), that varies with the person
doing the inventory, due to the subjective nature of the method.

Airborne laser scanning (ALS) is the most accurate remote-sensing
technique for standwise forest inventory providing accuracies ranging
between 10% and 27% for the mean volume at stand-level (e.g.
Næsset, 1997, 2002; Lim et al., 2003; Holmgren, 2003; Packalén and
Maltamo, 2006). Current data acquisition costs are comparable to
those of standwise field inventory. ALS devices providing small-
footprint diameters (10–30 cm) allow accurate height determination
of the forest canopy. The two main approaches to deriving forest
information from small-footprint ALS data have been those based on
laser canopy height distribution (area-based method, Næsset, 1997)
and individual tree detection (Hyyppä and Inkinen, 1999; Persson
et al., 2002; Popescu et al., 2003).

Some of the causes of uncertainty in evaluating forest value include
growth and yield projection models. The errors in forest growth
projections can be caused by model misspecification, random estima-
tion errors of themodel coefficients and residual variation of themodels,
i.e. the random variation inherent in most natural processes (Kangas,
1999). Anumber of studies focusingon theeffects of variousuncertainty
components in forest growth projection systems exist (Gertner and
Dzialowy, 1984; Mowrer, 1991; Kangas, 1997).

Sources of uncertainty in forest NPV predictions can be taken into
account using various forest-planning scenarios (e.g. Pukkala, 2005,
2006). One approach to calculating a forest property's NPV is to
determine it as a sum of individual stand or logging site NPVs. Pukkala
(2005) adopted this approach and derived models for mineral soil
Scots pine, Norway spruce and silver birch (Betula pendula Roth)
stands by which the stand NPVs can be calculated as functions of
temperature sum, interest rate, timber assortment prices, site quality
and stock structure. The models derived are based on thousands of
Table 1
Descriptive statistics on datasets DFIELD, DALS and DSIM.

DFIELD DALS

n Min Mean Max sd n Min

DgM [cm] 1158 7.4 19.1 36.4 5.8 89 8.9
HgM [m] 1158 4.7 15.3 47.5 5.2 89 6.5
G [m2/ha] 1158 1.0 21.0 51.6 6.5 89 8.0
N [trees/ha] 1158 45 1074 3776 554 89 306
V [m3/ha] 1158 7.9 161.0 495.3 81.8 89 32.4
stand-level optimization runs in which stand treatment was opti-
mized by maximizing NPV, using varying assortment prices and
interest rates.

Our hypothesis is that uncertainties related to errors in input data,
errors in growth projections and variations in timber assortment
prices have a decisive influence on a stand's NPV and on the economic
value of a forest estate. However, to our knowledge there are no
studies that simultaneously incorporate economic risk, quality of
inventory data and growth and yield projection errors in the valuation
of forest estate. There is also very little discussion in the existing
literature on the relative importance of different sources of uncer-
tainty on forest valuations.

Our main objective was to assess the relative importance of
different sources of uncertainty in forest NPV computations. The term
uncertainty here refers to the variation in estimated forest NPVs
caused by random variations in timber assortment prices, errors in
input data and random errors in growth and yield projections. The
uncertainty caused by input data errors was assessed, using two
alternative inventory methods: ocular standwise field inventory and
ALS-based estimation. The study was carried out as a simulation
study, applying theMonte Carlomethod and using stand-level growth
and yield projection models. An essential objective was to produce
quantitative information on the uncertainty in forest planning and
forest NPV computations, which so far has been lacking.
2. Material and methods

2.1. Standwise field inventory and ALS estimation datasets

We used two datasets, collected with two alternative inventory
methods, for modeling the input data errors. These two datasets
included an ocular standwise field inventory dataset and a stand-level
ALS estimated dataset. The standwise field estimation data (DFIELD)
consisted of partly visual estimates by experienced forest planners for
1158 stands and the control data from reference sample plots located
inside the stands (for details see Haara and Korhonen (2004)).

The area-level ALS data (DALS) were collected from a study area in
northeastern Finland and included 89 stands. The values for the
attributes were estimated and measured at the tree species stratum-
level and the estimates were based on a k-most similar neighbour
(k-MSN) procedure (for details see Packalén and Maltamo (2006)).
The DALS dataset also included both the ALS estimates and reference
measurements from sample plots located inside the stands.

In both datasets, the reference sample plot measurements were
presumed to represent the true values of the forest properties,
although the reference sample plot measurements contain at least
some amount of sampling error. However, the reference data errors
were not taken into account as they were insignificant compared to
the estimation errors. The attributes that were estimated visually in
the field inventory and by ALS estimation and measured from sample
plots were mean diameter (DgM), mean height (HgM), basal area (G),
number of stems per hectare (N) and total volume (V). Descriptive
statistics, such as mean and standard deviation (sd), aggregated to
stand-level, are in Table 1.
DSIM

Mean Max sd n Min Mean Max sd

18.6 32.5 6.1 40 0.0 12.6 29.0 9.4
13.6 21.9 4.2 40 0.7 12.2 26.8 8.4
17.9 33.3 6.4 40 0.0 11.0 27.5 9.0

1340 2884 528 40 360 1223 2200 578
126.3 350.3 69.5 40 0.0 102.2 341.6 104.8



Table 3
Dependent and independent variables of the stand-level growth equations by stand
type and tree species.

Type of
stand

Tree species Dependent
variable

Independent
variables

Model
adopted
from

Seedling Scots pine G, Hdom,
DgM, V

G,Hdom,HgM,N, Age,
site class,
regeneration
method

Huuskonen
(2008)

Norway spruce,
Betula spp. and
other deciduous

Increment
of G, Hdom,
DgM, V

Age, site class, tree
species

Established Scots pine and
Norway spruce

Increment
of G

G, Age, Hdom, site
index

Vuokila and
Väliaho
(1980)

Increment
of Hdom

Age, Hdom, site class Vuokila and
Väliaho
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2.2. NPV simulation input data

The input data for the NPV simulations (DSIM) consisted of a syn-
thetic dataset of 40 simulated forest stands having an even
distribution of development classes, from young thinning stands to
mature stands. First, 40 different development class, site class, and
tree species-combinations were generated. Then, typical attribute
values were looked up for these 40 stands from growth and yield
tables by Vuokila and Väliaho (1980) and Oikarinen (1983). The data
covered all site classes and all main tree species (Scots pine, Norway
spruce and birch) in Finland and the temperature sum was 1100,
which is typical for central Finland. Attributes depicting the environ-
ment and site properties were on the stand-level and attributes
depicting growing stock properties were on the tree species stratum-
level. Descriptive statistics on the growing stock properties of the DSIM

dataset is in Table 1.

(1980)

White birch Increment
of G

G, Age, proportion
of birch of total G

Mielikäinen
(1985)

Increment
of Hdom

Age, Hdom, site class Oikarinen
(1983)

Increment
of V

Age, V, site class Oikarinen
(1983)

Pubescent birch
and other
deciduous

Increment
of G

G, Age, site class Mielikäinen
(1985)

Increment
of Hdom

V, Age, site class,
site index

Mielikäinen
(1985)

Increment
of V

Age, Hdom, site class Saramäki
(1977)
2.3. NPV simulations

The relative importance of the three sources of uncertainty in
forest NPV computations was studied by simulating each stand
repeatedly with the Monte Carlo method. Another approach for
assessing the uncertainty would have been to use some analytical
error propagation technique, such as Taylor series approximation (e.g.
Gertner, 1987; Mowrer, 1991). However, implementing the analytical
approach becomes increasingly complex as more sources of uncer-
tainty are introduced to the system and the complexity of the model
system itself increases. The uncertainty caused by random variation in
future timber assortment prices is referred to as UPRICE. The uncer-
tainty caused by input data errors is referred to as UALS and UFIELD for
the datasets DALS and DFIELD, respectively. The uncertainty caused by
random errors in growth projections is referred to as UGROWTH. The
sources of uncertainty were included in the simulations in various
combinations: separately, in pairs and all three simultaneously
(Table 2), enabling us to determine how the different sources of
uncertainty and their combinations affect the NPV distributions. In
addition, we simulated each combination with interest rates of 3%, 4%
and 5%. Note that UALS and UFIELD were alternatives and were not
included in any of the combinations simultaneously.

The actual simulation was done with a stand-level growth and yield
simulator implemented in SIMO (SIMulation and optimization), a
flexible and extendable open-source forest-planning framework
(http://www.simo-project.org, Rasinmäki et al., 2009). The stand-level
growth equations in the simulator were by Vuokila and Väliaho (1980)
and Huuskonen (2008) for Scots pine and Norway spruce, and by
Oikarinen (1983), Saramäki (1977) andMielikäinen (1985) for birches.
Thedependent variables in thegrowthequationsof established, i.e. non-
seedling stands were increment of G and increment of dominant height
Hdom for Scots pine and Norway spruce and increments of G, V andHdom

for birches. For other than pine seedling stands, the dependent variable
in the growth equationswas the percentual increment of attributesDgM,
G, Hdom and V (Table 3).

The increments predicted with the growth equations were added
to the values of the stand-level attributes in question, except for pine
seedling stands,where themodels byHuuskonen (2008) predicted the
actual attribute values in given age. The dependent and independent
Table 2
Uncertainty source combinations used in the NPV simulations.

1 2 3 4 5 6 7 8 9 10 11

UPRICE o o o o o o
UALS o o o o
UFIELD o o o o
UGROWTH o o o o o o
variables of the growth equations for different tree species, for
seedling stands and established stands, are in Table 3.

The development of each stand was simulated until the next
regeneration harvest, or a maximum of 100 years, using one-year
timestep, and repeating the whole simulation process 100 times for
each source of uncertainty and interest rate combination. The
thinning schedules were based on silvicultural recommendations of
the forestry extension organization Tapio in Finland (Hyvän metsän-
hoidon suositukset, 2006). Regeneration harvests were done as soon
as the 5-year moving average of value growth percentage, or so-called
v-value, of the stand was less than the chosen interest rate. In order to
estimate the timber assortment volumes and incomes from the
harvests, tree diameter distributions were constructed for each stand
before the harvests, using distribution models by Kilkki (1989),
Siipilehto (1999) and Maltamo and Kangas (2000). The value of each
diameter class was then predicted with the taper curve functions of
Laasasenaho (1982) and optimal stem bucking algorithm of Näsberg
(1985). The basic functions and simulation logic of the used stand-
level growth and harvest simulation system is described in Fig. 1.
Simulated NPV npvil for each simulation iteration l (l=1…100) of
each stand i (i=1…40) in dataset DSIM, was calculated as the sum of
discounted net cash flows Cilt from thinnings and regeneration
harvests during next 100 years, or until the next regeneration harvest,
so that

npvil = ∑
100

t=1

Cilt

1 + rð Þt
� �

ð1Þ

where t is the simulation year and the r had values r=0.03, 0.04, 0.05
for the interest rates 3%, 4% and 5%, respectively. The costs of
silvicultural treatments and regenerations were not included in the
analysis. The above simulation was repeated separately for each
source of uncertainty and interest rate combination. In addition, a
reference NPV npvi

REF was simulated for each stand i and interest rate,
so that all three sources of uncertainty were disabled.

http://www.simo-project.org


Fig. 1. A flow chart of the simulation logic in the stand-level growth and harvest simulator used for the NPV simulations. Grey boxes with dotted line are associated with simulation of
the various sources of uncertainty. Thinning limits in the harvests are based on Hyvän metsänhoidon suositukset (2006). Variable t is the simulation year and timestep is one year.
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2.4. Simulation of the sources of uncertainty

2.4.1. Simulation of stochastic timber assortment prices
Monthly statistics on real stumpages in Finland between January

1986 and August 2008 (see Fig. 1) were used for estimating the
equation for future development of timber assortment prices (Finnish
Statistical Yearbook of Forestry, 2008). The nominal prices were
deflated, using wholesale price index for domestic goods, and the base
year for deflation was August 2005 (Fig. 2). The price statistics are
given separately for saw logs and pulpwood for the three main
commercial timber species in Finland: Scots pine, Norway spruce, and
birch.

Timber prices fluctuate heavily in a short run. However, Dixit and
Pindyck (1994, p. 77) suggested that if data were available for only



Fig. 2. Historical data on real timber prices as EUR/m3 (price level of August 2005).

Table 5
Parameters for timber assortment price forecasts.

Sawlogs Pulpwood

Pine Spruce Birch Pine Spruce Birch

η 0.2045 0.0402 0.2615 0.1544 0.1035 0.3146
p ̅ 56.37 68.59 53.72 17.28 24.97 17.61
σ 0.05145 0.06727 0.05312 0.08753 0.04942 0.05352

381M. Holopainen et al. / Forest Policy and Economics 12 (2010) 377–386
30–40 years (in our case 23 years), it would be difficult to distinguish
statistically between random walk and mean-reverting processes. As
a result, the decision on price model should be based more on
common understanding of the nature of the price process rather than
outcomes of the statistical tests. In the short run, the prices of raw
commodities tend to fluctuate but in the longer run they will draw
back towards long-run marginal cost of their production. We assume
that there will also be future demand for timber products, and we
model the timber price as a geometric mean-reverting (hereafter
GMR) process. The future development of the stumpage price for each
timber assortment is given by

dp = η p�−p
� �

dt + σpdz ð2Þ

where p ̅ is the long-run average price. The parameters η and σ denote
the speed of reversion and the level of annual variation and dz
represent the increment of the wiener process (Dixit and Pindyck
1994, p. 77). In forest economics literature, geometric Brownian
motion (hereafter GBM) has been widely applied because of its
tractability. Clarke and Reed (1989), Thomson (1992), Yoshimoto and
Shoji (1998) supported the use of GBM. On the other hand, Insley
(2002), Insley and Rollins (2005) and Yoshimoto (2009) chose the
GMR process. Although there is no analytical solution for the GMR
process, they chose it based on economic reasoning.

Timber assortment prices have correlated strongly in the past. We
assume that the relative changes in timber assortment prices will
continue to correlate similarly also in the future. This is accounted for
in price predictions by multiplying the Cholesky decomposition of the
variance–covariance matrix (see Table 4) of the timber assortment
price variations by the matrix of normally distributed random var-
iables with zero mean and sd of one (for detailed description of
Table 4
Variance–covariance matrix of timber assortment prices. The matrix is computed from nor

Sawlogs

Pine Spruce Birch

Sawlogs Pine 1.003861
Spruce 0.934673 1.003861
Birch 0.786532 0.781244 1.003861

Pulpwood Pine 0.832771 0.789512 0.874596
Spruce 0.780352 0.822987 0.905541
Birch 0.765291 0.644382 0.793820

Average price 0.969309 0.966317 0.868148
simulating correlated random vectors applying the Cholesky decom-
position, see Rubinstein, 1981).

The parameter values were estimated by a local linearization
method introduced by Ozaki (1985) and applied in forest economics
by Yoshimoto and Shoji (1998, 2002). The basic idea of the method is
that an original nonlinear stochastic differential equation (price
process Eq. (1)) is first converted to a stochastic differential equation
with a constant diffusion term and then the nonlinear drift of the
derived equation is locally approximated by a linear function of state.
The resulting stochastic differential equation is analytically solvable
and the corresponding likelihood function for parameter estimation
can be achieved (for mathematical proofs see Yoshimoto and Shoji
(2002)). The parameter values of the estimation are given in Table 5.
2.4.2. Simulation of random variation in forest inventory data
The effect of random variation, i.e. measurement and sampling

errors, in forest inventory data was taken into account by generating
true values from the estimates in simulation input dataset DSIM, using
so-called true value models. In order to generate realistic true values
into the simulation input data DSIM, we first modeled the relation
between the estimates and the true values, separately in the two
datasets DALS and DFIELD.

The estimates for attribute k (k=DgM,HgM, G,N, V) are represented
by vector x̂k and the true values by vector xk, where element xkij was
the value for attribute k in tree species stratum j of stand i. Each stand i
contained one ormore tree species stratums j, depending on the forest
structure, and the range of i was i=[1…89] for dataset DALS and i=
[1…1158] for dataset DFIELD.

The true value models were constructed so that trends, distribu-
tion shapes and correlations between the various attributes were
taken into account, as this is encouraged in earlier studies (e.g.
Duvemo and Lämås, 2006). First we calculated the difference vector
between the true values and the estimates dk=xk− x̂k. In most of
the attributes, there was a trend in dk, which was modeled with
linear regression so that dk=βk0+βk1x̂k+εk for DALS and dk=βk0+
βk1x̂k+βk2x ̂k2+εk for DFIELD, where εk is the random error component
vector for variable k. The parameters of the models are in Table 6. In
many cases there were no strong trends, especially in attributes DgM

and HgM in dataset DALS, which together with wide residual variation
led to the model parameters being insignificant. Dataset DALS

attributes G, N and V had distinct positive trends indicating that the
true values in stands with large trees were higher than the estimates.
malised historical timber prices.

Pulpwood Average price

Pine Spruce Birch

1.003861
0.906665 1.003861
0.880564 0.741503 1.003861
0.913052 0.899018 0.802218 1.003861



Table 6
Parameters of the true-value trend models.

DFIELD DALS

β0 β1 β2 β0 β1

DgM 5.2753 −0.3933 0.0061 −0.5542 0.0748
*** *** ***

HgM 6.0388 −0.6710 0.0161 0.0946 0.0444
*** *** ***

G 1.4222 −0.0781 −0.0001 −0.7899 0.1178
*** * *** ***

N 5.5538 0.0137 −0.0003 14.2113 0.1937
*** * *

V 99.4900 0.1059 −0.0001 −6.1998 0.1439
*** *** *** *** ***

Table 8
Correlation matrices cor(d.ij) for the datasets DFIELD and DALS.

DgM HgM G V N

DFIELD DgM 1
HgM 0.47 1
G 0.16 0.18 1
V 0.13 0.48 0.72 1
N −0.21 −0.04 0.59 0.34 1

DALS DgM 1
HgM 0.85 1
G 0.32 0.28 1
V 0.33 0.33 0.96 1
N −0.28 −0.25 0.11 0.09 1
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In dataset DFIELD, attributes DgM and HgM had also positive trends, but
the trends of attributes G, N and V were negative.

After we had fitted the true-value trend models, we examined the
distributions of the model residuals εk̂, that were the differences dk

without the trend. For most of the attributes, the distributions were
probably not generated from a normal distribution, according to a
Shapiro–Wilk test of normality with a 95% confidence level. Since the
distributions were skewed and had high kurtosis, we used logit-logistic
distribution for the true-value simulations, which fitted the distribu-
tions rather well. Logit-logistic distribution is a four-parameter distri-
bution flexible enough to cover a large number of different distribution
shapes (Wang and Rennolls, 2005).We fitted the logit-logistic distribu-
tions into the residuals ε̂k, using themaximum likelihood (ML)method.
The estimated parameters for the logit-logistic distributions are in
Table7. The cumulativedistribution function and theprobability density
function of the logit-logistic distribution are given by Eqs. (3) and (4),
respectively.

F y jψ;λ;ϕ;τð Þ = 1

1 + exp
ϕ
τ

� �
x−ψ
λ−x

� �−1
τ

ð3Þ

f y jψ;λ;ϕ; τð Þ = λ−ψ
τ x−ψð Þ λ−xð Þ

1

exp − ϕ
τ

� � x−ψ
λ−x

� �1
τ

+ exp
ϕ
τ

� �
x−ψ
λ−x

� �−1
τ

+ 2

:

ð4Þ

Since it was possible that the dk values between the different
attributes were correlated, we computed correlation matrices from
the residual vectors ε.̂ij, where ε.̂il=(εD̂gM, il, εĤgM, il, εĜ, il, εN̂, il, εV̂, il), of
each stand and tree species stratum i and j and found out that the
correlations between the residuals of attributes DgM and HgM and G
and V were strong, especially in the DALS dataset (Table 8).

After we had modeled the trends, distributions and correlations of
the differences,we could simulate realistic random true values into the
simulation input data DSIM. For generating the correlated non-normal
multivariate randomattributes,weused the copula approach (Kolev et
al., 2006; Mehtätalo et al., 2008). We transformed the residual vectors
Table 7
Parameters of the logit-logistic distributions, fitted (ML) to the εk̂ values of the datasets DA

DFIELD

λk φk ψk τk

DgM 47.174 −2.501 −62.134 0.274
HgM 81.006 −2.505 −35.303 −0.834
G 61.996 −2.045 −22.051 −1.056
V 753.824 −2.468 −296.026 −0.943
N 2431.233 −1.975 −2232.169 −0.099
εk̂ into normally distributed random variable vectors Yk through
transformation Ykij=Φ−1 (F(εk̂ij|ψ̂k, λ̂k,φ̂k, τk̂)). From the transformed
residuals, we computed a variance–covariancematrix cov (Y.ij), where
Y.ij=(YDgMij

, YHgMij
, YGij, YNij, YVij), and multiplied it's Cholesky decom-

position with a normal random variable vector for each stand and
stratum i and j in order to get correlated multinormal variable vectors
Ỹ.ij (Rubinstein, 1981). These variable vectors were again trans-
formed into logit-logistic variable vectors, using the transformation
εk̃ij=F (Φ−1(Ỹkij|ψ̂k, λ̂k, φ̂k, τk̂)). To obtain the actual simulated
differences d̃k, we added themodeled trends to the simulated residuals
εk̃. The simulated true values were thus x̃k=x̂k+d̃k. For more detailed
description on simulating forest inventory errors using similar
approach as in here, see Mäkinen et al. (in press).

2.4.3. Simulation of random growth prediction errors
The uncertainty caused by the stand-level growth models,

UGROWTH, was taken into account by including a random variation
component in the growth projections. We divided the random errors
caused by this variation into inter stand error u and intra stand error e
so that the total random error at time t was μt=u+et. The random
error caused by intra stand variationwasmodeled as an autoregressive
process in which et+1 is dependent on et so that et+1=α×et+b,
whereα is the autocorrelation coefficient and b is a randomcoefficient.

The normally distributed random error uwas generated once at the
beginning of the growth simulation for each tree species stratumof each
stand and again after regeneration of each stand. The value for the
random coefficient b was generated again at each time step t of the
growth and yield simulation. The total variance of μ was based on a
study byHaara (2005). This variancewas divided again into inter stands
variance and intra standvariance, applying the results of Kangas (1999).

The random error coefficients u and e were generated separately
for attributes Hdom and G, except in seedling stands, since we used
stand-level dominant height (Hdom) and basal area (G) growth
models in this study. The total random error μt was then added to
the growths of Hdom and G at each time step t to simulate the random
variation in the growth and yield projections. In pine seedling stands,
the growth projection was similar to the non-seedling stands. In
spruce and birch stands, the growth was projected using a simple
model that predicts the number of years required for the stand to
reach breast height (1.3 m), using stand age, site class and tree species
as the independent variables After that, the growth of seedling stands
LS and DFIELD.

DALS

λk φk ψk τk

58.961 −2.120 −41.108 −0.362
22.061 −1.863 −31.456 0.367
14.548 −1.507 −16.614 0.136
93.974 −1.588 −139.848 0.408

1588.913 −0.849 −880.408 −0.670

http://doi:10.1007/s10342-009-0288-0


Table 9
Variance–covariance matrix used for generating correlated inter stand random errors
for the attributes Hdom, G, Tspruce and Tbirch.

G HgM Tspruce Tbirch

G 0.00360000 0.00205012 −0.00428519 −0.00462895
HgM 0.00205012 0.00467000 −0.00488065 −0.00527218
Tspruce −0.00428519 −0.00488065 0.00797000 0.00688748
Tbirch −0.00462895 −0.00527218 0.00688748 0.00930000
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was projected with a very simple growth equation that predicts the
percentual increment of the various stand-level attributes, until the
stand attributes reached the limits of an established stand. After
reaching the limits of an established stand, the growth was projected
using the Hdom, G and V growth models. The random variation in the
development of spruce and birch seedling stands was included by
adding a normally distributed random error μt to the stand age T. The
μt values were generated separately for spruce Tspruce and birch Tbirch
ages.

We presumed that the inter stand random error coefficients u for
the attributes Hdom, G, Tspruce and Tbirch were correlated. This was
based on the assumption that the inter stand variation is caused by
site quality and other site-specific factors that affect the stands'
growth. Thus the u values for these attributes were generated from a
multinormal distribution, using the Cholesky decomposition and
variance–covariance matrix in Table 9.

2.5. Analysis of the uncertainty

The uncertainty in the NPV simulation was analysed by studying
the distributions of the NPVs and comparing them to the reference
NPVs, separately for each source of uncertainty and interest rate
combination. For each stand i, the mean and sd of the NPV distri-
bution,meani

NPV and sdi
NPV, respectively, were calculated with Eqs. (5)

and (6).

meanNPV
i = ∑

100

l=1
npvilð Þ × 1

100
ð5Þ

sdNPVi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
100

l=1
npvil−meanNPVi

� �2 ×
1

100

s
: ð6Þ

Thebias, i.e. difference between the referenceNPVsandmeansof the
NPV distributions of each stand i, was calculated as biasiNPV=meani

NPV−
npvi

REF and the relative, or percentual, bias was calculated as bias%i
NPV=
Table 10
Averages of the relative biases (bias%NPV) and sds (sd%NPV) of the simulated NPV distribution
sources in each combination are marked with o.

Active sources of uncertainty Interest rate

3%

UPRICE UFIELD UALS UGROWTH bias%NPV

o −6.1
o −6.8

o 1.7
o −9.5

o o −9.1
o o −1.0
o o −5.7

o o −12.5
o o −2.1

o o o −9.2
o o o 0.1
(meani
NPV−npvi

REF)/npviREF×100.Wewere also interested in the relative
variation and thus relative sd (%) was calculated with Eq. (7).

sd%NPV
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
100

l=1

npvil−meanNPV
i

meanNPV
i

 !
×100

 !2

×
1

100

vuut : ð7Þ

3. Results

First, the relative influences of the individual uncertainty sources
on the NPVs were investigated, after which the uncertainty sources
were analysed in pairs and finally simultaneously. The most essential
results of the study are presented in Table 10.

In scrutinizing the results presented in Table 10, it should first be
noted that of the individual sources of uncertainty, UPRICE produced
the smallest average variation, i.e. average sd%NPV values (6.9–8.2%),
where the input data errors had more considerable influence, with
values of 28.8–32.6% and 26.4–28.7% in the cases of UFIELD and UALS,
respectively. Of the individual uncertainty sources, UGROWTH was the
most prominent in causing variation, resulting in an average variation
of 33.2%–33.4%.

The relative biases, or the differences between the reference NPVs
and the simulated distribution means, were mainly negative, except
when UALS is one of the sources of uncertainty in which cases the
average NPV biases, i.e. average bias%NPV values, were mainly positive.
The average biases ranged from −12.5% to 10.2%.

Analysis of the different uncertainty source combinations was
carried out first in pairs and then by combining all three (UPRICE, UALS/
UFIELD, UGROWTH) uncertainty sources. Of the pairwise analyses,
combining UPRICE with UALS or UFIELD, resulted in a variation of the
NPVs that was similar to that achieved with UALS or UFIELD alone (app.
30%). The combination of UPRICE and UGROWTH resulted in average
variation ranging from 46.5% to 50.0%, which is of the same magnitude
as the variation achieved by including all three uncertainty sources
simultaneously. The largest variationwas achieved by combiningUPRICE,
UFIELD and UGROWTH (47.4% and 51.3% with interest rates of 3% and 5%,
respectively). The cumulation of the variation is not straightforward as
summing the variances of two or more sources of uncertainty differs
from the simulated combined variance. In most cases, the simulated
joint variance was higher than the sum of the individual variances.

The effect of interest rate on the variation was relatively small, but
the effect on the average NPVswas notable, so that higher interest rates
resulted in lower NPVs. Interestingly, the average biases increased along
with increasing interest rates.
s with given source of uncertainty and interest rate combination. The active uncertainty

4% 5%

sd%NPV bias%NPV sd%NPV bias%NPV sd%NPV

8.2 −1.5 7.3 −0.9 6.9
28.8 −5.4 29.2 −5.7 32.6
26.5 4.8 26.4 7.3 28.7
33.2 −6.7 33.4 −5.8 33.2
29.0 −3.8 32.1 −0.8 33.8
27.4 7.1 28.6 10.2 30.9
34.9 −1.5 35.3 −2.9 34.9
46.9 −7.9 48.2 −6.4 50.0
46.5 4.3 46.6 7.0 47.1
47.4 −3.6 48.3 −1.8 51.3
46.5 7.5 46.8 10.0 47.6



Fig. 3. Mean and variation of sd%NPV by development class and separately for the various uncertainty sources UPRICE, UALS/UFIELD and UGROWTH. Development classes: 2—young
seedling stand, 3—advanced seedling stand, 4—young thinning stand, 5—advanced thinning stand, 6—mature stand.

Fig. 4. Stand-level reference NPVs (npviREF) in euros. SIMO system vs. Pukkala's (2005)
models, using an interest rate of 3%.
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The results presented in Table 10 were derived as averages and
were calculated using all of the 40 simulated stands. Next, the effects of
the uncertainty sources were analysed by development class (Fig. 3).

The effect of the uncertainty sources on the variation by
development class is presented in Fig. 3. The variation associated
with UPRICE is the highest in young and advanced thinning stands
(development classes 4 and 5). The variation due to both UALS and
UFIELD are the highest in young thinning stands, although their effect is
considerable also in advanced thinning and mature stands. In respect
to UGROWTH, the greatest average variation is found in seedling stands,
whereafter the averages decrease in a trendlike fashion towards
mature stands. When all three uncertainty sources are considered
simultaneously, the highest variation is observed in young stands, due
to the strong effect of UGROWTH.

The validity of the NPV computations carried out was determined
by comparing the stand-level NPVs produced by the SIMO system to
those produced by Pukkala's (2005) models. Fig. 4 indicates that the
NPVs produced by the stand-level growth projection system imple-
mented in SIMO are similar to those produced by Pukkala's (2005)
models (R2=0.73). Complete correspondence cannot be achieved,
and it cannot even be assumed, because there are differences between
the respective methodologies. The growth models used in the
simulations of this research and those behind Pukkala's models are
different. In Pukkala's method the timings of both thinning and
regeneration harvests are optimized, whereas in the present study
only regeneration harvest timings were optimized using the v-value.
In addition, the NPVs are affected by timber assortment prices, which
in this study were different from the prices used by Pukkala.

The distributions of the NPVs caused by different uncertainty
source combinations were examined also at the single stand-level.
In Fig. 5, we can see the distributions of three stands in different
development classes: young seedling stand, young thinning stand and
mature stand. The means and variances of the distributions are
distinctly different between the three stands representing three
development classes. In the mature stand, the means of the two
simulated distributions are also rather far apart.

4. Discussion

This study is one of the first attempts to consider the importance of
different sources of uncertainty salient to the determination of forest
value. The sources of uncertainty included errors in input data, growth
projection errors and timber assortment price fluctuations, and were
considered simultaneously with variable rates of interest.

The results proved that the study's basic hypothesis is valid, namely
that uncertainties related to inventory errors, growth projection errors



Fig. 5. Probability distribution of NPV as euros for three stands, all situated inmedium-rich soil. Two alternative combinations of different sources of uncertainty include UPRICE, UFIELD

and UGROWTH (solid line) and UPRICE, UALS and UGROWTH (dotted line). Interest rate is 3%. The initial development classes were young seedling stand for stand 11, young thinning stand
for stand 18 and mature stand for stand 23. The vertical lines are the means of the two uncertainty source combinations.
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and timber assortment prices all contribute remarkably to variation in
the values of forest stands, and also to the means of the NPVs to
some extent. The variation in the NPVs is depicted here with the
averages of sd%NPV values, in which higher values mean wider distri-
bution of theNPVestimates. The effect of individual uncertainty sources,
i.e. theaverage sd%NPVvalues, variedwithan interest rate of 3% from8.2%
(UPRICE) to 33.2% (UGROWTH). When various uncertainty sources were
combined, the highest average variation was 47.4% (UPRICE, UFIELD,
UGROWTH) with an interest rate of 3%. The cumulation of the variation
was not straightforward. The sum of the variances of the individual
sources of uncertaintywas less than the varianceof the jointly simulated
uncertainty. This suggests that this type of simulation study is well-
suited for studying the joint effects of multiple sources of uncertainty.

Timber assortment price fluctuations proved to be a somewhat
less important source of uncertainty than input data errors and
growth projection errors. However, this is largely a consequence of
the pricing process applied and the assumption that timber products
will also maintain their future competitiveness. If a GBM had been
used, the wood price fluctuation would have been considerably
greater and the respective uncertainty consequently also greater.

Input data errors result in an uncertainty, the influence of which
almost corresponds to the effect of growth projection errors. The
uncertainty caused by ALS estimation was slightly smaller than that
caused by traditional field inventory. This is due to the higher precision
of ALS estimates. The most notable difference between the two
inventory methods was in the averages biases, or the average bias%NPV

values. In the case of ALS estimation, the average biases were positive,
which means that the true NPV values are in average higher than the
references. In the case of traditional standwise field inventory this was
opposite. This is explainedmostly by the trends in the true-valuemodels
used for simulating random variation into the simulation input data. In
ALS estimation, and especiallywith attributeG, the true values in stands
with large trees were actually higher than the estimates and in
traditional field inventory they were smaller. Other sources of
uncertainty led systematically to negative average biases.

The interest rates studied (3–5%) had only a minor influence on
the average variation. It is clear that interest rate has a decisive
influence on the level of NPV in absolute terms. For example, NPVs
calculated with an interest rate of 3% are considerably higher than
NPVs computed at a 5% rate of interest. However, the variation in
NPVs also increased for lower rates of interest. Thus the relative errors
remained similar, irrespective of the rate of interest.

The average variations by development class (Fig. 3) are quite
logical. The input data errors caused high variation in the NPVs of
advanced and mature forests, because revenues from these harvests
will soon accumulate. In respect to growth model errors, random
variation in the growth of young stands is projected throughout the
entire rotation period. The random variation in growth of mature
stands does not have sufficient time to make any difference, because
the stands will be regenerated before long. This finding is also valid in
practical forest planning, i.e. the uncertainty related to the function-
ality of growth models has more impact in younger stands. On the
other hand, both ALS and traditional field inventories produce biased
data, especially in mature stands (underestimates) and seedling
stands (overestimates), which was taken into account in the true-
value models that were used for generating random variation into
simulation input data.

In combining the uncertainty sources into pairs (see Table 10) one
can examine to which extent the uncertainty can be reduced by
acquiring more accurate inventory data. For example, the average
relative variation would be reduced from 51% to 35% in the case of
traditional field inventory, given that the inventory data would be
absolutely accurate. On the other hand, it can be difficult to rid oneself
of the uncertainty caused by growth projection error. In addition to
the errors in the growth models themselves, uncertainty is also
caused by random variation characteristics of the most natural
processes, which is difficult to include in the models. In the long
term, environmental changes triggered by climatic changes and
changes in forest structure caused by new forest treatment practices
may also weaken the reliability of empirical growth models. Despite
these hindrances, there are suitable approaches for decreasing growth
projection errors. One such approach would be calibrating the growth
projections with data on past growth of the. However, acquiring this
type of data can be difficult and expensive.

Some simplifications had to be made during the course of the
study. The effects of stem quality, special timber assortments and fuel
wood on logging revenue were not taken into account. It was also
assumed that stands were treated according to the traditional low-
thinning regimes (Hyvän metsänhoidon suositukset, 2006). All of
these factors affect forest NPVs. However, their influence on the
importance of the uncertainty sources studied is probably not that
significant. The effects of these other sources of uncertainty on forest
NPV calculations can be addressed in follow-up studies.

Natural risk factors such as wind, snow, fire, insect and fungi
damages were likewise not taken into account. It would, in principle,
be possible to also consider forest damage risks as uncertainty sources
in forest NPV computations, given that models for predicting the
effect of various damage factors on stock growth were available.

Setting a minimum selling price (i.e. reservation price) in advance is
one approach in the forest owner's adaptive decision-making (Attfield
et al., 1991). This minimum price can be made dependent on the value
increment and amount of the growing stock. Therefore it varies on a
standwise basis. The application ofminimumselling prices considerably
improved thenet yield of forestry in several studies (Haight andHolmes,
1991; Thomson, 1992; Plantinga, 1998; Brazee and Bulte, 2000). How
much does an option of adaptive harvesting decision reduces the levels
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of various risk factors is a promising theme for future study. More
rigorous analysis employing various pricing processes and assumptions
on the future use of forest products is also needed.

5. Conclusions

In applying the methodology presented here, the effect of various
sources of uncertainty on the outcome of forest NPV computation can
be taken into account and confidence intervals can be set for the
output results. The methodology also aids in assessing forest property
market values during which the current estate market situation must
also be taken into account in addition to the computed NPV. The study
also resulted in information on which uncertainty sources to focus
attention to increase the certainty of the output results. This is
currently needed because new inventory methodologies are being
used in operative forest planning.
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