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method, the signal is analyzed using the windowed 
Fast Fourier transform (FFT), and the frequency and 
amplitude tracks are obtained by connecting data in 
the neighboring analysis frames. This approach has 
its roots in the phase vocoder technique and its 
effi cient  transform- domain implementation. For 
periodic or  pseudo- periodic musical tones it is 
unnecessary to resort to an overly generic analysis 
method, because the frequencies of the harmonic 
components are known after the estimation of the 
fundamental frequency. Advantages of the proposed 
 fi lter- based analysis method (compared with the 
more general FFT- based techniques) are simplicity, 
which follows mainly from the small number of 
parameters, and the possibility of designing fi lter 
coeffi cients in closed form. Additionally, the result-
ing decomposition is obtained directly as a set of 
time- domain signals, and no separate synthesis 
stage is required.

Other signal processing methods proposed for 
analyzing the harmonic structure of musical signals 
include wavelets (Evangelista 1993) and high-
 resolution tracking methods (Badeau, David, and 
Richard 2006). These methods provide excellent 
frequency accuracy at the expense of a complicated 
algorithm and a high computational cost. The 
method proposed in this article can also provide 
amplitude and frequency accuracy that is suffi cient 
for musical signal analysis, but at the same time, 
the analysis method remains easy to apply.

In this article, we fi rst discuss the theory behind 
canceling and selecting partials using fractional 
delay fi lters. Then, we present three test cases to 
demonstrate the power of this approach in musical 
signal analysis. Sound samples corresponding to 
these examples are provided on the forthcoming 
Computer Music Journal DVD (to be released with 
the Winter 2008 issue).

This article discusses canceling and extracting har-
monics from a musical signal using digital fi lters. 
This is an old technique that has been proposed in 
different forms by Moorer in the 1970s for pitch 
detection of speech signals (Moorer 1974) and for 
analyzing music data for additive synthesis (Moorer 
1977). The basic idea is to use a  multiple- notch 
fi lter to extract individual harmonic components as 
signals. The fi lter structure can be obtained as the 
inverse transfer function of a comb fi lter (i.e., a 
delay line in a feedback loop).

In this article, we expand on a recently proposed 
idea that the delay line in the inverse comb fi lter 
(ICF) can be replaced with a high- order  fractional- 
delay fi lter to obtain very accurate cancellation of 
neighboring harmonics to select a single harmonic 
or to extract the residual signal by canceling all 
harmonics (Välimäki, Ilmoniemi, and Huotilainen 
2004; Välimäki, Lehtonen, and Laakso 2007). The 
proposed signal analysis method is useful for many 
practical cases. Many musical instruments, includ-
ing all woodwind, brass, and bowed string instru-
ments, produce a sound signal that is inherently 
harmonic, that is, the spectral components are 
integral multiples of a fundamental frequency. This 
follows from the  sound- production mechanism of 
these self- excited systems, which involves mode 
locking in the time domain (Fletcher and Rossing 
1991). It forces the sustained tones of such instru-
ments to be periodic. There is often a noise compo-
nent in these musical tones, however, making them 
 pseudo- periodic in practice.

Another method for this kind of signal decompo-
sition is sinusoidal modeling (McAulay and Quat-
ieri 1986; Serra 1989; Serra and Smith 1990). In this 
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delay line (Laakso et al. 1996; Pei and Tseng 1998; 
Välimäki and Laakso 2001). Alternatively, an FIR 
(Dutta Roy, Jain, and Kumar 1994) or an infi nite 
impulse response (IIR) notch fi lter (Pei and Tseng 
1997; Tseng and Pei 2001) can be designed to ap-
proximate the overall ICF characteristics.

Figure 1b shows the block diagram of a  fractional- 
delay ICF, where the delay is replaced with a 
 fractional- delay fi lter, as proposed previously (Väli-
mäki, Ilmoniemi, and Huotilainen 2004; Välimäki, 
Lehtonen, and Laakso 2007). The transfer function 
of this system can be written as H(z) = (1 – Hfd(z)) / 2, 
where Hfd(z) is the transfer function of the  fractional- 
delay fi lter used for delay approximation. A magni-
tude response of this structure with an 11th- order 
all- pass  fractional- delay fi lter that approximates the 
delay of 10.5351 sampling intervals is displayed in 
Figure 2 (solid line).

The fi lter structures in Figures 1c and 1d offer 
freedom in the selection of the  fractional- delay 
fi lter order (Välimäki, Ilmoniemi, and Huotilainen 
2004). We have found experimentally that the 
order of Hfd(z) can be kept constant (e.g., N = 80), so 
when the fundamental period (T0 = fs / f0) is longer 
than N samples, L1 extra samples of delay are 
required in the lower signal path in Figure 1c. 
However, when the fundamental period is shorter 
than N samples, L2 extra samples are required in the 
upper signal path to synchronize signals for subtrac-
tion (see Figure 1d). Thus, we propose to use the 
transfer function

 
  
Hlow(z) = 1

2
1− z−L1Hfd(z)⎡⎣ ⎤⎦  (1)

Fractional- Delay Inverse Comb Filters

The inverse comb fi lter (ICF) is a fi nite impulse 
response (FIR) fi lter in which input signal is delayed 
by L samples and is then subtracted from the origi-
nal input signal (see Figure 1a). Following the 
convention of Steiglitz (1996), the term “inverse 
comb fi lter” is used for the feedforward system with 
a delay line. The “comb fi lter,” in contrast, has a 
delay line inside a feedback loop. The transfer func-
tion of the inverse comb fi lter is HICF(z) = (1 – z–L) / 2, 
where the scaling factor 1/2 sets the gain to unity in 
the passband (i.e., between the notches). The magni-
tude response of this fi lter features periodic notches 
at the multiples of fs / L, where fs is the sampling rate 
(Hz) and L is the delay line length in samples or in 
multiples of the sampling interval.

When the delay line length is restricted to be an 
integral multiple of the sample interval, the accu-
racy of the notch frequencies can be poor. An 
example is shown in Figure 2 in which the funda-
mental frequency is 4,186 Hz and the corresponding 
period length is 10.5351 samples. The sample rate 
used is 44.1 kHz. Practical ICF implementations 
employ a  fractional- delay fi lter that replaces the 

Figure 1. (a) Conventional 
ICF and (b) a  fractional- 
delay fi lter based ICF 
(after Välimäki, Ilmoni-
emi, and Huotilainen 
2004). Two other ICF 
structures are presented in 

Figure 2. Magnitude 
response of the conven-
tional (dashed line) and 
the  fractional- delay 
all- pass fi lter (solid line) 

(c) and (d) that allow the 
use of a  fractional- delay 
fi lter Hfd(z) of arbitrary 
order for signals with both 
(c) low and (d) high 
fundamental frequencies.

ICF. The thick vertical 
lines indicate the har-
monic frequencies to be 
canceled (f0 = 4,186 Hz, 
fs = 44,100 Hz).

(a)

(b)

(c)

(d)



 Lehtonen et al. 45

 

  

hL n( ) = D− k
n − k

for n = 0,1,2,...,N
k=0
k≠ n

N

∏  (6)

provides a maximally fl at FIR  fractional- delay fi lter 
design. Recently, Välimäki and Haghparast (2007) 
presented a design method in which the fi lter coef-
fi cients are obtained by truncating the impulse 
response (Equation 6) symmetrically from both 
ends. The explicit design formula for the truncated 
Lagrange design method can be written as

 

  

hTL n( ) = D− k
n + K1 − k

for n = 0,1,2,...,N
k=0

k≠ n+K1

M

∏  (7)

where M is the prototype fi lter order (M > N), and K1 
represents the number of coeffi cients that are dis-
carded from either end of the impulse response 
(Equation 6). The advantage of the truncated 
Lagrange fractional-delay fi lter is the wider approxi-
mation bandwidth. This comes at the expense of 
increased ripple in the fi lter’s frequency response.

Figure 3 compares the standard and the truncated 
Lagrange FIR fi lters. The fi lter order N is chosen to 
be 160 for both fi lters and the order of the prototype 
fi lter order M for the truncated Lagrange fi lter is set 
to 7N = 1120. The fractional delay parameter d is 
0.5. Figure 3a illustrates the magnitude responses of 
the two fi lters; note that the pass- band of the trun-
cated Lagrange fi lter is wider than that of the stan-
dard fi lter. On the other hand, the ripple on the 
pass- band is larger. The same phenomenon occurs 
in the phase delay (i.e., the negative phase function 
divided by angular frequency) characteristics, which 
are visible in Figure 3b: The standard Lagrange fi lter 
provides a steadier response, but the approximation 
bandwidth is narrower compared to the truncated 
Lagrange fi lter. Figure 3c illustrates a comparison 
between two ICFs based on the standard and the 
truncated Lagrange FIR fi lters. For clarity, the 
lengths of the additional  delay- lines were chosen to 
be L1 = L2 = 0. The dots and plus signs indicate the 
attenuation at the harmonic frequencies when an 
ICF with the standard and the truncated Lagrange 
FIR fi lters are used, respectively. Note that with the 
truncated Lagrange fi lter it is possible to obtain a 
140 dB attenuation up to 20 kHz, whereas the per-

when the fundamental period T0 is larger than (or 
about the same as) the fi lter order N, and the trans-
fer function

 
  
Hhigh(z) = 1

2
z−L2 − Hfd(z)⎡⎣ ⎤⎦  (2)

when the fundamental period T0 is smaller than the 
fi lter order N. The  delay- line lengths L1 and L2 are 
set to L1 = T0 – N – d (when T0 ≥ N) and L2 = N + d 
– T0 (when T0 < N). Here, –1 < d < 1 is the  fractional- 
delay parameter used in designing the fi lter.

FIR  Fractional- Delay Filter Design

Let us fi rst consider the inverse comb fi lter design 
using FIR  fractional- delay fi lters. For simplicity, we 
assume that the length of the delay element L1 = L2 
= 0, namely, no additional delay is present in either 
branch. This corresponds to the situation depicted in 
Figure 1b, and the transfer function can be written as

 
  
H z( ) = 1

2
1− Hfd z( )⎡⎣ ⎤⎦  (3)

where the Nth- order transfer function Hfd(z) can be 
expressed as

 
  
Hfd(z) = h n( )z−n

n=0

N

∑  (4)

Several methods for computing the FIR fi lter 
coeffi cients h(n) exist (Laakso et al. 1996). Two 
commonly used methods are the  windowed- sinc 
interpolation and the Lagrange interpolation. The 
impulse response, and thus the corresponding FIR 
fi lter coeffi cients, for the  windowed- sinc interpola-
tion can be expressed as

  
  
hsinc n( ) = w n- D( )sinc n- D( )

0
⎧
⎨
⎩

for 0 ≤ n ≤ N
otherwise

 (5)

where D is the desired delay in samples. The win-
dow function w(n) (e.g., a Hamming window) is 
used for reducing the Gibbs phenomenon.

The Lagrange design formula, which can be ex-
pressed in closed form according to Laakso et al. 
(1996) as
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in that seminal paper, under general assumptions 
(stable all- pass functions) the overall numerator 
polynomial of this structure is either symmetric or 
antisymmetric (a  mirror- image or anti- mirror- image 
polynomial, respectively). These polynomials are 
known to have their zeroes exactly on the unit circle. 
Hence, our fi lter is known to have accurate zeroes 
also in the  fractional- delay ICF case. Note that the 
all- pass fi lters are exactly all- pass (unity magnitude 
at all frequencies) even if the phase (or phase delay 
or group delay) is only approximately as desired. In 
particular, as shown by Välimäki, Lehtonen, and 
Laakso (2007), the phase approximation errors of the 
all- pass fi lter tend to accumulate with increasing 
frequency, and the zeroes of the corresponding ICF 
further from the ideal places at higher frequencies.

For good accuracy, a method is needed that allows 
for the design of high- order  fractional- delay fi lters. 
Three  closed- form design methods are known for 
 fractional- delay all- pass fi lters: the Thiran all- pass 
fi lter design (Thiran 1971; Fettweis 1972; Laakso 
et al. 1996), the truncated Thiran all- pass fi lter 

formance of the standard Lagrange fi lter collapses 
above 16 kHz.

All- Pass  Fractional- Delay Filter Design

For all- pass  fractional- delay fi lter design, we can ex-
press the transfer function (Equation 1) in the form

 
  
H(z) = 1

2
1− Hfd(z)⎡⎣ ⎤⎦ = 1

2
1− z−ND(z−1)

D(z)
⎡

⎣
⎢

⎤

⎦
⎥  

 = 1
2

D(z)− z−ND(z−1)
D(z)

⎡

⎣
⎢

⎤

⎦
⎥  (8)

where D(z) = 1 + a(1)z–1 + a(2)z–2 + . . . + a(N)z–N and 
the numerator polynomial can be written as B(z) = 
D(z) – z–ND(z–1) = b(0) + b(1)z–1 + . . . + b(N)z–N, and 
b(k) = a(k) – a(N–k), k = 0, 1, . . . , N.

It is easy to verify that B(z) is an antisymmetric 
polynomial, that is, bk = –bN – k. In fact, the ICF is a 
special case of the parallel connection of two all- 
pass fi lters discussed by Saramäki (1985). As shown 

Figure 3. (a) Magnitude 
response, (b) phase delay 
in samples, and (c) attenu-
ation of harmonics of ICFs 
using standard and trun-
cated Lagrange FIR fi lters. 

The standard Lagrange FIR 
fi lter is indicated with a 
dashed line in (a) and (b) 
and with a dot at each 
attenuated harmonic in 
(c). The truncated 

Lagrange FIR fi lter is indi-
cated with a solid line in 
(a) and (b) and with plus 
signs in (c). The parameter 
values are N = 160, M = 
1120, and d = 0.5.
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At low frequencies, this fi lter has a phase delay of 
N + d samples.

The truncated Thiran design is obtained by modi-
fying Equation 9:

 a k( ) = (−1)k M
k

⎛
⎝⎜

⎞
⎠⎟

d + n
d + k + nn=0

M

∏  for k = 1,2,3,...,N (10)

where M is the prototype fi lter order (M > N) (Väli-
mäki 2000). By using a value for M that is much 
larger than N in Equation 10, it is possible to extend 
the bandwidth of good approximation. This comes 
at the expense of losing quality at low frequencies: 
The approximation error is larger than in the origi-
nal all- pass fi lter. This design technique allows a 
useful tradeoff between approximation accuracy 
and bandwidth, as discussed in Välimäki (2000); 
Välimäki, Ilmoniemi, and Huotilainen (2004); and 
Välimäki, Lehtonen, and Laakso (2007).

Figure 4 compares the standard and truncated 
Thiran all- pass fi lters. The design parameters are 
N = 80 and d = –0.5 for both fi lters, and the proto-

(Välimäki 2000), and the Pei- Wang method (Pei and 
Wang 2004). Such methods are needed to increase 
the all- pass fi lter order to be large enough for good 
wideband approximation in audio applications. 
Both the standard and the truncated Thiran meth-
ods allow the fi lter order to be increased up to N = 
1,029 (when d = –0.5) using 64- bit double  fl oating- 
point computing. An alternative method would be 
the non- parametric all- pass fi lter design method 
proposed by Abel and Smith (2006). This method 
provides numerical stability even with large fi lter 
orders, and it is possible to match an arbitrary group 
delay as a function of frequency.

In this work, we concentrate on the standard and 
the truncated Thiran fi lter design methods. The 
Thiran design formula for the coeffi cients of the 
polynomial D(z) in Equation 8 can be expressed as

 
  
a k( ) = (−1)k N

k
⎛
⎝⎜

⎞
⎠⎟

d + n
d + k + nn=0

N

∏  for k = 1,2,3,...,N (9)

where N is the fi lter order, and d is the fractional 
delay parameter (–0.5 < d ≤ 0.5) (Laakso et al. 1996). 

Figure 4. (a) Magnitude 
response, (b) phase delay 
in samples, and (c) attenu-
ation of harmonics of ICFs 
using standard and trun-
cated Thiran all- pass 

fi lters. The standard 
Thiran all- pass fi lter is 
indicated with a dashed 
line in (a) and (b) and with 
a dot at each attenuated 
harmonic in (c). The trun-

cated Thiran all- pass fi lter 
is indicated with a solid 
line in (a) and (b) and with 
plus signs in (c). The pa-
rameter values are N = 80, 
M = 720, and d = –0.5.
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must be used to ensure the maximum gain of the fi lter 
to be unity (i.e., 0 dB). Then, the minimum gain of the 
fi lter, which occurs at the bottom of the notches at 
harmonic frequencies, is g0(1 – rL), which we call A. We 
can now solve for the required g0, and consequently 
the required r, when gain A is set to a given value. By 
combining Equation 11 and the aforementioned defi -
nition for A, we get a representation for the radius r, 
as shown in Välimäki, Lehtonen, and Laakso (2007):

   r = (1− A) (1+ A)L  (12)

The HEF transfer function can be written as

   HHEF(z) = g1R(z)[1– rLHfd(z)]  (13)

Here, the scaling coeffi cient g1 that sets the maxi-
mum gain at the bottom of the notches (without the 
resonator) to be unity is defi ned by

   g1 =1 r(1− rL)[ ]  (14)

and the transfer function of the resonant fi lter is

   R(z) = b0 (1+ a1z
−1 + a2z

−2)  (15)

with coeffi cients b0 = (1 – r2)sin(2πfres / fs), which 
scales the maximum gain of the resonant fi lter to be 
unity (Steiglitz 1996), a1 = –2rcos(2πfres / fs), and a2 = 
r2, where fres is the resonant frequency that deter-
mines which harmonic component is retained. The 
fi lter that has the transfer function of Equation 13 
with the given scaling coeffi cients has a maximum 
gain of 0 dB at the peak of the passband.

It should be pointed out that, because all the zeroes 
are inside the unit circle, the overall magnitude 
never reaches zero exactly, as shown by Väli mäki, 
Lehtonen, and Laakso (2007). In practice, this is not 
a problem, because the achieved attenuation at the 
bottom of the notches is still very close to zero.

Design of Parameter Values

For good attenuation, it is required that A is suffi -
ciently small and that the resonant fi lter R(z) 
accurately cancels one of the zeroes of the ICF. 
For example, when it is required that the inverse 
comb fi lter attenuate the harmonic frequencies by 
100 dB, the value of A must be set to 10–5, because 
20 log10(10–5) = –100 dB.

type fi lter order for the truncated Thiran fi lter is 
M = 9N = 720. The magnitude response, which is 
exactly fl at in both cases, and the phase delays are 
displayed in Figures 4a and 4b, respectively.

Note from Figure 4b that the difference between 
the  fractional- delay approximations of the two 
fi lters is microscopic below about 17 kHz, but the 
relaxed accuracy allows for the truncated Thiran 
fi lter to perform signifi cantly better above 17 kHz. 
A comparison of the two ICFs with Thiran and 
truncated Thiran fi lters is shown in Figure 4c. 
Again, the lengths of the additional  delay- lines were 
chosen to be L1 = L2 = 0. Note that below 17 kHz, 
the ICF with the truncated Thiran fi lter is worse 
than the ICF using the standard Thiran fi lter, but 
both are suffi ciently good, because the attenuation 
is more than 140 dB. Above 17 kHz, the perfor-
mance of the Thiran ICF collapses, but with the 
truncated version of the all- pass fi lter the ICF offers 
an attenuation of 140 dB up to 20 kHz.

Extracting Harmonic Components

Instead of canceling all the harmonic components, 
single harmonics can be selected and the rest can-
celed. This is achieved by cascading with an ICF a 
 second- order all- pole fi lter that cancels a zero at a 
given harmonic frequency. This section describes 
the design of such a fi lter, which we call the 
 harmonic- extraction fi lter (HEF).

It is not recommended to place a pole exactly on the 
unit circle in the z plane, because the resulting  second- 
order fi lter is marginally stable and the hidden pole 
may cause numerical problems. A better approach is 
to move the zeroes of the ICF slightly inside the unit 
circle by defi ning the radius of all zeroes of the trans-
fer function to be 1 – ε, where ε is a very small non- 
negative constant. Consequently, the pole of the 
 second- order fi lter can also have the same radius, so 
that the stability of the recursive fi lter can be assured.

To place all the zeroes at radius r, the coeffi cient 
of an ICF with a  delay- line of length L must have a 
fi lter coeffi cient rL (Orfanidis 1996). Consequently, a 
scaling coeffi cient

   g0 =1 (1+ rL)  (11)



 Lehtonen et al. 49

mf0, because the frequency of the mth zero is offset 
by the inaccuracy of the phase approximation of the 
all- pass fi lter. In practice, this mismatch produces a 
kink around the main lobe of the band- pass fi lter, 
and the gain at the resonance frequency becomes 
larger than 0 dB. A correction to the pole frequency 
is required to reduce this error.

One way to correct the resonance frequency of 
the all- pole fi lter is to search for the minimum of 
the ICF’s magnitude response around the mth 
notch. For example, computing the magnitude 
response at 10,000 points between 0.999990mf0 and 
1.000010mf0, and selecting fres as the frequency, 
where the minimum occurs, reduces the mismatch 
suffi ciently. To reduce the number of  magnitude- 
response evaluations, the local minimum can be 
estimated by using interpolation, as suggested by 
Välimäki, Lehtonen, and Laakso (2007).

Figure 5a gives an example of the attenuation 
obtained without and with the proposed correction 
of the resonance frequency when the fundamental 
frequency is 69.2957 Hz, the harmonic #285 at 
19749.2 Hz is selected, the all- pass fi lter orders used 

In practice, the high- order all- pass fi lter does not 
provide a perfect phase approximation. Thus, it may 
be necessary to set A to a smaller value, such as 
10–6. However, when the fi lter structure for select-
ing a single harmonic is used, the resonant fi lter 
provides additional attenuation at frequencies away 
from the resonance, which further improves the 
attenuation at the notches.

It was reported by Välimäki, Ilmoniemi, and 
Huotilainen (2004) that for some musical instru-
ment tones with strong low- indexed harmonics, the 
fi ltering of the signal with the transfer function 
HHEF(z) is insuffi cient. Listening to the fi ltered signal 
reveals that the fundamental is still perceived, 
although one of the high- frequency partials is 
strongly emphasized. Filtering the signal twice with 
a transfer function according to Equation 13 ad-
equately attenuates the rest of the harmonics in 
this case, because it is then possible to obtain an 
attenuation that is better than 100 dB.

There is a minor mismatch in the cancellation of 
the mth transfer function zero with the pole of the 
resonant fi lter having the resonance frequency fres = 

Figure 5. (a) Attenuation of 
harmonic partials using 
the  single- harmonic can-
celing fi lter when the reso-
nance frequency is the 
nominal mf0 (‘x’), and 
the corrected one (‘.’). (c) 
The difference in magni-

tude with (‘.’) and without 
(‘x’) the correction around 
the partial of interest. 
Magnitude response of the 
HEF (b) without and (c) 
with the correction of the 
resonance frequency of the 
all- pole part.

(a)

(b)

(c)

(d)
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odd harmonics can be separated using a single 
fi ltering operation, as suggested by Välimäki, 
Ilmoniemi, and Huotilainen (2004) and Välimäki, 
Lehtonen, and Laakso (2007). The odd and even 
harmonics can be separated by fi rst canceling the 
even harmonics using the  fractional- delay inverse 
comb fi lter and then subtracting the resulting signal 
from the original.

The structure of Figure 1c or 1d can be used, but 
the delay to be approximated is half of that used in 
canceling all harmonics, namely, fs / 2f0 samples. 
With this delay, the notches are located at the 
multiples of the second harmonic, and the fi lter 
now cancels the even harmonics and preserves the 
odd harmonics. The signal containing even harmon-
ics is then obtained by subtracting the estimated 
odd harmonics from the original signal, as shown in 
Figure 6:

 
  
seven(n) = sorig(n) − sodd(n)  (16)

Case Studies

This section presents how the proposed fi ltering 
algorithms perform with synthetic signals and 
recorded instrument tones. In addition, the ICF 
structure based on either  windowed- sinc interpola-
tion, truncated Lagrange, or truncated Thiran 
interpolation are compared against sinusoidal 
modeling (McAulay and Quatieri 1986; Serra 1989; 

are N = 80 and M = 720, and attenuation is A = 10–5. 
In this case, the pole radius is r = 1 – 31.4 × 10–9 = 
0.999999969. The difference between the nominal 
(mf0) and the corrected resonance frequency is 
0.0135 Hz, but the attenuation of the partial is –0.8 
dB without and 0.0045 dB with the correction. This 
difference is illustrated in Figure 5c. The difference 
in attenuation is enough to make the correction 
worth the effort, because it makes the analysis fi lter 
an accurate tool for signal analysis. Figures 5b and 
5d display the magnitude response of the two fi lters 
around selected harmonic. It is seen that without 
correction, the gain of the fi lter fl uctuates between 
about –2 dB and +2 dB near the resonance frequency. 
Using the correction, the fl uctuation is negligible, 
not exceeding 0.010 dB (not visible in Figure 5d 
owing to limited image resolution; the kink is very 
small and very narrow).

For comparison, we designed two ICFs with the 
truncated Lagrange and truncated Thiran all- pass 
fi lters, and a  linear- phase FIR band- pass fi lter that 
imitates the obtained magnitude response. The 
 linear- phase FIR fi lter was designed using the 
Chebyshev window with a sidelobe level of –90 dB. 
The width of the pass- band was equal to f0, that is, 
69.2957 Hz. It was required that the magnitude 
error at the frequency of the selected harmonic not 
exceed 0.1 dB, and that the minimum attenuation at 
the frequencies of the canceled harmonics is 100 dB. 
Table 1 shows the results of the comparison in 
terms of the computational complexity when all 
fi lters are realized in direct form.

As can be seen in Table 1, the number of multi-
plications needed when the truncated Lagrange or 
truncated Thiran fi lter is used is only 3.1% of that 
of the FIR fi lter. The computational complexities of 
the truncated Lagrange and truncated Thiran fi lters 
are the same, but the orders of the prototype fi lters 
differ.

Separation of Odd and Even Partials

Although it is possible to cancel the harmonic 
components one by one by applying the above HEF 
structure multiple times, alternatively, even and 

Table 1. Results of the Comparison Between the 
 Linear- Phase FIR Filter, the Truncated Lagrange 
Filter, and the Truncated Thiran Filter in Terms of 
the Computational Complexity

  Prototype  
Filter Order order Multiplications Additions

Linear- phase  4246 — 4247 4246
 FIR

Truncated  130 911 131 130
 Lagrange

Truncated  65 585 131 130
 Thiran
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parison, the two components were also extracted 
using sinusoidal modeling, where the  short- time 
FFT was computed using a Blackman window of 
length 4fs / f0, and the FFT size was 2048. The hop 
size was set to be one- fourth of the window length.

The results are presented in Figures 7 and 8. Fig-
ures 7a and 7b present the spectrum of the original 
signal (Equation 17), and Figure 7c presents the 
spectrum of the partials #1 and #76 that are selected 
with an ICF based on a  windowed- sinc interpola-
tion. Figures 7d, 7e, and 7f present the correspond-
ing result obtained with sinusoidal modeling, the 
truncated Lagrange FIR fi lter, and the truncated 
Thiran method, respectively. All spectra were calcu-
lated from a 0.5- sec excerpt taken between 0.1–0.6 
sec of the signals. The Hamming window was used, 
and the spectra were computed using the  discrete- 
time Fourier transform at 851 equally spaced points 
so that every 10th point matched one harmonic. 
This choice of parameters yields a clear visual rep-
resentation of the sharp spectral peaks.

As can be seen in Figures 7e and 7f, the truncated 
Lagrange and truncated Thiran fi lters are able to 
extract the fi rst harmonic (thick line) effi ciently, and 
the other harmonics are properly attenuated. In the 
case of the 76th harmonic (thin line) component, the 
truncated Thiran fi lter seems to perform slightly 
better, but the difference is insignifi cant. The FIR 
fi lter obtained with  windowed- sinc interpolation in 
Figure 7c does well with the fi rst harmonic, but the 
error near the Nyquist limit is greater, and moreover, 
the low- pass nature of the magnitude response must 
be taken into account in the analysis to maintain 
the level of the original signal in high frequencies. 
The  sinusoidal- modeling technique depicted in 
Figure 7d suffers from spectral leakage caused by 
the slightly inaccurate  harmonic- frequency trajec-
tory estimate. This problem could be facilitated 
with a longer window length in the  signal- analysis 
phase, but this would cause more temporal smear-
ing in the time domain. With this choice of window 
length, attenuation of neighboring harmonics is not 
as effective as with the other methods.

The effects of temporal smearing are illustrated in 
Figure 8. The signals are zoomed to the window 
0.98–1.06 sec. Figures 8a and 8b show the original 

Serra and Smith 1990). The sampling frequency is 
44.1 kHz in all the test cases.

Selecting a Harmonic from a Synthetic Test Signal

The synthetic test signal is determined to be the 
sum of sinusoids:

 
   
x(n) = Asc(n) sin

2�nkf0

fs

+ �k

⎛
⎝⎜

⎞
⎠⎟k=1

K

∑  (17)

where Asc(n) is an envelope function, K is the num-
ber of harmonics present in the signal, f0 is the 
fundamental frequency of the signal, and ϕk is the 
phase of the kth harmonic. In this case, the param-
eters were chosen as follows: K = 84, f0 = 261.626 Hz 
(C4), which corresponds to the cycle length of 
168.562 samples. The initial phases ϕk are uni-
formly distributed random numbers in the range 
[0, 2π]. To examine the temporal smearing resulting 
from the harmonic component extraction, the 
envelope of the signal is chosen to be rectangular, 
containing sharp transitions.

As an example, two components, the fundamen-
tal frequency component and the 76th overtone, 
have been extracted from the signal (Equation 17). 
This is done with the HEF structure (Equation 13) 
using one of the three  fractional- delay fi lters: an FIR 
fi lter obtained with sinc interpolation using the 
Hamming window, a truncated Lagrange FIR fi lter, 
and a truncated Thiran IIR fi lter. The order of the 
FIR fi lters N was set to 160, and the prototype fi lter 
order for the truncated Lagrange fi lter was set to M 
= 7N. The order of the truncated Thiran fi lter was 
chosen to be N = 80, and the order of the prototype 
fi lter was set to M = 9N. The attenuation coeffi cient 
A was determined to be 10–6 in all cases. For com-

Figure 6. Structure for 
separating the even and 
odd harmonics of a 
musical signal using one 
 fractional- delay fi lter.
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Figure 7. Results of com-
parison in the frequency 
domain. Here, (a) and (b) 
represent the synthetic test 
signal. Selected harmonic 
components #1 (thick line 
near 0 kHz in (c)–(f)) and 

#76 (near 20 kHz) obtained 
with an ICF based on (c) 
 windowed- sinc interpola-
tion, (d) sinusoidal model-
ing, (e) truncated Lagrange 
interpolation, and (f) trun-
cated Thiran interpolation.

Figure 8. Effects of tempo-
ral smearing. Here, (a) and 
(b) show an excerpt of the 
original synthetic signal, 
and (c) and (d) show 
excerpts of the harmonics 
#1 and #76 obtained with 
an ICF based on the 

 windowed- sinc interpola-
tion. Also shown are 
corresponding signals 
obtained with (e)–(f) 
sinusoidal modeling; 
(g)–(h) a truncated 
Lagrange fi lter; and (i)–(j) a 
truncated Thiran fi lter.

Figure 7

Figure 8
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Thiran fi lter. In Figures 9a and 9b, the tone is 
presented in the time and frequency domains, 
respectively. The fundamental frequency of the 
tone was measured to be f0 = 58.2306 Hz using the 
YIN algorithm (de Cheveigné and Kawahara 2002).

It is now desired to remove all the harmonics 
instead of preserving one. Depending on the funda-
mental frequency, a modifi ed form of the transfer 
function (Equation 3) can be used:

   H(z) = g1 1− rLHfd(z)⎡⎣ ⎤⎦  (18)

where the coeffi cients g1 and rL are computed with 
Equations 14 and 12, respectively. Again, the 
parameters were selected as follows: N = 80, M = 
9N, and A = 10–6. The fi ltered residual signal is 
presented in Figures 9c and 9d in time and fre-
quency domains, respectively. When comparing 
Figures 9b and 9d, it can be seen that the harmonic 

signal, and Figures 8c and 8d present the cases 
where the fi rst harmonic and the 76th harmonic 
have been extracted with the ICF based on 
 windowed- sinc interpolation. Temporal smearing 
in the sinusoidal modeling technique is depicted in 
Figures 8e and 8f. The performances of the trun-
cated Lagrange FIR fi lter (see Figures 8g and 8h) and 
the truncated Thiran fi lter (see Figures 8i and 8j) are 
also shown. It can be seen that the truncated 
Lagrange and truncated Thiran fi lters perform best 
in terms of temporal smearing.

Residual Signal Extraction

To investigate how the ICF method works with 
recorded tones, a bowed  double- bass tone was 
analyzed with an ICF based on the truncated 

Figure 9. Time-  and 
 frequency- domain presen-
tations of (a)–(b) the 
bowed double bass tone; 
(c)–(d) the extracted 
residual signal.

(a)

(b)

(c)

(d)
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Figure 11 shows a 3- D time- frequency plot of the 
envelopes of the fi rst eight harmonics of a kantele 
tone. The dominating fundamental frequency of the 
tone was measured to be f0 = 413.445 Hz. The 
truncated Thiran fi lter with parameters N = 80, M = 
9N, and A = 10–6 was used. In this case, the resulting 
attenuation is not quite 120 dB, owing to the two 
fundamental frequencies present in the signal. As 
the notches of the inverse comb fi lter are very 
sharp, part of the harmonic information does not hit 
the notch frequency but rather the slope of the 
notch, where the attenuation is less than 120 dB. 
The obtained attenuation is still more than 75 dB, 
which is suffi cient for visualization, since the 
beating patterns are clear (see Figure 11). From these 
envelopes, it is easy to determine the frequency of 
the beating—for example, by fi tting sinusoids to the 
envelopes and choosing the best match in the 
 least- square sense (Erkut et al. 2002).

Conclusions and Future Work

Digital fi ltering techniques were proposed to obtain 
useful decompositions of harmonic musical signals. 
The basic approach taken here is to subtract a 
delayed copy of the signal from itself to cancel the 
harmonic components. A high- order  fractional- 
delay fi lter implements an accurate approximation 
of the required time delay. A truncated Lagrange 
and a truncated Thiran all- pass  fractional- delay 
fi lter are well suited for this task. A  harmonic- 

components are attenuated effi ciently. Moreover, 
the noise between the harmonics is preserved.

Extraction of a Beating Harmonic

Beating is a signifi cant phenomenon present in 
many stringed instruments. It is characteristic to 
the piano and the kantele, for example. The kantele 
is a plucked string instrument that usually has fi ve 
metal strings. The strings are terminated by metal 
tuning pins at one end and wound once around a 
horizontal metal bar called the varras at the other 
end and then knotted (see Figure 10). The beating in 
the kantele sound is caused by the fact that the 
vibrations in two polarization planes have different 
effective lengths, as the varras is the termination 
point for vibration in the horizontal plane and the 
knot is the termination point for the vibration in 
the vertical plane. This causes the tone to have two 
slightly different fundamental frequencies, which 
produces beating (Erkut et al. 2002).

Extraction of a beating harmonic is considered to 
be somewhat problematic with sinusoidal model-
ing, for example, because preservation of the 
beating in the resynthesized deterministic signal 
requires two or more spectral peaks to be extracted 
around a harmonic frequency (e.g., Tolonen 1999, 
and Esquef, Karjalainen, and Välimäki 2003). The 
beating harmonics of the kantele can be easily 
extracted from a recorded tone using the HEF 
structure (Equation 13).

Figure 10. The structure of 
the kantele. The varras is 
magnifi ed in order to 
illustrate the termination 
point. (Adapted from 
Pakarinen, Välimäki, and 
Karjalainen 2005.)

Figure 11. Envelopes of the 
fi rst eight harmonics of a 
kantele tone.
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