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Ultrathin clean overlayers are often under mechanical stress because the atomic structures of the substrate
and the adsorbate cannot be matched without strain. If the stress energies are comparable to the interface
and surface energies, the system is heteroepitaxial. The self-assembly phenomena caused by stress release
mechanisms of heteroepitaxial systems have application potential in nanotechnology.

In this thesis we study two phenomena where the overlayer adopts a certain structure to release stress. In the
first phenomenon the material forms islands on the supporting surface while in the second case the overlayer
stays flat but nucleates a set of defects. The computational modeling used in the studies is based on
coarse-grained, atomistic methods.

We apply a simplified, two-dimensional model on the islands. It turns out that the model can describe all the
common growth modes and the most frequent island shape agrees with the literature. According to the
model, the dependence of the most likely island shape on the coverage is determined by the balance between
the surface and the stress energies and it does not depend significantly on the wetting films beneath the
island. One can fit the model to a simple analytic formula which is capable of reproducing the numerical
calculations. It can be said that the model used in this thesis is now understood fairly well. Our preliminary
studies indicate that the generalization of the model for three-dimensional nanowires are in good agreement
with the two-dimensional results.

When we investigate defect generation in flat thin films, we choose to model a specific system in detail. To
study copper on the close-packed palladium surface, we pick another physical model than what was used with
the islands because a model which has been specifically taylored for these two materials can be compared to
the experiments directly. It turned out that the overlayer forms stacking faults already in the submonolayer
coverage regime. The finding is consistent with experimental data but calls for a new interpretation for the
overlayer structure.
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Erittäin ohuet puhtaat pintakalvot ovat usein mekaanisen jännityksen tilassa, koska kerrosmateriaalin ja
alustan atomirakenteet eivät sopisi yhteen ilman venymistä. Mikäli kyseiseen jännitykseen varastoitunut
energia on verrattavissa materiaalien rajapinta- ja pintajännityksiin, sanotaan systeemin olevan
heteroepitaksiaalinen. Heteroepitaksiaalisissa systeemeissä tapahtuvat jännitystä lieventävät
itsejärjestäytymisilmiöt ovat mahdollisesti hyödynnettävissä nanoteknologisesti.

Väitöskirja tarkastelee kahta ilmiötä, jossa kerrosmateriaali mekaanista jännitystä lieventääkseen omaksuu
tietyn rakenteen. Ensimmäisessä ilmiössä materiaali kasaantuu pinnalle saarekkeiksi ja toisessa materiaali
pysyy litteänä kerroksena mutta muodostaa joukon hilavirheitä. Tutkimuksessa käytetyt käytetyt mallit ovat
karkeistettuja, atomistiseen kokoluokkaan soveltuvia laskennallisia menetelmiä.

Väitöskirjassa sovelletaan saarekkeisiin yksinkertaista, kaksiulotteista mallia.Osoittautuu, että kaikki
yleisimmät kasvumuodot sisältyvät malliin ja mallin ennustama todennäköisin saarekemuoto on yhtäpitävä
kirjallisuuden kanssa. Mallin antama saarekemuodon riippuvuus kerrosmateriaalin määrästä tukee käsitystä,
jonka mukaan todennäköisimmän saarekkeen leveys ja korkeus määräytyvät pintaenergian ja rakenteellisen
jännitysenergian tasapainosta eivätkä saarekkeen alla olevat alustan kattavat kerrokset merkittävästi vaikuta
asiaan. Malliin voidaan sovittaa kaava, joka pystyy toistamaan laskennalliset tulokset ja voidaan todeta, että
väitöskirjassa käytetty malli ymmärretään nyt varsin hyvin. Alustavat tulokset saman mallin yleistyksellä
kolmiulotteisille harjanteille ovat samankaltaisia kuin kaksiulotteisten saarekkeiden vastaavat tulokset.

Litteiden ohutkalvojen hilavirheiden muodostumista tutkittaessa tarkastelukohteeksi päätettiin valita
yksittäinen erityissysteemi yksityiskohtaista mallintamista varten. Valittu kuparikerros palladiumin tiheimmällä
pinnalla kuvattiin toisella fysikaalisella mallilla kuin saarekkeiden tapauksessa, koska erityisesti kyseistä
systeemiä varten räätälöidyllä mallilla tulokset ovat suoraan kokeisiin verrattavissa. Tutkimuksessa osoittautui,
että kerrosmateriaali muodostavaa pinoamisvirheitä jo ennenkuin materiaalin määrä riittää kattamaan alustan
pinnan. Löytö on yhteensopiva kokeellisen aineiston kanssa mutta haastaa aineiston aikaisemman tulkinnan.
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Chapter 1

Introduction and motivation

1.1 Introduction

Biological organisms can harvest resources, repair damagesor build and destroy struc-
tures of human size using tools which are too small to be resolved by the eye. Man-
ufacturing small devices in the same size scale out of inorganic materials, in the same
way as the common industrial and household machinery are made, seems to be extremely
difficult or impossible.

This difficulty is related to the hardness of metals and semiconductors. Unlike in
biological or soft matter, the interactions between atomicconstituents are much larger
thankBT at room temperature. The lattice formation tendency is so strong that it generally
makes most designed arrangements of atoms unstable which inturn is a major obstacle
for using ordinary processing techniques in nanofabrication.

At atomistic scales, the properties of known stable nano-objects are drastically dif-
ferent from the properties of similar macroscopic bodies. The opportunities to employ
these novel properties are under intense research at the moment [1, 2, 3, 4, 5, 6, 7]. Vari-
ous devices specifically relying on the nanoscale peculiarities have already been designed.
In wide-spread technological use, it would be desirable if the operation of the device were
robust against disturbances. Self-assembling metallic surface structures, the topic of this
thesis, can be counted to be in this category.

In general, nanoclusters have a wide range of existing and potential applications.
For instance aerosols in the atmospheric science [8], metallic powders used in sintering
[9] or small magnetic memory elements [10, 11] can be viewed as such. In the next
parapraphs a few other interesting uses will be introduced.

A hollow nanoparticle capable of acting as a drug delivery vessel would be a great
tool in medical context. Often drugs consist of small molecules which have a tendency

1



2 CHAPTER 1. INTRODUCTION AND MOTIVATION

to spread to all tissues causing adverse side effects. The idea would be to engineer the
hull of the nanocontainer in such a manner that once the container finds its way to the
surroundings of the target tissue, a trigger mechanism opens the hull and the medicine
becomes released.

When the particles are adsorbed on a surface, they typically alter the properties of
the surface completely. A special example is the lotus-leafeffect, where self-assembled
mesoscopic titanium oxide particles turn the underlying surface superhydrophobic and at
the same time catalyze the decomposition of hydrogen, oxygen and carbon containing
compounds into water and carbon dioxide. These two effects together are the reason why
titanium oxide coated surfaces are said to be self-cleaning.

Both flat overlayers and nanoparticles are generally useful in surface coatings. Typ-
ically, a flawless epitaxial film can provide a well-defined set of energy levels which may
be needed for lasers or for solar panels. On the other hand, nanoparticles practically al-
ways come with a size distribution and thus they can produce for instance white light.
Nowadays their size distribution can be made extremely narrow and consequently they
can compete in performance with large monocrystalline films.

Metallic thin films are already in use to boost catalysis. Many of the utilizable
metals are relatively expensive and the most obvious advantage of keeping overlayer thin
is to lower the costs. Often high selectivity is beneficial incatalysis. However, in catalytic
converters one wants to get rid of as many burning products aspossible with a single stage
and therefore high selectivity is not a priority in this case. A combination of two different
metals usually reduces the selectivity and in this exceptional case it leads to higher purity
of the end products.

The yield of a catalytic device is often improved by patterning. In a heteroepitaxial
system the equilibrium lattice constants of the substrate and the overlayer differ enough
to cause significant intrinsic stresses. Usually this requires a relative lattice constant dif-
ference, i.e. misfit, above2%. If the stress is high enough, the adsorbate can create self-
assembled structures to release the strain. One advantage of these structures is that they
increase the reaction-capable surface area.

Self-assembled island structures of heteroepitaxial systems have attracted a lot of
research interest in recent years [11, 12, 13, 14, 15, 16, 17,18, 19, 10, 20]. Coherent
surface structures would often be preferable in many applications because dislocations
can introduce spurious electronic states and they can act astrapping centers for charge
carriers. There are several mechanisms which can lead to coherent arrays of islands. The
question whether the surface and stress energies can balance each other and lead to island
arrays has been discussed extensively. In this thesis we will show that this balance can be
reached even in very simple models.

The structure of the thesis is the following. In the introduction we shall briefly look
at the density of states in metallic materials and look how itchanges when the dimensions
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Figure 1.1: The density of statesn(E) depends on the dimensionality of the structure
containing the particles. When the structure is so small in some dimensions that the
quantum numbers in the corresponding directions do not forma proper continuum, the
effective dimension of the structure can be less than3.

of the metallic object are brought to nanoscale. We shall notinvestigate the electronic
properties in detail. Next we introduce the chemical potential and study its relation to the
crystal shapes. This section follows closely the presentation of Pimpinelliet al.[21]. At
the end of the introduction we present a commonly used classification for growth modes
of overlayers.

The methods chapter describes the computational tools usedin Publications 1-5. We
discuss the general idea behind the molecular dynamics method, introduce the interaction
models and the specific techniques which we use to search for transition pathways and
energy barriers.

Our first assortment of results deals with island formation pathway to the stress
release. The island results are calculated with a very simple two-dimensional model which
has only two parameters and which can be easily modified to explore the balance between
stress and surface energies. It is well-known that this particular model can give only
qualitative results and thus it can be considered as a minimal model for the island shapes
and growth modes. At the end of the chapter we briefly look how the results would change
in a three-dimensional (3D) generalization of the model. All the results except those in
the 3D section are published in Publications 1-4.

In the second set of results we discuss the stress release in flat overlayers. This time
we resort to a more realistic tool which is capable of reproducing many material properties
correctly and which has been successful in comparisons withexperiments. We do not
want to consider stress relaxation by alloying and therefore we choose to model the non-
mixing Cu/Pd(111) overlayer system whose applications are in catalysis. The Cu/Pd(001)
is known to form islands [22] but the{111} surface is known to stay flat [23, 24, 25].
Our calculations reveal an interesting dislocation structure in the submonolayer coverage
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regime which calls for a new interpretation of the existing measurement data. These
results have been published in Publication 5. In the last section we take a short look at the
thicker overlayers on which we also did some generic studiesin Publication 4.

1.2 Density of states in nanostructures

The metals are a large group of elements in the left-hand sideof the periodic table. The
alloys of these elements are also counted as metals. Quite often these metallic materials
have a lattice structure, at least locally, and their properties are dominated by the nearly-
free valence electrons. The nuclei and strongly bound core-electrons can be thought to
form a periodic background potential, on which the electrons are spread. We explore this
a little more in section 2.3. The density of states (DOS)n(E) is the fraction of electrons at
a certain energyE out of all electrons. The integral of DOS over allE is the total number
of electrons. Instead of all the states, we can look at the DOSfor the valence electrons
only.

If a rectangular piece of metal has a nanoscopic diameter inx, y or z direction while
the diameters in the other directions have macroscopic length L, the quantum numbers
associated with the nanoscopic directions usually can not be approximated by a contin-
uum. If there are sizable gaps between the quantum numbers ofthe compact directions
and the geometry does not impose more topological connections between them and the
other quantum numbers, the nearly-free conduction electrons can be thought to form a
low-dimensional gas in the first approximation.

The semi-classical density of states (DOS) in the macroscopic dimensionsd is

(1.1) n(E) =
2

hdN !

∫

ddV

∫

ddVpδ(E − p2

2m
)

whereE is the difference of the total energy of the nearly-free particle and the energy con-
tribution of the compact direction, the factor 2 comes from the spin-degeneracy andddV
andddVp are thed-dimensional volume elements in coordinate and momentum spaces.
The number of particles isN andh is the Planck’s constant. The Laplace transform of
n(E) is

(1.2)
2Ld

hdN !

∫

ddpe−s p
2

2m =
2Ld

hdN !

(

2πm

s

)d/2

.

The DOS can be recovered from this with the help of Laplace transform tables,

(1.3) n(E) =
2 (2mπ)d/2 Ld

hdN !

Ed/2−1

Γ(d/2)
.
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Table 1.1:Single particle density of statesn(E) in low dimensions.
Dimension Realization n(E)

1 Nanowire L
√

m
E

2 Quantum well mL2

3 Bulk L3
√

m3E

The general shape of the DOS in low dimensions is plotted in Fig. 1.1. In 1D and
2D cases the DOS jumps whenever there is enough energy to excite a new band from the
confined direction. In a 2D quantum well the DOS has steps and in a 1D nanowire the
DOS decreases with the energy. If even the last dimension of the system were shrunk to
nanoscale, we would get an artificial atom where the DOS wouldconsist of peaks, like in
a real atom.

Besides the unrealistic dispersion relation, the above way of counting the states
does not take into account the Pauli exclusion principle forfermions which forbids two
particles to be in the same state. Thus, at best the above calculation is only a rough
estimate for electrons. For phonons the expressions might be more successful. Despite
these shortcomings, the general picture is in line with observations.

1.3 Chemical potential and crystal shapes

In problems involving shape or phase changes or growth, chemical potentialµ is one
of the most central thermodynamic quantities. In these problems the system is typically
out of equilibrium and chemical potential needs to be definedlocally, as a function of
coordinates.

If some amount of adsorbate has been deposited on a surface invacuum, the number
of atomsN is fixed and the substrate acts as a heat bath. The natural thermodynamic
potential in this case would be the Helmholtz free energy

(1.4) F = µ0N + 〈ǫad〉A,

whereµ0 is the constant equilibrium chemical potential and〈ǫad〉 is the average surface
energy for the areaA.

Generally the surface free energyǫad is anisotropic and the average in the second
term is

(1.5) 〈ǫad〉 =

∫

dA(n)ǫad(n)

A
,
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where the normal of the surfacez(x, y) over the(x, y)-plane is

(1.6) n = (nx, ny, nz) =
(−∂xz,−∂yz, 1)

√

1 + (∂xz)2 + (∂xz)2
.

Here the height functionz is the difference of smallest and largest distances of points
projected onto the same point in the(x, y)-plane. The projection of the surface area
element on the(x, y)-plane equalsdA(n) = dxdy/nz.

It is convenient to introduce the projected surface energy densityφ

(1.7) φ =
ǫad(n)

nz

= ǫad(∂xz, ∂xz)
√

1 + (∂xz)2 + (∂xz)2.

We relate the system volume to the the particle number byV = vN, wherev is
an atomic volume. This can be understood for instance by introducing a reference lattice
structure where almost every atom lies inside a cell of volumev. Possible deviations from
this structure can be introduced as strain fields which we nowneglect. In this settingN =
V/v =

∫

dxdyz(x, y)/v, where the integral is assumed to be taken over the projected
surface area.

Thus, the free energy has the functional form

(1.8) F =

∫

dxdy
[µ0

v
z(x, y) + φ(n)

]

.

As shown in the appendix, the chemical potential is the variational derivative of the free
energy,

µ = µ0 − v

(

∂x
∂φ

∂(∂xz)
+ ∂y

∂φ

∂(∂yz)

)

.(1.9)

The shape of the particle stops changing when the chemical potential is a constant
along the surface.

Let us denote

(1.10) δµ = µ − µ0 = −v∇ ·
(

∂φ

∂(∂xz)
,

∂φ

∂(∂xz)

)

≡ −v∇ · ∇∇φ.

Integrate both sides over the volume,

(1.11)
∫

dV δµ =

∫

dAn · rδµ = −v

∫

dV ∇ · ∇∇φ = −v

∫

dAn · ∇∇φ.

This holds for any shapeA with normaln, and therefore

(1.12) rδµ = −v∇∇φ.
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Figure 1.2: The panels a)-d) show various surface energy density ǫad plots. The equi-
librium shape is the area inside the tangent lines andǫad. In the first panel the shape is
congruent with theǫad, in panel b) one low value ofǫad causes faceting in one direction
and in c) the crystal is faceted in all directions. Panel d) shows a surface energy density
from a bond-counting argument and the resulting stable shape.

Multiplication of both sides with

(1.13)

(

∂2
xz ∂2

xyz
∂2

xyz ∂2
yz

)

turns the left-hand side into

(x∂2
xz + y∂2

xyz, y∂2
yz + x∂2

xyz) =

= (∂x(x∂xz + y∂yz) − ∂xz, ∂y(y∂yz + x∂xz) − ∂yz)

= ∇(x∂xz + y∂yz − z),(1.14)

where the parts which have onlyz vanish. The right-hand side becomes

v
∂(∂xz)

∂x

∂φ

∂(∂xz)
+

∂(∂yz)

∂y

∂φ

∂(∂yz)
= v∇φ.(1.15)
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Figure 1.3: The contact angle between a liquid droplet and a supporting surface is known
as Young’s angle. It depends on the surface tensions betweenthe liquid and vacuumǫad,
liquid and the surfaceǫint and the surface and the vacuumǫsb.

Again, integrating both sides over the volume and using the Stokes theorem gives a surface
integral which has to be valid for anyA and the associatedn. Thus,

(1.16) vφ = δµ(z − x∂xz − y∂yz),

wherer is a point on the surface.This can be written simply asvǫad(n) = δµ(r · n).

According to Eq. 1.16, if a tangent plane is drawn at a point onthe crystal surface
and a line parallel to the normal at the point is drawn from thechosen origin, the distance
between the origin and the crossing point of the line and the plane equalsǫadv/δµ. If we
are given a surface energy functionǫad, we can plot it in spherical coordinates for alln.
The point in the crystal has to be on the tangent plane drawn atthe distanceǫadv/δµ in the
directionn. If this procedure is repeated for all directionsn, the inner envelope of all the
tangent planes is the equilibrium crystal shape by construction. This procedure is called
the Wulff’s construction.

In Fig. 1.2 we show several possible surface energy plots, where in each panel the
origin is at the geometric center of the closed curve. The planes correspond to the tangent
lines. In panel a) the tangents do not re-cross the hull ofǫab curve and the equilibrium
shape coincides with the shape ofǫab. For instance, ifǫab were a constant, we would get
a spherical droplet.

In panel b) there aren directions, where the tangent runs inside theǫab curve. Out
of these the direction whereǫab is closest to the origin is denoted byn0. Because all the
surface points increase the total energy by an amount proportional toǫab at the touching
point, all the surface directions outside the tangent at thedirectionn0 are unstable. In
all these directions the shape is a plane, with normaln0. This case is relevant for surface
problems, because near a substrate theǫab is changed by the substrate surface energy and
mutual interface energy gains, in the direction where the substrate is. This explains why
the contact between the adsorbate and the substrate is usually planar.
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Figure 1.4: Depending on the surface energies, a liquid droplet may avoid contact with
the surface, be attached to the surface or wet the surface.

The panel c) showsǫab for nearly perfectly faceted, free-standing crystal. If the sur-
face energies and distances from the Wulff point for two facetsi andj wereǫab(i), ǫab(j), ri

andrj, the quantities would obey the relationshipǫab(i)rj = ǫab(j)ri.

In the last, final panel d) we have a surface energy from a bond counting calculation
for a 2D triangular lattice. There are six sharp peaks, wherethe tangents are in principle
undefined but by symmetry they should be perpendicular to theradius connecting the
peaks to the origin. The stable shape in this case would be a hexagon. In practice the
surface energies are usually known only for few low index facets but these are typically
also the only ones present in the equilibrium shape.

1.4 Growth modes

Let the surface tensions between the adsorbate droplet and the vacuum and between the
substrate and the vacuum be denoted byǫad andǫsb, respectively, and the interface tension
between the adsorbate and the substrate byǫint, see Fig. 1.3.

In large liquid droplets the bulk structure and droplet shape are independent to a
good approximation. Near the droplet corner the force balance equationǫad

∫ b

a
dx/ cos(θ) =
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Figure 1.5: There are three growth modes, layer-by-layer orFrank-van der Merwe (FM),
layer and islands Stranski-Krastanow (SK) and islands on top of a clean substrate Volmer-
Weber (VW).

(b − a)(ǫsb − ǫint) turns into a condition for the so called Young’s angle

(1.17) cos(θ) =
ǫint − ǫsb

ǫab

,

when the surface normal directionθ changes a little. Sometimes instead of the angleθ the
angleπ − θ is used. If the right hand side of Eq. (1.17) is larger than one, the angleθ is
undefined and there are no energetic reasons for the adsorbate particle to stay in contact
with the substrate. If1 ≥ cos(θ) ≥ −1 the particle prefers to be a segment of a sphere
lying on the surface, on a facet facing the substrate. Finally, if −1 > cos(θ) we have
complete wetting, with a flat layer, see Fig. 1.4. This condition has later been modified to
better describe various special systems.

In solids the lattice makes the surface energies highly anisotropic. The facets have
to have low indices and therefore arbitrary contact angles are not possible.

The morphologies of the adsorbate are generally divided in three categories. When
the adsorbate splits into mounds which cover only the area directly underneath them, we
talk about Volmer-Weber (VW) growth mode.

The case where the surface is completely covered by a flat overlayer, is called the
Frank-van der Merwe (FM) or layer-by-layer growth mode. Whenthe deposition and the
actual growth have ceased, we still refer to the morphologies with the same language,
including the slightly misleading term growth mode.

When there is a collection of mounds on top of a fairly thin complete film we have
the Stranski-Krastanov (SK) growth mode. The SK mode is of high importance both
experimentally and technologically. Unlike the FM and VW modes, it is not addressed by
the simple Young’s argument presented above.



Chapter 2

Theory and methods

2.1 Molecular dynamics

Ab initio calculations are a great tool in materials modeling because the electronic degrees
of freedom can be taken into account adequately and one can get quantitative results with
little input information. The computational cost of ab initio methods usually increases
strongly when there are more degrees of freedom and in practice one cannot perform
detailed quantum mechanical calculations for systems larger than few hundreds of atoms.
In computational modeling of larger systems, it is usual to resort to classical mechanics.

In molecular dynamics (MD) the center-of-mass movement of atoms is described
by the Newtonian equations of motion under interatomic and external force fields. First
the atomic coordinates and velocities are initialized so that the average velocity vanishes
and the distribution of the speeds reflects the starting temperature. Numerical integration
of the discretized equations of motion gives the time evolution of the system.

There are several ways to perform the integration. In this work we focus on the
minimal energy states and paths and it is sufficient to treat both the dynamics and the
thermal properties with emphasis on the computational simplicity rather than on accuracy.
Therefore we use the simple leap-frog alrogithm which performs decently without saving
the forces,

(2.1)
a) vt/2 = v−t/2 + att;
b) xt = x0 + vt/2t,

wheret is the time step and the updates a) and b) are to be performed inalphabetical
order. The algorithm can be derived by expanding the positionsxt andx−t on the next
and the previous time steps around the present positionx0 as a Taylor series in the time

11
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stept and adding the results,

(2.2) xt + x−t = 2x0 + t2a0 + 2
1

4!
t4x′′′′

0 + O(t6),

where the symbolO means that the terms with equal or higher power than the argument
are left out. We can further Taylor expandx−t andx0 around the positionx−t/2 half time
stept/2 ago and subtract the results to get

(2.3) x0 − x−t = tv−t/2 +
t3

24
x′′′
−t/2 + O(t5).

Inserting this into Eq. (2.2) gives the update rule

(2.4) xt = x0 + t(v−t/2 + ta0) + O(t3) = x0 + tvt/2 + O(t3),

which shows that the accuracy of the position update rule of Eqs. (2.1) is of the third order
in the time step. With similar reasoning one can show that theaccuracy of the velocity
update rule is of the third order.

The error of the integration shows up as a violation of the energy conservation. Typ-
ically the fast processes get integrated least accurately.This problem is usually addressed
either by using a time step so small that the change in energy stays negligible for the dura-
tion of the calculation or alternatively, by keeping the velocities in the acceptable regime
with a thermostat procedure.

At simplest, applying a thermostat means that the velocities get rescaled on every
time step to keep the total energy constant. However, when the integration is exceptionally
inaccurate, this correction cannot be done by a simple rescaling and a more elaborated
method is needed. If the system studied is described by the canonical ensemble, the
energy of the whole system should be able to fluctuate, with a temperature dependent
variance. In the Andersen thermostat the velocities get incremented randomly, following
the Gibbs distribution [26].

Another common way to modify the speeds is to use a delay whichkeeps the av-
erage temperature over several time steps around the correct value but leaves room for
fluctuations. In the relaxation time approximation the temperature changes in time as

(2.5)
dT

dt
=

T0 − T (t)

τ
,

whereτ is a time constant andT0 is the temperature of the heat bath. If the velocities
are rescaled byλ during a time step of lengthδt, and the kinetic energy is proportional to
kBT, then

(2.6)
dT

dt
≈ (λ2 − 1)T (t)

δt
,
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Figure 2.1: The molecular dynamics cooling (MDC) method works by cancelling the
velocities every time they have a component against the total atomic force [?, 36]. On the
next calculation time step the atom will then move towards the nearest local minimum.

which leads to the velocity-dependent scaling factor

(2.7) λ2 = 1 +
δt

τ

(

T0

T (t)
− 1

)

.

This is known as the Berendsen thermostat [27].

In addition to these two widely known, simple thermostats there are more accurate
ways to control the temperature. As stated above, the accuracy of the thermal properties
is not essential in this study. We have chosen to bring the temperature down to zero by
cancelling the atomic velocities whenever they have a component pointing to the opposite
direction than the total force acting on the atom. This procedure is known as the molecular
dynamics cooling (MDC). The cooling is presented schematically in Fig. 2.1.

All the material parameters of MD are contained in the interatomic potentials. The
forces are usually calculated from these for the integratorby another routine, which takes
the coordinates as an input and returns the forces as an output. The force calculation is
computationally expensive and therefore it is preferable to have as few force evaluations
as possible.

It is often said that the accuracy of the atomistic methods isdetermined by the
quality of the interaction potential. The potentials are usually phenomenological, but
sometimes also ab initio calculations are employed to replace them. The potentials used
in this work are discussed in the following sections.
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2.2 Lennard-Jones pair potential

Among the oldest pair interaction models are Lennard-Jones(LJ) potentials, whose at-
tractive and repulsive parts are inverse powers of the interactomic distance. The most
common form has a dipole-like attraction, which can the motivated by the atomic polar-
izability, and a the second power of the attraction as the repulsive part, a choise which is
usually made to make the potential computationally cheap.

These potentials usually have two parameters, the equilibrium distanceσ and cohe-
sive energyǫ, and as such they are known to give decent quantitative results only for the
noble gases. Their main advantage nowadays is that their application is simple and prop-
erties are fairly well-known, which makes them a good testing ground for new physical
ideas.

Because the noble gas crystals are known to be very brittle, one could expect that
a softer potential should give results closer to metallic systems. Ref. [28] represents a
choice of the exponents and strengths of the attractive and repulsive parts which repro-
duces the energies of metals under various degrees of uniform compression and tension.
This potential is expressed as

(2.8) U(r) =
ǫ

m − n

[

n
(σ

r

)m

− m
(σ

r

)n]

,

whereǫ is the bond energy,σ the equilibrium distance,r2 = r2 andm = 8, n = 5 are
exponents which give the interaction the metallic, soft character. For Pd,σ = 2.75 Å and
ǫ = 3.91 eV.

Whenra < r < rc, whererc is the largest radius for considering two atoms as
neighbors andra is the lower cut-off radius, we multiplyU(r) of Eq. (2.8) with a smooth
cut-off functionθ(r),

(2.9) θ(r) = 3

(

rc − r

rc − ra

)2

− 2

(

rc − r

rc − ra

)3

,

following Zhenet al. [28].

At r = σ the potential reaches its minimum,−ǫ. The curvature∂2
rU at the minimum

is nmǫ/σ2, which is related to the bulk modulusB at the zero temperature,

(2.10) B = −V

(

∂p

∂V

)

=
1

9σ

∂2U(r)

∂r2

∣

∣

∣

∣

r=σ

.

The Eq. 2.10 givesB = 130 GPa for Pd. The experimental value is around180 GPa
which is still of the right order of magnitude and sufficiently accurate for our qualitative
studies.
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Figure 2.2: Electronic number density as
a function of the distance.

Figure 2.3: The positive nuclear charge
is shadowed by the surrounding electrons,
an effect which is described by the effec-
tive chargeZ.

In tests of Ref. [28] the potential was found to be in agreementwith Embedded
Atom Method (EAM) calculations. We also compared the compressibility curves for this
LJ parametrization with corresponding EAM results and the match was very good for Pd
and slightly less so with Cu. The Embedded Atom Method is discussed in section 2.3.

We introduce the misfit between the substrate and adsorbate by setting the adsorbate
lattice constant to a value which differs by100f % from the substrate lattice constant,

(2.11) f =
aad − asb

asb

.

The equilibrium bond length between substrate and adsorbate particles is set to the arith-
metic mean of the respective lattice constants.

Analogously with the misfit we introduce an interaction parameter

(2.12) κ =
ǫint − ǫsb

ǫsb

=
ǫab

ǫsb

cos(θ),

which is used to set the depth of the substrate-adsorbate potential and which is related
to the interfacial tension. When the interaction parameter is positive (negative), the
substrate-adsorbate contact becomes more (less) expensive.
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Figure 2.4: The embedding energy decreases as the surrounding electronic density in-
creases. The equilibrium embedding energy is shown as a dot on the curve.

2.3 Embedded Atom Method

The elastic properties of metals cannot be described accurately with any pair potential. It
can be shown that for any pair potentialV (r)

ω2(001) =
1

2

[

ω2(110) − ω2(11̄0)
]

+ k2 1

r

∂V (r)

∂r
,(2.13)

whereω(abc) is the angular frequency of a phonon on fcc lattice propagating in direction
(abc) with wavevectork. On the other hand, from the wave equation for lattice vibrations

(2.14)

{

ω2(110) − ω2(11̄0) = v
m

(c12 + c44) k2;
ω2(001) = v

m
c44k

2,

wherev andm are the atomic volume and mass, andc11, c12 andc44 are elastic constants.
When the virial theorem holds,

(2.15)
1

r

∂V (r)

∂r
= 0.

which means that the elastic constants satisfy the Cauchy relationc12 = c44.
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It is well known that for most metals this Cauchy relation doesnot hold. For palla-
dium c11 ≈ 234.1 GPa,c12 ≈ 176.1 GPa, andc44 ≈ 71.2 GPa [29]. In Embedded Atom
Method (EAM) this problem has been fixed by splitting the interaction into an attractive
embedding potentialF and to a repulsive pair potential [30, 31]. One can think thatan
atom in the solid is an impurity and the rest of the solid is a host. By Hohenberg-Kohn
theorem the energy of the unperturbed host is only a functionof the electronic density
and the energy of the impurity is dependent on the location ofthe type and location of the
impurity. Thus, it can be argued that the energy functional also should be dependent on
these three factors,

(2.16) E =
N

∑

i=1

Vi(ρ(ri),∇ρ(ri), . . .).

The cohesive energy of a solid is related to the width of the local density of states
contributing to the metallic bonding. We take the local density of states at atomi to be
proportional to the sum of electronic densitiesρj from the neighbour atomsj. With ionic
repulsion due to the cores, one can write the following energy functional

(2.17) Veam(i) = Fi(
∑

i6=j

ρj(rij)) +
∑

i6=j

Uij(rij),

for the atomi. HereFi andUij are the attractive and repulsive energy contributions, and
rij = |ri − rj| is the distance between atomsi andj.

Even though the electronic density functionsρj are spherical double gamma func-
tions, as presented in Fig. 2.2, we can distinguish between fcc and hcp crystals because
they have the same numbers of atoms on the first and second neighbor shells but differ at
the third neighbor shell.

The shape ofFi as a function of the electronic density is shown in Fig. 2.4. It is
similar to shape of the related Finnis-Sinclair embedding energy which is just the negative
square root of the density [32]. Heuristically, the embedding function can be thought to
describe how the energy of an electronic gas changes when a solid is formed by bringing
in positively charged atomic cores from infinity.

The core repulsion term

(2.18) Uij(rij) =
∑

j 6=i

Zi(rij)Zj(rij)

rij

.

The form of this term is motivated by a Coulomb repulsion wherethe screened, effective
chargeZi depends on the distance to the atomic core, see Fig. 2.3. The subscripti reminds
that the effective charge is screened differently for each atom type.
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Figure 2.5: The activation-minimization
procedure starts by relaxing a pseudo-
morphic state, ”tilting” the transition
probabilities by a small disturbance and
letting the system to seek a new local
minimum under a repulsive bias potential
(RBP) (see section 2.5.) During RBP we
save a few intermediate states. Finally,
the new state is energy minimized with-
out the bias.

The total energy of EAM potential un-
der uniform compression and extension is
shown in Fig. 2.4. There are many differ-
ent variants of EAM potentials. The variant
we are using is the original parametrization
[30, 31]. It has been tested thoroughly in nu-
merous studies and also shown good agree-
ment with the experiments on Cu/Pd(001) sys-
tem [33]. Although we are not considering
systems which mix, it needs to be mentioned
that this EAM variant does not predict the
right structure for the bulk alloys of the same
materials [34].

2.4 Activation-minimization
procedure

The so called activation-minimization proce-
dure finds some of the strain relaxation struc-
tures of stressed islands and overlayers basi-
cally in three steps. First, we choose an initial
state which can be assumed to be a few defects
away from some realistic low-energy state.

The initial state is usually obtained by
minimizing the energy of a pseudomorphic
structure, where the adsorbate has the equilib-
rium lattice constant of the substrate. A more
detailed descriptions of the initial states for is-
lands and overlayers are given in sections 3.2
and 4.3, respectively.

Second, the locally minimized initial
state undergoes an activation treatment, which
helps the system to cross energetic barriers.
The activation treatment consists of ”tilting”
and subsequent MDC under repulsive bias
potential (RBP), see section 2.5 and Refs.
[35, 36, 37]. By tilting we mean changing the
transition probabilities away from of the initial
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state by pushing some selected atoms closer to an edge of the local potential minimum
where the atom is located. More details on this are also provided in subsection 2.5. It
should be noted that tilting is not used in Publications 3 and5.

During the activation we save a chain of intermediate statesto be used as an input for
the energy barrier finding method described below and in section 2.6. After the activation
treatment we perform one more MDC without the RBP to make sure that the system has
evolved to a different local energy minimum. All the steps ofthe activation-minimization
procedure are summarized in Fig. 2.5.

To find the transition paths, saddle points and energy barriers for the processes we
get from the activation procedure, we use the Nudged ElasticBand method (NEB) [38]
on the chain of intermediate states saved during the activation. The minimal energy path
contributes the highest weight to the transition probability between the initial and final
states and it gives the dominant defect nucleation mechanism at low temperatures. In
brief, the NEB method minimizes the energies of the chain of transition states and at the
same time keeps the chain continuous. A more detailed description of NEB method is
given in section 2.6.

2.5 Repulsive Bias Potential

Before applying the Repulsive Bias Potential (RBP) we ”tilt” the transition probability
towards a direction which is likely to initiate a nucleationprocess. This is done to increase
the chance of getting certain kind of defects. In practice the tilting is performed simply
by altering the coordinates of some selected atoms. Depending on the sign of the lattice
mismatch, the push is better to be done upwards with compressive misfit and downwards
with tensile misfit. A sideways push is useful in both cases. Sometimes the disturbation of
individual atoms or of small compact planar clusters does not lead to stable dislocations
and in these cases we may push whole close-packed rows in the bottom adsorbate layer.
In Fig. 2.6 the tilting would be represented by a left or rightshift in the location of the
system state in the potential landscape.

In the Repulsive Bias Potential method the atoms experience a non-local, repulsive
external potential [35, 36, 37]. The new potential energy surface is written as

(2.19) UR(x1, . . . ,xN) =
N

∑

i<j

V (xi − xj) + A exp(−
N

∑

i=1

(xi − xi(0))2/R2),

whereA andR represent the amplitude and the spatial decay constant of the repulsion
potential,xi(0) is the coordinate of particlei in the initial state andN is the number
of particles. If the bias has short range, the barrier energies stay unaffected. The bias
amplitude decreases when the deviation from the initial configuration becomes larger.
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Figure 2.6: Repulsive bias potential (RBP). The bias makes any local minimum in the
configuration space unstable. The additional term decreases if any of the coordinates
deviates from the initial value.

After the initial tilting, we push the system to a new local minimum with RBP. This
trick prevents the system from returning to the initial state and lowers the escape barriers
to other states.

We found that the repulsive bias works efficiently, when mostof the substrate is
kept frozen. Because there are usually more ways to realize the same release of bias
potential with several particles than with a single particle works in favor of the multi-
particle processes. When a large volume of substrate is allowed to be mobile during the
activation, the small displacements of this domain add up and release a fraction of the bias
potential. To prevent this, only the topmost substrate layer is free to move when RBP is
applied. Below the mobile layer we have two layers of immobileatoms and so the total
substrate thickness on this stage can be as low as three layers.

When we have used an unrealistically thin substrate during the activation, we cor-
rect it later by adding six more layers under the original system before continuing with
the NEB method. During NEB, all the transition states are minimized again with thick
substrate and thus our final energy values take into account the substrate relaxation effects.

It is important to note that the RBP method can generate many different final states
depending on both the initial displacements used for the activation, and the exact form of
the repulsive bias. However, our results were checked by varying the simulation cell size
and levels of biasing and our conclusions are not dependent on these details.

2.6 Nudged Elastic Band-method

Nudged Elastic Band method (NEB) is a way to find minimal energy paths in compli-
cated configuration spaces. The method is introduced in great detail in Ref. [38] whose
presentation this section closely follows. ForN particles the configuration space is3N
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dimensional. In zero temperature the greatest contribution to the transition probability
between two states comes from the minimal potential energy path.

As an input NEB needs a chain of coordinate sets, or ”images”,which describe a
transition of the system from an initial state to a final state. Often this chain is parametrized
by a ”reaction coordinate”s which measures the progress of the transition and is often
proportional to the3N -coordinate distances from the initial to the final state.

It is necessary that there are more images than there are extremal points on the
transition path. If the shortest distance between two extrema along the path werese and
the total length of the transition pathst, then according to the sampling theorem a safe
number of equally spaced images would be≥ 2st/se. In practicese is difficult to estimate
accurately before doing the calculation but adjusting the number of images by trial and
error works in most cases.

The minimal energy path cannot be found simply by minimizingthe energies of
each image individually, because this would drag them all tothe nearest local minima
and leave no information about the energy barriers behind. One cure for this is to add an
artificial harmonic potential

(2.20) V (x(0),x(t)) =
k

2
[|x(t) − x(0)| − a]2 ,

between the images at successive sampling time steps0 and t. Herext denotes a3N
dimensional vector containing all the coordinates on time step t. The parameterk is an
arbitrary spring constant anda is some suitable value of the distance between two images

(2.21) |x(t) − x(0)| =

√

√

√

√

N
∑

i=1

[ri(t) − ri(0)]2.

Imposing the potential of Eq. (2.21) between the images is equivalent to forcing the
continuity requirement with a Lagrangean multiplier. Thismethod is sometimes called
the plain elastic band (PEB) method.

The problem with the PEB method is that if the guess for the equilibrium distance
a is too large the path will begin to meander like a real elasticband when it is under
compression along its length. If the equilibrium distance is too small, the images will
start to cluster. The nudged elastic band (NEB) method is developed to fix this issue.

In NEB the force between the images is split into components parallel and perpen-
dicular to the path. The clustering is caused by the parallelcomponent and therefore, if it
is projected out, the equilibrium image distance can be set to any small value or to zero.
However, this kind of artificial harmonic potential would become identically zero if the
successive images were at right angles,

(2.22) r1(t) · r1(0) + r2(t) · r2(0) + . . . rN(t) · rN(0) ≡ |x(t)||x(0)| cos(θ(t, 0)) = 0.
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Especially when the transition path bends strongly, the likelihood of cutting corners grows.

To prevent this, the parallel component can be gradually turned back on with a
switching functionf(θ). The idea behind this is that if the path curves strongly, more
images get pulled to the corner to make the sampling there more accurate. A popular
choise forf(θ) is cos2(π cos(θ)/2).

2.7 Phase Field Crystal model

For comparison purposes it is useful to have another independent method to do the same
calculations. The Phase Field Crystal (PFC) method has been shown to reproduce the
essential features of a large variety of solid state systemswhere elasticity plays a role [39].
Its main advantage over the molecular dynamics methodologyis that it yields results in
diffusive time scales while the spatial resolution remainsatomistic.

In PFC model we take a free energy functional

(2.23) F [ρ] =

∫

dV

{

1

2
ρ

[

r + (q2 + ∇2)2
]

ρ +
1

4
ρ4 + hρ

}

,

whereρ is the number density,q is thek-vector of the shortest vibrations,h is an external
potential andr is a temperature control parameter. This form of the free energy can be
derived by truncating the free energy of the density functional theory of freezing which in
turn is derived for the gas phase [40, 41, 42]. For liquid and solid phases this functional
can be considered to be an extrapolation.

Like in section 1.3, the stationary densities correspond toconstant chemical poten-
tials,µ = δF/δρ. If the chemical potential is not constant, there has to be an atom flux j

towards the lower potential,j = −∇µ. With a constant total number of atoms we get the
evolution equation

(2.24)
∂ρ

∂t
= ∇2µ.

Usually we add a noise term on the righ side to speed up the iterative solution ofρ.

In our overlayer studies in Publication 2 we take the phase field to represent the
adsorbate. The substrate is described by an external pinning potential

(2.25) h(x, z) = h0(cos(kx) cos(kz/
√

3) − cos(2kz/
√

3)/2),

which is nonzero only when2z ≤ 3π
√

(3)/k. The pinning potential wave lengthk is
chosen to respect the boundary conditions of the simulationcell and the pinning potential
strength is related to the interface energy between the substrate and the adsorbate. More
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Figure 2.7: The 2D phase diagram of the PFC model from Ref. [39]. The horizontal
axis is the average value of the phase field (density) and the vertical axis is the control
parameterr (temperature). The different areas denote the parameter regions where various
periodic solutions are stable. The dark areas correspond tocoexistence regions and the
values inside the square box represent a typical choice for an overlayer system.

details are given in Publication 2. The lattice mismatched wave numberq of the adsorbate
is then set equal tok/(1 + f/100).

In the solid phaseρ is periodic in the diffusive time scales, and in the gas or liquid
phaseρ is smooth on the same level of time-like coarse-graining. Ifwe have a solid
and another phase in the same volume, we need to find parameters which correspond
to a coexistence region of these two possible solutions of Eq. 2.24. The choice of the
parameters is done with the aid of 2D phase diagram of the PFC model, which is reprinted
in Fig. 2.7 from Ref. [39]. The parameterr is related to the temperature of the simulation.
The physical meaning of the average phase fieldρ0 is related to the average density or to
the average amount of solid in the simulation cell. By settingthe r and the simulation
cell size in values which are in the coexistence region, for instance inside the rectangular
box of Fig. 2.7, we have found a description for a system wherea known coverage of
adsorbate interacts with the substrate from Eq. 2.25.
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Chapter 3

Results: Islands

3.1 Heteroepitaxial stress release and islands

Figure 3.1: The atomic potential en-
ergy (from Eqs. (2.8) or (2.17)) has
its maxima at the ends of island’s bot-
tom layer. The surface layers are re-
moved from the image to improve the
contrast of the bulk energy distribu-
tion. The lowest energies are found
from the substrate-adsorbate interface.

As the Wulff’s construction in section 1.3 veri-
fies, the islands can be a part of the ground state
even when the lattice constants of the substrate
and the adsorbate would agree. A peculiarity of
the heteroepitaxial systems is that the stress can
de-stabilize a flat film and be the crucial factor
determining the growth mode.

The balance between the stress and surface
energies is often delicate. In nanoscale the sur-
face effects are strong and the effective elastic
constants and surface tensions may differ from
their continuum limit values [43, 44]. There are
several possible stress release mechanisms rang-
ing from undulation, buckling [12, 45] and dis-
locations [46] to island [12, 14, 20, 47, 48, 49,
50, 51, 53, 54] and nanowire [55, 56] formation
and mixing [57]. We are only considering cases
where mixing plays no role.

In Publications 1-4 we study the island stress release pathway. As explained in the
introduction, our model is two dimensional. Our technique is very similar to the approach
used by Thibaultet al. [58] and Uemuraet al. [59].

In principle it is possible that the number of islands per unit area is set by their
mutual, repulsive elastic dipole interactions [13, 20, 55], mediated by the relaxation in

25
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Figure 3.2: One realization of the decay
of an 11-atom arrangement goes through
a complicated set of intermediate states.
First the island creates a small partial
dislocation by glide mechanism. Part of
the island sinks down to the center of
the bottom layer, a process similar to the
incorporation in the context of overlay-
ers, see section 4.4. After these steps the
rest of the atoms in the second layer dif-
fuse to the edges of the bottom layer and
fall to the substrate-adsorbate interface.
The calculation was done with RBP ac-
tivation and the transition path was min-
imized with NEB method. The resulting
energy landscape and barriers are shown
in the lower panel.

the substrate and the wetting film. In this
study we are not considering this situation.
Whether or not this has been seen experimen-
tally has been under debate because it is diffi-
cult to distiguish a true equilibrium state from a
persistent metastable, kinetically trapped state,
which is separated from the true equilibrium by
a large energy barrier.

When the heteroepitaxial stress release is
used to generate surface structures, the growth
is stopped at a low coverage. From this start-
ing point the overlayer gradually develops to-
wards the equilibrium state, often slowly. We
are considering the case where the equilibrium
state consists of islands and the island density
is be determined by the early nucleation stages.
On this stage there is usually not enough ma-
terial to form a continuous film. This kind of
process has also been considered by several au-
thors [15, 49, 50, 51].

In our calculations the condition of fixed
island density is realized by the fixed unit cell
sizelw, which in principle determines the num-
ber of islands per unit area. However, be-
cause our islands are weakly interacting, the
simulations can also be interpreted to describe
the immediate surroundings of an isolated is-
land. In this case the actual coverage cannot be
known precisely, except that is must be below
the value corresponding to a perfectly periodic
arrangement. In this interpretation our results
have relevance for a variety of nominal cover-
ages with weakly interacting islands.

After the nucleation stage the islands
grow at the expense of the wetting layers.
When compared to a flat layer, an island always
introduces new surface area with an associated
energy cost. However, if the strain in the film
is large enough, the mound formation can lead
to lower total energy. In Publications 1, 3 and
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4 we have constrained the islands to grow coherently with thesubstrate. As a result, at a
certain size the dislocation nucleation barrier must vanish. The coherent growth is related
to the early growth and in the continuum limit the majority ofthe bulk stress has to be
released by defects.

When the islands grow at the expense of the wetting film, one cantalk about “thin-
ning energy” on a coarse grained level [50, 51]. The thinningenergy decreases strongly
as a film gets thicker. For instance, with long range interactions the thinning energy could
be related to the direct interaction of the substrate with the second, third and more dis-
tant adsorbate layers. Any volume removed from the island isa thinning energy gain,
but on the other hand islands relax more efficiently leading to a stress energy gain pro-
portional to the island volume. Because the former contribution is decreasing while the
latter is increasing, it is possible that there is a volume where the terms balance each other
[49, 51, 50]. We study this question more closely in Publication 3 and give more details
in section 3.6.

3.2 Two-dimensional islands

Our island results in Publications 1-4 are two-dimensional. This choise can be motivated
for instance by continuum elasticity, where it is conventional to look at cross-sections of
beams as 2D objects. From the practical point of view this allows us to test and compare
a large number of island geometries in a feasible computer time.

In our initial state we always have a number of complete substrate layers and an
adsorbate structure which is entirely pseudomorphic. In Publication 1 we consider all
the possible concave island shapes without overhangs, keyholes and which are reflection
symmetric about a line perpendicular to the substrate surface. It should be noted that
while there are indications that overhang formation may take place when small metallic
islands assemble on oxide surfaces, in metal-on-metal systems this is unlikely [52]. In
Publications 3 and 4 we are restricted to islands where the number of atoms in successive
layers can only differ by three. In these cases the island andthe wetting film we can have
a partial wetting film width is limited only by the simulationcell width.

One way to write down all the island configurations with only steep facets and a
partial wetting film underneath, is to first subtract the wetting film contribution from the
total amount of adsorbate particles. The maximal height foran island is that of an equi-
lateral triagle. If the maximal heighth = (

√
(4N − 1)− 1)/2 is an integer, it corresponds

to an acceptable island configuration, otherwise one can take the largest integer less than
this value as a trial starting height. For all the heights smaller than this one can work out a
formula which gives the correspondinglw and test whether it is an integer, or just simply
test whether the correct particle number can be obtained with anylw between the given
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Figure 3.3: The PFC simulations show how a pair of dislocations is nucleated at the bot-
tom edges of an island. The dislocations move close to the center of the bottom layer.
In this work we study primarily the case where the islands remain coherent with the sub-
strate. The calculations of Publication 2 show that in both atomistic and phase field mod-
eling the nucleation process has a finite energy barrier. Thesubstrate pinning potential is
described by the Eq. (2.25) in section 2.7 (reprinted from Publication 2.)

height and the maximal width, like we did. The maximal width is the smaller out of the
simulation cell width and the available adsorbate particlenumber.

The partial wetting film configurations can be included in twoways. If we first
subtract the prescribed number of atoms in the partial wetting film from the total number
of atoms and then write down the island configurations as above, the partial wetting film
atoms can be added between the wetting film and the island in the end. An alternative
way to get the same result is to subtract the difference between the island base width the
partial wetting film width from the total number of atoms, then write down the islands as
before and add the subtration to the bottom island layer. Fora given amount of adsorbate,
the plausible partial wetting film sizes are between the basewidth of an equilateral island
and the simulation cell width.

If we want to find all the possible configurations without overhangs or holes, we
can proceed by splitting the available particle number intoa smaller and a larger part and
applying the same steps to the smaller part until all the possibilities are exhausted. Out
of these one can select for instance only the islands which don’t have known high-energy
facets, or those which are mirror symmetric about a line perpendicular to the substrate
surface. This process could also be used to find the partial wetting film configurations. In
the end we have a list of particle numbers in successive layers for every possible island
satisfying our conditions.
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Figure 3.4: The heightsh♦ and widthsl♦ of an island and a wetting film have♦ = i, w
respectively. In an ideal, unrelaxed pseudomorphic systemthere are only few different
bond energies. The energies of horizontal and diagonal adsorbate bonds are denoted by
ǫxa andǫya, the bonds between the adsorbate and the substrate have energy ǫyi and all the
substrate bond energies are equal toǫus.

3.3 Island shapes at low coverage

In Publications 1, 3 and 4 we study the equilibrium shapes of 2D nanoislands. We write
down all the plausible pseudomorphic shapes with a fixedN, as described in section 3.2,
and relax them with Molecular Dynamics Cooling, see section 2.1 for details. During the
minimization the system releases stress energy and the displacement field becomes non-
uniform. Among the configurations the equilibrium shape is the one that has the lowest
energy.

It is hard to find the ground state directly by applying a minimization scheme to an
abritrary initial state because typically the energy landscapes between the growth modes
are rugged. A sample minimal energy transition from a coherent 11-atom island to the flat
ground state is shown in Fig. 3.2. Even in this case the landscape shows a complicated
structure with large energy barriers between the multiple local energy minima.

We find the equilibrium shapes for range of coverages, measured by the deposited
amount of adsorbateN and for a range off. The results of Publication 1 indicate the
preferred growth mode for each pair ofN andf whenκ = 0. We repeat the same cal-
culation for positive, and negative values of the interaction parameterκ with a low total
coverage in Publication 3. In the parameter range we use in our studies we see no plastic
deformation and the islands remained coherent with the substrate.
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When the parameterκ is positive, the islands prefer the VW growth mode. With
negativeκ the adsorbate prefers to be flat when the misfitf is small. At a certain value
of f the flat layer becomes unstable and the preferred growth modechanges to VW. The
transition lines between various modes are not symmetric inthe tensile and compressive
cases. This is partly related to the asymmetry of the potential, partly to the geometric
differences, like the fact that unlike the compressive stress, the tensile stress cannot be
released by undulation. All the found ground states belong either to FM or to VW growth
mode.

The basic island shape we find is a truncated pyramid, see Fig.3.1. At most one
additional facet is found. This facet is located either between the top horizontal facet and
the side facets or at the island bottom, between the substrate and the side facets. On few
occations the extra facet split the side facets into two halves. This rare case was related to
highf andN where our method is least reliable. At least it could be seen as an indication
that the fourth most common island shape might belong to thiscategory. These results
compare well with those of Ref. [60].

With larger island sizes corresponding to coverages above three complete atomic
layers we see nucleation of dislocations from the bottom corners of the island. To initiate
a nucleation process, we activate a large faceted island without tilting as explained in sec-
tion 2.5. This is in agreement with other studies on the subject [61, 62]. For comparison
purposes we also make the same calculation with PFC model, asshown in Fig. 3.3. The
generic features of the process in the PFC model are in line with the MD results. See
Publication 2 for more details.

3.4 Island relaxation and energy

To study how the stress energy is released in islands, we select a representative set of
islands with the same height but with varying width. We relaxed all the configurations
and plotted the deviation of the atomic potential energy from the energy of an ideal pseu-
domorphic system as a function of the atom location. The plotis shown in Fig. 3.6.

The stress relaxation is different depending on the aspect ratio and volume of the
island. When the island width is large in comparison to the height, the stress becomes
localized near the steep walls and the bulk of the island is stressed. In narrow islands the
relaxed zones are overlapping and the bulk of the island is unstrained. This corresponds
to the steep parts of relaxation energy gain curves in Fig. 3.6. Because the relaxed region
near the island walls has its own characteristic width, the bulk of the island is relaxed only
when this charasteristic width is of the order of the island diameter. For larger islands this
effect disappears. This corresponds to the regime where thecurves of Fig. 3.6 tend to
constant values.
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Figure 3.5: Each surface in the reference system has an associated energy penalty or gain
which can be calculated by counting bonds. The dark areas in the cartoon on the left
denote the part of the system which is described by the corresponding expression on the
right side. The quantityl0 = (lw − li)δhw,0.

The actual minimal energy islands are always between these two extremes, and the
competing contributions come from the surface energy cost of the island walls, which
favors low aspect ratio and from the relaxation energy gain,which favors high aspect
ratio.

In an ideal pseudomorphic system there are only a few different bonds, see Figs.
3.4 and 3.5. In Fig. 3.5 we partition the energy into bulk and surface contributions.
Using the geometrical parameters and bond energies from Fig. 3.4 we can calculate a
reference total energy for any ideal pseudomorphic system.The relaxation energy gainΩ
of our calculations is the difference of the reference totalenergy and the energy after the
minimization of the system energy, as shown in Fig. 3.6.

In the regime of flat, wide islands the relaxation energy gainsaturates. The maximal
gain or the value of relaxation energy gainΩ in the flat part of Fig. 3.6 is fitted by

(3.1) Eshallow = −0.194(7)hi(hi + 8.16(7))ǫus.

With this, the gainΩ for heighthi is

(3.2) Ω = Eshallow − b
[

li − lc −
√

(li − lc)2 + d2

]

.

By fitting Ω for data sets with different fixed values ofhi the height dependence ofb, lc
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Figure 3.6: The differenceΩ between the numerically calculated total energy and the
analytical reference energy for a pseudomorphic configuration reaches a constant value
when the island width is large. In this limit the relaxation energies associated with the
steep island facets move farther apart independently as theisland width is increased. The
fixed heights for the curves are 5, 15, 31, 45 and 59, from up to down. The agreement
between Eq. 3.2 and the data is good.

andd is seen to be

(3.3)







b = 0.0134(2)hi(hi + 1.602(2));
lc = 2.45(7)hi + 8.47(3);
d = 1.21(0)hi + 8.82(0).

The calculation ofΩ for various island aspect ratios and different misfitsf revealed
that thef -dependence ofΩ is well described by simple, shape-independent scaling with
f 2. This is what one would expect from linear elasticity. For instance, if one considers
the island corners as edge dislocations with horizontal Burgers vectorsfli/2, this scaling
comes out of Eq. 4.1. Theκ-dependence was orders of magnitude too small to affect our
results.
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Figure 3.7: The growth mode depends both on the mechanical stress and on the strength
of the bonds between the substrate and adsorbate. The formeris parametrized by the
misfit f (horizontal axis) and the latter by interation parameterκ (vertical axis). When
the contact angle between the substrate and the adsorbate isnegative and the misfit is not
too large, wetting occurs. For smallf we have complete wetting and the FM growth mode
and for largef or positiveκ the adsorbate prefers the VW mode. The SK mode is seen
with negativeκ and intermediate values off (reprinted from Publications 3 and 4).

3.5 Global phase diagram

In Publication 1 the deposited amount of adsorbate is low andwe do not find the SK
growth mode, as described in section 3.3. In higher coverageregime the number of shapes
which satisfy the constraints explained in section 3.2 becomes very large. However, be-
cause all the found minimal energy shapes in the low coverageregime belonged to the
class of truncated pyramids with a maximum of one pair of highenergy facets, we restrict
our high coverage calculations to the three most common shapes, described at the end of
section 3.3. Because the optimal shapes require exchange of material with the wetting
film, we include at most one partial wetting film of arbitrary width between the island and
the complete layers.

Both the mechanical stress and the potential depth at the interface are important for
the SK mode. In Publications 3 and 4 we study the interdependence of these two factors
by mapping the growth modes systematically for various combinations of the respective
interaction potential properties. We call this map the ”global phase diagram” (GPD). The
result is presented in Fig. 3.7. Again there is a clear difference between the tensile and
compressive strain.

All the three growth modes appear in the GPD of Fig. 3.7. The boundary between
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the VW and other modes is curved. Most of the positiveκ territory is in VW and it appears
that with a sufficiently large misfit the growth mode becomes VW even with negativeκ.
The FM mode is near thef = 0 axis on negativeκ side and its boundary with the SK mode
seems to be relatively independent of the misfit. As the misfitf increases, the island shape
becomes higher and sharper. Our conclusions continue to hold for larger coverages but
for the smaller coverages the phase boundary between the FM and SK becomes blurred.
Our GPD is in agreement with the similar results of Ref. [63]. The minimization with
Eq. 3.2 is capable of reproducing the Fig. 3.7 even though thefitting was done just in one
point of the same figure.

3.6 Optimal island shape and size

The optimal shape question cannot be answered without varying the coverage. From the
GPD we learned the parameters which favor the SK mode. By fixingthe values off and
κ to the SK regime we can vary the coverage to see how the island geometry depends on
the coverage.

The results are presented in Figs. 3.8 and 3.9. When there is not enough adsorbate to
cover the whole substrate surface, the overlayer is a planarfilm which gradually expands
in width. Above the coverage of precisely one monolayer, there is a clear transition from
the FM mode to the SK mode. The island is in the truncated pyramid shape and it is
ambiquous whether there is a partial wetting film or a pair of high-energy facets at the
bottom of the island.

According to our results, the partial wetting film is not a very effective buffer against
island shape variations. Both the island width and height increase with coverage but there
is a certain wiggle on top of the monotonous increase, which is caused by the partial
wetting film increasing while the island shape does not change. This difference between
the predictions of Eq. (3.2) and our direct simulation is related to the corner energies
which were deliberately neglected. Our results thus support the viewpoint that the optimal
size is dependent on the coverage [49, 51, 50].

In a very narrow region of coverage this kind of wiggle indeedcould be interpreted
as a kind of optimal shape mechanism present in this model. Because the possible island
shapes are not a continuum in the low coverage limit, for somenumbers of deposited
atoms there are sizeable gaps between the successive, realizable aspect ratios. If after ad-
dition of one atom it is impossible to find an island, which obeys the symmetry constraints
and whose aspect ratio is close enough to the optimum, the additional atoms get dumped
to the partial wetting film. As mentioned above, this treshold depends on the corner ener-
gies which are not included in Eq. (3.2). Thus, to some extentthis kind of optimal shape
mechanism is based on the configuration space limitations.
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Figure 3.8: The curve without marker
shows the minimal energy island aspect ra-
tio as a function of the coverage and the
markers present the aspect ratios for the
same set of islands where the energy mini-
mization is done using Eq. (3.2). In Publi-
cations 3 and 4 this minimization was done
analytically with the same formula. The
agreement between the direct simulations
and the predictions of the formula is good.
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Figure 3.9: The markers show the bottom
layer widths for minimal energy islands as
obtained from the direct simulation and the
continuous curve is the prediction of Eq.
(3.2), as in Fig. 3.8. The agreement is
again good. In Publications 3 and 4 the for-
mula was minimized analytically.

3.7 Comparison of 2D and 3D results

In Publications 1,3 and 4 we mention that our 2D approach is applicable to 3D systems as
well. Our results already agree with the 3D island results ofRefs. [50, 51] and the general-
ization of our methodology to 3D structures is straightforward. However, the comparison
of the actual 2D and 3D results can be done most directly with nanowires. In this section
we shall look at the global phase diagram for nanowires.

We chose the surface to be studied to be the close-packed fcc(111) surface. The
cross-sections of the wires studied had 820 row ends, see Fig. 3.11. The shapes of the
cross-sections were variations of the slightly skew truncated pyramid shape, without over-
hangs, keyholes or other imperfections which would make thewire not simply connected
or not monotonous. We generate the cross-sections like described in section 3.2.

The allowed shapes have either one of two rows ends missing from the top pyramic
layer or one or two additional row ends in the layer just abovethe first continuous film
under the pyramid. The resulting number of shapes in this case was just 57. The width
of the system in the direction of the nanowire was eight atomic spacings. The substrate
thickess is six layers.
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Figure 3.10: The 3D and 2D global phase diagrams are qualitatively similar. The for-
mer was calculated for ridges on fcc(111) surfaces for pairsof materials listed below the
horizontalf axis. The upper and lower materials are the adsorbate and thesubstrate, re-
spectively. The lightly colored domain has VW islands, the left and right ”wings” have
one layer of wetting film and more than 9 layers thick island and the slice in the middle
consists of four or three wetting films and one or two layers thick islands. An example of
a high island is given in Fig. 3.11.

In Fig. 3.10 we have plotted the wetting film thickness as a function of the misfit
f and the interaction parameterκ. The misfits correspond to the values of the bimetallic
pairs in Table 3.1. It has to be pointed out that only a few pairs in the Table 3.1 are stable
against mixing. Furthermore we do not expect our LJ interactions described in section 2.2
to give more than qualitative trends.

The dark lines which separate various growth modes are drawnas guides to the eye.
In the VW mode there is no wetting film. We have combined the four and three layers
thick wetting films to the FM mode, although in both cases there is a flat island on top of
the film (heights one or two layers, respectively.) In SK modethe wetting film thickness
is one and the island height above nine layers. See Fig. 3.12 for illustration.

The general characteristics of the phase diagram in Fig. 3.10 are the same as in the
2D case, see Fig. 3.7. The main difference to the 2D case is theabundance of dislocations,
see Fig. 3.12. In 2D the small islands remained coherent withthe substrate up to fairly
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Figure 3.11: An eight atomic spacings thick section of a nanowire on fcc(111) surface. In
this geometry the left and right slopes are different. In theside view the slopes correspond
to a triangle whose bottom edge is of length 3 and the other edges are of length2

√
5 and√

17. Ultimately the asymmetry between the left and right slopes is a consequence of the
period three stacking sequence of fcc(111) planes. See Fig.4.1 for illustration.

large misfits, but in 3D the structures with an identical 2D cross-section would generate
defects with much less strain. To create an edge dislocation, one has to move the atoms
over a site of potential energy maximum in 2D but in 3D one has enough geometric
freedom to go around the maximum site, see also Fig. 4.2 for a similar process. In this
sense the difference is as can be expected.

The potential energy released by the dislocations affects strongly the aspect ratio of
the nanowire. While in 2D the island height increased with themisfit, in 3D the height al-
ways jumped down when a new dislocation arrangement was introduced. Because higher
islands cost more surface energy, this effect is also consistent with our 2D results.

Table 3.1:Misfit (%) and mixing in 300 K for selected bimetallic pairs

Substrate Adsorbate Misfit Alloying Reference
Ag Cu -11.6 No [64]
Pd Cu -7.07 No [25]
Ru Cu -5.33 No [65]
Cu Ni -2.63 Yes [66]
Ni Cu 2.70 Yes [66]
Cu Ru 5.63 No [65]
Cu Pd 7.61 Yes [25]
Cu Ag 13.1 No [64]
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Figure 3.12: The nanowires can be classified to growth modes in terms of the wetting film
thickness. The minimum energy shape of the FM mode with misfitf < 0 in Fig. 3.10
is shown in the first panel from the top. Forf > 0 the FM shape is shown in the second
panel. Since the configuration on top of the complete layers is actually two layers thick,
the shape could also be classified to be in the SK mode. The third panel from the top shows
the minimum energy SK nanowire with the smallestf > 0. The last panel illustrates one
of the VW nanowires. Note the abundance of dislocations inside the structure.



Chapter 4

Results: Overlayers

4.1 Dislocations and the fcc(111) surface

Face centered cubic (fcc) and hexagonal close-packing (hcp) lattices have the highest
packing efficiencyπ/

√
18 that can be achieved with spheres of equal radius. Fcc has the

same numbers of atoms on the first and second neighbor shells as the hcp lattice. Both
lattices can be thought to be made out of planes where the atomic nuclei are at the corners
of equilateral triangles, as shown in the first panel of Fig. 4.1. These are called the{111}
planes of fcc and{0001} planes of the hcp lattice.

An identical layer can be placed on top of the first close-packed layer in two ways.
The difference between the fcc- and hcp-lattices comes fromthe placement of the second
plane which can be either start a new sequence or use the second alternative, resulting in
periods of two or three, respectively. This is illustrated in the second and third panel of
Fig. 4.1. If only the two topmost layers are taken into account, the atomic arrangement of
hcp(0001) is indistinguishable from fcc(111) and both surfaces can be expected to have
the same generic features.

In a perfect lattice all the atom locations are connected by lattice vectors and the
sum of all vectors forming a closed loop vanishes. If the lattice is distorted, it may be
possible to find closed loops along the approximate atom-to-atom lattice vectors whose
sum does not vanish. The sum of the lattice vectors along the loop defines a Burgers
vectorb associated with the defect which goes through the loop.

Generally the most common dislocations are the edge and screw dislocations. If a
cylinder is cut open along a radial half-plane, an edge dislocation is obtained by moving
the other wall of the cut radially byb, while a screw dislocation is formed by pulling the
wall b along the cylinder axis again byb, before sealing the cut. This is known as the
Volterra construction. The cylinder axis is often known as the dislocation line. For the
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Figure 4.1: On fcc(111) surface each layer has potential minima in a honeycomb pattern.

edge dislocation the Burgers vector is perpendicular to the dislocation line.

The line energy density of an edge dislocation is

(4.1) w(b) =
µb2

4π(1 − ν)
log(

R

a
),

whereµ is the shear modulus,a is the radius of the dislocation core andR is the distance
from the dislocation line to the surface. As a function of theBurgers vector size, the
energy is an upwards bending curve. Consequently, by the principle of energy minimiza-
tion, when anisotropy is weak and core energy can be omitted,dislocations with largeb
generally prefer to split into several dislocations with shorter values ofb. This is called
the Frank’s rule.

A stacking fault is a planar dislocation, whereb atomic layers are added or removed
from the stacking sequence. Its Burgers vector is normal to the plane. Bulk stacking faults
are energetically more expensive than line dislocations but on surface they do not cost
more than edge dislocation loops. Because fcc(111) surface has two alternative sites with
nearly identical energy stacking faults are formed easily [67, 68].

4.2 Shockley partials and stacking domains

A partial dislocation is such that its the Burgers vector length is only a fraction of a
full lattice vector. A Shockley partial is partial edge dislocation whose Burgers vectors
is symmetry equivalent to(112)/6 [67, 68]. The Shockley partials are common in fcc-
crystals.
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Figure 4.2: Overlayer can release tensile stress by increasing its density. By first moving
a domain by~sU and then by~sD, as shown in the panels b) and c), one can create an edge
dislocation~b as in panel c) and d). If the edge dislocation is filled with adatoms, we get
an HCP domain bounded by heavy and superheavy walls. Another dislocation must be
created at the same time to cancel the net movement of the overlayer. The panel d) shows
the relaxation of a domain wall to bridge sites, as in the superheavy configuration. In an
inverse order the panels would describe how an edge dislocation ~b on fcc(111) surface
splits into two Shockley partials.

In Fig. 4.2 we show how a stacking domain can be formed. Instead of directly
moving a domain by one lattice vector, one first pushes the domain on the hcp-sites and
then splits it in two parts which return to the original or different fcc-sites. These domains
cannot be fitted together with perfect dislocations. Instead, the domain boundaries can be
recognized as Shockley partials.

Because hcp-layers could also be obtained by skipping one layer in the correct fcc
stacking sequence, the fcc and hcp domains can also be seen assurface stacking faults.
From this point of view the Burgers vector for the corresponding planar dislocation would
have a component perpendicular to the surface. In this work we view the domain bound-
aries only as line dislocations and correspondingly we consider only the Burgers vector
components which are along the surface, as shown in Fig. 4.2.

Creation of dislocations is expensive energetically and therefore to a good approx-
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Figure 4.3: Phase Field Crystal adsorbate produces stable fcc and hcp domains on weak
honeycomb lattice of potential wells. The substrate in thiscase isMIN(0, 0.9h0 −
h(x, z)) + MIN(0, 0.9h0 − h(x, z + a/

√
(3))) whereh(x, z) is given by Eq. (2.25),a

is the distance between maxima ofh andMIN returns the smaller of its two arguments.
The vertical axis is measured by the coordinatex and the horizontal byz. The area sur-
rounded by the dark line is shown in the right panel. The alternative stacking sites are
visible as light spots between the dark number density maxima. The contrast of the image
has been improved to show both sites.

imation it has been observed that the Burgers vectors are conserved in decay reactions,
bi+j = bi+bj, see Fig. 4.2. On the fcc(111) surface, by Frank’s rule any edge dislocation
with Burgers vector equivalent to(110)/2 splits into two Shockley partials.

There are several kinds of domain walls. One variant has atoms at bridge positions
and in the other variant the atoms in different domains are facing each other. By analogy
to the commensurate-incommensurate transition, the domain walls can be classified into
heavy, superheavy, light and superlight [69].

This classification depends on which material one takes as the reference. If the
domain wall geometry is compared to the substrate, the wallsare heavy, because the ad-
sorbate number density prefers to exceed that of the substrate. We call the bridge site
domain wall as a superheavy wall, because it resembles the corresponding bridge site
configuration in in commensurate-incommensurate transition literature, although its den-
sity is lower than that of the other wall type. If we would haveused the adsorbate as a
reference, the both domain boundaries should have been called light walls.

In a larger scale the domain-like structures on the fcc(111)surface also follow the
hexagonal symmetry. As patterns the domains are zig-zag lines [70] or triangles [71]. In
Fig. 4.3 we show a result of a PFC calculation, where a 2D phasefield adsorbate relaxed
on an external honeycomb substrate (see Fig. 4.1) whose misfit was−5.5%. This value of
misfit corresponds to Cu/Ru(0001) surface where such patternshave been observed with
direct imaging [72, 73, 74, 75, 76]. This alternative methodalso revealed splitting into
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stacking domains with hexagonal symmetry. The domain wallsin the PFC model appear
to be different, which is probably due to the different treatment of the core repulsion
between the particles.

The reason for the zig-zag patterns becomes more apparent ifone builds an island
or a wire out of the same material, like the one in Fig. 3.11. The opposite sides of a line
are not equivalent. As a result, for a one layer thick straight ribbon there would be a force
that would pull the structure in one direction or the other, which is why a stable ribbon
has to wiggle to cancel the net force.

4.3 Pseudomorphic overlayers

In our overlayer studies the Pd(111) substrate and Cu adsorbate layers are fitted to a rect-
angular simulation box. The material in the initial state consists of close-packed layers
stacked so that the every three layers the atomic positions match in the direction vertical
to the layers. The simulation cell is chosen to have one edge aligned with an in-layer
close packed row and one edge normal to the layer. We refer to the latter as the verti-
cal direction. Periodic boundary conditions are applied across the horizontal simulation
cell edges. Because of this, our results can be interpreted asweakly interacting periodic
surface structures.

The two bottom substrate layers are fixed to their initial ideal locations which is jus-
tified when the substrate is very thick. Each substrate layercan be viewed as a collection
of equilateral triagles. We select the total number of thesetriangle edges to accommodate
a single row dislocation. The number of atomic rows in the longer horizontal direction is
then chosen to be twice that of the shorter horizontal direction. Because periodic bound-
ary conditions are used, this box choice allows the close packed diagonal rows along the
triangle edges to be continuous over the box boundaries. With the lattice parameters of
Cu/Pd(111) this settles the minimal simulation cell size to15as × (15as

√
3), whereas is

the lattice parameter of the substrate. The edge atom numbers along the simulation box
boundaries are 15 and 30.

4.4 Stacking domains and incorporation

To study the stress relaxation of overlayers, we first lookedat complete overlayers in the
same fashion as we studied the islands. When the initial stateis only one layer thick,
eight atoms out of 512 are pushed to the surface and the adsorbate splits into fcc-hcp
stacking domains. The process takes place without barrier.The removed adatoms are
typically in few clusters near the left-behind vacancies whose mutual locations are not
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Figure 4.4: The number of adatoms which
get incorporated into the bottom adsorbate
layer first increases linearily with the num-
ber of adatoms which were initially placed
on top of complete pseudomorphic film.
The number of adatoms needed to release
the tensile stress completely, denoted by
MAX, is approximately2f× the layer size.
The curves calculated for three different
layer sizes agree when both axes are scaled
with the corresponding MAX.
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Figure 4.5: After incorporation the initially
pseudomorphic adsorbate layer closest to
the substrate splits into fcc and hcp stack-
ing domains whose relative areas are es-
timated with diagrams like in Fig. 4.6.
Most atoms stay in the original stacking.
The vertical axis is the number of atoms
in each stacking, normalized by the layer
size, and the horizontal axis is as in Fig.
4.4. The results for two layer sizes agree
with this scaling. Only the atoms originally
in the pseudomorphic layer are taken into
account.

clearly correlated. We discuss the multilayers more thoroughly in section 4.6.

To see what happens when the coverage does not correspond precisely to a complete
substrate layer, we proceed by placing a few adatoms at randomly selected locations on
top of the full adsorbate layer. Both the complete adsorbate overlayer and the adatoms
follow fcc stacking of the substrate. After the minimization we see that some adatoms
have become incorporated into the layer below them.

The upper panels of Fig. 4.7 show the patterns correspondingto fcc and hcp
stackings. The images were made by leaving out the top substrate layer because in
hcp the second-to-top layer coincides with the first adsorbate layer while in the fcc in
doesn’t. The large figure shows the curved, fairly irregularpattern of domains. The
barrier for the formation of the domains with the adatom incorporation process was
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Figure 4.6: Some atoms in
the substrate-adsorbate interface
move to the nearest hcp site. The
hcp displacements are between
the triangular markers.

Figure 4.7: The adsorbate forms
fcc and hcp stacking domains.

too small to resolve. While our results indicate
that such domains are expected to form, we cannot
say much about their mutual organization because
our simulation cell size was of the same order as
the domain size we see. We used the activation-
minimization technique with heavy tilting to find
transition paths from the fully pseudomorphic com-
plete monolayer to a dislocated layer with fcc and hcp
domains. According to the calculations the highest
energy barriers are of the order of 1 eV.

As described in Publication 5, we use Basin-
Hopping global optimization method [77, 78] with
the same EAM potential as described in section 2.3
to study how small platelets in the submonolayer
regime relax. We saw that after a certain criti-
cal size, the minimal energy clusters also split into
stacking domains thereby supporting our activation-
minimization results.

The number of atoms which get incorporated is
shown in Fig. 4.4, where out of the adatoms initially
placed on the surface (horizontal axis) the number in-
dicated by the vertical axis is eventually found from
the layer of adsorbate facing the substrate (vertical
axis). To compare the results for calculations with
different simulation cell sizes, both axes are normal-
ized with the amount of atoms needed to completely
relieve the strain (MAX). For each simulation cell
size this is roughly2f times the number of atoms in
a single substrate layer. Fig. 4.4 indicates that with
this scaling the incorporation takes place similarily
for any simulation cell size.

Fig. 4.5 shows rough estimates of the numbers
of atoms in the fcc and hcp stackings. To make the es-
timate, the atoms from the complete adsorbate layer
of the initial state have been classified according to
their final state displacements. In the two alterna-
tive stackings each atom is located above the center
of an equilateral atom triangle of the layer below. The
distribution of the displacements is approximately bi-
modal, see the sample in Fig. 4.6. The first maximum
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is located at zero and the second aroundu = af/
√

3Å, which corresponds to the center
of a neighbor triangle. The shortest distance to the edge of the triagle isu/2. Thus, if the
displacement is found to be inside this distance from the first peak, it is classified to be in
the fcc phase and if it is inside the same distance from the second peak, it is counted to
be in the hcp phase. This procedure leaves some fraction of the material unclassified and
does not classify atoms at high energy locations correctly,but nevertheless it shows the
same trends that can be seen directly from visualizations such as Fig. 4.7.

4.5 Comparison to experimental findings

In Publication 5 we discuss the relation of our findings to theexisting experimental data.
We did not find any direct imaging data on ultrathin Cu/Pd(111)films but several authors
had studied the relaxation with diffraction and spectroscopic methods [23, 24, 25, 79].
According to the measurements there was no mixing below temperature450 K. From
the RHEED peak intensities it was inferred that the Pd like lattice constant dominates
below coverages 3-4 ML and after that the lattice constant goes to the relaxed value of
Cu [25]. Although there is speculation about the possible presense of dislocations, the
interpretation of the peaks was that the growth stays epitaxial up to the critical coverage
above 3 ML.

According to our results the dislocations do appear alreadyin the submonolayer
regime. To estimate their effect on the average lattice constant we calculated the average
structure factor for eight realizations of the incorporated single layers the along the direc-
tion corresponding to the horizontal axis of Fig. 4.7. The structure factor is shown in Fig.
4.8. Because both the fcc and hcp domains are nearly pseudomorphic, they contribute to
the Pd-like peak. The Cu-like peak comes from the domain boundaries. Because there is
more than one kind of domain boundary, the Cu peak appears to besplit. Thus, our results
are not in contradiction with the experimental data.

The structure factor of Fig. 4.8 suggests that when the stress is released by the
domain boundary mechanism below the critical coverage, theaverage lattice constant will
stay close to substrate value because most of the adsorbate is pseudomorphic. The thicker
layers relax completely and they are likely to have a different stress release mechanism,
which might be similar to what we discuss in Publication 4 andin the section 4.6.

Domain boundary networks have been observed with direct imaging methods in ten-
sile Cu overlayers on Ru(0001) surfaces [72, 73, 74, 75]. The Ru substrate has hexagonal
structure but the hcp(0001) surface has the same geometry asfcc(111) up to the second
neighbor shell and consequently the two bimetallic systemsare comparable. While on
Ru(0001) the Cu adsorbate stays epitaxial beyond the coverageof one atomic layer, the
appearance of the domain structure already in the submonolayer regime on Pd(111) is
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Figure 4.8: The structure function calculated for a single wetting film which has relaxed
and formed stacking domains, as shown in Fig. 4.7. The gray dots show the positions of
the peaks for ideal Pd and Cu lattices. The Cu peak is smeared andsplit into two because
it comes from two kind of domain walls, as explained in section 4.2.

consistent with the2% larger level of stress.

4.6 Relaxation of several overlayers

In Publication 4 we investigate fcc(111) overlayers with the simple modified Lennard-
Jones potential by the activation-minimization procedure. Due to geometric restrictions,
2D systems have only a few kinds of defects. The 3D generalizations of the 2D defect
motifs correspond to a stacking fault tetrahedron and to a set of complete close-packed
rows forming a linear stacking fault with triangular cross-section. In Publication 4 we call
these two dislocations as ”localized” and ”extended” defects.

The tetrahedron does not release much stress and according to our results, it is not
among the most likely defects. The linear stacking fault on the other hand seems to release
the stress almost completely. Because the simulation cell size we used was comparable
to the defect size, we can only say that the extended defect seems to be the dominant
stress release mechanism in the multilayer case. When we investigated the Cu/Pd(111)
case with larger simulation cell sizes with EAM interactions, the large scale structure of
the linear stacking faults resembled a triangular network.
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Figure 4.9: With a larger simulation cell size some rows fromthe top adsorbate layer
sink to the layers below them, like the left panel which showsthe two topmost adsorbate
layers after RBP activation without tilting illustrates. This process corresponds to the
appearance of an extended row dislocation network. In the right panel the background
and the adsorbate are black while the substrate is plotted with a light color. Only in the
hcp stacking the substrate is visible through the overlayer. This shows that the stacking
domain structure may still be present in the multilayer case.

We also compared the energy barriers for different misfits and for different cover-
ages with the same misfit. As expected, we find that the energy barrier decreases with
the misfit if the defect nucleation takes place in the same fashion for all the misfits. For
instance in the tensile case the largest barrier is typically in the beginning of the transition
path and it corresponds to a local S-curve in a row on the topmost adsorbate layer. The
same conclusion holds for the coverage dependence of the nucleation barrier.

When the nucleation started independently at several places, the final states are more
disordered than with a single starting point. It should alsobe noted that at larger system
sizes nucleation-induced local defects such as cracks become more abundant.
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Summary and outlook

In this thesis we have studied the atomic level processes of structural stress relaxation
in heteroepitaxial overlayer systems at low coverages. Practically all bimetallic systems
have a lattice mismatch but the unique property of heteroepitaxial overlayers is that the
stress is strong enough to destabilize the film. Without the stress, the corresponding
growth mode would be solely determined by the surface and interface energies.

In Publications 1 and 3 we use a modified Lennard-Jones model to look at the
dependence of the growth modes and island shapes on the lattice mismatch and the sur-
face and interface energies. Because most of the sophisticated many-body potentials are
specifically fitted for their target materials, a simple Lennard-Jones model is particularily
transparent and handy for this kind of qualitative study. With only two parameters it is
easy to assign the cause of each effect to the corresponding physical process.

Publication 1 studies a model, where the misfitf is the only difference between the
substrate and the adsorbate. The growth mode in this case would be the flat layer-by-layer
mode if the stress did not destabilize the film. We relax all the convex 2D island shapes
with neither overhangs nor keyholes and which are reflectionsymmetric about a line
perpendicular to the substrate. By comparing the energies ofthe relaxed configurations
we find that the most common shapes are truncated pyramids. Inmany cases there are
short additional facets at the corners and in a few cases withhigh f there is a kink in the
middle of the non-horizontal faces. We find that for small misfits the adsorbate prefers to
be a flat epitaxial layer. After a certain fairly small coverage the adsorbate starts to adopt
a several layers thick configuration with misfits above4 %.

Because the stress in completely coherent islands increaseswith size, the structures
have to nucleate dislocations at a certain critical size. InPublications 1 and 2 we create
large pseudomorphic islands and look at the defect nucleation. As expected, defects are
created at the bottom corners of the island and move along theadsorbate-substrate in-
terface to the center of the bottom adsorbate layer. Publication 1 also studies the decay
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of an unstable 11-atom island. The transition path has multiple sizable energy barriers
and consequently such an island would probably stay in a kinetically trapped state for a
relatively long time.

In Publication 1 we do not find the Stranski-Krastanov growthmode. This mode
is interesting because it can accommodate the so called optimal island shapes and sizes,
which ought to be coverage independent. In Publication 3 we vary the interface energy
between the substrate and the adsorbate. As expected, stronger bonds between the ma-
terials increase the misfit requirements to get thicker adsorbate structures and vice versa.
With submonolayer coverages we still see no indication of the Stranski-Krastanov growth
mode. To study the higher coverage regime, we further restrict our island shapes to be
truncated pyramids with short additional facets at the corners because according to our
studies these are the most likely island shapes. We then fix the coverage to a few layers
and map out the growth modes for misfits and interaction energies within a few percents
from the values corresponding to equal adsorbate and substrate.

In Publications 3 and 4 we find that the Stranski-Krastanov growth mode exists
between the Volmer-Weber and layer-by-layer modes when theinteractions favor wetting.
The result does not change when we repeat the same calculation for larger coverages. To
get an answer to the optimal shape and size question in this model, we fix the misfit and
the interface energy to values which correspond to the Stranski-Krastanov mode. With
these parameters we vary the coverage and find that both the island width and the aspect
ratio increase slowly with the coverage. Out of these, the island width seems to be the
more inflexible geometrical factor.

To understand the energetics of the islands, we introduce ananalytically calcula-
ble reference energy for the completely pseudomorphic configuration and compare the
expression with the energies of numerically relaxed islands. It turns out that when the
island width is varied while the height is kept constant, therelaxation becomes gradually
localized near the non-horizontal faces while the bulk of the island stays pseudomorphic.
In the large island width limit the difference between the reference energy and the nu-
merically calculated energy tends asymptotically to a constant. For each height the width
dependence is fitted to a hyperbola and the parameters of these fits are in the end fitted to
the island heights. The resulting expression is capable of reproducing the numerically cal-
culated growth modes and the island shape dependence on the coverage. The formula of
Publications 3 and 4 shows that the energetics of coherent, supported 2D Lennard-Jones
clusters can be understood in fairly simple terms.

Publication 4 discusses some similar Lennard-Jones studies on 3D overlayer sys-
tems. Previous overlayer studies on 2D systems had suggested that the most typical stress
relaxation structure in that geometry is a triangular stacking faulted domain with one edge
on the surface and the opposite corner at the substrate-adsorbate interface. By extension
one could make the hypothesis that in 3D the typical structures would be tetrahedra or
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ridges with a similar cross section. As expected, the energybarrier between the defect
structures and the pseudomorphic state is found to decreaseand eventually vanish with
the misfit.

After the qualitative studies we focus on a particularily interesting catalytically ac-
tive system Cu/Pd(111). Experimentally it is known that the copper overlayer does not
alloy with the substrate below 450 K. The growth is estimatedto be epitaxial below cov-
erage of three atomic layers. After the limit coverage thereis a transition to a complete
relaxed state.

We abandon the Lennard-Jones interaction model in Publication 5. Instead, we
use the Embedded Atom Method which has been shown to be able togive a realistic
description for many properties of metals.

The results of Publication 5 reveal that the epitaxy of the adsorbate layer is lost
already in the submonolayer coverage range. The structure of the overlayer is similar to
the structure of Cu/Ru(0001) layers which have been studied indetail with direct imaging
techniques. The Cu/Pd(111) system has not been analyzed in such a detail and we suggest
a new interpretation for the existing experimental results. According to our calculations
the adsorbate splits into fcc and hcp stacking domains in thesubmonolayer regime. Both
domains have the lattice constant of the substrate. Stress relaxation takes place only near
the domain boundaries and its contribution in the experimental data is very small in com-
parison to the bulk contribution. The qualitative results of Publication 4 and our other pre-
liminary investigations suggest that when the coverage exceeds multiple complete atomic
layers, the adsorbate density and the lattice constant can return to their equilibrium val-
ues. The extra material needed to accomplish this are taken from the uncomplete layers
above through the adatom incorporation mechanism. In this light our results are not in
contradiction with the experiments but rather encourage new experiments to examine the
Cu/Pd(111) system with direct imaging techniques.

This series of studies is by no means complete. Many stress relaxation avenues
such as alloying or nanowire formation were left largely unexplored. In this thesis we
compare our 2D island results with 3D Lennard-Jones nanowires are find a surprisingly
good match. Thus, we have a good reason to believe our approach can be generalized to
3D. However, in 3D islands the number of possible facets, defects, and shapes is much
larger and there are many more effects which have to be taken into account. A natural
but tedious extension of our Lennard-Jones results would beto repeat our activation-
minimization treatment to a representative set of supported 3D clusters.

For specific systems the Embedded Atom Method is more reliable than our generic
Lennard-Jones interaction model. The fcc(111) surfaces are generally expected to cre-
ate highly regular stacking domain patterns. One directionfor future work in this area
could be to study these patterns for other bimetallic pairs which do not alloy. It has
been speculated that such a regular domain pattern could serve as a template for further
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self-assembling structures and in this kind of use knowledge on the properties of such
structures might be useful.

We have compared the atomistic simulation results with the Phase Field Crystal
model calculations both in the island and overlayer studies. The models seem to agree
quite well. Because the latter model can escape atomistic time scale restrictions, it is a
great tool for problems involving defects and elasticity. Recently, the Phase Field Crystal
model has been shown to be applicable to 3D fcc and hcp crystals and in this light it would
be an efficient and promising tool for finding plausible island and overlayer relaxation
structures. Work in this direction is already in progress.



Appendix:

Chemical potential near a surface

Let the surfacez0 grow and becomez1. We also assume for simplicity that both surfacesz0

andz1 have the same projection on(x, y) plane. In the same process the particle number
of the cluster changes fromN0 to N1, the volume fromV0 to V1. We also assume that the
crystal has the ideal lattice structure with constant number densityρ = 1/v.

In vacuum, wherep = 0, the free energy changes by

(A.1) F (z1) − F (z0) =

∫ N1

N0

µ0dN +

∫

dxdyφ

∣

∣

∣

∣

z1

−
∫
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z0

,

whereφ is the surface free energy projected on(x, y)-plane. The first term can be written
as

(A.2)
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∫ 1

0

dsη(x, y),

whereη(x, y) = z1(x, y) − z0(x, y). For this change of variables to be valid, we have to
assume that the free energy difference does not depend on thegrowth path, or in other
words that the process is reversible.

Along the growth pathz(x, y) = z0(x, y) + sη(x, y) and integrands of the second
and third terms of Eq. (A.1) can be written as
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where we have defined the symbol

(A.4) ∇∇ ≡
(

∂

∂(∂xz)
,

∂

∂(∂yz)

)

.

Because the integral over parameters is independent ofx- andy-coordinates, it can
be interchanged with the area integral and the divergence term in Eq. (A.3) is

∫

dxdy

∫ 1

0

ds∇ · (η∇∇φ) =

∫ 1

0

ds

∫

dxdy∇ · (η∇∇φ)

=

∫ 1

0

ds

∮

z1=z0

ηdl · ∇∇φ = 0,(A.5)

where we have used the Stokes theorem and the assumption thatz0 andz1 agree at the
boundary of the projected surface area and thereforeη = 0 along the whole integration
curve.

When the terms are collected together, the free energy difference becomes
(A.6)

F (z1) − F (z0) =

∫

dxdy

∫ 1

0

dsη
(µ0

v
−∇ · ∇∇φ

)

=

∫ N1

N0

dN (µ0 − v∇ · ∇∇φ) .

Because chemical potential

(A.7) µ =
δF

δN

we see that the so called surface excess of the chemical potential is

(A.8) δµ = −v∇ · ∇∇φ.
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