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1 Introduction 

1.1 Background 

The goal of this thesis is to develop and improve methods for performing accurate 

spectral irradiance and temperature measurements using spectroradiometric methods. 

Measurements of optical radiation are needed in various fields of science and industry, 

in atmospheric and solar studies, remote sensing, military applications, and in metal, 

paper and food industry. The interest may be related with the optical power, or with the 

radiation temperature. For example, meteorological institutes use spectroradiometers for 

solar spectral irradiance measurements, especially in the ultraviolet (UV) region. 

Optical measurements are also used to determine high temperatures through pyrometry 

– the applications are growing, particularly for the manufacture of novel composite 

materials used e.g. in aerospace industry.  

Many of the technical challenges for both radiation thermometry and spectral irradiance 

are linked through blackbody radiation and filter radiometry. The connection between 

the output spectrum and the temperature of a blackbody radiator is established by 

Planck’s radiation law [1]. The output spectrum of a radiation source can be determined 

from its temperature, if the emissivity of the source is known. Alternatively, the 

temperature of an object can be determined by measuring its radiation spectrum.  

The International Temperature Scale of 1990 (ITS-90) has been defined to approximate 

the thermodynamic temperature in order to assist the practical temperature 

measurements and calibrations. The ITS-90 is based on several fixed temperature points 

and interpolation equations between them. The ITS-90 utilizes Planck’s radiation law as 

an interpolation equation between silver and copper freezing points, 1234.93 K and 

1357.77 K, and as an extrapolation equation above the copper freezing point [2]. High-

temperature fixed points [3,4,5,6,7,8] provide access to thermodynamic temperatures for 

the calibration of radiation thermometers. In addition, they will provide a means of 
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confirming filter radiometer measurements, which are also used for spectral irradiance 

measurements.  

Despite the different quantities measured and their corresponding units, the methods and 

techniques used in spectral irradiance and radiation temperature measurements are quite 

similar [9]. Development of filter radiometry has benefited both realizing spectral 

irradiance scales [10,11,12] and measurements of the thermodynamic temperature 

[13,14,15,16]. Development of high temperature blackbody sources (HTBBs) [17,18] 

has assisted both spectral irradiance and radiation temperature scale realizations.  

Tungsten halogen lamps [19] are often used as affordable and easy-to-operate working 

standards for spectral irradiance measurements. Due to their compact size, they are 

often used as transfer standards in intercomparisons. Some research institutes and 

industrial companies utilize them in order to obtain traceability to the national scales. 

National metrology institutes (NMIs) maintain measurement standards traceable to the 

International System of Units (SI), and offer calibration services. The scales maintained 

for calibration purposes require quality assurance.  Intercomparisons provide a way to 

check the quality and to study the long-term stability of the scales. Different types of 

comparisons are carried out: International Committee of Weights and Measures (CIPM) 

key comparisons [20,21], regional and bilateral key comparisons [22,Publ.III], and 

informal comparisons [Publ.II,Publ.V]. It has been agreed that only the CIPM key 

comparison provides a key comparison reference value (KCRV), to which other NMIs 

can then be linked using regional or bilateral comparisons [Publ.III]. In simplest form of 

the comparison, the different scales realized for the same quantity may be used to assure 

the quality of each other within one institute [23,Publ.IV].  
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1.2 Progress of the work 

In order to allow quicker, fit-for-purpose calibrations of tungsten halogen lamps, I have 

developed a physical model for tungsten halogen lamps [Publ.I]. The model consists of 

Planck’s radiation law, emissivity of tungsten [24] in polynomial form [25], and a 

correction for the residual emissivity. The model can interpolate the spectral irradiance 

values of 1-kW tungsten halogen lamps of types FEL1 and DXW with an agreement 

better than 1 % throughout the spectral region studied. I also demonstrate determination 

of the spectral irradiance 1) with knowledge of the color temperature and the 

illuminance value of the lamp and 2) with knowledge of electrical properties of the 

lamp [Publ.I].  

As part of the international work to ensure consistency of spectral irradiance scales, I 

have carried out two comparisons and developed a new approach for analyzing linked 

comparisons. The MIKES/TKK spectral irradiance scale was compared with the scales 

of National Metrology Centre (NMC, Singapore) [Publ.II] and National Institute of 

Metrology, Thailand (NIMT) [Publ.III]. The measurement results showed good 

agreement between the MIKES/TKK and NMC [Publ.II]. The scales were also 

compared via the recent key comparisons CCPR-K1.a [20] and CCPR-K1.a.1 [26], 

which gave useful information on the long-term reproducibility of the spectral 

irradiance scales of the compared NMIs to be used in the following research [Publ.III].   

In [Publ.III], the spectral irradiance scale of NIMT was linked to the CIPM KCRV 

using MIKES as a link. I present a method for uncertainty estimation in linking 

intercomparisons. The method recommends dividing the uncertainties of the linking 

NMI into uncertainties due to correlated and uncorrelated effects. With help of the 

method, the uncertainty due to linking can be realistically estimated and a suitable 

linking NMI can be selected. 

                                                 
1 FEL and DXW are codes of the lamps, defined by American National Standards Institute (ANSI). 
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A detector-based temperature measurement facility was applied for radiation 

temperature measurements at MIKES [Publ.IV]. Absolutely calibrated filter radiometers 

were used to assure the quality of the extrapolation of a linear pyrometer in the 

temperature range of 1370 K to 1800 K. 

As with spectral irradiance, comparisons are also important to ensure the stability and 

accuracy of temperature measurement facilities. I visited Physikalisch-Technische 

Bundesanstalt (PTB, Germany) and participated in carrying out an intercomparison of 

the radiation temperature scales of MIKES and PTB. The scales were compared in the 

range 1570 K – 2770 K. Both thermodynamic temperature measurements and relative 

temperature measurements based on the ITS-90 were compared. The ITS-90 based 

scales were in agreement within uncertainties. The agreement was partial in the 

measurements of the thermodynamic temperature: two out of four MIKES filter 

radiometers showed agreement with the PTB filter radiometer and the ITS-90 based 

scales [Publ.V].  

This thesis is organized as follows: Chapter 2 gives an overview of spectral irradiance 

sources and scale realizations. A new model for tungsten halogen lamps used as spectral 

irradiance sources is presented [Publ.I]. The chapter continues with a description of two 

intercomparisons in spectral irradiance [Publ.II,Publ.III]. A method for uncertainty 

estimation in linking intercomparisons is presented using a linking intercomparison 

between MIKES and NIMT as a practical example [Publ.III]. Chapter 3 begins with a 

description of the ITS-90 and a discussion on its future trends. Then, radiation 

temperature measurements at MIKES [Publ.IV] and an intercomparison between 

MIKES and PTB [Publ.V] are presented. Conclusions of this work are presented in 

Chapter 4.   
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1.3 Scientific contribution 

This thesis contains the following new scientific results: 

1. A new, physical model for tungsten halogen lamps is developed. The model 

provides the first evidence that a tungsten halogen lamp can be used as an 

absolute source for spectral irradiance.  To our knowledge, such research efforts 

have not been published earlier. 

2. A novel method for estimating uncertainties in linking intercomparisons is 

presented. The findings are expected to be useful for the preparation of new key 

comparisons and linking them to regional comparisons. 

3. Quality assurance of pyrometer measurements using irradiance mode filter 

radiometers is demonstrated. Verification of pyrometer measurements is 

essential for extrapolated temperature measurements above the last ITS-90 fixed 

point, freezing point of Cu at 1357.77 K.   
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2 Spectral irradiance  

2.1 Standard radiation sources in metrology 

The radiation sources in metrology can be divided into primary and secondary sources. 

The primary sources are based around a physical law and a measurement of a single, 

unrelated quantity, whereas the secondary sources require calibration with a primary 

method.   

2.1.1 Primary radiation sources 

Blackbodies 

Planck’s radiation law connects the spectral radiance L(λ,T) and the temperature T of a 

blackbody radiator through 
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where λ is the wavelength in vacuum, h is the Planck constant, c is the speed of light in 

vacuum, k is the Boltzmann constant and ε  is the emissivity of the radiator cavity. The 

emissivity of an ideal blackbody radiator is unity. In principle, a correction for the 

refractive index of air is also required. 

 

Practical blackbody radiators consist of a uniformly heated cavity with an opening, 

which is small compared to the size of the cavity. The shape of the cavity may be 

spherical, cylindrical or conical, or the cavity may consist of a conical back wall and 

cylindrical side walls. A schematic of a spherical cavity is presented in Figure 1.  
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Figure 1. Schematic of a spherical cavity of a blackbody radiator.  
 

If the temperature and the emissivity of the cavity are known, the radiation emitted 

through the opening can be determined using Eq. (1). The emissivity of a practical 

blackbody can be close to unity: for standard laboratory sources the emissivity is 

typically higher than 0.98 [27], and for high-quality blackbodies higher than 

0.999 [17,28]. The emissivity can be determined by reflection measurements [28], or by 

Monte Carlo simulation [28,29]. The wavelength dependence of the emissivity is 

usually small. It is thus possible to extrapolate the spectral irradiance to other 

wavelengths using blackbodies.  

 

Blackbody radiators may be used as variable temperature sources, or their temperatures 

may be stabilized to phase transitions of metals using fixed point cells (FPCs). The 

FPCs are made of pure metal shielded in a graphite crucible. The purity of the metal 

should nominally be 99.999% [30]. The metals used in the FPCs include zinc, 

aluminium, silver, gold and copper, whose freezing point temperatures are defined by 

the ITS-90 [2]. A schematic of an FPC is presented in Figure 2. 
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metal
graphite  

Figure 2. Structure of a fixed point cell. 
 

FPCs are typically operated in resistance heated furnaces. First, the cell is placed into a 

furnace, whose temperature is set to 5 °C – 10 °C above the melting point of the metal. 

After melting, the temperature of the metal rises to the set point of the furnace. To 

obtain the freezing plateau, the temperature of the furnace is set below the freezing 

point. The temperature of the furnace starts to drop, and the metal undergoes a 

supercool, i.e. a temperature drop of the liquid metal below its freezing point. This takes 

place before the molten metal starts to freeze. The supercool for silver and copper is 

typically less than 0.5 K lower than the freezing point.  After the short supercool, the 

temperature rises back to the freezing point and the freezing plateau is reached. The 

temperature of the cell stays constant typically for a couple of hours.  A gas flow of 

nitrogen or argon may be channeled to the graphite shielding in order to prevent 

oxidation of the shielding [30]. 

Variable-temperature blackbodies (VTBBs) are divided into four categories [18]: high-

temperature blackbodies (HTBBs, operating temperature 1800 K – 3200 K), middle-

temperature blackbodies (400 K – 1800 K), low-temperature blackbodies (200 K – 

400 K) and cryogenic blackbodies (60 K – 200 K). The VTBBs used as spectral 

irradiance sources are typically HTBBs made of graphite or pyrolytic graphite [17]. The 

advantage of pyrolytic graphite is that its sublimation rate is lower than for ordinary 

graphite. The drawback is that it cannot be machined as a radiator with a long 

cylindrical cavity, and thus the cavities consist of pyrolytic graphite rings [17]. The 
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radiator may be heated by electric current conducted directly through it [17]. To obtain 

good electrical contacts, the rings may be attached to each other using a spring 

arrangement, as in a commonly used HTBB model, BB3200pg [17]. The housing of the 

HTBB is often water-cooled.   

HTBBs are used as radiation sources in the wavelength range 200 nm – 3000 nm [18]. 

In order to obtain reasonable spectral irradiance levels in the UV region, they must be 

operated at temperatures above 3200 K [18,31]. In this temperature range, absorption of 

the radiation due to the increased molecular sublimation rate of carbon may occur, even 

if pyrolytic graphite is used as cavity material [31,32]. To detect these absorptions, the 

blackbody must be thoroughly characterized before operation, especially in the UV 

region [32].  

 

The uniformity and stability properties of HTBBs have been studied in [18,33,34,35]. 

At a measurement distance of 700 mm, the irradiance uniformity of the BB3200pg is 

better than ± 0.2 % in a central area with diameter of 30 mm – 40 mm [34]. The 

temperature stability of BB3200pg and another blackbody with similar design, BB3500, 

is within ± 0.2 K – 0.3 K, if a feedback stabilization system is used to control the 

temperature [34,35].  

Storage rings 

Synchrotron radiation from electron storage rings is used e.g. in X-ray absorption 

spectroscopy, microscopy and lithography, photoemission spectroscopy and electron 

microscopy, and protein analysis. Some larger NMIs utilize storage rings as spectral 

irradiance sources.  These facilities include SURF III at National Institute of Standards 

and Technology (NIST, USA) [36,37], BESSY II and MLS at PTB [38,39], TROLL at 

All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI) [40] 

and TERAS at National Metrology Institute of Japan (NMIJ) [41]. These sources are 

used especially in the UV and EUV wavelength ranges below 200 nm, where the output 
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of a blackbody radiator is quite low [41,42]. The storage rings are typically used to 

calibrate secondary transfer standards, such as deuterium lamps.  

A schematic of a storage ring is presented in Figure 3. In a storage ring, electrons move 

nearly with the speed of light.  A bending magnet makes them move along a horizontal 

circular trajectory. The accelerated electrons emit a calculable photon flux through an 

aperture stop, which is placed near the tangent point of the orbital plane [43]. The 

spectral photon flux, which depends on the photon energy E, can be calculated with the 

knowledge of the electron energy W, magnetic field B, stored electron current I, 

effective vertical source size Σy, vertical emission angle Ψ, distance d between the 

tangent point and the aperture stop, and the area of the aperture stop, a x b, using the 

Schwinger equations [44], 

 ( )badIBWE yEE ,,,,,,,; ΨΣφφ = .      (2) 

The relative standard uncertainties of the calculable photon flux are around 

2x10-3 [37,38,42]. The storage rings are ultrahigh vacuum systems. For a storage ring to 

be used as a primary source, the photon flux has to be calculable. This requires 

knowledge of the losses of the sealing window between the ultrahigh vacuum and the 

outside, as well as high-accuracy measurements and repeatability of the parameters of 

Eq. (2) [45]. The largest uncertainty contribution typically arises from the determination 

of the electron current I [37,38]. 
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b
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Aperture stop 

 

 

Figure 3. Schematic of a storage ring. The symbols are  
introduced in the text with Eq. (2). 

2.1.2 Secondary radiation sources 

Deuterium lamps  

Deuterium arc lamps are used as spectral irradiance sources in the UV region. They 

provide a continuous spectrum from 180 nm to 370 nm. The operation of the lamp is 

started by heating the cathode for 30 – 90 seconds. The arc is produced by applying a 

strike voltage of over 350 V to the anode [46]. An example of a deuterium lamp is given 

in Figure 4. 

Some deuterium lamps have been found to suffer from poor stability and 

reproducibility [47,48], but with careful selection, reasonable lamps can be found [49]. 

The typical irradiance reproducibility is within 0.4 % [49]. The ageing rate is around 

7 % per 100 h [49]. The performance of the deuterium lamps can be improved by 

monitoring them with a suitable monitor detector, e.g. a SiC photodiode [49]. 

Deuterium lamps have been successfully used as transfer standards in the spectral 

irradiance key comparison CCPR-K1.b [21].  
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Figure 4. Deuterium lamp of Spectronic [50]. 

Tungsten halogen lamps 

Tungsten halogen lamps are commonly used as transfer standards of spectral irradiance. 

These lamps are typically used in the wavelength range 250 nm – 2500 nm. The 

envelopes of the tungsten lamps are filled with halogen gas in order to extend the 

lifetime of the lamps with high operating temperatures. With a simple tungsten lamp, 

when the filament is heated, the tungsten is evaporated and attaches to the glass 

envelope, which causes thinning of the filament and blackening of the envelope. If 

halogen is added inside the lamp envelope, it evaporates as the filament heats up. The 

halogen atoms collide with the envelope wall and form a compound with the tungsten 

atoms on the wall, removing them from the envelope surface. The compound molecules 

move around within the envelope and dissociate if they hit the hot filament. The 
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liberated tungsten atoms are captured back by the filament, thus regenerating it.  This is 

called the halogen cycle [19].    

The power range of the most common tungsten halogen lamps extends from 10 W to 

1 kW. In this thesis, I concentrate on 1-kW FEL and DXW lamps. Examples of both 

lamp types are presented in Figure 5. Both lamps include a double-coiled tungsten 

filament. The difference between the lamp types is that the FEL lamps are single-ended, 

and the DXW-lamps are double-ended. The FEL lamps are typically operated with a 

horizontal axis, and the DXW lamps with vertical axis. 

 

 
Figure 5. Lamps of types FEL (left) and DXW (right). 

 
The properties of lamps have been studied e.g. in [51,52,53]. In [52], the irradiance 

uniformity of the lamp was studied by scanning the detector across the measurement 

plane at a distance of 500 mm from the reference plane of the lamp. The irradiance 

uniformity was within 0.2 % over a central area of 30 mm x 60 mm [52]. The aging 

rates of the lamps are around 4 % – 5 % per 100 h, when they are turned on for short 

periods [52,53]. Due to their compact size, incandescent lamps can be used as transfer 
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standards in comparison measurements [22,51,54,Publ.II,Publ.III]. The lamps have to 

be transported with care as they are sensitive to shocks during transportation [51,52]. 

 

The lamps have spectrally varying emissivities. The emissivity of the tungsten filament 

is the main component influencing the effective emissivity of a lamp. The emissivity of 

tungsten plate has been determined by e.g. de Vos [24] and Larrabee [55]. 

Dmitriev et al determined the emissivity of a tungsten strip [56,57]. The transmittance 

of the glass bulb, absorption of the filling gas [58,59], light recycling in the coiled 

filament [60,61] and possible impurities of the filament have smaller effects on the 

effective emissivity. The emissivity of the lamp can be modeled using an Nth-degree 

polynomial of the form, 
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where the degree N typically varies between 3 and 7 [10,11,62,63,64,65]. Even a first-

degree model has been proposed for a limited wavelength range [66]. Polynomial 

emissivity models used for interpolation require several spectral irradiance data points 

to avoid oscillations between the wavelengths of the measured points.  

2.1.3 Tungsten lamp as absolute source 

In [Publ.I], I present a spectral irradiance model for a tungsten halogen lamp. The model 

is based on Planck’s radiation law [Eq. (1)], emissivity of tungsten filament determined 

by de Vos [24] in polynomial form [25], and a residual correction function, which takes 

into account the other factors affecting the spectral emissivity. The spectral irradiance of 

the lamp is modeled as 

 

 ( ) ( ) ( ) ( ) ( )TLTTTBTE ,,,, ∆W λλελελ = ,     (4) 

 



 

 

29

where εW(λ,T) is the emissivity of  the tungsten filament, and ε∆(λ,Τ)  is a correction 

function for taking into account other spectrally varying non-idealities of the lamp. 

L(λ,T) is the blackbody radiance from Eq. (1). Parameter B(T) is a geometrical factor, 

which takes into account the measurement distance and the dimensions of the filament. 

Temperature affects B(T) only through thermal expansion of the dimensions of the 

filament [67,68].  

 

The correction function ε∆(λ,Τ) was determined for the wavelength range 340 nm –  

850 nm by measuring the spectral irradiance of an FEL lamp at five different operating 

temperatures between 2500 K and 3050 K. The correction function was calculated by 

dividing the measured spectral irradiances Em(λ,T) by the product of the blackbody 

radiance, emissivity of tungsten and the geometrical factor,   
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The spectral shape of the correction function is almost the same for all 

temperatures [Publ.I]. Figure 6 presents the average of the normalized correction 

functions, and an 8th -degree polynomial fitted to the average. The 8th -degree 

polynomial was taken into use as a temperature independent correction function ε∆(λ). 

The coefficients of the polynomial are given in [Publ.I]. A polynomial is not necessarily 

the best fitting function in general, because of the risk of large deviations at the ends of 

the fitting intervals, making it unsuitable for extrapolation, in particular. Therefore, a 

rational function is sometimes better because it behaves more smoothly. However, for 

the purpose at hand, the polynomial used here proved to be adequate, especially when 

not extrapolating outside the measurement region. After determining the correction 

function ε∆(λ) for a lamp, the spectral irradiance can be determined using only two or 

three measurement points. In [Publ.I], the model was validated with incandescent lamps 
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of types FEL and DXW previously calibrated by TKK and National Physical 

Laboratory (NPL, UK). The results agree within 1 %. 

 

The developed model can be used to determine a simple (absolute) spectral irradiance 

scale, if the temperature of the filament and an absolute measure of the spectral 

irradiance are known [Publ.I]. The temperature of the lamp filament can be obtained 

either from the color temperature of the lamp, or from the hot and cold resistance 

measurements of the lamp filament. In both cases, the absolute measure of the spectral 

irradiance may be obtained from an illuminance measurement.  

 

300 400 500 600 700 800 900

0.98

1.00

1.02

1.04

 

 

C
or

re
ct

io
n

Wavelength/nm

 Measured values
 Fitted polynome

 
Figure 6. Measured values for the correction function ε∆(λ) and an 8th -degree polynome 

 fitted to the results. The correction describes the effects of non-idealities such 
 as transmittance of the glass bulb, absorption of the filling gas and light  

recycling on the lamp irradiance. 
 

The color temperature of a lamp may be obtained by measuring the lamp with a 

colorimeter, or it may be known from manufacturer’s specifications. The relation 

between the color temperature and the physical temperature of the filament may be 
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determined using the method described in [69]. Using resistance measurements at room 

temperature and at burning temperature, the temperature of the filament may be 

obtained from the known temperature dependence of the resistance of 

tungsten [70,71,72]. In the temperature range 2400 K – 3200 K, the temperature of the 

filament can be calculated as 

 

 ( ) K319
)K295(K0062.0 1 += − R

TRT ,      (6) 

 

where R(T) is the hot resistance and R(295 K) is the room temperature resistance. With 

typical measurement uncertainties of color temperature and illuminance, 20 K and 2 %, 

uncertainties of 2 % to 3 % in spectral irradiance can be obtained [Publ.I].  

2.2 Spectral irradiance scale realizations  

Spectral irradiance scales may be based on a primary source (blackbody or synchrotron 

radiation). The spectral irradiance of the source could be determined directly, e.g. via an 

ITS-90 temperature measurement and Planck’s radiation law [Eq. (1)] or current 

measurements and Schwinger’s law [Eq. (2)]. Another alternative is to determine the 

irradiance via optical means traceable to the absolute cryogenic radiometer. The 

cryogenic radiometer can be used to calibrate filter radiometers or transfer standard 

detectors [73].  

Absolute cryogenic radiometers are operated at temperatures typically below 20 K [9]. 

That improves their sensitivity and accuracy by a factor of 100 compared with the 

operation at room temperature [73]. The calibrations carried out with cryogenic 

radiometers provide relative uncertainties better than 10-4 [9]. Cryogenic radiometers are 

based on electrical substitution principle. The temperature rise of a detector is measured 

relative to a constant-temperature reference heat sink during alternate radiant and 

electrical heating cycles. The electrical power is adjusted in such a way that the detector 
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temperature rise is equal to the heating caused by the radiant power in order to equate 

the radiant power to the measured quantity of the electrical power. The detector element 

is a cavity, which absorbs nearly all of the incoming radiation. The radiation beam 

enters into the cavity after passing through an entrance window at the Brewster 

angle [73].  As radiation sources, laser lines [23,73,74,75] or monochromators [76,77] 

may be used. The laser-based applications typically provide smaller uncertainties, but 

the monochromator-based applications are more versatile [77]. The electrical heating 

may be carried out using resistive heaters [73,74].  

In the wavelength range 250 nm – 2500 nm, the spectral irradiance scales of PTB [78], 

NPL [33] and NIST [12] combine measurements based on blackbodies and cryogenic 

radiometers. The thermodynamic temperature of an HTBB is determined with filter 

radiometers calibrated traceable to a cryogenic radiometer. The output radiation of the 

HTBB is then calculated according to Eq. (1). National Research Council (NRC, 

Canada) is also developing this type of spectral irradiance scale [79]. In the realization 

of the scale of Korea Research Institute of Standards and Science (KRISS) [80], the 

temperature of an HTBB is determined using a detector calibrated with temperature 

scale based on the ITS-90.  

Alternatively, detector approaches traceable to the cryogenic radiometer can be used 

directly to obtain a spectral irradiance scale via filter radiometry of secondary sources or 

responsivity measurements of a spectroradiometer. Tungsten halogen lamps are used as 

light sources in the scales based on detectors traceable to cryogenic radiometers e.g. at 

Instituto de Física Aplicada – Consejo Superior de Investigaciones Científicas 

(IFA-CSIC, Spain) [81,82], in NRC’s present scale [64,79,83], MIKES/TKK [10,11], 

and Ulusal Metroloji Enstitüsü (UME, Turkey) [84]. As the lamps are not Planckian 

radiators, measurements at multiple wavelengths are required. To facilitate the 

measurements, the filter radiometers may be built to utilize interchangeable filters [85]. 

Changing the filter can also be automated [Publ.II]. 
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In Nederlands Meetinstituut – Van Swinden Laboratorium (NMi-VSL, the 

Netherlands), a monochromator based cryogenic radiometer is used to calibrate a 

spectroradiometer. The spectroradiometer consists of a double monochromator and an 

integrating sphere with a diameter of 5 cm as entrance port. To calibrate the 

spectroradiometer, radiation from the double monochromator in conjunction with the 

cryogenic radiometer is redirected to the double monochromator of the 

spectroradiometer. The spectroradiometer is placed on a rotary stage, so that it can be 

rotated to measure unknown radiation sources directly after calibration [86]. 

2.3 Spectral irradiance scale of  MIKES/TKK 

The primary spectral irradiance scale realization of MIKES/TKK is described 

in [10,11]. The scale is based on filter radiometers and tungsten halogen lamps. The 

construction of the filter radiometers is described in [85]. The filter radiometer consists 

of a trap detector of three silicon photodiodes, a precision aperture, a set of 14 

interchangeable, temperature-stabilized, narrow-band interference filters, and a 

broadband V(λ)–filter. The components of the filter radiometer are characterized 

separately [10]. The spectral responsivity of the trap detector is measured traceably to a 

cryogenic radiometer. The precision aperture is calibrated using an optical co-ordinate 

measurement machine [87]. The filter transmittances are measured using a commercial 

double-beam monochromator, the performance of which is routinely checked with a 

reference spectrometer [88].  

The alignment of the equipment for spectral irradiance measurements is shown in 

Figure 7. The filter radiometer and the lamp are aligned on an optical rail with help of a 

dual-beam alignment laser. The distance is set with aid of a magnetic distance 

measurement system. The system consists of a magnetic ruler attached on a rail, a 

detector attached on a carriage on top of which the filter radiometer is installed, and a 

display unit. The magnetic length scale is calibrated with a laser interferometer.   
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The photocurrents are measured for each filter. The relation between the photocurrent 

iph and the spectral irradiance E(λ) is  

( ) ( ) ( )∫= λλλτλ dERAiph ,        (7) 

where A is the area of the aperture, R(λ) is the responsivity of the trap detector and τ(λ) 

is the transmittance of the filter. E(λ) is calculated using Eq. (1), with emissivity 

ε calculated using Eq. (3) with  N = 7. In the calculation of R(λ)τ(λ), correction for 

interreflections between the trap detector and the filter is taken into account.    

The photocurrent is calculated for each filter at its effective wavelength with the 

initialization values for T, B, and ε (λ). For the initialization values of ε (λ), emissivity 

data of de Vos [24] are used. The spectral irradiance values corresponding to each 

effective wavelength are calculated using a recursive process of minimizing the 

differences between the calculated and measured photocurrents by adjusting the values 

of T, B, and ε (λ). As the result, spectral irradiance values at the effective wavelengths 

of the filter, continuous spectral irradiance, and values for T, B and ε (λ), are obtained. 
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Figure 7. Alignment of the filter radiometer and an FEL lamp. Devices from  
left to right: Filter radiometer, alignment laser, lamp with an alignment  

target and power supply. 

2.4 Comparisons of the spectral irradiance scales  

Comparison measurements are frequently carried out to validate the quality of the 

national calibration services. In order to provide all NMIs the opportunity to participate, 

different types of comparisons are needed.  

 

Figure 8 presents the scheme for key comparisons.  The key comparisons of the CIPM 

have a few participants from each regional metrology organization (RMO). It has been 

agreed that only the CIPM key comparisons provide the KCRVs. All NMIs are offered 

a possibility to link their measurement results to the KCRVs through bilateral and 

regional key comparisons with linking laboratories that have taken part in the CIPM key 

comparison. The KCRV for spectral irradiance was determined in the key comparison 

CCPR-K1.a [20], which was carried out during years 2000 – 2004.  
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NMI participating in CIPM key comparisons  
NMI participating in CIPM key comparisons and in RMO key comparisons  
NMI participating in RMO key comparisons  
NMI participating in a bilateral key comparison  
International organization signatory to the Mutual Recognition Arrangement (MRA)   

Figure 8. Scheme for key comparisons [89]. 
 

In addition to the CCPR-K1.a, MIKES/TKK has participated in several other 

comparison measurements in spectral irradiance during recent years 

[54,90,Publ.II,Publ.III]. The scales of MIKES/TKK and NMC were compared in 

autumn 2007 using NMC’s new multi-wavelength filter radiometer (MWFR) facility 

[Publ.II]. The measurement setup is shown in Figure 9. It comprises 24 filters, Si and 

InGaAs detectors, and a 4-mm precision aperture. Three tungsten halogen lamps, one 

from MIKES/TKK and two from NMC, were measured. The MIKES/TKK lamp was 

measured at TKK before and after it was transported to NMC. The scales of 

MIKES/TKK and NMC showed good agreement [Publ.II]. 
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Figure 9. The MWFR facility of NMC. The Si and InGaAs 
 detectors are placed on the central rotary stage.   

The 24 filters are placed on the outermost  
rotary stage. 

 

The long-term reproducibility of the scales can be studied by comparing the mutual 

degrees of equivalence (DoE) obtained in different comparisons. If the scales remained 

stable, the difference of the DoEs should be close to zero. To study the long-term 

reproducibility of MIKES/TKK, data from the comparison reported in [Publ.II] and the 

key comparisons CCPR-K1.a [20] and CCPR-K1.a.1 [26] were used.  As can be seen in 

Figure 10, the agreement, and thus the long-term stability, is good in the wavelength 

range above 400 nm. The difference below 400 nm is somewhat larger, up to 2.8 %, 

though still within the expanded uncertainties of the comparison. The expanded 

uncertainties of the comparison were calculated as quadratic sums of the expanded 

uncertainties of MIKES/TKK and NMC. The long-term stability information obtained 

from this comparison is discussed in [Publ.III].  
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Figure 10. Long-term reproducibility of the difference of the spectral irradiance 

scales of NMC and MIKES/TKK. The reproducibility information has been  
obtained by comparing the results of [Publ.II], CCPR-K1.a [20] and  

CCPR-K1.a.1 [26].The dashed lines represent the expanded  
uncertainty of the comparison of [Publ.II]. 

2.5 Uncertainty evaluation in linking key comparisons 

An NMI can be linked to the KCRV through a bilateral or a regional key comparison 

with another NMI which has participated in the CIPM key comparison. The linking 

process has been studied in different fields of metrology [91,92,93,94,Publ.III].  

 

In the spectral irradiance key comparison CCPR-K1.a, the participants reported two 

types of uncertainties associated with either correlated or uncorrelated effects in the 

measurements. The contributions associated with the correlated effects reproduce their 

values systematically from one measurement to another, while the uncorrelated 

contributions vary randomly, either between the individual measurements or between 
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the measurement rounds. The separation of the uncorrelated effects from the combined 

uncertainty is useful for the uncertainty evaluation in linking the results of different 

comparisons, as the additional uncertainty due to linking can be estimated more 

realistically [Publ.III].  

 

In [22,Publ.III], the results of NIMT are linked through MIKES to the KCRV obtained 

in CCPR-K1.a [20]. The described method takes into account the uncertainty of the 

linked NMI, uncertainties associated with the uncorrelated effects in the measurements 

of the linking NMI, transfer uncertainties of the bilateral and the CIPM comparisons, 

uncertainty of the KCRV, and the uncertainty associated with the long-term 

reproducibility of the linking NMI.  

 

In order to describe the concepts more generally, the notation here does not apply just to 

spectral irradiance. The measured value (measurement result, e.g. spectral irradiance) is 

described by Ξ  and the errors as E. According to Guide to the Expression of 

Uncertainty in Measurement (GUM) [95], the capital letters denote random variables, 

whereas the lowercase letters denote the corresponding expectation values. The key 

comparison measurement by an NMI i is subject to errors related to uncorrelated and 

correlated effects in the measurements, as well as artifact instability during 

transportation and errors in the transfer of the primary scale to transfer standards. The 

measurements in bilateral comparisons are subject to similar errors. If the time between 

the key comparison and the bilateral comparison is long, the reproducibility of the 

linking scale needs also to be taken into account. One may also be interested in 

calculating mutual DoE for the linked NMI and another NMI j, which has also 

participated in the key comparison but is not involved with the linking process. 

 

The unilateral DoEs Dα(i) of the linked NMI α are calculated as 

 

 iiiii EEEXID ,r,b,kcref)( +++−+= αα Ξ      (8) 
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where Ξα  is the measurement result of the linked NMI,  Ii  is the linking invariant [93], 

which corresponds to changes of the true value of the measurand, in case the linking 

NMI utilizes different measurand artifacts in the different comparisons. The linking 

laboratory links the measured value of the artifact used in the bilateral comparison to 

that used in the key comparison through its own measurements. Parameter Xref  is the 

KCRV. Ekc,i is the transfer error term from the key comparison for the linking NMI. The 

transfer error is related to artifact instability during transportation, and transfering the 

primary scale to transfer standards of the comparison. Eb,i combines the transfer error of 

the bilateral comparison and the error related to uncorrelated effects of the linking NMI 

during the comparison. Er,i is the error term associated with the reproducibility of the 

linking NMI between the key comparison and the bilateral comparison.    

 

The corresponding uncertainties u(dα(i)) of the linked NMI are calculated as 
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where uα corresponds to the standard uncertainty of the linked NMI, u(xref) is the 

uncertainty of the KCRV, ukc is the transfer uncertainty of the CIPM key comparison, wi 

is the weight of the linking NMI, ub,i is the uncertainty of the bilateral comparison, and 

ur,i is the uncertainty due to the long-term reproducibility of the scale of the linking 

NMI. Equation (9) takes into account the correlation between the KCRV and the 

transfer error associated with the measurements of the linking NMI.  The correlation is 

caused by the fact that the linking NMI’s results were used to calculate the KCRV. 

 

The mutual DoEs with an NMI j, Dαj, and the corresponding uncertainties u(dαj) are 

calculated as 

 

 ( ) iiijkijjij EEEEIDDD ,r,b,kc,c +++−+−=−= ΞΞ ααα    (10) 
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and 

 ( ) 2
,r

2
,b

2
kc

222 2 iijj uuuuudu ++++= αα       (11) 

 

where Dj is the degree of equivalence of NMI j, Ξj  is the measurement result of NMI j, 

Ekc,i is the transfer error term from the key comparison for participant j, and uj is the 

uncertainty associated with uncorrelated effects between the measurements of NMI j. 

The detailed derivations of Eqs. (8 – 11) are presented in [Publ.III].  

 
Figure 11 shows the contribution of the different uncertainty components to the 

combined standard uncertainty of NIMT DoE at different wavelengths. In order to 

reduce the overall uncertainty, NMIs with small uncertainties associated with 

uncorrelated effects in the measurements should be favored when selecting the linking 

NMI. In this case, the uncertainty associated with uncorrelated effects in the 

measurements of NIMT contributes the most in the combined standard 

uncertainty [Publ.III].  



 

 

42

290 300 400 500 600 800 900
0

1

2

3

4

5

6

7

 

 

U
nc

er
ta

in
ty

/%

Wavelength/nm

 u
α 
  u(xref)

 ub,i  ukc

 ur,i

 

Figure 11. The contribution of the different uncertainty components to the overall 
uncertainty of the DoEs of NIMT. uα = standard uncertainties of NIMT, ub,i =  

transfer uncertainties of the bilateral comparison, ur,i = uncorrelated  
uncertainties of MIKES including the long-term reproducibility of  

the scale, u(xref) = uncertainties of KCRV,  ukc = transfer  
uncertainties of the CIPM key comparison. 
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3 Radiation temperature  

3.1 The International Temperature Scale of 1990 

Thermodynamic temperature is the absolute measure of temperature. The SI unit of the 

temperature, kelvin, is defined to be 1/273.16 of the thermodynamic temperature of the 

triple point of water (273.16 K). Direct measurements of the thermodynamic 

temperature are not always straightforward, and in order to assist the practical 

calibrations and measurements, international temperature scales based on auxiliary fixed 

temperature points have been defined. 

The ITS-90 is established by several fixed temperature points given in Table 1. The 

fixed points have been determined by measuring the thermodynamic temperatures of the 

corresponding phase transitions as accurately as possible at the time being [2]. The 

values between the fixed points are obtained by using agreed interpolation functions and 

artifacts. Due to the method of realization, there are known discrepancies between the 

thermodynamic temperatures and the ITS-90 temperatures.  
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Table 1. Defining fixed points of the ITS-90 [2]. V = vapor pressure point, T = triple 
point, G = gas thermometer point, M = melting point, F = freezing point.  

Number
Temperature 

Substance State T90, K t90, °C 

1 3 to 5 
-270.15 to 

-268.15 He V 
2 13.8033 -259.3467 e-H2 T 
3 ≈17 ≈-256.15 e-H2 (or He) V (or G) 
4 ≈20.3 ≈-252.85 e-H2 (or He) V (or G) 
5 24.5561 -248.5939 Ne T 
6 54.3584 -218.7916 O2 T 
7 83.8058 -189.3442 Ar T 
8 234.3156 -38.8344 Hg T 
9 273.16 0.01 H2O T 
10 302.9146 29.7646 Ga M 
11 429.7485 156.5985 In F 
12 505.078 231.928 Sn F 
13 629.677 419.527 Zn F 
14 933.473 660.323 Al F 
15 1234.93 961.78 Ag F 
16 1337.33 1064.18 Au F 
17 1357.77 1084.62 Cu F 

     
 

The temperatures between the fixed points are determined by interpolating instruments, 

such as resistance thermometers, gas thermometers and pyrometers [2]. After its 

implementation, the ITS-90 has been supplemented by the Provisional Low 

Temperature Scale (PLTS-2000) from 0.9 mK to 1 K [96]. Several of the temperature 

determination ranges overlap, and thus differing definitions of the ITS-90 exist. These 

differing definitions are given equal status [2]. 

The temperatures in the range from 0.65 K to 5 K are realized using vapor pressure 

relations of 3He and 4He. A vapor pressure thermometer consists of a vessel containing 

liquid in equilibrium with its vapor. The equations for the vapor pressure of He and the 
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corresponding temperature are given in [30] for ranges of 0.65 K to 3.2 K for 3He, 

1.25 K to 2.1768 K for 4He and 2.1768 K to 5 K for 4He. 

From 3 K to 24.5561 K (Ne triple point) the temperature is realized using constant 

volume 3He and 4He gas thermometry. A constant volume gas thermometer consists of a 

bulb filled with gas. The volume of the gas is constant. The pressure of the gas varies 

with temperature and it is measured with a manometer. The equations relating 

temperature and pressure are given in [2,30]. The thermometer is calibrated at three 

temperatures: at the triple point of Ne, at the triple point of equilibrium H2, and at a 

third temperature point selected from the interval between 3 K and 5 K. The 

temperatures between 3 K and 5 K are determined using a He vapor pressure 

thermometer. In measurements below 4.2 K, the non-ideality of the gas must be taken 

into account [30]. 

The temperatures between 13.8033 K and 1234.93 K are realized using platinum 

resistance thermometers (PRTs). The resistance thermometers are based on the 

temperature dependent change of the resistance of platinum. There are three types of 

PRTs widely used: capsule thermometers, which are used as standard interpolation 

instruments between 13.8 K and 273.16 K, long-stem low or medium temperature 

thermometers (between 84 K and 933 K) and long-stem high temperature thermometers 

(up to 1234 K) [30]. At the lower part of the scale, the sensitivity of the resistance 

becomes small, which acts as the limiting factor. At high temperatures, the critical 

factors include the prevention of the electrical leakage, maintaining cleanliness and 

preventing the detector from contamination.  

The PRTs are calibrated at specified sets of fixed points. The temperature range 

determined using PRTs is divided into subranges [2,30]. The temperatures are 

determined in terms of the resistance ratios, 

( ) ( )
( )K16.273

90
90 R

TR
TW = ,       (12) 
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where R(T90) is the resistance at temperature T90, and R(273.16 K) is the resistance of 

the PRT at the triple point of water. The T90 is determined from the W(T90) using 

specified reference functions [2,30].  

Above the freezing point of silver, the ITS-90 is based on Planck’s radiation 

law [Eq. (1)]. The temperature T90 is determined using the ratio of the radiance at the 

unknown temperature to that measured at a fixed temperature,  
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where T90(x) is the freezing point of either silver (1234.93 K), gold (1337.33 K) or 

copper (1357.77 K), L[λ,T90(x)] is the corresponding radiance, L(λ,T90) is the radiance 

at the temperature T90, λ is the wavelength and c2 is the second radiation constant 

defined by the Committee on Data for Science and Technology (CODATA).  The 

measurements are carried out using optical measurement devices, pyrometers.  

3.2 Trends for the international temperature scale 

In the ITS-90, there are no fixed temperature points above the copper freezing point, 

1357.77 K.  The scale is purely extrapolated using Planck’s radiation law [Eq. (1)]. This 

method is vulnerable to extrapolation errors [Publ.IV] and propagation of 

uncertainties [97,98,99,100]. The uncertainty propagates as the square of the 

temperature difference to the reference temperature [101]. 

The Consultative Committee for Thermometry - Working Group 5 (CCT-WG5) is 

currently reviewing the possibility of suggesting direct methods for measuring 

thermodynamic temperature, rather than using ITS-90. Initial work indicates that 
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determining the thermodynamic temperatures using optical power and length 

measurements, could obtain measurement uncertainties lower than those of 

ITS-90 [97,102]. NIST has reported expanded measurement uncertainties of ± 0.110 K 

and ± 0.129 K for measurements of the thermodynamic temperatures of silver and gold 

freezing points [13]. NPL has obtained corresponding uncertainties of ± 44 mK and 

± 49 mK [14]. The measurement results of NIST and NPL agree within 

uncertainties [13,14]. The corresponding uncertainties of ITS-90 are ± 80 mK for silver 

and ± 100 mK for gold freezing points [30]. At PTB, measurements at Zn and Al fixed 

points (629.677 K and 933.473 K) have been carried out with uncertainties of 29 mK 

and 52 mK using an InGaAs detector [16]. Possible detector materials for lower 

temperatures are e.g. InGaAs (lowest measurable fixed point 692 K), NIR-extended 

InGaAs (429 K) and InSb (273 K) [97].  

Research aiming at finding auxiliary high temperature fixed points above the Cu 

freezing point is also being carried out. According to the recommendation of CCT and 

CCPR (Consultative Committee for Photometry and Radiometry), the reproducibility of 

the new high temperature fixed points should be within 100 mK [103]. Instead of pure 

metal, the high temperature fixed points consist of a eutectic or peritectic mixture of two 

materials. Pure metals can not be used as fixed points at higher temperatures, because 

graphite used as crucible material contaminates pure metals. Using metal-carbon (M-C) 

eutectic alloys provides a solution to the contamination problem. If the carbon is an 

integral part of the eutectic alloy, a graphite crucible can be used [104].    

The eutectic point is the lowest temperature point at which a single liquid phase can 

exist in the composition of two materials.  At the eutectic point, there are three phases 

present: solid phases of both materials, and a liquid phase of the mixture. This 

temperature value is unique. The research has focused on Re-C (eutectic point at 

2747 K), Ru-C (2227 K), Pt-C (2011 K), Pd-C (1765 K) and Co-C (1597 K) 

cells [3,105]. The temperature range can be extended up to 3500 K with metal-carbide-

carbon (MC-C) eutectics, for example with TiC-C (3034 K), ZrC-C (3156 K), or HfC-C 

(3458 K) [4].   
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The thermodynamic temperatures of the Co-C, Pd-C, Pt-C and Ru-C eutectic fixed 

points have been determined with the expanded uncertainty of 400 mK [3].  A 100-mK 

reproducibility between different cells can be reached with adequate filling 

arrangements [106]. The repeatability of one single cell is better than 70 mK [4]. The 

structure of a MC-C fixed point cell is presented in Figure 12. 

 

Figure 12. Structure of a MC-C fixed point cell [4]. 
 
Peritectic temperature is the highest temperature at which a single solid carbide phase 

can exist. At the peritectic point, the solid metal-carbide is in equilibrium with the solid 

carbon and the liquid metal-carbide. The studied and reported compositions are Mn7C3-

C (peritectic point at 1606 K) [5], Cr3C2-C (2099 K) [5,6,7] and WC-C (3022 K) [5,8]. 

The reproducibility has been reported to be of the same quality as for the eutectics, even 

though the purity of the metal used in the peritectics is lower [5]. 

High temperature fixed point cells have problems related to their short lifetimes and 

lack of suitable blackbody furnaces. Temperature uniformity of the furnace is important 

for the reproducibility of the transition temperature and the quality of the plateau [4].  

Mechanical stress caused by thermal expansion reduces the lifetime of the fragile 

cells [4]. During the construction, the cell is extremely vulnerable to 

contamination [106]. The contamination may be due to impurities in the metal, 

contaminated graphite or cross-contamination during the filling process. Cross-

contamination can be reduced by proper purifying of the fixed point cell furnace tubes 

Fixed point metal 

Carbon cloth 
material sheet 

Graphite crucible 
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between manufacturing different fixed point cells, or by using separate furnace parts for 

different fixed point materials [106].  

3.3 Radiation temperature scale of MIKES 

The MIKES radiation temperature measurement facility includes an LP3 linear radiation 

thermometer [107] manufactured by KE Technologie GmbH, and two filter radiometer 

housings, labeled FR1 and FR2. Pictures of the measurement equipment are presented 

in Figure 13. 

 
 

 
 

Figure 13. Linear radiation thermometer LP3 and the filter  
radiometer housings FR1 and FR2. 

 
The LP3 consists of a Si photodiode, imaging optics, and band pass filters with nominal 

pass band center wavelengths of 650 nm and 900 nm. In this study, the band pass filter 

with the nominal wavelength of 650 nm is used. To calibrate the device, an ITS-90 

fixed point cell, either Ag or Cu, is measured and the corresponding photocurrent ical is 

recorded.  The target with unknown temperature is then measured and photocurrent iph 

is recorded. The unknown temperature of the target is obtained as 
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where c2 is the second radiation constant defined by CODATA, T90 is the reference 

temperature used in the calibration of the radiation thermometer, and ξ = κετρ 

combines the attenuation κ, emissivity ε, transmittance of the filter τ and the reflectance 

ρ of the optical components. Parameter λeff is the effective wavelength of the pyrometer. 

It is calculated using the Wien approximation, 
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where T1 and T2 are two temperatures defined by ITS-90, and s(T1) and s(T2) are the 

corresponding recorded pyrometer signals.  

The construction of the filter radiometer FR1 is described in [85] and FR2 in [108]. FR1 

utilizes three interchangeable filters: two narrow-band interference filters with nominal 

pass band center wavelengths of 800 nm and 900 nm, and a V(λ)–filter. FR2 includes a 

fixed filter at the nominal pass band center wavelength of 800 nm. The characterization 

of the FR1 is described in [85] and of the FR2 in [109].   

The relation between the blackbody radiance L(λ,T) and the photocurrent iph produced 

by the filter radiometer is  
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ph ,     (16) 

where L(λ,T) is the blackbody radiation from Eq. (1), S(λ) is the spectral irradiance 

responsivity of the filter radiometer, and  λ is the wavelength. ABB is the aperture area of 

the blackbody, rBB is the radius of the blackbody aperture, rFR is the radius of the filter 
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radiometer aperture, and ε is the emissivity of the blackbody. The geometric factor D is 

defined as 

2
FR

2
BB

22 rrdD ++= ,        (17)  

where d is the distance from the filter radiometer aperture to the blackbody aperture. 

The factor takes into account the measurement geometry related to the distance and the 

areas of the apertures. Temperature T is obtained from the measured photocurrent by 

minimizing the difference between the theoretical current, calculated using Eq. (16), and 

the measured current, by adjusting iteratively the temperature in Eq. (1). At first, the 

temperature is set to an initialization value, e.g. to the fixed point temperature defined 

by ITS-90, or to the pyrometer reading.  

The radiation temperature measurements at MIKES have focused in the measurements 

of Cu and Ag fixed point cells, and comparison measurements of a VTBB with the LP3 

in the range 1370 K – 1770 K [110,111,Publ.IV]. The measurement setup is presented 

in Figure 14. In the early stage of the VTBB measurements, the linear radiation 

thermometer suffered from increasing deviation of the results with temperature and 

instability of the calibration [Publ.IV]. The reasons for the deviation are discussed 

in [Publ.IV]. The linear radiation thermometer was exchanged, and subsequent 

measurements indicated that the problems related with deviation and instability had 

disappeared [Publ.IV]. The faulty measurements could not necessarily have been seen 

in the calibrations with one fixed point cell only.  They are revealed, if a high 

temperature fixed point or VTBB with filter radiometers is used [Publ.IV]. 
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Figure 14. Radiation temperature measurement facility of MIKES. 

3.4 Comparisons of the radiation temperature scales 

Comparison measurements are commonly carried out to verify accuracies of the 

radiation temperature and radiance scales of NMIs [112,113,114,115,Publ.V]. The 

comparisons reported in [112,113,114,115,Publ.V] have been carried out in variable 

temperature ranges between 1370 K and 3300 K. The comparison measurements of 

radiation temperature scales are important, because presently there are no fixed points 

above copper freezing point, 1357.77 K.  

A comparison between MIKES and PTB was arranged in March 2007 using the Primary 

Temperature Radiator (PriTeRa) facility of PTB [116]. The temperature range of the 

comparison was 1570 K – 2770 K. The measurement equipment is presented in  

Figure 15. MIKES’s measuring equipment consisted of the linear radiation thermometer 

LP3 and the filter radiometers described in Chapter 3.3. PTB’s measuring equipment 

consisted of a linear radiation thermometer LP3 and a filter radiometer with nominal 

wavelength of 800 nm. The calibration of the PTB LP3 is described in [115] and the 
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filter radiometer in [117,118]. The measurement artifact was a HTBB of type 

BB3200pg [17]. 

 

Figure 15. Measurement equipment installed on a translator stage. From left to right: 
PTB-LP3, MIKES-FR1, PTB-FR, MIKES-FR2 and MIKES-LP3. 

 
The comparison project included comparisons of temperature scales based on both 

ITS-90 and thermodynamics. The results showed partial agreement. In the ITS-90 

comparison carried out using the linear radiation thermometers, the results were in 

agreement. The agreement can be seen in Figure 16. In the comparison of 

thermodynamic temperatures, carried out with filter radiometers, two MIKES filter 

radiometers are in agreement with each other, with PTB’s equipment and with the 

ITS-90 based scale. The other two MIKES filter radiometers deviated from the others. 

This deviation can be seen in Figure 17.  
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Figure 16. Difference between the measurement results of the LP3-MIKES 

 and LP3-PTB. Both LP3s were calibrated according to ITS-90. 
 

The reasons for the deviation are discussed in [Publ.V]. The measurements with the 

V(λ)–filter  and the filter radiometer calibrated as a complete package using laser 

scanning were successful, which indicates that the problems are related with the 

interchangeable interference filters. One possible reason is the slightly different 

measurement geometries in the filter transmittance measurements and in the actual 

temperature measurements. I conclude from our measurements that the geometries 

should be matched as carefully as possible [119].  

 

 



 

 

55

1400 1600 1800 2000 2200 2400 2600 2800
-3

-2

-1

0

1

2

3

 

 

D
iff

er
en

ce
 fr

om
 w

ei
gh

te
d 

m
ea

n/
K

Temperature/K

 PTB-FR-800
 MIKES-FR1-600
 MIKES-FR2-800
 MIKES-FR1-800
 MIKES-FR1-900

 
Figure 17. Deviation of the different filter radiometers from the weighted mean.  

The mean was calculated from the results of PTB-FR-800, MIKES-FR1-600  
and MIKES-FR2-800 using the relative weight of 2 for PTB-FR and 1  

for both MIKES-FRs. The dashed lines represent the  
expanded (k = 2) uncertainty of MIKES-FR2-800. 
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4 Conclusions 

In this thesis, a physical model for spectral irradiance standard lamps was developed. 

The model could interpolate and extrapolate the spectral irradiances of FEL and DXW 

type incandescent lamps in the wavelength range 340 nm – 850 nm from two or three 

measured spectral irradiance values.  The model comprised Planck’s radiation law, 

spectral emissivity of tungsten, a geometrical factor, and a measured spectral residual 

correction. The residual correction function was determined by measuring the spectra of 

an FEL lamp at different temperatures. The comparisons with the calibrations of 

MIKES/TKK and NPL indicate that the model could interpolate and extrapolate the 

spectral irradiances of the lamps with less than 1 % deviation from the existing 

calibrations. 

The spectral irradiance scales of MIKES/TKK and NMC were compared using NMC’s 

new MWFR facility. The new scale realization showed good agreement with the 

NMC’s existing scale and with the assigned values of the MIKES/TKK’s transfer 

standard. With help of the comparison, the long-term stability of the scales could be 

studied. The stability was good in visible and near infrared regions. In the UV region, 

the difference increased up to 2.8 %. The reproducibility was still within expanded 

uncertainties of the comparison.  

The spectral irradiance scale of NIMT was linked to the KCRV using MIKES/TKK as a 

link. I suggested a new method for uncertainty estimation in the linking process. The 

method took advantage of the division of the uncertainties to components related to 

correlated and uncorrelated effects between the measurements. With the new method, 

the uncertainty due to linking could be estimated more realistically than before. The 

overall uncertainty due to linking could be reduced, if a linking NMI with small 

uncertainties related to uncorrelated effects between measurements and good scale 

reproducibility were selected.  



 

 

57

Radiation temperature measurements using filter radiometers were carried out at 

MIKES. The functionality of the filter radiometers was checked with a Ag fixed point 

cell. The comparison with an ITS-90 based method showed agreement within 

uncertainties in the temperature range 1370 K – 1770 K. Filter radiometers provided a 

good way to assure the quality of extrapolation of the linear radiation thermometers in 

the temperatures above Cu freezing point.   

 

The radiation temperature scales of MIKES and PTB were compared in the temperature 

range 1570 K – 2770 K. Both thermodynamic temperatures and the ITS-90 based 

realizations were compared. The results showed partial agreement: while the ITS-90 

scale and two out of four filter radiometers were in good agreement with the PTB’s 

measurement results, two of the filter radiometers deviated from the others. 

 

With help of the improvements presented in this thesis, a simple spectral irradiance 

scale could be derived from two or three measurement points only. The spectral 

irradiance of a lamp could also be predicted from the photometric or electrical 

properties of the lamp. Using the methods presented in this thesis, the quality of the 

scales can be assured and the uncertainties can be estimated more realistically than 

before.  
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