
 l
ed

ua
P 

ka
pe

e
D

 s
re

ir
ra

b 
er

fi 
f

o 
ec

na
ts

is
er

 l
a

mr
eh

t 
eh

t 
f

o 
n

oi
ta

lu
mi

s 
ci

ts
ili

ba
b

or
p 

eh
t 

r
of

 t
ne

me
ga

na
m 

yt
ni

at
re

cn
U

 y
ti

sr
ev

i
n

U 
otl

a
A

 0202

 gnireenignE liviC fo tnemtrapeD

tnemeganam ytniatrecnU  
citsilibaborp eht rof  

lamreht eht fo noitalumis  
 sreirrab erfi fo ecnatsiser

 leduaP kapeeD

 LAROTCOD
 SNOITATRESSID

 l
ed

ua
P 

ka
pe

e
D

 s
re

ir
ra

b 
er

fi 
f

o 
ec

na
ts

is
er

 l
a

mr
eh

t 
eh

t 
f

o 
n

oi
ta

lu
mi

s 
ci

ts
ili

ba
b

or
p 

eh
t 

r
of

 t
ne

me
ga

na
m 

yt
ni

at
re

cn
U

 y
ti

sr
ev

i
n

U 
otl

a
A

 0202

 gnireenignE liviC fo tnemtrapeD

tnemeganam ytniatrecnU  
citsilibaborp eht rof  

lamreht eht fo noitalumis  
 sreirrab erfi fo ecnatsiser

 leduaP kapeeD

 LAROTCOD
 SNOITATRESSID

 l
ed

ua
P 

ka
pe

e
D

 s
re

ir
ra

b 
er

fi 
f

o 
ec

na
ts

is
er

 l
a

mr
eh

t 
eh

t 
f

o 
n

oi
ta

lu
mi

s 
ci

ts
ili

ba
b

or
p 

eh
t 

r
of

 t
ne

me
ga

na
m 

yt
ni

at
re

cn
U

 y
ti

sr
ev

i
n

U 
otl

a
A

 gnireenignE liviC fo tnemtrapeD

tnemeganam ytniatrecnU  
citsilibaborp eht rof  

lamreht eht fo noitalumis  
 sreirrab erfi fo ecnatsiser

 leduaP kapeeD

 LAROTCOD
 SNOITATRESSID



 seires noitacilbup ytisrevinU otlaA
SNOITATRESSID LAROTCOD  681 /  0202

eht rof tnemeganam ytniatrecnU  
lamreht eht fo noitalumis citsilibaborp  

 sreirrab erfi fo ecnatsiser

 leduaP kapeeD

fo rotcoD fo eerged eht rof detelpmoc noitatressid larotcod A  
eht fo noissimrep eht htiw ,dednefed eb ot )ygolonhceT( ecneicS  
ta 0202 rebmevoN 62 no ,gnireenignE fo loohcS ytisrevinU otlaA  

 .00:21

 ytisrevinU otlaA
 gnireenignE fo loohcS

 gnireenignE liviC fo tnemtrapeD
 )Z030GNE( gnireenignE liviC



Printed matter
4041-0619

N
O

R
DIC

 SWAN ECOLAB
E

L

Printed matter
1234 5678

 rosseforp gnisivrepuS
 dnalniF ,ytisrevinU otlaA ,akkitsoH omiS rosseforp etaicossA

 
 srenimaxe yranimilerP

 muigleB ,ytisrevinU tnehG ,elioC naV nebuR rosseforP tnatsissA
 ailartsuA ,dnalsneeuQ fo ytisrevinU ,egnaL divaD rD

 
 tnenoppO

 muigleB ,ytisrevinU tnehG ,elioC naV nebuR rosseforP tnatsissA

 seires noitacilbup ytisrevinU otlaA
SNOITATRESSID LAROTCOD  681 /  0202

 
 © 0202   leduaP kapeeD

 
 NBSI 5-5310-46-259-879  )detnirp( 
 NBSI 2-6310-46-259-879  )fdp( 
 NSSI 4394-9971  )detnirp( 
 NSSI 2494-9971  )fdp( 

:NBSI:NRU/if.nru//:ptth  2-6310-46-259-879
 

 yO aifarginU
 iknisleH  0202

 
 dnalniF

 



 tcartsbA
  otlaA 67000-IF ,00011 xoB .O.P ,ytisrevinU otlaA  if.otlaa.www

 rohtuA
 leduaP kapeeD

 noitatressid larotcod eht fo emaN
 sreirrab erfi fo ecnatsiser lamreht eht fo noitalumis citsilibaborp eht rof tnemeganam ytniatrecnU

 rehsilbuP  gnireenignE fo loohcS

 tinU  gnireenignE liviC fo tnemtrapeD

 seireS seires noitacilbup ytisrevinU otlaA  SNOITATRESSID LAROTCOD  681 /  0202

 hcraeser fo dleiF  )Z030GNE( gnireenignE liviC

 ecnefed eht fo etaD  0202 rebmevoN 62

 )etad( detnarg ecnefed cilbup rof noissimreP  0202 rebotcO 41  egaugnaL  hsilgnE

 hpargonoM  noitatressid elcitrA  noitatressid yassE

 tcartsbA
  

,dohtem desab-tset lanoitnevnoc eht ,sloot gnireenigne fo ytilibaliava etauqedani eht ot euD  
-noitalumis gnitroppus a edivorp ot smia siseht sihT .sreirrab erfi fo ngised eht setaluger ,yltnerruc
eht rof krowemarf noitalumis a dna sledom laciremun poleved ot si evitcejbo ehT .hcaorppa desab  
ehT .snoitidnoc lairetam dna daol erfi niatrecnu rednu ecnatsiser lamreht reirrab erfi fo noitciderp  
,detalumis eb ot sreirrab suorbfi fo ruoivaheb lamreht eht fo ytixelpmoc eht era segnellahc niam  
,seitniatrecnu tupni eht rof gnitnuocca snoitalumis citsahcots eht fo tsoc lanoitatupmoc hgih eht  

 .noitubirtsid tuptuo eht ot ytniatrecnu ledom fo noitagaporp eht dna
  

suorbfi a fo ledom scisyhpitlum a tneserp I ,loow enots eht fo ruoivaheb lamreht eht tciderp oT  
na sA .refsnart negyxo dna noitisopmoced lacimehc ,refsnart taeh eht gnikcart fo elbapac ,reyal  

s'loow enots eht ot delpuoc scitenik noitcaer htiw ledom desab- noitcudnoc taeh esu I ,evitanretla  
rettam cinagro s'loow enots eht fo noitadixo cimrehtoxe eht taht wohs stluser ehT .tnetnoc cinagro  

fo tnuoma eht tub ,serutarepmet ecafrus edis-dloc eht ni skaep devresbo eht rof elbisnopser si  
fo ytilibaliavanu eht yb detimil era skaep erutarepmet eseht fo thgieh eht dna ygrene desaeler  

  .tnetnoc cinagro hgih htiw sloow enots ni negyxo
  

tneserp I ,noitaulave ecnatsiser reirrab erfi citsilibaborp eht fo nedrub lanoitatupmoc eht ecuder oT  
stluser ehT .noisserger )PG( ssecorP naissuaG dna )MSR( dohteM ecafruS esnopseR eht fo esu eht  
detceffa si refsnart taeh eht nehw sliaf noitamixorppa MSR desab-laimonylop elpmis eht taht wohs  

noitanibmoc lenrek eht erehw ,PG htiw tsartnoc ni si siht ,yletanutroF .snoitcaer cimrehtoxe yb  
 .esac a hcus rof neve elbissop noitamixorppa eht edam

  
snoitubirtsid tuptuo detciderp eht ot ytniatrecnu gnilledom fo noitagaporp eht deiduts I ,edisgnolA  
niahc a ,tset ecnatsiser lamreht loow enots ,tnemirepxe erfi tnemtrapmoc :selpmaxe suoirav gnisu  

eht gnitanimile fo dohtem elpmis a esoporp I .sisylana desab ledom-atem dna ,sledom owt fo  
ehT .noitubirtsid tuptuo detalumis yllacitsahcots eht morf ytniatrecnu gnilledom detagaporp  

noitcerroc ytniatrecnu eht fi stuptuo eht stcerroc ylevitceffe dohtem desoporp eht taht wohs stluser  
ehT .oiranecs sisylana citsahcots detagitsevni eht fo ytniatrecnu ledom eht stneserper llew cirtem  

ton si dohtem eht tub ,snoitubirtsid tupni mrofinu ro lamron esu yltsom selpmaxe detartsulli  
 .epyt noitubirtsid yna ot dnuob

 sdrowyeK  refsnart taeh ,noitagaporp ytniatrecnu ,sreirrab erfi

 )detnirp( NBSI  5-5310-46-259-879  )fdp( NBSI  2-6310-46-259-879

 )detnirp( NSSI  4394-9971  )fdp( NSSI  2494-9971

 rehsilbup fo noitacoL  iknisleH  gnitnirp fo noitacoL  iknisleH  raeY  0202

 segaP  851  nru :NBSI:NRU/fi.nru//:ptth  2-6310-46-259-879





Preface

During the final years of MSc studies, I showed career interest in numer-

ical simulations, which lead me to MSc. thesis in heat transfer modelling.

After that, I realized the need for uncertainty management in numerical

modelling. On a similar topic, an opportunity was open for fire barriers,

and it was a perfect time for me to begin this study.

I primarily thank Assoc. Prof. Simo Hostikka for this opportunity, and

for agreeing to be the supervisor and advisor. Your supportive role and

active project supervision were precious for the successful completion of

the study. I thank my pre-examiners, Asst. Prof. Ruben Van Coile and Dr

David Lange, for their valuable comments. I thank my co-authors, Aleksi

Rinta-Paavola and Hannu-Petteri Mattila, for their contribution to my

publication, and the preliminary studies of stone wool modelling. I thank

my work colleagues, Hadi Bordbar, Kaiyuan Li, Rahul Kallada Janardhan

and Teemu Isojärvi, it was great to be in this team. I thank, Topi Sikanen,

a project co-member from VTT, and I thank my friends, Roman and Saani,

for making this journey joyful.

Finally, I acknowledge the State Nuclear Waste Management Fund of

Finland in the scope of the SAFIR-programs, the Finnish Fire Protection

Fund (Palosuojelurahasto), Rakennustuotteiden laatu-säätiö, Nordic Nu-

clear Safety Research (NKS), and Paroc Oy for funding this work.

Deepak Paudel, Helsinki, November 3, 2020,

1



List of Publications

This thesis is based on the following publications. The publications are

reproduced with permission from the publishers.

I. Paudel, D. and Hostikka, S., 2019. Propagation of modelling uncer-

tainty in stochastic heat-transfer simulation using a chain of deter-

ministic models. International Journal for Uncertainty Quantifica-

tion, 9(1), pp.1-14.

https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018027275

II. Paudel, D. and Hostikka, S., 2019. Propagation of model uncertainty

in the stochastic simulations of a compartment fire. Fire Technology,

55(6), pp.2027-2054. https://doi.org/10.1007/s10694-019-00841-9

III. Paudel, D., Rinta-Paavola, A., Mattila, HP., and Hostikka, S., 2020.

Multiphysics modelling of stone wool fire resistance. Fire Technol-

ogy, pp.1-30. https://doi.org/10.1007/s10694-020-01050-5

IV. Paudel, D., and Hostikka, S., 2020. Meta-model based stochastic

simulation of fire barrier cold-side temperature. Fire Safety Journal,

pp.1-12. https://doi.org/10.1016/j.firesaf.2020.103175

2



Authors Contributions

Publication I: "Propagation of modelling uncertainty in stochas-

tic heat-transfer simulation using a chain of deterministic

models"

The author wrote the article, derived an uncertainty propagation

model, carried out stochastic analysis using a chain of numerical

models, and illustrated the uncertainty compensation technique. Co-

author supervised and advised the work, developed study concepts

and ideas, and commented on the article.

Publication II: "Propagation of model uncertainty in the stochas-

tic simulations of a compartment fire"

The author wrote the article, constructed compartment fire models,

further developed the uncertainty propagation model and validated

both models using experimental data. Co-author supervised and ad-

vised the work, developed study concepts and ideas, and commented

on the article.

Publication III: "Multiphysics modelling of stone wool fire re-

sistance"

Aleksi Rinta-Paavola and Hannu-Petteri Mattila were responsible

for conducting experiments and developing the preliminary material

and heat transfer models. The author wrote the article, constructed

the multiphysics model, further developed the heat-conduction model,

and carried out sensitivity analysis using the models. Hostikka,

S., supervised and advised the work, developed study concepts and

ideas, and commented on the article.

Publication IV: "Meta-model based stochastic simulation of

3



Authors Contributions

fire barrier cold-side temperature"

The author wrote the article, developed Multinomial matrix method

for RSM, constructed RSM and GP based meta-models for stochas-

tic stone-wool thermal resistance problem, and demonstrated the

meta-model uncertainty quantification and compensation method.

Co-author supervised and advised the work, developed study con-

cepts and ideas, and commented on the article.

4



Contents

Preface 1

Contents 5

1. Introduction 9

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . 9

1.2 Objective and scope of the thesis . . . . . . . . . . . . . . . . 12

2. Methods 15

2.1 Barrier thermal resistance . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Thermal resistance test . . . . . . . . . . . . . . . . . 15

2.1.2 Finite element model . . . . . . . . . . . . . . . . . . . 17

2.1.3 Stone wool model: Multiphysics . . . . . . . . . . . . . 18

2.1.4 Stone wool model: Heat conduction . . . . . . . . . . . 20

2.2 Uncertainty management . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Uncertainty types . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Combining model and parameter uncertainty . . . . . 23

2.2.3 Eliminating model uncertainty . . . . . . . . . . . . . 23

2.2.4 Quantifying sampling uncertainty . . . . . . . . . . . 24

2.3 Probabilistic simulation . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Monte Carlo (MC) analysis . . . . . . . . . . . . . . . 24

2.3.2 Meta-models . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Application: Stone wool thermal resistance . . . . . . 27

3. Results 30

3.1 Stone wool thermal resistance . . . . . . . . . . . . . . . . . . 30

3.1.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . 30

5



Contents

3.1.2 Qualitative analysis . . . . . . . . . . . . . . . . . . . 32

3.1.3 Sensitivity to mass transfer . . . . . . . . . . . . . . . 33

3.2 Uncertainty quantification and compensation . . . . . . . . . 35

3.2.1 Concrete wall thermal resistance . . . . . . . . . . . . 35

3.2.2 Stone wool thermal resistance . . . . . . . . . . . . . . 37

3.2.3 A chain of two models . . . . . . . . . . . . . . . . . . . 39

3.3 Meta-model based stochastic simulation . . . . . . . . . . . . 41

3.3.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Application: Stone wool thermal resistance . . . . . . 44

4. Discussion 46

5. Conclusions 50

6. Future work 52

Bibliography 55

6



Symbols

A pre-exponential factor

c heat capacity or constant term

df fibre diameter

D mass diffusion coefficient

D2 surface diffusion coefficient

Ea activation energy

e emissivity

GP Gaussian process

Δh enthalpy of combustion

h heat transfer coefficient

k conductivity or kernel function

K covariance

l stone wool thickness

n reaction order or no of parameters

m mean function or polynomial order

M number of test or training points

Mn multinomial matrix

N sample size

Nt time points

N normal distribution

P probability

T temperature

Th hot-side temperature

T∞ ambient temperature
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Symbols

Greek Letters

θ fibre mean angle

β extinction coefficient or power term

δ systematic bias

ε error

ρ density

σ Stephan−Boltzmann constant

σ standard deviation

φ porosity

ω̇ reaction rate

μ mean

Subscripts and superscripts

0 initial value

1 hot-side surface

2 cold-side surface

a air

f fibre

ij indexes

o organic content

p product

s solid

xx,s specific density

x̂x observed quantity

Ln linear

RQ rational quadratic

SE square exponential
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1. Introduction

1.1 Background and motivation

Fire barriers are physical systems designed to delay the spreading of fire

and smoke. In buildings, the examples of fire barrier are fire-rated doors

and walls [1]. In industrial facilities, a fire barrier can also serve other

purposes than the compartmentation. An example is the defence-in-depth

concrete layers around a nuclear reactor for the prevention of the release

of radioactive substance [2]. In other situations, a fire barrier can be a

local protective layer between a likely fire source and the target to be

protected [3].

Fire accidents in the early part of the 20th century resulted in an ex-

cessive loss of life and property, which lead the development of fire safety

building codes. The safety codes primarily regulate the design of barriers,

based on the standard test carried out according to Annexe EN 1363-1 [4].

The design criteria are the insulation, integrity and load-carrying capac-

ity. In other words, the barrier should prevent ignition on the unexposed

side, spreading of smoke/fire to another compartment and structural fail-

ure during the time of event [5]. The test procedure consists of measuring

the cold-side temperature of the sample exposed to a combustion chamber

depicting ISO-834 standard fire [6]. The thermal actions predicted from

such test, however, may not always correspond to the structural behaviour

in the real fire event [7, 8].

The concept of simulation-based methods existed in the past, and over

the period of last few decades the computing resources and simulation

tools for fire safety engineering evolved significantly [9, 10, 11, 12, 13,

9
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14, 15, 16, 17, 18, 39], which supported in enabling the simulation-based

approach as a reliable means of evaluating the fire barrier performance

[19, 20]. In practice, however, the safety measures are still dominated by

the test-based approach because of the limited number of peer-reviewed

case studies, lack of methods for the management of the prediction un-

certainties, and lack of clarity on the position of probabilistic methods

[21, 22, 23].

This study concentrates on the fulfilment of one of the design criteria

and demonstrates the simulation-based approach of evaluating fire bar-

rier thermal resistance. The focused design criterion is that the barrier

should prevent ignition on the unexposed side. I elaborate on the chal-

lenges faced for such simulations using the following captions:

I. Barrier thermal resistance

The commonly used barrier materials are steel, concrete, gypsum,

and stone-wool. Homogeneous structures like steel and concrete’s

thermal and material properties are already well established, and

the response of such materials is straightforwardly solved using nu-

merical methods such as the Finite Element Method (FEM) [25, 26].

For a porous structure such as gypsum and stone-wools, however,

the heat transfer occurs in all three modes: conduction, convection

and radiation, and the structure contains reactive material that de-

composes at high temperature and triggers mass transfer within the

structure [27, 28]. Furthermore, the availability of oxygen within

the porous region affects the rate of the chemical reactions and the

overall heating behaviour of the structure [1, 29]. The research ques-

tion is:

How to predict the high-temperature heating behaviour of fibrous

structure such as stone-wool?

II. Probabilistic simulation

The barrier thermal resistance evaluation is not merely a determin-

istic problem, due to the uncertainties associated with the fire con-

ditions and barrier material properties, which vary between produc-

tion batches and, especially, between different products and brands

[30, 31, 32, 33]. The uncertainties are handled through sensitivity

studies [35, 34], the use of safety factors such as Best Estimate Plus

10
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Uncertainty (BEPU) [36] or probabilistic analysis [30]. The former

two methods have been found practical for qualitative study and the

known uncertainty types [37, 38, 39]. This work aims at quantita-

tive evaluations of fire barrier resistance, for which the most reliable

method is the probabilistic analysis [30]. The probabilistic analysis

furthermore needs to be stochastic because the evaluation function

is an iterative numerical procedure such as FEM, for which, an ex-

plicit derivation of the probabilistic outputs is not possible [40, 41].

The surrogate models or the meta-models are simplified and approx-

imate functional representations of the actual deterministic models,

commonly used to ease the computational burden stochastic simu-

lations [42, 43, 44]. The previous works lack the study of the appli-

cability of the meta-modelling techniques for barrier thermal resis-

tance evaluation. The research question is:

What are the popular meta-modelling methods applicable to the bar-

rier thermal resistance evaluation?

III. Uncertainty propagation

The modelling uncertainty is the measure of quantity by which the

predicted output differs from the experimentally measured value. In

fire safety engineering, the common practice is to compare the exper-

iments with model simulations and to quantify the model uncertain-

ties using two components, i.e., systematic bias, δ, and the relative

second central moments of random errors, σ̃ε [45, 46]. The former

one is the measure of average prediction shift from the measured

value, and the latter one is the standard deviation of the random er-

rors between the predicted and measured values. In a single deter-

ministic analysis, δ and σε are sufficient to postulate the prediction

uncertainty [45]. In probabilistic simulations, the output is not a sin-

gle value but distribution, and one cannot know in advance how the

model uncertainty propagates [47, 48]. The methods necessary for

the management of such uncertainty propagation are lacking [41].

Also, the use of meta-models means additional uncertainty, i.e., one

may obtain the converged solution using meta-models but not nec-

essarily the same as the one that corresponds to the actual deter-

ministic model. Studies presenting the use of meta-models provide

11
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the information of likelihood fraction by which the meta-model and

actual model prediction differ [49, 50, 51, 52, 53, 54, 55, 56]. Never-

theless, such information is not sufficient to explain the discrepancy

in terms of output distribution essential for accurate probabilistic

prediction. The research question is:

How to quantify and compensate the model uncertainty in the prob-

abilistic simulations?

1.2 Objective and scope of the thesis

This study supports the simulation-based alternatives to fire barrier de-

sign. The objective is to develop an application framework which func-

tions as a roadmap for the probabilistic simulation of fire barrier resis-

tance under uncertain fire and material conditions. I elaborate on it us-

ing the following distinguished captions reflecting the research questions

raised in the earlier section.

I. Modelling fibrous barrier thermal resistance

There have been several attempts to model the heat transfer of a

fibrous structure. Lee [57] investigated the effect of fibre orienta-

tion on the intra-fibre radiative heat transfer. Andersen and Dyr-

boel [58] predicted the radiative fluxes using Planck mean prop-

erties and compared them to the one obtained using spectral and

flux-weighted properties. Veiseh and Hakkaki-Fard [59] estimated

the thermal conductivity by numerically solving the steady-state

radiative and conductive heat transfer, and compared it to the ex-

perimentally measured values. Some studies included the effect of

organic material degradation on the overall heat transfer and sug-

gested that the accurate prediction of stone wool heating behaviour

would require the modelling of oxygen controlled decomposition re-

actions [60, 29, 1].

The objective is to develop a multiphysics model capable of solving

both heat and mass transfer such that the oxygen controlled degra-

dation rate would be applicable for the accurate prediction of stone

wool heating behaviour. The models will be validated using the ex-

12
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perimental data, and in comparison to classical heat conduction -

based model with optimized decomposition kinetics.

II. Probabilistic simulation using meta-model

Two commonly used meta-modelling methods that have also found

applications in fire safety engineering are Gaussian Processes (GP)

Regression or Kriging and Response Surface Method (RSM). The

GP Regression is a non-parametric approach of training a selected

kernel function over the known input and output data, and opti-

mizing the coefficients using the Bayesian inference [61, 62, 63].

This method has become popular in the field of machine learning,

and there exist various open software platforms for GP modelling

[64, 65, 66, 67]. On the other hand, the RSM is a simple statisti-

cal approach of expressing a scalar surface using the polynomials of

inputs, and obtaining the coefficients of the polynomials by satisfy-

ing the surface with deterministic values [68, 69]. The method was

first introduced in 1951 to determine the optimal conditions in the

chemical investigation, it later evolved for time-variant non-linear

problems, and recently it is also used for the approximation of FEM

solutions [70, 71, 49, 72, 73]

The objective is to test both RSM and GP methods for the proba-

bilistic analysis of barrier thermal resistance. As a random input,

I will use a range of time-temperature curves representing various

compartment fire scenarios.

III. Uncertainty management

There are various deterministic or stochastic methods to study un-

certainty propagation [38]. In the former type, output uncertainty,

as a function of input uncertainty, is the expression of Taylor chains,

Hermite polynomials or basis functions [74, 75]. It is popular for

linear problems with a relatively small range of uncertainties. Some

examples are the generalized Polynomial Chaos (gPC), Gaussian clo-

sure, and Equivalent linearization [76, 77]. In the latter type, the

limit state function runs for several iterations. The method is suit-

able when the derivatives of the limit state function are unworkable.

Some examples are Monte-Carlo (MC), Latin Hypercube Sampling

(LHS) and Fourier Amplitude Sensitivity Test (FAST) [78, 79, 37].

13
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The objective is to study the propagation of model uncertainty for

barrier thermal resistance problem, using the MC simulation, and

to develop a methodology for the quantification and compensation

of the propagated uncertainty. The methodology will be tested and

validated for various barrier thermal resistance modelling scenarios.

14



2. Methods

In this chapter, I review the methods used in the present work. Sec-

tion 2.1 presents stone wool fire resistance test, Finite Element Method

(FEM) solution of the 1D parabolic diffusion equation, and FEM based

multiphysics model and Fire Dynamics Simulator (FDS) heat conduction

model simulating the fire resistance test. Section 2.2 presents a statisti-

cal method that I developed to quantify and compensate for the modelling

uncertainty of stochastic simulations. Section 2.3 presents the stochas-

tic analysis scenario for stone wool fire resistance test, and cost-efficient

methods (RSM, GP) applied for the stochastic simulation.

2.1 Barrier thermal resistance

2.1.1 Thermal resistance test

The fire resistance test was carried out by Paroc Oy (now Owens Corning,

Finland) [80]. Figure 2.1 shows the test set up, in which, a sample of size

60×60 cm having thickness l is separated from the combustion chamber

using 1 mm thin metal sheet. The combustion chamber temperature, Th,

follows the ISO 834 standard fire curve, and the initial cold-side temper-

ature is equal to that of ambient, T∞,

Th(t) = T∞ + 345log10(8t+ 1). (2.1)

Altogether, 30 tests were performed with varying wool density, thick-

ness and organic content. Table 2.1 lists the material and geometrical
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Figure 2.1. Test geometry for small scale fire resistance test, EN 1363-1. a) Sample size
and thermocouple locations, b) Cross-section, c) Cold-side temperature mea-
surements.

properties of the investigated stone wool types.

Table 2.1. Material and geometrical properties of the investigated stone wools.

Wool Insulation Wool density, Loss On Intact Fibre mean Fibre mean Extinction
No. thickness, l(mm) ρw(kgm−3) Ignition (LOI) (%) fibre(%) thickness, df (μm) angle, θ (◦) coefficient, β(m−1)

1 61.9 101.4 1.5 63.2 4.7 3.6 2866
2 62.4 100.5 1.3 61.8 5.1 14.8 2620
3 60 97.2 1.4 60.1 4.6 19.3 2492
4 63.2 95.3 1.2 59.2 4.4 41.7 1936
5 61.7 100.7 1.2 61.1 4.6 46.4 1921
6 60.5 100.2 1.1 57.5 4.9 17.2 2441
7 60 99.6 1.1 62 3.7 29.9 2598
8 61.8 90.2 1.3 66.5 3.3 6.5 2979
9 61.1 69.8 1.3 62.2 3.3 6.5 2156
10 61.7 79.3 1.5 61.4 3.4 6.5 2394
11 60.1 90.3 1.3 56.1 4 4.9 2389
12 60.1 90.3 1.4 61.5 3.9 4.2 2639
13 61.4 100 1.4 62 4.4 4.3 2836
14 60.3 100.9 1.5 61.3 3.7 5.1 2978
15 61 138.8 2.1 64.6 3.8 1.5 4274
16 41.2 107.2 1.3 63.7 3.8 3 3278
17 72.7 78.9 1.6 65.7 3.3 6.5 2566
18 61.3 141.2 1.9 59.7 3.4 1.3 4154
19 61.9 147.7 1.5 59 5.3 1.9 3739
20 52 38.3 0.7 62.2 4.7 0.8 1076
21 60.5 147.3 1.3 56.4 3.2 1.5 4184
22 75.7 66.3 6.9 61.5 4 2.4 1819
23 75.2 71.1 9 62 4.1 1.9 1908
24 76.2 51.4 9.8 64.7 4.4 1 1395
25 71.5 63.9 1.1 58.1 4.3 2.9 1719
26 72.8 75.1 1.2 57.5 4.6 2.9 1953
27 60.4 85 1.3 61.5 4 3.8 2469
28 75 68.5 4.7 61.1 4.3 1.1 1869
29 75.7 48.7 6.7 61.6 4 1.5 1341
30 75.3 48.2 4.8 63.1 4.5 3.95 1334

The cold side surface temperatures were recorded using several K-type

thermocouples. The right figure shows the installation of thermocouples.

The installation complies with the European standard, EN 1363-1.
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2.1.2 Finite element model

The temperature along the thickness, x, of barrier is solved using one-

dimensional parabolic heat diffusion equation,

ρc
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
. (2.2)

The boundary conditions of Eq. 2.2 consist of a linear convective and a

non-linear radiative heat-fluxes,

−k
∂T

∂x

∣∣∣∣
x=0

= −h1(Th − T1)− eσ(T 4
h − T 4

1 ), (2.3)

−k
∂T

∂x

∣∣∣∣
x=l

= −h2(T2 − T∞)− eσ(T 4
2 − T 4

∞). (2.4)

A FEM solution to a discrete system, Figure 2.2, using 1st order shape

Figure 2.2. One dimensional finite discretization of the heat diffusion domain. α repre-
sents the wall material parameters.

function and explicit Euler time scheme is [81]

T1..N,t = [C]−1 [(C−ΔtK)T1..N,t−1 −ΔtF] , (2.5)

where K, C and F are conductance matrix, capacitance matrix and force

vector given as

k

Δl

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 · · · 0 0

−1 2 · · · 0 0
...

... . . . ...
...

0 0 · · · 2 −1

0 0 · · · −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
ρcpΔl

6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 · · · 0 0

1 4 · · · 0 0
...

... . . . ...
...

0 0 · · · 4 1

0 0 · · · 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1,t

0
...

0

F2,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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respectively, where F1,t = −h(Tg − T1,t−Δt) − eσ(T 4
g − T 4

1,t−Δt) and F2,t =

−h(TN,t−Δt − T∞)− eσ(T 4
N,t−Δt − T 4∞).

2.1.3 Stone wool model: Multiphysics

In this section, I present the main features of the multiphysics model. The

details are provided in [82].

The stone wool with density ρw consists of fibres (ρf), organic material

(ρo), products of the decomposed organic matter (ρp), and air (ρa),

ρw = ρf + ρo + ρa + ρp. (2.6)

xls l

T∞Th

ρ = ρsteel ρ = ρw

Figure 2.3. Multiphysics model computational set up. ls and l are the steel plate and
stone wool thicknesses, respectively. The gap in the stone wool indicates that
the lengths are not in scale (l >> ls).

The mass transfer in the stone wool domain triggers due to the decompo-

sition of the organic matter [28]. As the information of the exact chemical

composition and reaction steps are not available, I assume an approxi-

mate single step scheme consisting of two lumped gas species, air and

products,

C8H6O2 + 5.5(

Air︷ ︸︸ ︷
O2 + 3.76N2) →

Products︷ ︸︸ ︷
5CO2 + 20.7N2 + 3H2O+3C, (2.7)

where, 1g of organic matter when reacts with 5.63g of air produces 6.45g

gas products and 0.27g char.

The mass transfer is assumed to be purely diffusive. The solved govern-

ing equations and their initial conditions are the continuity equation for

organic mass, diffusion equation for the products mass, and the diffusion

equation for the enthalpy in the slab:

∂ρo

∂t
= −ω̇ρw, 0 ≤ x ≤ l, ρo,0 = LOI · ρw, (2.8)

∂ρp

∂t
=

∂

∂x

(
D
∂ρp

∂x

)
+ ω̇ρwf, 0 ≤ x ≤ l, ρp,0 = 0, (2.9)
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ρc
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+ ω̇ρwΔh, −ls ≤ x ≤ l, T0 = T∞. (2.10)

The factor (f = 6.45) is according to the decomposition scheme Eq. 2.7.

The organic matter heat of combustion (Δh) is 25 MJkg−1. The rate of the

oxidation reaction, ω̇, is assumed to follow an Arrhenius form

ω̇ = Ae(−
Ea
RT )

(
ρo

ρw

)n

X
nO2

O2
. (2.11)

Here, XO2
is the oxygen volume fraction calculated using the volume pro-

portions of the air and products,

XO2
= 0.21Xa, Xa = 1−Xp, Xp =

ρpρa,s

ρp,s
, (2.12)

where 0.21 is the oxygen volume fraction in air.

Regarding the boundary conditions, I assume that the gas diffusion is

blocked on the hot-side, depends upon the surface diffusion coefficient (D2)

on the cold side, and the radiative and convective heat fluxes affect on both

sides.

The stone wool bulk properties depend on T or ρo, or both, and are calcu-

lated by assuming the medium between the fibres to be air. The bulk heat

capacity is the weighted fraction of fibre, organic matter, and air. The bulk

thermal conductivity is according to Karamanos approach [60], in which,

the equivalent expression includes conductive and radiative part. The

conductive part includes the parallel and the perpendicular components

that depend upon porosity (φ). The radiative part is calculated using the

refractive index value n = 1.2 , Stephan-Boltzmann constant (σ), and ex-

tinction coefficient (β).

The heat transfer coefficient on the hot-side is h1 = 18.5 Wm−2K−1, and

on the cold-side (h2), it is qualitatively close to the natural convection of

a vertical wall. The gas diffusivity (D) is calculated using Chapman and

Enskog equation [83]. The gas diffusion coefficient on the cold-side (D2) is

assumed to be 10−3 order of h2.

The chemical decomposition parameters (A, Ea, n and no2) are optimized

by finding a minimum error in the cold-side temperatures. For this, a

Monte-Carlo (MC) simulation was carried out using the sample range

listed in Table 2.2. The search criterion is the mean square error, the
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sampling method is Latin Hypercube Sampling (LHS), and the sample

size is 1000. The fifth column shows the optimized values.

Table 2.2. The sample spaces and the optimum values for the chemical decomposition
parameters.

Parameters Distribution Lower Upper Optimum Unit
Frequency factor, A Uniform 5.0E2 1.5E3 1.07E3 s−1

Activation energy, E Uniform 5.0E4 1.5E5 9.30E4 Jmol−1

Reaction order, n Uniform 0.4 1.0 0.7 -
Reaction order, no2 Uniform 0.4 0.8 0.6 -

The numerical implementation is using the Finite Element Method (FEM)

and a custom Python script. The finite elements are linear and uniform of

size 1 mm. The time discretization follows the explicit Euler method. The

time step size is adaptive to the maximum temperature rise of 1 ◦C. The

solver adopts a size between a millisecond to about a hundred seconds.

The numerical convergence was tested by comparing the results with

reduced element size (0.5 mm). The maximum change in the cold-side

temperature was less than 0.3%. The predictions were also benchmarked

using COMSOL Multiphysics. The maximum difference in temperature

prediction was � 3%.

2.1.4 Stone wool model: Heat conduction

A separate model was constructed using the one-dimensional heat con-

duction model of Fire Dynamics Simulator (FDS), a commonly used tool

for fire-driven flows and pyrolysis of structures [10]. The model solves

parabolic heat diffusion equation coupled to the Arrhenius equation,

ρc
∂T (x, t)

∂t
=

∂

∂x

(
k
∂T (x, t)

∂x

)
+ ω̇ρwΔh, ω̇ = Ae(−

Ea
RT )

(
ρo

ρw

)n

. (2.13)

The stone wool bulk properties are defined to change only to temperature.

The chemical decomposition parameters are optimized concerning the or-

ganic material mass %.

Figure 2.4 shows the optimization steps. First, MC simulations were

carried out for N=1000 samples of A, Ea and n, generated using the LHS

technique and the range listed in Table 2.2. Then, comparing the least

square error in the cold-side temperatures, the optimal A, Ea and n val-
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Figure 2.4. Steps for the optimization of the chemical decomposition parameters: A, Ea
and n.

ues were selected for each wool types. The optimized values were plotted

against LOI, density and thickness. The values did not correlate with

density or thickness. Similarly, the Ea did not correlate with any of the

properties. A and n, however, did correlate to LOI as the second-order

polynomial and logarithmic expansion,

A = a0 + a1LOI + a2LOI2, and n = b0 + b1log(LOI), (2.14)

respectively. Then the second round MC simulation was carried out to

optimize the coefficients, a0, a1, a2, b0, b1, and Ea.

The correlations are based on the independently optimized values of the

different types of stone wools, hence, should be applicable for other mate-

rial composition than the ones listed in Table 2.1.

2.2 Uncertainty management

2.2.1 Uncertainty types

Parameter Uncertainty

In probabilistic simulations, the inputs and outputs are not single val-

ues but range represented using distributions. The parameters in a dis-

tributed sense are the parameter uncertainty.

The expression of uncertainty in output, T = f(X), f being continuous

and one time differentiable function, can be derived by Taylor expanding
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T about its mean and utilizing the definition of standard deviation in T

[84]. The first order approximation is,

σ2
T = JTΣXJ, (2.15)

where σ2
T represents variance in T , ΣX is variance-covariance matrix of

the input vector, X, and J = (J1, J2, J3...), Ji = ∂f/∂Xi. For complex and

non-linear problems, derivation of Eq 2.15 is mathematically challenging,

therefore, stochastic methods are adopted.

Modelling uncertainty

The modelling uncertainty is the inaccuracy of the models in perfectly

reflecting the reality. It is quantified using the systematic bias, δ, and the

second central moment of random errors, σε, by comparing the simulated,

T̂ , and true distribution, T [85],

δ =
μT̂

μT
, and σε =

[
1

N − 1

N∑
i=1

(
T̂i − δ · Ti

)2
] 1

2

, (2.16)

where T̂i and Ti are the ith realization of the simulated and the true quan-

tity respectively and N is the sample size.

Sampling Uncertainty

The dependence of probabilistic outputs upon the sample size and sam-

pling method is sampling uncertainty. Figure 2.5 illustrates such uncer-

tainty. The simulated distribution T̂ , correct distribution, T , and the 95

percent fractiles values, z95, are presented for sample sizes N=100, 1000

and 10000. Higher sample size well represents the distribution.

Figure 2.5. The distributions of simulated values, T̂ , true values, T , and 95 percent frac-
tiles for three different sample sizes N=100, 1000 and 10000.
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2.2.2 Combining model and parameter uncertainty

The output for a simulation model, T = f(X), with systematic bias, δ, and

random error, ε, is

T̂ = δ · T + ε, (2.17)

where T̂ is the simulated quantity and T is the true quantity. Here, the T

and ε are independent and the mean of ε is zero. For such conditions, the

mean and variance of the observed quantity can be written as [86],

μT̂ = δ · μT and σ2
T̂
= δ2 · σ2

T + σ2
ε , (2.18)

where μT and σ2
T are the mean and variance of the true quantity and σ2

ε

is the variance of the random error.

2.2.3 Eliminating model uncertainty

If the prior information of δ and σε is available, one can correct the simu-

lated output towards the true one. The expression of corrected output is

[86]

T =
1

δ

⎡⎣μT̂ +
(
T̂ − μT̂

)√
1−

(
σε
σT̂

)2
⎤⎦ , (2.19)

where T is the corrected realization corresponding to the observed real-

ization, T̂ .

Figure 2.6. Upper: The true, T , simulated, T̂ , and corrected distributions.

I illustrate the correction method using two arbitrarily chosen examples

[87]. One example using Gaussian shape, and another example using an

irregular shape. First, I calculate the correction parameters, 2.16. Then

I used the parameters to obtain the true shape from the simulated one.

23



Methods

Figure 2.6 shows the true, simulated and corrected distributions, which

indicate that the corrected distribution matches well with the true distri-

bution.

2.2.4 Quantifying sampling uncertainty

The sampling uncertainty can be quantified as ± bounds from the cor-

rected value [82]. For example, if the probability inferred from the cor-

rected distribution is p, then the probability is p ± Δp, where Δp is the

sampling uncertainty. In LHS, sampling uncertainty estimation needs

the convergence analysis. Figure 2.7 shows the result of the convergence

analysis carried out for the distributions presented in Figure 2.5. The

corrected z95 and the sampling uncertainty with N = 1000, are 61 and 2

respectively. Thus, the 95 per cent fractiles value is 61±2.

Figure 2.7. Left: The 95 percent fractiles value, z95, of the simulated, T̂ , and corrected,
T , distributions for different sample size, N. Right: The difference of z95(N)
and the converged value, z95(N = 10000).

2.3 Probabilistic simulation

2.3.1 Monte Carlo (MC) analysis

The chosen method for sampling and probabilistic simulation is LHS and

MC, respectively. For LHS, I divide the cumulative density function (CDF)

of each variable into N partitions. Then I randomly choose one value from

each partition and obtain a list of N values for each variable. Then I

select one value from each list and form an input sample. I then repeat it

N times and get N input samples.

LHS produces converged solutions with comparatively small sample size,
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hence is a computationally cost-effective method for the MC simulations

[78, 79]. For fire barrier resistance evaluations, the distribution shapes

of input uncertainties are not well established. Therefore, I mostly use

Normal or Uniform shapes that are popular in risk analysis.

2.3.2 Meta-models

Response Surface Model

The common approach in RSM is to express inputs, X = x1, x2, ..., xn, and

output, T̂ (X), using quadratic (second order) polynomial function,

T̂ (X) = a+

n∑
i=1

bixi +

n∑
i=1

cix
2
i +

n−1∑
i=1

n∑
j=i+1

dijxixj , (2.20)

and to estimate the coefficients, a, bi, ci, dij , by satisfying Eq.2.20 with

known design points.

I present a generic expression suitable for an arbitrary order, m, and

arbitrary number of input parameters, n,

T̂ (X, t) =

M∑
i=1

ai,t

n∏
j=1

x
Mnij

j , M =

∏n+m
i=1+m i∏n
i=1 i

, (2.21)

where, t represents time, ai,t, i = 1, 2, ...,M , are the coefficients and MnM×n

is a multinomial matrix containing the powers terms of the polynomials

obtained using Algorithm 1, See Appendix.

For n = 2 and m = 2, the multinomial matrix and the response surface

would be,

MnM×n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 1

0 2

1 0

1 1

2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, M =

4× 3

2× 1
= 6 and,

T̂ (x1, x2, t) = a1,tx
0
1x

0
2 + a2,tx

0
1x

1
2 + a3,tx

0
1x

2
2 + a4,tx

1
1x

0
2 + a5,tx

1
1x

1
2 + a6,tx

2
1x

0
2

= a1,t + a2,tx2 + a3,tx
2
2 + a4,tx1 + a5,tx1x2 + a6,tx

2
1. (2.22)
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At each time instance, the RSM coefficients are assumed to be indepen-

dent of other time instances, and therefore separately estimated.

Gaussian Processes Model

In GP Regression, the prediction is based on the GP of mean, m(x), and

the covariance, k(x,x′), of the collected functions, f(x), that are consistent

to the known inputs, x = [x1, ...,xM ], and outputs, f = [f(x1), ..., f(xM )] =

[y1, ...,yM ],

m(x) = E [f(x)] ,

k(x,x′) = E
[
(f(x)−m(x))(f(x′)−m(x′))T

]
,

f(x) ∼ GP (
m(x), k(x,x′)

)
(2.23)

where f(x) and f(x′) are jointly Gaussian, and k is positive definite also

known as the kernel function [62, 61, 63].

The most commonly used kernels are Linear(Ln), Rational Quadratic(RQ)

and Square Exponential(SE) also known as Gaussian or radial basis func-

tion. Ln is the product of inputs, kLn(x1,x2) = x1 · x2. RQ is the mixture

of many SE functions [63],

kRQ(x1,x2) = α

(
1 + exp

||x1 − x2||2
β2l2

)−β

, (2.24)

where α and l are the variance and the length scale. The RQ becomes

identical to SE when the power term, β → ∞. The kernel is selected in

such a way that its shape is close to the deterministic solution that I aim

to approximate.

Including the unknown outputs, f∗ = [f(x1∗), ..., f(xM∗ )], corresponding to

x∗ = [x1∗, ...,xM∗ ], the Gaussian process, i.e., Eq 2.23, takes the form,⎡⎣ f

f∗

⎤⎦ ∼ N
⎛⎝⎧⎨⎩m(x)

m(x∗)

⎫⎬⎭ ,

⎡⎣Kff KT
f∗f

Kf∗f Kf∗f∗

⎤⎦⎞⎠ , (2.25)

where Kf∗f = K(X∗, X) denotes M×M matrix of covariances evaluated at

all pairs of known and unknown points, and similarly for Kff and Kf∗f∗ .

The posterior distribution is then the joint distribution of the functions
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that is consistent with the known inputs and outputs,

P (f∗|f) ∼ N
(
Kf∗fK

−1
ff f , Kf∗f∗ −Kf∗fK

−1
ff Kf∗f

)
. (2.26)

For the time-dependent problem, a single deterministic case can be ex-

trapolated as several study cases. For this, the time points need to be

stacked as an additional input vector. For example, with n input param-

eters, M data points, and Nt time points, the input and output can be

stacked as,

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...

xM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, xi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xi1 xi2 xi3 · · · xin t1

xi1 xi2 xi3 · · · xin t2

xi1 xi2 xi3 · · · xin t3
...

...
...

...
...

xi1 xi2 xi3 ... xin tNt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1

y2

y3

...

yM

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, yi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi1

yi2

yi3
...

yiNt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

where t1, t2, · · · , tNt represent times and i = 1, 2, · · · ,M represent data

points. The number of study points are now M ×Nt.

2.3.3 Application: Stone wool thermal resistance

I estimate stone wool layer cold side temperature for a range of time-

temperature curves depicting various compartment fire scenarios [88].

Figure 2.8 shows the time-temperature curves, the location of the stone

Figure 2.8. Upper left: A parametric time-temperature curve representing various com-
partment fire scenarios. Upper right: Location of the stone wool protective
layer. Lower: A fire compartment with enclosure size: 1.6a × a × 3.0 m3 and
opening size: 1.2a× h m2.
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wool layer, and the geometry of the compartment. The floor and ceiling

are concrete, and the walls are Gypsum board. Table 2.3 lists the ma-

terial properties. The curves represent office building compartment fire

Table 2.3. Material properties and thickness of the compartment boundaries.

Item Material Thickness Density Specific heat
l(m) ρ (kgm−3) cp(Jkg−1K−1)

Walls Gypsum board 0.12 710 1050
Ceiling/Floor Concrete 0.3 2280 1040

according to Annex A of EN 1991-1-2:2000.

The random inputs are the width, a, height of the opening, h, fire load

density, qf,t, the thermal diffusivity of walls, αw, and the thermal diffusiv-

ity of ceiling or floor, αf. The samples size is N=1000, and the sampling

method is LHS. Table 2.4 lists their mean and standard deviation or the

lower and upper values.

Table 2.4. The input parameter distributions for the fire scenarios.

Input parameters Distribution Mean Standard deviation Lower Upper Unit
Room width, a Uniform - - 3 7 m
Opening height, h Uniform - - 1 2 m
Fire load density, qf,d Uniform - - 200 700 MJm−2

Ceiling/Floor thermal diffusivity, αf Normal 1E-6 1E-7 - - m2s−1

Wall thermal diffusivity, αw Normal 7.6E-7 7.6E-8 - - m2s−1

Figure 2.9 shows the steps of stochastic simulation. For the first 2M=100

sampling points, I carried out deterministic FEM simulations. Using the

deterministic points, I constructed the meta-models and quantified the

meta-modelling uncertainty. Then I carried out the remaining MC iter-

ations using the meta-model, and finally, corrected the predicted realiza-

tions using Eq 2.19.

Figure 2.9. Schematic diagram showing the steps of the stochastic analysis.
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I studied three wool types ( 7, 22 and 30) listed in Tables 2.1. The se-

lected wools property differs notably from one another: the amount of

organic content is low in wool 7, and the wools differ from one another in

terms of density.
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3. Results

3.1 Stone wool thermal resistance

3.1.1 Validation

Cold-side temperatures

The fire resistance tests were simulated and the cold-side temperatures

were predicted using both multiphysics and heat conduction model. Fig-

Figure 3.1. The scatter plots of the measured and predicted cold-side temperatures.

ure 3.1 shows the scatter plots of the peak values and the temperatures

at 30 and 60 minutes obtained from all the tests. The scatter values are

aligned along the diagonal, and the models have similar performance for
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the prediction of the temperature at a specific time. The peak tempera-

tures predicted by the multiphysics model are comparatively close to the

diagonal, and this is because of accurate modelling of the release of the

reaction heat.

Time to critical temperatures

To evaluate the models’ capability to predict fire resistance times, the

times of the cold side rising above an arbitrary critical temperature TCr

were determined from the time-temperature curves. Figure 3.2 shows

Figure 3.2. The scatter plots of the times at which the cold-side rises by 100, 140 and 180◦C.

the scatter plots of the times at which the cold side temperature rises by

100, 140 and 180 ◦C. The plots show that the values for the heat conduc-

tion and multiphysics models are slightly above and below the diagonal,

respectively. The heat conduction model predictions are closer to the di-

agonal. It is interesting to note here that the time predictions are more

accurate with the heat conduction model despite its poor performance for

the prediction of the peak temperature.

Modelling Uncertainty

Figure 3.3 shows the modelling uncertainty, δ ± σ̃ε, for temperature and

time predictions, calculated using the scatter values presented in Figure

3.1 and 3.2 respectively. N=30 for all the listed outputs except ”time to

T∞+140◦C” and ”time to T∞+180◦C”. For these quantities, N=28 and N=8

respectively, see Figure 3.2. The last two are the average values of the out-
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puts. The plot indicates that the multiphysics model over-predicts tem-

Figure 3.3. Modelling uncertainty, δ ± σ̃ε, in temperature and time prediction.

peratures and under-predicts times, whereas the heat conduction model

over-predicts times. In average, the temperature predictions between the

model is negligibly biased, while the time predictions are notably biased.

3.1.2 Qualitative analysis

Using the multiphysics model, the field variables (temperature, organic

mass %, and oxygen availability) were estimated along the thickness of

the stone wools. The plots in Figure 3.4 show the profiles of these quanti-

ties for wools 7, 22 and 30, at times 10, 20 and 40 min. The temperature

plots (first row) show how the cold side temperatures start to grow after

10 min. At 20 min, the cold side temperature gradients of the wools 7

and 22 become similar to the hot side gradients and exceed the hot size

gradients for wool 30. Low- density -wools have a higher thermal con-

ductivity at high temperatures than the high-density wool, and thus the

exothermic heat is transferred easier.

The second row shows the organic matter mass concentration. The plots

indicate that the oxidative degradation propagates from the hotter-side to

the colder-side. For wool 22, some portion of the organic matter remains

unreacted on the hotter side because there is no oxygen available (lower

middle plot) for oxidative decomposition, due to the high generation of

product gas (high organic content sample). For wools 7 and 30, the organic

matter decomposition is uninterrupted. Some degree of oxygen limitation

is observed in these wools as well (lower, left and right plot) but that does
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not last for long because the product gas generation is low (low organic

content sample).

The third row shows the oxygen availability. The y-axis value 1 means

that the porous media is fully air, and 0 means that the air is not avail-

able. The plots indicate that for the wool 7 (left plot), the product gas

never covers the entire porous region, i.e., the oxygen is always available.

The time-wise change in the curves is most significant for wool 30 (mid-

dle and right plots). This means the faster air recovery for a wool with

comparatively smaller organic mass %.

Figure 3.4. Temperatures, organic content mass %, and oxygen availability along with
the thickness of wool 7, 22 and 30, and at 10, 20 and 40 minutes.

3.1.3 Sensitivity to mass transfer

I estimated the cold-side temperatures for a different ratio of gas diffu-

sion and heat transfer coefficient. The plots in Figure 3.5 show the re-

sults for D2
h2

= 2E − 4, 6E − 4, ..., 1.8E − 3, which indicate that the curve

peak decreases with an increase in the gas diffusion, for wool 22 and 30.

Thus, for the high organic content stone wool, the high fire resistivity
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(low-temperature peak) can be achieved by reducing the gas transfer.

Figure 3.5. Cold-side temperature sensitivity to the ratio of gas diffusion and heat trans-
fer coefficient, D2

h2
.

Figure 3.6. Sensitivity to open or closed boundary. Left: Cold-side temperatures. Middle:
Organic mass % at the end of test. Right: Visual inspection of the decompo-
sition zone at the end of test.

The significance of the oxygen transfer on temperature histories was

further confirmed by carrying out two additional experiments with stone

wool containing 4.8% organic matter. In the first test, the steel plate was

placed only on the hot side, as before. In the second test, steel plates

were placed on both sides. The measured and predicted (multiphysics

model) cold side temperatures are shown in the left plot of Figure 3.6.

The temperature peak is not observed for the wool with closed boundaries.

In both cases, the predicted temperatures are mostly in good agreement

with the measured temperatures. However, after the exothermic peak in

the open-boundary case, the nearly steady-state temperature is slightly

under-predicted by the model. The middle plot in Figure 3.6 shows the

predicted organic content at the end of the tests. It indicates that for the

open boundary wool, the decomposition occurs throughout the thickness,

but reaches only up to ∼ 20 mm for the closed one. This prediction resem-

bles the decomposition zone seen in the photograph of the samples taken

after dissecting them into half. The photograph shows also that the thick-
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ness of the open boundary -wool (left sample) has decreased more than

that of the closed one (right sample).

3.2 Uncertainty quantification and compensation

3.2.1 Concrete wall thermal resistance

I tested the uncertainty quantification and compensation method for con-

crete wall temperature estimation, using the predicted and measured

data of a compartment fire experiment [89]. The experiment consisted of

20 tests, varying in fire size, location, and opening door width, see Table

3.1. The predictions were using FDS [10].

Figure 3.7. Left: Schematic diagram representing the fire experiment. Right: The se-
lected pool locations.

Figure 3.8. Left: The two moments of the predicted and measured wall temperature.
Right: Model uncertainty, δ ± σε.

The left plot in Figure 3.8 compares the measured and the predicted

wall temperature in terms of their first two moments. The right plot vi-

sualizes the model uncertainty, δ ± σ̃ε, at each time. The plots show that

the measured and the predicted values are close to each other. In average,
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Table 3.1. Fire test series: Fire size, fire location and opening door width.

Pool Pool Pool Duration Door
Test No. location diameter(m) Area (m2) (min) width(m)

Test 0 2 0.71 0.4 4:00 2.4
Test 1 2 0.71 0.4 4:00 2.4
Test 2 2 0.71 0.4 8:27 2.4
Test 3 2 0.88 0.6 7:45 2.4
Test 4 2 0.88 0.6 7:55 2.4
Test 5 2 0.88 0.6 8:14 2.4
Test 6 3 0.88 0.6 7:55 2.4
Test 7 1 0.88 0.6 8:00 2.4
Test 8 1 0.88 0.6 7:45 2.4
Test 9 4 0.88 0.6 7:18 2.4
Test 11 2 1.17 1.0 5:15 2.4
Test 12 2 1.17 1.0 5:07 2.4
Test 13 2 1.17 1.0 5:21 2.4
Test 15 1 1.17 1.0 5:15 2.4
Test 16 1 1.17 1.0 5:20 1.2
Test 17 2 1.17 1.0 5:20 1.2
Test 18 2 1.17 1.0 5:29 1.2
Test 19 2 1.60 2.0 5:30 2.4
Test 20 2 1.60 2.0 9:30 2.4

the wall temperatures are slightly over predicted. Most importantly, I see

that the model uncertainties at different time instances are not identical.

Figure 3.9. Upper: The predicted, measured and corrected wall temperatures. Lower:
Probability that the wall crosses a given threshold in a given time.

The upper plots in Figure 3.9 shows the predicted, measured and the

corrected wall temperatures at different times for each of the tests. The

temperatures were corrected using the average values of model uncer-

tainty parameters (δ = 1.15, σ̃ε = 0.16). The plots show that the prediction

and measurement are apart, and the corrected value is usually closer to

the measurement. The lower plots show the failure probabilities at differ-
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ent times for different threshold temperatures. The predicted probabili-

ties are higher than the measured ones, and the corrected probability val-

ues are closer to the measured ones. The results indicate that the model

uncertainty values can be generalized for the correction of temperature

and failure probability. Here the uncertainty parameters are from the

same validation campaign used for the testing of the method. In the val-

idation guides, however, the uncertainty parameters are calculated from

the result of numerous fire experiment, hence represent more generalized

values.

3.2.2 Stone wool thermal resistance

I tested the uncertainty compensation for the stochastic simulation sce-

nario of predicting stone wool cold side temperature. The simulation sce-

nario is the same as the one presented in section 2.3.3 with slight modi-

fication in the random inputs, see Table 3.2, where I add a new variable,

i.e., Wool type, to select a type of stone wool material from 30 different

varieties listed in Table 2.1.

Table 3.2. The input parameter distributions for the fire scenarios.

Input parameters Distribution Mean Standard deviation Lower Upper Unit
Room width, a Uniform - - 2 7 m
Opening height, h Uniform - - 1 2.4 m
Fire load density, qf,d Uniform - - 200 900 MJm−2

Wall thermal diffusivity, αw Normal 1E-6 1E-7 - - m2s−1

Ceiling/Floor thermal diffusivity, αf Normal 7.6E-7 7.6E-8 - - m2s−1

Wool type Discrete - - 1 30

Figure 3.10. The cold-side temperature solution space obtained from the stochastic anal-
ysis. The dotted curves represent φ=0.1, 0.5 and 0.9 fractile value of the
distribution.

Figure 3.10 shows the predicted cold-side temperature solution space.
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The dotted line represents the Φ=0.1, 0.5 and 0.9 fractile value of the

distribution. The plots indicate that the bell-shaped region, in the case

of the multiphysics model, covers a relatively wide time range( ∼ 10 to

∼ 40 min). With the heat conduction model, the oxidative reactions start

later, but after the initiation, the reactions take place faster, covering a

narrower range of time ending by ∼30 min.

Figure 3.11 compares the Cumulative Density Functions (CDF) for peak

temperature, temperatures at 30 and 60 min, and times for three differ-

ent threshold temperatures corresponding to the temperature increase by

100, 140 and 180◦C. The time CDF curves for the 140 and 180 degree tem-

perature increase end below unity because these threshold temperatures

were reached in only a fraction of the simulated fires. These distribu-

tions were calculated by first collecting the statistics of the cases where

the criterion was met, and then normalizing the curve with the share of

those cases. The plots show that there can be large discrepancies in the

time distributions despite the small discrepancy in the peak temperature

distributions. For most output quantities, the differences between model

distributions comply with the test uncertainty metrics in Figure 3.3. The

only exception is "Time to T∞ + 180◦C", for which, the discrepancy in the

distribution is larger than the discrepancy in the biases shown in Figure

3.3. The reason is probably related to the small size of the data behind

the validation metrics.

Figure 3.11. The cumulative density functions for temperature and time prediction. The
dotted and continuous line respectively represent the multiphysics and heat
conduction models.

38



Results

Next, I apply the uncertainty compensation model, Eq. 2.19, and the

average value of δ and σ̃ε, Figure 3.3, to calculate the corrected outputs.

After correcting all values, the new distributions were created (Figure

3.12). Based on the visual evaluation, I can say that the best improve-

ment is seen in T∞ + 140◦C. The results indicate that the uncertainty

compensation is most effective for the outputs which are quantitatively

but not qualitatively different, and for which the difference of the pre-

dicted statistics complies with the validation metrics (Figure 3.3).

Figure 3.12. The corrected cumulative density functions for temperature and time pre-
diction. The dotted and continuous line respectively represent the multi-
physics and heat conduction models.

3.2.3 A chain of two models

I investigated the uncertainty propagation for a modelling scenario in-

volving two numerical models in a chain: The gas model output Th serves

as an input to the wall model from which I observe the output as the cold-

side temperature, T2 = fW(Th, α), where fW is a conduction model solving

the heat diffusion equation for the vector of material properties, α, listed

in Table 3.3.

For this, I carry out MC analysis of fw, for three different types of bound-

ary condition and six different types of distributions of the gas model out-

put Th and the wall model inputs α. Table 3.3 lists the input range and

Table 3.4 lists the study cases. The model, T2 = fW(Th, α), was assumed to

be an ideal model that produces an error-free output. Model errors were
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Th

Figure 3.13. The modeling chain.

then imposed on Th and T2 as bias and random error. For both models,

the relative bias factor was δ = 1.1 and the random errors were sam-

pled from a normal distribution with a relative second central moment

σ̃ε ≡ σε/μ = 0.1.

Table 3.3. Parameters of the distributions presenting stochastic uncertainties.

Input parameters Mean,μ Standard deviation, σ Lower value Upper value Unit
Gas Temperature,Th 1200 100 780 1580 [◦C]
Thermal conductivity, k 1 0.1 0.6 1.4 [Wm−1K−1]
Specific Heat Capacity, cp 2200 200 1400 2900 [JKg−1K−1]
Density, ρ 900 90 530 1260 [Kgm−3]
Heat transfer coefficient, h 9 0.7 6 12 [Wm−2k−1]
Emissivity, e 0.7 0.07 0.4 1 [Wm−2k−1]

Table 3.4. Study cases.

S.N. Symbol Heat-flux Gas temperature Wall parameters
1 conv.u.s convective uniform single
2 conv.u.u convective uniform uniform
3 conv.u.n convective uniform normal
4 conv.n.s convective normal single
5 conv.n.u convective normal uniform
6 conv.n.n convective normal normal
7 rad.u.s radiative uniform single
8 rad.u.u radiative uniform uniform
9 rad.u.n radiative uniform normal
10 rad.n.s radiative normal single
11 rad.n.u radiative normal uniform
12 rad.n.n radiative normal normal
13 both.u.s both uniform single
14 both.u.u both uniform uniform
15 both.u.n both uniform normal
16 both.n.s both normal single
17 both.n.u both normal uniform
18 both.n.n both normal normal

After the MC simulation, I calculate the propagated modelling-errors by
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comparing the error-free and the simulated distributions. The propagated

modelling-errors (left plot, Figure 3.14) indicate that the error propaga-

tion is independent of the type of input parameter distribution. They are,

however, sensitive to the type of heat flux. In case of the convective heat

flux, the propagated bias δ{G,W} is simply a product of individual biases,

but with radiation, the bias values are lower, as the nonlinear heat loss

compensates for the increased surface temperature.

0.9
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Figure 3.14. Left: The propagated model-error in cold-side surface temperature estima-
tion. Middle: An example estimation of the error-free distribution from the
simulated one. Right: Observed and corrected standard deviation normal-
ized by the error-free value.

The middle plot shows an example of the observed, error-free, and the

corrected distribution. The plot indicates that the corrected distribution

match to the error-free distribution. The right plot shows the observed

and corrected standard deviations normalized by the error-free value. The

ratio improves from above 1.2 to nearly 1 in all study cases. The results

indicate that the uncertainty compensation method is applicable also for

a chain of numerical models, and it requires the quantified information of

the propagated model errors.

3.3 Meta-model based stochastic simulation

3.3.1 Validation

As a proof of concept to meta-model based stochastic simulation and un-

certainty correction, I carry out MC simulation (Figure 3.15), compare

the stochastic performance of actual FEM model and the meta-model,

and test if error compensation method indeed reduces the discrepancy be-

tween two different types of predictions. I do this using a simple example

of the thermal resistance evaluation (Section 2.1.2) of Gypsum wall pre-
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sented in Figure 2.8. The MC simulation, N = 1000, is using both FEM

and the meta-models, and the meta-model training and testing are using

2M number of FEM realizations. Figure 3.16 compares the temperatures

corresponding to the instantaneous cumulative distribution function val-

ues Φ=0.1,0.5 and 0.9. The plots show that, in general, the meta-model

predictions are in good agreement with the FEM model except the 1st and

3rd order RSM, which deviate from FEM results in the early/late stage

of the fire. Best results are obtained with 2nd order RSM and GP model

having highest number of training points, M = 50.

Figure 3.15. Steps for meta-model based stochastic analysis, a proof of concept.

Figure 3.16. Comparison of cold-side temperatures in terms of 10, 50 and 90% fractiles
values of the predicted distributions. Upper plots: GP vs FEM. Lower plots:
RSM vs FEM.

Figure 3.17 compares the probability of rising above T∞ + 140 = 160◦C,

obtained using four different methods of computation. The data labelled
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Figure 3.17. Convergence plot for the probability that the cold-side temperature rise
above 160◦C. Upper: FEM vs GP model. Lower: RSM vs FEM.

’MC, FEM’, ’MC, GP’, and ’MC, RSM’ correspond to the stochastic results

with FEM and the GP and RSM surrogate models, respectively. The num-

ber of MC iterations, N , was varied between a case-dependent minimum

and 1e3. The ’TP, FEM’ represents the probability value calculated us-

ing the deterministic training and test points, i.e., the fraction of training

and test cases crossing the threshold in reference to the total number of

training and test cases. The plots indicate that the probabilities obtained

from the MC simulations converge when N increases close to 1e3. With

N = 100, the uncertainty of the probability estimates is about 30 %. Over-

all, the converged probabilities from the meta-model MC are close to that

of FEM except for the 1st order RSM. Interestingly, the probabilities cor-

responding to the 3rd order RSM, which performed poorly in the accuracy

tests above, are only slightly above the correct values. This is because the

peak-temperature probability density functions match exactly at 160◦C.

The GP model with M=20 provides the most accurate estimate of the prob-

abilities. The results show that both the RSM or GP models can be useful

in improving the probability estimation.

Next, I take a closer look at two meta-models that performed poorly

in the above analysis. Figure 3.18 left and middle plot show the cold-

side temperatures that, at each time point, correspond to the value Φ =

0.05 of the cumulative density function, i.e. 5% fractile, of the GP model
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Figure 3.18. Comparison of the predicted and corrected outputs. Left and Middle Plot:
The cold-side temperatures with cumulative density, Φ = 0.05. Right Plot:
The probability of crossing the threshold temperature.

with M=10 and 3rd order RSM. Both GP and RSM results are successfully

corrected towards the FEM result, although the correction is much more

drastic for the 3rd order RSM. The right plot shows the uncorrected and

corrected probabilities of exceeding the threshold temperature for the 1st

order RSM. Corrected probabilities are closer to the FEM probabilities,

but a significant (≈ 25 %) over-prediction in probability remains.

3.3.2 Application: Stone wool thermal resistance

Next, I carry out the meta-model based MC simulation presented in Sec-

tion 2.3.3. Figure 3.19 compares the 10 %, 50% and 90 % (Φ = 0.1, 0.5

and 0.9) fractiles of the cold-side temperature distributions from the test

points, calculated with FEM and GP (M = 50). Qualitatively, the tem-

7 22 30

Figure 3.19. Testing of the GP model: Meta-model prediction vs deterministic FEM real-
ization.

peratures behind Wool 7 are low and the exothermic peaks are not visi-

ble. This is due to high density, which slows down the heat transfer, and

low organic content, which leads to low exothermic heating. The highest

temperatures are obtained for Wool 22, due to its high organic content.

The plots indicate that the GP meta-model predicts accurately the rising

phase of the temperature but not falling. Fortunately, this is sufficient
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for the reliability estimation because the probability of crossing a thresh-

old temperature depends only on how the temperature rises to the peak

value.

7 22 30

7 22 30

Figure 3.20. Upper: The cold-side temperatures corresponding to the cumulative density,
Φ=0.1,..,0.9. Lower: The probability that the cold-side temperature rises
above T∞ + 140 = 160◦C.

Figure 3.20 shows the distributions of the cold-side temperatures in

terms of cumulative density, Φ, for uncorrected and corrected GP results.

The black dashed lines represent the threshold temperature, T∞ + 140 =

160◦C, for which the probabilities are shown in the lower plots. The

red and black colored dots represent the probabilities calculated using

the predicted and corrected MC realizations, respectively. The blue star-

shaped marker represents the probability calculated using FEM at the

training points. The plot indicates that the probability estimated using

N=100 (sum of test and training points) would be somewhere between

0.05 and 0.3 for Wool 7, 0.4 and 0.8 for Wool 22 and 0.4 and 0.7 for Wool

30. Using the metamodel I can achieve converged, predicted or corrected

probabilities, which would be 0.16 and 0.195 for Wool 7, 0.605 and 0.63

for Wool 22, and, 0.505 and 0.53 for Wool 30.
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4. Discussion

The modelling uncertainties of heat conduction and multiphysics models

show that the stone wool temperature predictions are less uncertain with

the heat conduction model. The results defy the general understanding

that the inclusion of a higher number of mechanisms improves the predic-

tion. They comply with the findings of Bal and Rein [90], that, sometimes,

mechanism simplification improves model predictions. In this study, how-

ever, solving more mechanism helps in explaining the effect of the porous

media oxygen transfer on the overall heating behaviour of stone wools.

Additionally, including more mechanisms improves model sensitivity to

the change in material properties and boundary conditions [82]. In real

applications, the choice of modelling method also depends on the compu-

tational costs, and in this regards, simple pyrolysis model can be more

time-efficient than solving the entire porous media mass transfer physics.

The factor that determines the oxygen unavailability in the stone wool

is the amount of organic matter. Livkiss et al. [29] observed that ignoring

the dependency of degradation reactions on the oxygen availability leads

to inaccurate temperature estimation for high density and high organic

content stone wools. They concluded that the low porosity is the cause

of the oxygen unavailability in the high-density stone wools. Considering

the stone wools studied in this work the porosity is high (≥0.95) regard-

less of the stone wool density (38 to 147 kg·m-3). The high density, thus,

does not necessarily affect the oxygen transfer. One example is Wool 7

(100 kg·m-1), for which the temperature profiles are unchanged for dif-

ferent values of gas diffusion coefficients, see Figure 3.6. The confusion

arises because the amount of organic matter may be the same despite the

difference in either density or LOI. For example, the amount of organic
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matter in 100 kg·m-3 stone wool with 5% LOI is same as in 50 k·gm-3 wool

with 10% LOI. It seems that the lack of oxygen transfer is seen either

in the samples with high LOI or the high-density samples with sufficient

LOI. In the current study, the lack of oxygen transfer occurred for the

stone wools with organic content above 2.3 kg·m-3.

The study tests the uncertainty quantification and compensation method

using four different modelling scenarios: in Section 3.2.1 for the concrete

wall temperature in 20 different fire tests using the uncertainty metric

of the same validation set; in Section 3.2.3 for the outputs of a chain of

numerical models using the uncertainty metrics obtained from the MC

simulation of the same chain of models; in Section 3.2.2 for the tempera-

ture estimation of a randomly chosen stone wool material subjected to an

uncertain fire condition using the uncertainty metrics of separate valida-

tion tests consisting of a single fire condition and in Section 3.3.1 for the

meta-model stochastic prediction using the uncertainty metrics of meta-

model training and test data. The method proved to be effective in all

the cases except the one in section 2.3.3, where the correction parameters

(Figure 3.3) do not fully match with the discrepancies in the stochastic

outputs (Figure 3.16). In other words, the validation cases are not generic

enough. The stone wool properties (Table 2.1) do not vary systematically,

and the fire conditions are limited to only ISO 834 standard fire. For a

highly non-linear problem as the heat transfer of porous, reactive mate-

rial with many dependent variables (organic mass %, density, thickness,

fibre orientation, intact fibre %), the 30 validation tests were too few for

the generalization the model uncertainty.

The provision for the simulation-based fire barrier resistance evalua-

tion would be that the prediction uncertainties are systematically quan-

tified, which requires the management of different types of uncertainties

resulting from the using of the simulation tools. The study in Figure 4.1

presents the overall procedure for uncertainty management. The mod-

elling uncertainty is quantified in terms of δ and σ̃ε, and the outputs are

corrected using the quantified parameters and Eq 2.19. The δ and σ̃ε can

be from the studied validation campaign or from the validation guides

consisting of several similar validation campaigns [46]. The quantifica-

tion of sampling uncertainty is performed using the convergence analysis

of the distribution moments, as illustrated in Section 2.2.1. Unlike the
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modelling uncertainty, the sampling uncertainty is not compensated but

is quantified as ± bound of the predicted output.

Figure 4.1. Schematic diagram showing the procedure of uncertainty management in
stochastic simulations.

For a time consuming thermal resistance model or when the fire load

condition needs expensive numerical methods such as Computational Fluid

Dynamics (CFD), the MC simulation can be performed using the meta-

models. Figure 4.2 shows the overall procedure of uncertainty manage-

ment for such cases. The first step is to obtain the training and test points

using the deterministic simulations. Then the next step is to correct the

training and test points using the known uncertainty metrics, δ1 and σε1.

The meta-model construction is using the corrected deterministic points.

The meta-modelling uncertainty metrics, δ2 and σε2, are quantified during

the testing of the meta-models. Finally, the MC simulation is carried out

using the meta-models, and the predicted realizations are corrected using

δ2 and σε2. The sampling convergence analysis is performed using both

corrected and uncorrected meta-model realizations.

Sampling Congergence analysis

Figure 4.2. Schematic diagram showing the procedure of uncertainty management in the
meta-model based stochastic analysis.

The scheme presented in Figure 4.2 uses a stochastic process for the full
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probabilistic distribution, meta-modelling to reduce the computational

cost, and the uncertainty model to compensate for the model uncertain-

ties. It is thus useful to study the robustness of conservative methods such

as the Design of Experiments (DOE), BEPU, and analytical solutions that

are generally inaccurate for the local optima, and in which the model un-

certainty management is not justifiable due to the lack of full distributed

solutions.

The presented approach, in addition to uncertainty estimation, can be

used for product optimization, which helps in reducing the number of tests

required for product certification. Also, such an approach can certify the

products whose properties, compared to that of the tested ones, vary under

the limit specified in the European standard for extended application, EN

15254-3:2019. For example, the thickness can vary by up to 50%. The

possible hurdles for such simulation-based certification, however, are the

lack of detailed information on barrier material properties, demanding

user skills for schemes presented in Figure 4.1, or 4.2, and lack of test

data for the generalization of validation metrics.

From the viewpoint of risk analysis applications, the procedures, shown

in Figures 4.1 and 4.2, should be implemented into a simulation platform,

where the steps exempt to user routine-work are automatically solved in

the background. The existing examples of such simulation platforms are

the Probabilistic Fire Simulator (PFS) [91] and AAMKS [92], where the

deterministic simulations, the sampling methods, and the supercomput-

ing setups automatically run in the background. Sometimes, however, the

problem scenario may not perfectly fit in the structure of such dedicated

platforms, and the choice is up to the user whether to implement custom

versions for Figure 4.1 or 4.2, or entirely new simulation platform.

Although I present this model to support fire barrier resistance evalu-

ation, it can be applied in other studies where there is a need for uncer-

tainty management, and more effectively in the analysis scenario where

the model uncertainty adequately propagates to the output distribution.

Regarding the distribution shape representing the uncertainty, I also il-

lustrate this method using an example of irregular distribution (Section

2.2.3). The application, therefore, does not have to be limited to only Nor-

mal or Uniform type of distribution.
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5. Conclusions

In this thesis, I studied the challenges of the simulation-based evalua-

tion of fire barrier thermal resistance. The challenges are the numerical

modelling of heating inside fibrous layer, the high computational cost due

to the input uncertainty-originated requirement of large-scale stochastic

simulations, and the propagation of model uncertainty to the stochasti-

cally simulated output uncertainty. For the simulation of heating inside

fibrous barriers, I presented a multiphysics approach of modelling stone

wool heating, and alternative heat conduction -based approach coupled

to the LOI-dependent reaction kinetics. The capability of the models to

predict the cold-side temperature of different stone wools was studied by

validating against experimental data and by sensitivity and stochastic

analyses.

The multiphysics model shows that the stone wool temperature depends

upon the availability of oxygen. In the stone wools with high organic con-

tent, the oxygen entrainment, the oxidative degradation and the exother-

mic release of heat are suspended due to the high rate of product gas

production. Both types of models were found to be capable of reproducing

experimentally observed bell-shaped, exothermic peaks in the case of high

organic content -stone wools and continuous temperature profiles other-

wise, with ±20% uncertainty. The good performance of the multiphysics

model was a consequence of including the essential physical phenomena,

but for the heat conduction model, the good performance required kinetic

coefficients to be correlated with LOI is possibly limiting its generality.

The models predict the expected response to variation in material com-

position and hot-side boundary conditions. Considering the use of un-

shielded and sandwich-type stone wool products in fire protection, I ob-
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served that the peak cold-side temperature of the high organic content

-stone wool could be effectively reduced by preventing the flow on the cold

side. A thin layer of non-permeable material, thus, can be used to block

oxygen transfer and to increase the fire resistivity of high organic content

stone wools.

As an alternative to the high computational cost of the probabilistic sim-

ulation, I investigated the use of RSM and GP meta-models. The results

show that both RSM and GP meta-models enable us to achieve converged

stochastic predictions of the output distributions and failure probabilities,

even with the limited number of deterministic data points. The simple

polynomial based RSM was found to fail when the heat-transfer was af-

fected by exothermic reactions of the stone wool. Fortunately, this is in

contrast with GP, where the kernel combination made the approximation

possible even for such a case.

For the uncertainty management, I formulated a simple method of dis-

tinguishing the model uncertainty from the stochastically simulated out-

put distribution. I then illustrated it in different analysis scenarios: con-

crete wall thermal resistance, stone wool thermal resistance, a chain of

two models, and meta-modelling. The results show that the method effec-

tively corrects the simulated output towards more accurate value when

the uncertainty correction metric well represents the model uncertainty of

the investigated analysis scenario. The modelling uncertainties reported

in the context of the model validation, thus, can be used for correcting the

output distributions resulting from parameter (input) uncertainty.

The findings serve as a proof of concept for the simulation-based reliabil-

ity analysis of fire barriers and hence substantially support the communi-

cation between the fire safety community and the authorities. In particu-

lar, it supports the performance-based fire barrier design regulation, the

implementation of which has been limited due to the lack of clarity of the

roles of probabilistic analysis and uncertainty management methods.
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6. Future work

The modelling accuracy for the stone wool thermal resistance can be fur-

ther improved. The current models assume the stone-wool to be a contin-

uum domain and solve the problem using the equivalent definition of the

thermal properties. The alternative methods for the accurate modelling

of the thermal properties have not been explored. Also, the porous me-

dia mass transfer is solved using only the mass diffusion physics. One

may consider further development of the model including the momentum

conservation and the Darcy laws as illustrated by Weber [93] for the Gyp-

sum board. Additionally, to accurately predict the final cold side temper-

ature, I had to prescribe the reduction of the stone wool thickness. The

thickness shrinkage is likely due to the high-temperature lead structural

deformation of the fibres. Future modelling efforts may consider the fi-

bre mechanical response to a high temperature, to improve temperature

predictions.

The modelling is also limited to completely dry samples of stone wool. In

real-life applications, however, the insulating properties are also affected

by humidity [94]. The long term material exposure to ambient increases

the structure moisture content and alter the thermal conductivity [95].

Additionally, the moisture also weakens the mechanical strength of fibres

and alter the overall load-bearing capacity of the structure. For the wider

application of modelling, future studies may consider humidity for both

insulating property and load-bearing capacity.

In regards to uncertainty correction, the proposed method is effective

with fully complying correction parameters. For stone wool temperature

prediction, the modelling uncertainty metric needs generalization. This

requires new tests with systematically varied fire conditions and material
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properties.

On the cost-effective stochastic analysis methods, the current study lim-

its its scope to two (RSM and GP) of the popular methods. One may

test the performance of other alternatives such as Neural Network (NN),

Bayesian optimization technique, Markov Chain Monte Carlo (MCMC).
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Appendix: Multinomial matrix
calculation

Algorithm 1 creates Multinomial Matrix, Mn, which represents the power

terms of Response Surface Method (RSM) model presented in Section

2.3.2.

Algorithm 1 Multinomial Matrix
1: m ← Polynomial order
2: n ← No of variables
3: M ← ((m+1)*(m+2)*(m+3)..(m+n))/(1*2*3..n)
4: [Mn] ← M rows and n columns
5: {Mn1..m+1,1} ← {0, 1, ..,m}T
6: {C} ← {1, 2, ..,m+ 1}
7: for im = 2,3,...,n do
8: {S2} ← {Cm+1, Cm+1, ..., Cm+1}(m+1)×1

9: {S1} ← Cm+1 − {0, C1 − 1, C2 − 1, .., Cm − 1}
10: {C} ← Cumulative Sum{C}
11: {D2} ← Cm+1 − {0, C1, C2, .., Cm}
12: {D1} ← {D22, D23, .., D2m+1, 1}
13: for in = 1,2,..,m+1 do
14:

[
MnD1in,..,D2in, 3,..,im

] ← [
MnS1in,..,S2in, 2,..,ip−1

]
15: {MnD1in,..,D2in, 2} ← {MnS1in,..,S2in, 1} − {MnS1in, 1}
16: {MnD1in,..,D2in, 1} ← {MnS1in,1,MnS1in,1, ..,MnS1in,1}(D2in−D1in+1)×1
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