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ABSTRACT

We introduce a new class of distributions called generalized com-
plex elliptically symmetric distributions. Several distributions com-
monly used in the literature, for example, the multivariate complex
normal and Cauchy and the generalized complex normal distri-
bution, are prominent members of this class. The treatment cov-
ers both proper and improper random vectors and goes beyond
second-order concepts in defining the distribution model. Some
properties of these distributions are studied and illustrative exam-
ples of their applications in multichannel signal processing are pre-
sented such as tests for circularity.

1. INTRODUCTION

In many signal processing applications, e.g. in spectral analysis,
communications and sensor array processing, the multivariate data
is conveniently modeled as being complex. The complex valued
representation is compact and simpler in notations and for alge-
braic manipulations. It is convenient for calculations by computer
and has intuitive representation in problems with complex data.
Consequently there is a need for complex multivariate probability
models.

The most widely used probability model for a complex ran-
dom vectors (r.v.’s) is the complex normal (CN) distribution. The
probability density function (p.d.f) of CN distribution takes the
form familiar from the real case. Consequently, many of the prop-
erties of real normal r.v.’s have a direct analogue in the complex
case. This is achieved by imposing an additional restriction on the
correlation structure (circularity) of the complex normal random
vector. Dropping this restriction yields the generalized complex
normal (GCN) distribution introduced in [1]. In this paper, we in-
troduce a class of distributions called generalized complex ellipti-
cally symmetric distributions (GCES) which include the GCN dis-
tribution and complex elliptically symmetric (CES) distributions
[2] as special cases.

2. PRELIMINARIES

A complex matrix
���������
	�����
���

, where
����	������
���

and����� ���
is the imaginary unit, is termed symmetric if

�� !���
and hermitian if

��"#�$�
. Superscripts % , & and ' denote conju-

gate, transpose and conjugate transpose, respectively. We denote
by (*)�+-,/.�0 the set of all positive definite symmetric .213. real
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matrices, (*)546,/.�0 the set of all complex positive definite hermi-
tian .�17. matrices, 89+-,/.�0 the set of all complex symmetric .717.
matrices, and : the identity matrix.

A complex random variable (r.va.) ; ��<=�>�@? is comprised
of pair of real r.va.’s

<
and

?
, and its distribution is defined as the

distribution of the composite real r.v. A � , <B��? 0  :

C ,/DE0 ��F ,G;=HIDE0KJMLGN�OF , < HQP �R? HQS�0 � C ,UT�0 �
where T � ,UP � S�0  and D � P ��� S . Thus,

C ,/DE0 is simply a differ-
ent algebraic form of

C ,UTK0 . Similarly, a complex r.v. V ��WX�Y�@Z
of
 �

is a pair of real r.v.’s
W

and
Z

of
� �

, and its distribu-
tion is identified with the distribution of the composite real r.v.A � , W  �[Z  0  of

��\��
. The p.d.f. ]^,U_E0 and the characteristic

function (c.f.) `Y,U_a0 of V are defined as ]^,U_E0 � ]^,UTK0 and

`Y,U_a0 � `Y,UT�0 ��bdc egfihkjl� T  Anmpo ��bdc egfihkjl� Re ,U_ " Vq0rmpo
where ]^,UTK0 and `Y,UTK0 are the p.d.f. and c.f. of A , respectively,
and T � ,Us  q��t� 0  and _ � s �u�@t . Re and Im stands for real
and imaginary parts, respectively.

The mean of V is defined as
b ,vVq0 ��b , W 0 �d�
b , Z 0 and the

complex covariance between two complex r.v.’s V�w and V \ as

xgy{z ,vV|w � V \ 0 JMLGN�}bdc j V9w �ub ,vV|wl0rm j V \ �~b ,vV \ 0rm " o
and the complex pseudo-covariance [3] as

h xMy�z ,vV w � V \ 0*JgLGN��bdc j V w �ub ,vV w 0rm j V \ �ub ,vV \ 0rm  o/�
Then we define � � xMy�z ,vV�0 JgLGN� xMy�z ,vV � V�0 and � �#h xMy�z ,vV�0 JML/N�h xMy�z ,vV � V�0 , and call them, respectively, the covariance matrix
and the pseudo-covariance matrix of a r.v. V . Pseudo-covariance
matrix is termed as relation matrix in [4] and complementary co-
variance matrix in [5].

Partition V ��W}���@Z��� �
as V � ,vV " w � V "\ 0 " withV|w �=W w �2�@Z w �Bk� and V \ �$W \ ���@Z \ �n�� (� �3��� . ),

so
W�� , W  w �rW  \ 0  and

Z�� , Z  w ��Z  \ 0  . The conditional
distribution of V w given V \ , F ,vV w�� V \ 0 , is simply defined as the
distribution

F , W w �rZ w � W \ ��Z \ 0 and the conditional mean is de-
fined as

b ,vV w{� V \ 0 ��b , W w�� W \ ��Z \ 0 ���
b , Z wp� W \ ��Z \ 0��
3. GENERALIZED COMPLEX ELLIPTICAL

DISTRIBUTIONS

Definition 1 A r.v. V �OW��Q�@Z��$��
is said to have a gen-

eralized complex elliptically symmetric (GCES) distribution iffA � , W  ��Z  0  ����\�� has a real elliptically symmetric (RES)
distribution.



Throughout the paper we write � ��� . . As the r.v. A in
Definition 1 has a � -variate RES distribution, its p.d.f. is [6]:

]^,UT�0 ������� 	�
ie�� ,��0�� w�� \�� j ,UT ��� 0  �� w ,UT ��� 0rm (1)

where
��� c �a��� 0�� c �i��� 0 is a fixed function, called the den-

sity generator, independent of the parameters
��� � �

and  �(*)�+-,��B0 . The functional form of
�

uniquely distinguishes dif-
ferent RES distributions from another. The normalizing constant� ��� 	

equals ,�� �! "� � w � 	 0 � w , where � � is the area of unit sphere
surface in

� �
,

� �$� �$# � � \q, � \ 0 and
 ��� 	��&%(')+* � � , * \ 0-, * �

Naturally,
� ��� 	

could be absorbed into the function
�

, but with this
notation

�
can be independent of � . We note that any non-negative

function
�

can be a density generator iff
 .� � w � 	0/ � . We will

use A2143 � , ���  � � 0 to denote that A has a � -variate RES dis-
tribution with parameter values

�
and  and density generator

�
.

Note also that, if desired, RES distributions can be defined more
generally without the existence of a density function. See [6] for
an excellent review of RES distributions.

We decompose
�

and  according to A � , W  ��Z  0  , so���65 �87�:9$; and  �65  7�7  7 9 9 7  9�9<; �
where

� 7 �B���
and  7�7 �  9�9d�B�9�@��� . From these partitions, we

build a vector = of
��

and matrices > and ? of
K�@���

as follows= �@� 7 ���A�:9a� (2)> �  7�7 �  9�9|�2� ,� 9 7 �  7 9 0 � (3)? �  7�7 �  9�9 �2� ,� 9 79�  7 9 0�� (4)

Note that .�19. complex matrices > and ? carry all the information
about ��1B� real matrix  since 7�7 � w\ Re ,�> � ?|0 �  7 95� w\ Im , � > � ?|0 � 9�9 � w\ Re ,�> � ?|0 �  9 7Y� w\ Im ,�> � ?|0��
We call the parameters = , > and ? , the location vector, the scatter
matrix and the pseudo-scatter matrix, respectively. Using the fact
that  � ( )�+ ,��n0 and simple matrix algebra, one finds that> � ( )54�,/.�0 and ? � 89+�,/.�0��

We now construct the p.d.f. ]^,U_E0 of V by expressing p.d.f.]^,UT�0 of A as a function of _ � s �u�@t and the introduced com-
plex valued parameters = , > and ? . The following construction is
similar to [1, 4]. WriteC_ � 5 __i% ; � C= � 5 ==|% ; and

C � 5 > ??�%D>|% ; � (5)

where _ � s �X�@t~�n � . Then it is easy to verify that

,UT �E� 0 �&F , C_ � C=90 and  �&F C F " �
where T � ,Us  ��t  0  andF � �� 5 : :�q� : � : ; and

F � w � 5 : � :: �q� : ; (6)

are � 1G� complex matrices. First note that
C is hermitian. FromC �&F � w  F � " we can infer that the eigenvalues of

C are twice
the eigenvalues of  � (*)�+ ,��n0 and thus positive. Thereby,

C �(*)546,��B0 . With these notations, the quadratic form in (1) may be
expressed as

,UT ��� 0   � w ,UT ��� 0 � , C_ � C=�0 " C � w , C_ � C=|0 �
and the determinant in (1) becomes
ie�� ,��0 ��
�e�� , F 0 
�e�� , C^0 
ie�� , F " 0 �H� � � 
�e�� , C�0
due to rule of determinant of product of matrices and the result that
�e�� , F " 0 �I� � � � � , ��� 0 � and


�e�� , F 0 �I� � � � � which readily
follows using (6). Combining these results, the p.d.f. (1) can be
written in terms of V and its parameters as follows

]^,U_a0 �@� ��� 	 � � 
ie�� , C�0�� w�� \�� j , C_ � C=�0 " CJ� w , C_ � C=|0rm
� (7)

We will use VK1 8L3 � ,�= � > � ? � � 0 to denote that V has a GCES
distribution with density generator

�
and parameter values = ���

, > � (*)546,/.�0 and ? � 89+k,/.�0 .
Since AM1�3 � , ���  � � 0 , its c.f. is of the form [6]:

`Y,UT�0 �#egfih , � T  � 0ONK,UT  -TK0 �
where N is some fixed function of a scalar variable, called char-
acteristic generator. Note that T  �2� Re ,U_ " =|0 and using T �F C_ ,  �&F C F=" ,

F�"�F � , �QPA� 0R: we get

T  �T � wR C_ " C C_ � w\ j _ " >�_ � Re ,U_ " ?�_ % 0rm �
where the latter equality follows using the partitions (5) and simple
matrix algebra. We may now write the c.f. as follows

`Y,U_a0 ��e�f�h j�� Re ,U_ " =90rmQNLS w\ j _ " >�_ � Re
c _ " ?�_ % o m$T
� (8)

Thus unlike the p.d.f (7), the c.f. (8) has a rather simple form in
terms of _ � s ���@t and the parameters = , > and ? .

Next we derive an alternative expression for the p.d.f (7). Us-
ing the well-known result for the inverse of a partitioned matrix
and adopting the notation from [4], we getCJ� w � 5 F � % �!U�"|F � w��F � w U F � w ; � (9)

where
F

and
U

are defined as

F=� > % � ? " >�� w ? � (10)U$� ? " >�� w � (11)

Notation
F � % means , F � w 0 % . C � (*)54�,��n0 implies that

C � w
and

F � w exist and are hermitian and positive definite matrices as
well. Furthermore,
ie�� , C�0 ��
�e�� ,�>90 
ie�� , F 0 (12)��
�e�� , F 0 \ 
ie�� ,U: �VU " U  0�� w � (13)

Equation (12) follows using the result for the determinant of a par-
titioned matrix. From (10) we can solve > as a function of

F
and

U
, yielding > � F %@,U: �WU�"XU  0 � w . When this expression

for > is plugged in (12) and using that

�e�� , F % 0 �Y
�e�� , F 0 as



F � (*)54�,/.�0 , we obtain (13). The quadratic form in p.d.f (7),
denoted by , ,U_a0 , can also be expressed through _ and = ,

F
and

U
:, ,U_a0 � , C_ � C=90 " C � w , C_ � C=|0�&� _ ") F � % _ ) ��� Re

j _  ) F � w U _ ) m�&�
Re
j _ ") F � % ,U_ ) ��U % _ %) 0rm�&� _ ") >�� w _ ) �W� Re

j , U _ ) 0 " F � w , U _ ) � _ %) 0rm
�
where _ ) � _ � = . The second identity above follows using parti-
tion (9) and simple matrix algebra, and third identity follows using_ ") F � % _ ) � Re ,U_ ") F � % _ ) 0 (since

F � % is positive definite) and
the result that Re ,�� " 0 � Re ,�� % 0 � Re ,���0 for all � �X . The last
identity then results using that

F � % � > � w �&U5"�F � w U which
follows using the well-known matrix inversion lemma, see e.g. [7].
Which of the above expressions for , ,U_E0 is the simplest is a mat-
ter of taste. Combining these results, the p.d.f. (7) can be written
solely using parameters = ,

F
and

U
as follows

]^,U_E0 �@� �!� 	 � � 
�e�� , F 0�� w 
ie�� ,U: ��U " U  0 w�� \�� ,�, ,U_a0�0�� (14)

As (7) and (14) demonstrate, we can parametrize the GCES
distribution either with ,�= � > � ?|0 or with ,�= �rF�� U 0 . The choice
of parametrization is not relevant in case of Maximum Likelihood
(ML-)theory since ML-estimates (MLE’s) and the likelihood func-
tion are invariant under the one-to-one parameter transformation
such as (10) and (11). This means, for example, that if ,�>�� � ?���0
denote MLE’s of ,�> � ?|0 , then MLE’s of

F
and

U
are obtained

by plugging in >�� and ?�� in place of > and ? in (10) and (11),
respectively.

A third possible parametrization of GCES distributions is given
next. Since > � (*)546,/.�0 and ? � 89+k,/.�0 , there exist a nonsin-
gular

�
of
���@���

such that (Corollary 4.6.12(b) in [7]):> ���Y� " and ? �$�����  �
(15)

where
�

is a real diagonal .31Q. matrix with non-negative di-
agonal entries. This parametrization was proposed in [8] for the
covariance matrix and the pseudo-covariance matrix of a complex
normal random vector. Thus, if we write the p.d.f. (7) using pa-
rameters

�
and

�
we obtain, after some calculations, that
�e�� , C�0 ��
�e�� , � � " 0 \ 
ie�� ,U: ��� \ 0

and , ,U_a0 �&�	� " ,U: �
� \ 0 � w �n�V� Re
c � " � ,U: ��� \ 0 � w � % o�&������ \ � �

Re
j�� " � ,U: ��� \ 0 � w , ���B��� % 0rm �

where
���=� � w ,U_ � =|0 and

����� \ ��� " �
. So, the p.d.f. (7) can

be written solely using parameters
�

and
�

as follows

]^,U_a0 �@� ��� 	 � � 
ie�� , �Y� " 0�� w 
ie�� ,U: ��� \ 0�� w�� \�� ,�, ,U_a0�0�� (16)

With this parametrization we use the notation VV1$8L3 � ,�= �r����� � � 0
instead of V 1$8L3 � ,�= � > � ? � � 0 .

Next we show that affine transformation
	 V ���

with
� � �

and nonsingular
	��n �
���

, induces parameter transformation=��� 	 = ���
, >��� 	 > 	 " and ?��� 	 ? 	  , whereas the

functional form of the p.d.f remains.

Theorem 1 Let V 1$8L3 � ,�= � > � ? � � 0 . Then
	 V ��� 1$8L3 � , 	 = �����	 > 	 " �r	 ? 	� q� � 0 for all

�~�B �
and nonsingular

	��n �@���
.

Proof. Denote the c.f. (8) of V by `��{,U_E0 and the c.f. of � �	 V ���
by `���,U_a0 . Then

` � ,U_a0 ��b�� e�f�h j��
Re ,U_ " �}0rm ���b�� e�f�h j��
Re ,U_ " 	 V�0rm � egfih"!�� Re ,U_ " � 0$#� ` � , 	 " _a0 egfih"!�� Re ,U_ " � 0$#�#egfih ! �

Re
c _ " , 	 = ��� 0vo #

% NLS w\ ! _ " , 	 > 	 " 0R_ � Re
c _ " , 	 ? 	  0R_ % o&# T
�

This is the c.f. of a r.v. whose p.d.f is (7) with = , > and ? replaced
by
	 = �'�

,
	 > 	6" and

	 ? 	  , respectively. (
Using parametrization , ���)� 0 instead of ,�> � ?|0 , Theorem 1

states that if VW1=8L3 � ,�= �r����� � � 0 , then
	 V �'� 1�8L3 � , 	 = ����l	����*� � � 0 for all

���Q��
and nonsingular

	 �Q��
���
. Thus,

parameter
�

is invariant under affine transformations.
Partition r.v. V � ,vV " w � V "\ 0 " �  �

with V|w � k� andV \ �n � (� �3��� . ) and partition the parameters conformably:

= � 5 = w= \ ; � > � 5 > w�w > w \> \ w > \�\ ; � ? � 5 ? w�w ? w \? \ w ? \�\ ; � (17)

Note that > w�w � ( )Y47, �k0 and > \�\ � (*)54�, � 0 since > � (*)547,/.�0 ,
and that ?Yw�w � 89+k, �k0 and ? \�\ � 89+-, � 0 since ? � 89+�,/.�0 . Next
result states that all the marginal distributions of V are also com-
plex elliptical and so is the conditional distribution V wp� V \ .
Theorem 2 Let V � ,vV " w � V "\ 0 " 1 8L3 � ,�= � > � ? � � 0 . ThenV w 1}8L3�,�= w � > w�w � ? w�w � � 0 . Furthermore, V w�� V \ has � -variate
GCES distribution.

Proof. The c.f. of V|w is

` �*+ ,U_ w 0 �$b � egfih jl�
Re ,U_ " w V w 0rm � � ` � S ,U_ " w �-, " 0 " T�#egfih.!��

Re ,U_ " w = w 0$#AN S w\ ! _ " w > w�w _ w � Re
c _ " w ? w�w _ % w o&# T@�

This is the c.f. of a �X1 � r.v. whose p.d.f. is (7) with = , > and ?
replaced by = w , > w�w and ? w�w , respectively.

As
F ,vV w�� V \ 0 is the distribution

F , W w ��Z w�� W \ ��Z \ 0 which is
known to have RES distribution due to result of r.v.’s with RES
distribution and their conditional distributions (Theorem 2.18 in
[6]). Then, by definition, V w{� V \ has GCES distribution. (

Finally, the next Theorem gives the interpretation for the pa-
rameters = , > and ? .

Theorem 3 Let V61�8L3 � ,�= � > � ? � � 0 and write � �Y� . . If ��/ w � 	 / �
then

b ,vV�0 � = , � � � % > and � � � % ? ,
where

�
is positive real valued scalar,

��� b , U�\ 0 P � , and
U

is
non-negative real random variable with p.d.f0 ,�1@0 � � � 1 � � w � ,�1 \ 0��
Proof. The mean and covariance matrix of A � , W  ��Z  0  13 � , ���  � � 0 are (Theorem 2.17 of [6])

b ,UAB0 � , �  7 � �� 9 0  and

xMy�z ,UAn0 � 5 xMy�z , W 0 xMy�z , Wn�[Z 0xMy�z , Zu��W 0 xMy�z , Z 0 ; �@� %  � (18)

where
�

is positive real valued scalar,
���}b , U \ 0 P � , and

U
is

non-negative real r.va. with p.d.f
0 ,�1@0 � � � 1 � � w � ,�1 \ 0 . The

mean and covariance matrix of A exists iff 3|, U�\ 0 / � , or equiv-
alently, iff

 ��/ w � 	 / �
. The mean of V is thereby

b ,vV�0 �b , W 0 �X�
b , Z 0 �@� 7 ���:9�� = and the covariance matrix of V ,

� �=j xMy�z , W 0 � xMy�z , Z 0rm ���aj xgy{z , Zu�rW 0 � xMy�z , WX�RZ 0rm �



can be written, due to (18) and (3), as � � � % > . Similarly, we
obtain that � �@� % ? . (

In other words, Theorem 3 states that if the density generator�
satisfies

 \�� / w � 	 / �
, then the covariance matrix � and the

pseudo-covariance matrix � exist and the parameters, the scatter
matrix > and the pseudo-scatter matrix ? , are proportional to �
and � , respectively.

4. EXAMPLES OF GCES DISTRIBUTIONS

4.1. CES distributions

Definition 2 If a r.v. V �u � has a GCES distribution with ? ��
, i.e. V 1 8L3 � ,�= � > � �a� � 0 , then V is said to have a complex

elliptically symmetric (CES) distribution.

In fact, the CES distributions of Definition 2, are the class of
distributions introduced and studied in [2]. Thus Definition 1 is a
generalization of CES distributions which is simply a special case.
One may verify that when ? � �

(or equivalently
� �6�

), the
c.f. (8) and p.d.f. (7) (or equivalently (16)) take the forms familiar
from the real case:

`Y,U_a0 �#egfih jl� Re ,U_ " =|0rmQN S w\ _ " >�_ T �
]^,U_a0 �@� ��� 	A� � 
ie�� ,�>90 � w � j$� ,U_ � =�0 " > � w ,U_ � =90rmE�

Hence the regions of constant contours of CES distributions are
ellipsoids in

 �
. Recall that a r.v. V is called circular if V andegfih , ��� 0rV have the same distribution for any

�7�>�
. It is then easy

to verify from the c.f. or the p.d.f. above that CES distributions
with location vector = � ,

satisfy “circularity”.
From (4) we see that ? � �

implies that  7�7 �  9�9 and 7 9 � �  9 7 , which means that > �&� ,� 7�7q���  9 7 0 and that  is
of a special form

 � 5  7�7 �  9 7 9 7  7�7 ; �
Due to Theorem 3, ? ��� also implies that the pseudo-covariance
matrix � � �

(if exists). Thus, the second-order behaviour of V
with a CES distribution is completely described by the covariance
matrix � �H�@j xMy�z , W 0 ��� xMy�z , Zu�rW 0rm . Note that a r.v. with � ��

is called proper [3, 5]. Thus, their definition is a second-order
concept while ours is not: For a r.v. V with a CES distribution,
the second-order moments may not exist (i.e. if

 \�� / w � 	 is not
integrable). Such an example is the complex Cauchy distribution
studied in [9] for which

� , * 0 � , ��� * 0 � � \�� / w�� � \ .
4.2. Generalized Complex Normal Distribution

Definition 3 A r.v. V �=W �2�@Z �B �
is said to have a general-

ized complex normal (GCN) distribution iff A � , W  �[Z  0  ���\��
has normal distribution.

Since normal distribution is a member RES distributions it fol-
lows that GCN distribution is a member of GCES distributions. Its
characteristic and density generator is NK, * 0 � � , * 0 ��egfih , � * PA� 0
and we write V 1 �� � ,�= � > � ?|0 . It is easy to verify that the nor-
malizing constant

� ��� 	
equals , �$# 0 � � in the normal case. Thus,

the c.f. (8) becomes

`���	�
�,U_a0 �#egfih ! �
Re ,U_ " =|0 � wR c _ " >�_ � Re ,U_ " ?�_ % 0vo #

and the p.d.f can be expressed, using (7), (14) and (16) correspond-
ing to three different parametrizations respectively, as follows

]�	�	
q,U_E0�@# � � 
ie�� , C�0�� w�� \ egfih j
� w\ , C_ � C=|0 " CJ� w , C_ � C=90rm�@# � � 
ie�� , F 0 � w 
�e�� ,U: ��U " U  0 w�� \
% egfih jE� _ ") > � w _ ) � Re

c , U _ ) 0 " F � w ,U_ %) �VU _ ) 0vo m�@# � � 
ie�� , �Y� " 0�� w 
ie�� ,U: ��� \ 0�� w�� \
% egfih jE� ����� \ �

Re
c � " ,U: ��� \ 0�� w � , � % �
��� 0vo mE�

The last parametrization, i.e. using , ���)� 0 , for a complex nor-
mal r.v. V was advocated in [8]. Since

 \�� / w � 	 is integrable, the
mean, covariance and pseudo-covariance matrix exists and

�
of

Theorem 3 can be shown to be
�6�O�

. Thus, in the normal case,
we have that = ��b ,vV�0 , > � xMy�z ,vV�0 and ? �#h xMy�z ,vV�0 .
Definition 4 A r.v. V is said to have a complex normal (CN) dis-
tribution iff V has GCN distribution and ? �#h xMy�z ,vV�0 � ,

.

Thus, CN distribution is simply a special case of GCN distri-
bution, and also a member of CES distributions. CN distribution
has been widely employed and studied in the literature and due
time this special case has become “generally accepted” complex
normal distribution. See discussions and references in [1]. CN
distribution is also sometimes called circular complex normal [4],
or, proper complex normal [3].

The c.f. and p.d.f of CN distribution now take the form familar
from the real case:

`�	
q,U_a0 ��egfih jl� Re ,U_ " =90 � wR _ " >�_im �
]�	�
�,U_a0 ��# � � 
ie�� ,�>90 � w egfih j
� ,U_ � =|0 " > � w ,U_ � =|0rmE�

Is is now evident that the c.f. of CN distribution appears in the
expression of the c.f. of GCN distribution as follows

` 	��
 ,U_a0 � ` 	
 ,U_a0 egfihkj
� wR Re ,U_ " ?�_ % 0rm
�
The p.d.f. of GCN distribution can also be factorized in a product
of the p.d.f of CN distribution and a function depending on = and
matrices ,�> � ?|0 through matrices , F�� U 0 or , ���)� 0 as follows:

] 	��
 ,U_a0 � ] 	�
 ,U_a0 
ie�� ,U: ��U " U  0�� w�� \
% egfih j Re

c , U _ ) 0 " F � w ,U_ %) ��U _ ) 0vo m� ] 	�
 ,U_a0 
ie�� ,U: ��� \ 0�� w�� \
% egfih j Re

c � " ,U: ��� \ 0�� w � , � % ����� 0vo m
�
See also [4].

5. CONDITIONAL MEAN ESTIMATOR

Let V � W �$�@Z �� �
be partitioned to subvectors V w �W w ���@Z w �Bk� and V \ ��W \ ���@Z \ �n-� (� �6�Y� . ) as in The-

orem 2. We assume that V has a GCES distribution with = � ,
and let the parameters > and ? be partitioned as in (17). Assume
that the density generator

�
of the model is such that

 \�� / w � 	E/�
. This guarantees by Theorem 3 that the covariance and the

pseudo-covariance matrix of V exist. Now recall that the condi-
tional mean is

b ,vV|w � V \ 0 �$b , W w � W \ ��Z \ 0 ���
b , Z w � W \ ��Z \ 0��



Due to Theorem 2.18 of [6],
b , W w � W \ �rZ \ 0 ��� w W \ ��� \ Z \

and
b , Z w�� W \ ��Z \ 0 �����pW \ ��� R Z \ , where the real �X1 � ma-

trices
� w ��� \ , ��� and

� R are known but rather complicated func-
tions of the submatrices of the parameter  of A (or equivalently
of submatrices of parameters > and ? of V ). It then follows that
conditional mean can be expressed explicitly through V \ and V�%\
as follows b ,vV wp� V \ 0 ��� V \ � '�V %\ �
with ��1 � complex matrices

��� w\ , � w �	� R 0 �~� w\ , �
� ��� \ 0
and ' � w\ , � w ��� R 0 �d� w\ , � \ �� � 0 . Thereby, conditional mean
is widely linear [4, 5] in V \ . Then note that error between V w and
its conditional mean, i.e. V w � b ,vV w{� V \ 0 , is uncorrelated withV \ and V�%\ . This result together with the result that > and ? are
proportional to � and � (Theorem 3) yield the pair of equations

� > \�\ � ' ? %\�\ � > w \ ��� ? \�\ � '0> %\�\ � ? w \ �
from which

�
and ' can be solved as functions of complex ma-

trices >�� � and ?�� � , � �G��� �@��� .
6. TESTS FOR CIRCULARITY

Circularity is commonly assumed e.g. in many communications
and array processing problems. Thus, one may want to validate
this assumption.

6.1. A Likelihood Ratio (LR-)test

Assume that _ is a realization from V(1  � � , ,�� > � ?|0 , and con-
sider the following binary hypothesis:

' ) � ? ��� ' w � ? � ? ) � (19)

In other words, we wish test the null hypothesis ' ) which states
that V is a zero mean r.v. from CN distribution with known co-
variance > against the alternative hypothesis '�w which states V
is a zero mean r.v. from GCN distribution with known covariance
matrix > and known pseudo-covariance matrix ? � ? ) . The
likelihood ratio (LR) �R,U_a0 � ]���	�
�,U_a0 P ] 	
�,U_E0 gives the optimal
decision rule. Using the p.d.f’s given in Section 4.2, LR becomes

�R,U_E0 ��
�e�� ,U: ��U " U  0�� w�� \ egfih j Re
c , U _a0 " F � w ,U_ % ��U _a0vo m��
�e�� ,U: ��� \ 0�� w�� \ egfih j Re

c � " ,U: �
� \ 0�� w � , � % ����� 0vo m �
where

����� � w _ .
6.2. A Generalized Likelihood Ratio (GLR-)test

Let _�w � �M�p� � _ � be a random sample from
 � � , ,�� > � ?|0 and write; � � ,U_�w %$%�% _ ��0 . Again we wish to test the hypothesis (19) of

circularity. The likelihood function for ; � under ' ) is

] ) ,G; ��� >90 �@# � � � 
�e�� ,�>90�� � egfihkj
��� Tr ,�>�� w > � 0rm �
where >�� � w� � ���� w _ � _ "� is the sample covariance matrix and
Tr , % 0 stands for trace. The likelihood function under ' w becomes

] w ,G; ��� C�0 ��# � � � 
�e�� , C^0�� �A� \ egfihkj
� � \ Tr , C�� w C � 0rm �
where C � � 5 > � ? �? %� > %� ; � �

�
��
��� w

5 _��U_ "� _��/_  �_ %� _ "� _ %� _  � ; �

In practice, the parameters > and ? are often unknown, and the
LR-test can not be employed. Thereby we resort to Generalized
LR (GLR-)test approach where we maximize ] ) , % 0 and ] w , % 0 over> and

C , respectively, and use the resulting (maximized) LR as
a decision statistic. It is well known that MLE of > under ' )
is the sample covariance matrix > � . Then, using complex matrix
differentiation rules, we may differentiate  y"! ]Ewp,G; � � C^0 w.r.t the
matrix parameter

C . Then setting the obtained differential equal to
zero and solving for

C , we find that the MLE of
C is

C � . Thereby,
the GLR-test decision statistic becomes
#
�R,G; � 0 � ] w ,G; ��� C � 0

] ) ,G; ��� > � 0 � 
�e�� ,�> � 0 �
ie�� , C�0 �A� \ ��
�e�� ,U: ��U "� U  � 0�� � � \�&
ie�� ,U: ��� \� 0�� � � \ �
where

U � � ? "� > � w� and
� � are MLE’s of parameters

U
and

�
,

respectively.
� � is a diagonal matrix with positive diagonal ele-

ments which satisfy the factorization (recall (15)) >�� �O� � � "�
and ? � � � � � � �  � , where

� � is non-singular MLE of the pa-
rameter

�
. The sampling and asymptotic distribution of the de-

cision statistic under the null and under sequence of alternative
hypothesis will be a subject of a separate paper.

7. CONCLUSIONS

We introduced a new class of distributions called generalized com-
plex elliptically symmetric distributions. Various important distri-
butional characteristics of this class were derived. As examples,
we derived the conditional mean and LR-tests for circularity.
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