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ON THE CRAMÉR-RAO BOUND FOR THE CONSTRAINED AND UNCONSTRAINED
COMPLEX PARAMETERS

Esa Ollila ∗

University of Oulu
Department of Mathematical Sciences

P.O. Box 3000, FIN-90014 Oulu, Finland

Visa Koivunen and Jan Eriksson

Helsinki University of Technology
Signal Processing Laboratory

P.O. Box 3000, FIN-02015 HUT, Finland

ABSTRACT

We derive a complex form of the unconstrained and con-
strained Cramér-Rao lower bound (CRB) of composite real
parameters formed by stacking the real and imaginary part
of the complex parameters. The derived complex constrai-
ned and unconstrained CRB is easy to calculate and pos-
sesses similar structure as in the real parameter case but
with the real covariance, Jacobian and the Fisher informa-
tion matrix replaced by complex matrices with analogous
interpretations. The advantage of the complex CRB is that
it is oftentimes easier to calculate than its real form. It is
highlighted that a statistic that attains a bound on the com-
plex covariance matrix alone do not necessarily attain the
CRB since complex covariance matrix does not provide a
full second-order description of a complex statistic since
also the pseudo-covariance matrix is needed. Our deriva-
tions also lead to some new insights and theory that are sim-
ilar to real CRB theory.

1. INTRODUCTION

It is highly useful to have a lower bound for the statisti-
cal variability of a statistic. The most well-known lower
bound is the Cramér-Rao bound (CRB) which can be used,
for example, to show that an unbiased estimator is UMVU
(uniformly minimum variance unbiased) estimator. CRB is
also related to asymptotic optimality theory and called the
information bound, or, the information inequality in single
parameter case. See e.g. [1, 2, 3, 4].

The problem of estimating multiple possibly constrained
complex parameters from complex-valued data arises fre-
quently in several signal processing applications. Deriva-
tions of complex CRB appear in the pioneering works of
[5, 1, 6] and some recent derivations appear in [7, 8, 9].
One advantage of our approach is that it shows more trans-
parently the equivalence between the “complex CRB” and
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the real CRB; see our Theorem 1. Furthermore, our ap-
proach leads to easier derivations of the CRB. It is high-
lighted that a statistic that attains a bound on the complex
covariance matrix alone (as in [6, 1]) does not necessarily
attain the CRB since complex covariance matrix does not
provide a full second-order description of a complex statis-
tic, also pseudo-covariance matrix is needed; c.f. Remark 1
to Corollary 2. It is shown that if and only if the so called
pseudo-information matrix vanishes, then the derived bound
on the complex covariance matrix of an ubiased estimator
is fully equivalent with the real CRB; c.f. Corollary 1[b].
Our derivations also lead to new insights and theory that are
analogous to real CRB theory; c.f. Theorem 2.

2. USEFUL MATRIX ALGEBRA

A k × k complex matrix C ∈ Ck×k is called symmetric
if CT = C and Hermitian if CH = C, where (·)T and
(·)H denotes transpose and Hermitian (complex conjugate)
transpose, i.e. (·)H = [(·)∗]T , where (·)∗ denotes complex
conjugate. Notation C ≥ B means that the matrix C −
B is positive semidefinite. Notation C−∗ means (C−1)∗,
tr(C) denotes the trace of the matrix C and |z| denotes the
modulus of the complex number z. Adopting the notation
from [10], we define a complex 2k × 2k matrix M2k as

M2k � 1
2

(
Ik Ik

−jIk jIk

)
,

where Ik denotes the k × k identity matrix and j =
√−1.

M2k is invertible with the inverse M−1
2k = 2MH

2k.

Definition 1 Define 〈·〉C : R2d×2k �→ C2d×2k as a map-
ping

〈G〉C = 2M−1
2d GM2k

that is,〈(
Re[A] Re[B]
Im[A] Im[B]

)〉
C

=
(

A − jB A + jB
(A + jB)∗ (A − jB)∗

)

for all A ∈ C
d×k and B ∈ C

d×k.
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Mapping 〈·〉C of G ∈ R2d×2k produces a complex 2d×
2k matrix of the form

〈G〉C =
(

C D
D∗ C∗

)
(1)

where C and D are complex d × k matrices. Hence we
shall call matrix 〈G〉C as the augmented matrix of C and
D. Note that G = M2d〈G〉CMH

2k

Lemma 1 The mapping 〈·〉C has the following properties:

[a] G ∈ R2k×2k is symmetric ⇔ 〈G〉C is hermitian.

[b] G ∈ R2k×2k is invertible⇔〈G〉C is invertible. More-
over, 〈G−1〉C = 4〈G〉−1

C

[c] 〈GT 〉C = 〈G〉H
C

for all G ∈ R
2d×2k.

[d] 〈G1 + G2〉C = 〈G1〉C + 〈G2〉C for all G1,G2 ∈
R2d×2k.

[e] 〈G1G2〉C = 1
2 〈G1〉C〈G2〉C for all G1 ∈ R2d×2k

and G2 ∈ R2k×2q .

[f] G ≥ 0 ⇔ 〈G〉C ≥ 0 for all symmetric G ∈ R2k×2k .

3. CRAMÉR-RAO LOWER BOUND

The distribution of a complex random vector (r.v) z = x +
jy ∈ Cn is identified with the real 2n-variate distribution of
the composite real r.v. z̄ = (xT ,yT )T obtained by stacking
the real part and imaginary part of z. The p.d.f. of z is as-
sumed to depend on the unknown k-variate complex param-
eter vector θ = α + jβ ∈ Ck. This is equivalent to saying
that the p.d.f. of z̄ depends on the unknown 2k-variate real
parameter vector θ̄ = (αT , βT )T ∈ R2k. Hence f(z; θ)
and f(z̄; θ̄) are two alternative equivalent notations for the
p.d.f. of z.

Let

t = tR + jtI = t(z) ∈ C
d, d ≤ k

denote the complex-valued statistic based on z and write
t̄ = (tT

I , tT
R)T for its associated composite real form. The

expected value of t, E[ t ] = E[ tR ] + jE[ tI ], depends
naturally on the value of the parameter θ. Hence

g(θ) = u(α, β) + jv(α, β) = E
[
t
]

: C
k → C

d,

that is,

ḡ(θ̄) =
(
u(θ̄)
v(θ̄)

)
= E[ t̄ ] : R

2k → R
2d

Jacobian matrix of ḡ is a 2d × 2k real matrix

Dḡ =
∂ḡ
∂θ̄

=

⎛
⎜⎝

∂u
∂α

∂u
∂β

∂v
∂α

∂v
∂β

⎞
⎟⎠

where ∂/∂α = (∂/α1, . . . , ∂/αk). Naturally, if the statis-
tic t is an unbiased estimator of the parameter θ, then g(θ) =
θ (i.e. u(θ̄) = α and v(θ̄) = β) and Dḡ = I2k.

The Fisher Information Matrix (FIM) of θ̄ is defined as

Jθ̄ = E[∇θ̄ ln f(z; θ){∇θ̄ ln f(z; θ)}T ],

where

∇θ̄ ln f(z; θ) =
(∇α ln f(z; θ)
∇β ln f(z; θ)

)

is the (real) gradient of ln f w.r.t θ̄ and gradient operator is
defined as ∇α = (∂/∂α1, . . . , ∂/∂αk)T . In this paper, it is
assumed that FIM Jθ̄ is positive definite so that its inverse
exists.

Complete second-order information of complex-valued
statistic t is given by the 2d × 2d real covariance matrix of
the composite vector t̄,

Cov[ t̄ ] = E[ (t̄ − E[ t̄ ])(t̄ − E[ t̄ ])T ]

=
(

Cov[ tR ] Cov[tR, tI ]
Cov[tI , tR] Cov[ tI ]

)
.

The Cramer-Rao bound (CRB) gives the lower bound on
the covariance matrix of the statistic t̄ by stating that under
some regularity conditions

Cov[ t̄ ] ≥ DḡJ−1
θ̄

DT
ḡ . (2)

The regularity conditions are required for the interchange of
certain differentiation and integration operators (see [2] for
details). Due to Lemma 1, the CRB (2) is equivalent with
the statement

〈Cov[ t̄ ]〉C ≥ 〈Dḡ J−1
θ̄

DT
ḡ 〉C = 〈Dḡ〉C〈Jθ̄〉−1

C
〈Dḡ〉HC ,

(3)
which is the complex form of the (real) CRB (2). Next we
show that complex matrices on the left and right hand side
have meaningful interpretations.

4. COMPLEX-VALUED FUNCTIONS AND
RANDOM VECTORS: PRELIMINARIES

4.1. Partial derivatives of a complex function

Complex partial derivatives (c.p.d.’s) were first defined upto
our best knowledge in the text book by L.V. Ahlfors [11],
page 41. Many of the common rules (e.g. the product
and the quotient rules) associated with the c.p.d.’s continue
to hold in the familiar form known from the real calculus,
the notable exception being the chain rule. This makes the
c.p.d.’s a useful tool in the analysis of complex functions.
See e.g. [12], [1], Chapter 15.6, [13] for a detailed treat-
ment of these partial differential operators.

Define the partial derivative of a complex functiong(θ) =
u(α, β)+jv(α, β) : C

k → C
d w.r.t α = Re[θ] as ∂g/∂α =
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∂u/∂α + j∂v/∂α and define ∂g/∂β analogously. Then,
the complex partial differential operators ∂/∂θ and ∂/∂θ∗

are defined as

∂g
∂θ

=
1
2

(
∂g
∂α

− j
∂g
∂β

)
,

∂g
∂θ∗ =

1
2

(
∂g
∂α

+ j
∂g
∂β

)
.

Definition 2 Complex Jacobian matrix of a complex func-
tion g : Ck → Cd is defined as the complex 2d× 2k matrix

Dg =

⎛
⎜⎝

∂g
∂θ

∂g
∂θ∗[

∂g
∂θ∗

]∗ [
∂g
∂θ

]∗

⎞
⎟⎠ ,

i.e. it is the augmented matrix of ∂g/∂θ and ∂g/∂θ∗.

It is easy to verify that

〈Dḡ〉C = 2 · Dg. (4)

4.2. Complex covariances and the complex FIM

Covariance matrix of a complex r.v. t = tR + jtI ∈ Cd is

Cov[ t ] = E[ (t − E[t])(t − E[t])H ]
= Cov[ tR ] + Cov[ tI ] + j{Cov[tI , tR] − Cov[tR, tI ]}

and the pseudo-covariance matrix [14] of t is

Pcov[ t ] = E[(t − E[t])(t − E[t])T ]
= Cov[ tR ] − Cov[ tI ] + j{Cov[tI , tR] + Cov[tR, tI ]}.

Note that Cov[ t ] is hermitian and positive semidefinite com-
plex d× d matrix and Pcov[ t ] is symmetric complex d× d
matrix. Write

t̂ = (tT , tH)T

for the augmented vector of t formed by stacking t and its
complex conjugate t∗. Note that t̄ = (tT

R, tT
I )T = M2dt̂.

It is well-known (e.g. [10]) that

〈Cov[ t̄ ]〉C =
(

Cov[ t ] Pcov[ t ]
Pcov[ t ]∗ Cov[ t ]∗

)
= Cov[ t̂ ], (5)

i.e. operator 〈·〉C maps the covariance matrix of the com-
posite real r.v. t̄ to the covariance matrix of the augmented
r.v. t̂.

As in [12], we define the complex gradient operator as
∇θ∗ = (∂/∂θ∗)T = (∂/∂θ∗1 , . . . , ∂/∂θ∗k)T . Thus

∇θ∗ ln f(z; θ) =
1
2

{
∇α ln f(z; θ) + j∇β ln f(z; θ)

}
.

Then, we call the k × k complex matrices,

Iθ = E[∇θ∗ ln f(z; θ){∇θ∗ ln f(z; θ)}H ],

Pθ = E[∇θ∗ ln f(z; θ){∇θ∗ ln f(z; θ)}T ]

as the (complex) information matrix and the pseudo-informa-
tion matrix, respectively.

Definition 3 Complex FIM of complex parameter θ is de-
fined as

J θ =
(Iθ Pθ

P∗
θ I∗

θ

)
,

i.e. it is the augmented matrix of information matrix I θ and
pseudo-information matrix P θ .

It is easy to verify that 〈Jθ̄〉C = 4J θ , which together
with Lemma 1[b] shows that

〈J−1
θ̄

〉C = 4〈Jθ̄〉−1
C

= J −1
θ . (6)

i.e. the inverse of the FIM of real parameter θ̄ is mapped to
inverse of the complex FIM of θ.

5. CRAMÉR-RAO LOWER BOUND FOR
UNCONSTRAINED PARAMETERS

Based on equations (4) and (6), the complex form (3) of the
CRB (2) can be written in a neat form as is illustrated below.

Theorem 1 Let t = tR + jtI ∈ Cd be the complex val-
ued statistic. The CRB on the covariance matrix of t̄ =
(tT

R, tT
I )T is equivalent with the following bound on t̂ =

(tT , tH)T :

Cov[ t̄ ] ≥ Dḡ J−1
θ̄

DT
ḡ ⇔ Cov[ t̂ ] ≥ Dg J −1

θ DH
g . (7)

Statistic t attains the CRB in that Cov[ t̄ ] = DḡJ−1
θ̄

DT
ḡ if

and only if Cov[ t̂ ] = DgJ −1
θ DH

g .

Using the well-known result for the inverse of a parti-
tioned matrix, we may write

J −1
θ =

(Iθ Pθ

P∗
θ I∗

θ

)−1

=
( R−1

θ −R−1
θ Qθ

−QH
θ R−1

θ R−∗
θ

)
,

(8)
where Rθ = Iθ − PθI−∗

θ P∗
θ and Qθ = PθI−∗

θ . The
following corollary to Theorem 1 is worth pointing out.

Corollary 1 Let t be unbiased estimator of θ, i.e. θ =
E[t].
[a] Then

Cov[ t̄ ] ≥ J−1
θ̄

⇔ Cov[ t̂ ] ≥ J −1
θ (9)

and the CRB is attained in that Cov[ t̄ ] = J−1
θ̄

⇔Cov[ t̂ ] =
J −1

θ ⇔ Cov[ t ] = R−1
θ and Pcov[ t ] = −R−1

θ Qθ .
[b] If pseudo-information matrix vanishes, i.e. P θ = 0,
then

Cov[ t̄ ] ≥ J−1
θ̄

⇔ Cov[ t ] ≥ I−1
θ

and the CRB is attained in that Cov[ t̄ ] = J−1
θ̄

⇔Cov[ t ] =
I−1

θ .
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For example, in the scalar parameter case, a statistic t =
t(z) ∈ C that is an unbiased estimator of θ ∈ C satisfies

(
Var[ t ] Pvar[ t ]

Pvar[ t ]∗ Var[ t ]

)
≥ 1

i2θ − |pθ|2
(

iθ −pθ

−pθ
∗ iθ

)

where iθ = E[| ∂
∂θ∗ ln f(z; θ)|2], pθ = E[( ∂

∂θ∗ ln f(z; θ))2]
and Pvar[ t ] = E[(t − E[t])2]. Thus, Var[ t ] = E[|t −
E(t)|2] ≥ iθ/(i2θ − |pθ|2).

Corollary 2 Eq. (7) implies the following bound on the co-
variance matrix Cov[ t ] of t:

Cov[ t ] ≥ ∂g
∂θ

R−1
θ

[
∂g
∂θ

]H

− ∂g
∂θ∗R−∗

θ

[
∂g
∂θ∗

]H

+
∂g
∂θ∗QH

θ R−1
θ

[
∂g
∂θ

]H

+
∂g
∂θ

R−1
θ Qθ

[
∂g
∂θ∗

]H

.

If t is an ubiased estimator of θ ∈ Cd, i.e. θ = E[ t ], then
eq. (9) implies that

Cov[ t ] ≥ R−1
θ

and that
∑d

i=1 Var[ ti ] ≥ tr{R−1
θ }.

Remark 1. Corollary 2 gives a bound solely on the covari-
ance matrix Cov[ t ] of the statistic t. If an unbiased esti-
mator t attains the bound on the covariance matrix alone in
that Cov[ t ] = R−1

θ , it does not imply that t attains the
CRB (9) since also Pcov[ t ] = −R−1

θ Qθ needs to hold
(c.f. Corollary 1[a]). Only if the pseudo-information van-
ishes, i.e. Pθ = 0, then Cov[ t ] = I−1

θ implies that t
attains the CRB (c.f. Corollary 1[b]).

Note that the bound on the covariance matrix in Corol-
lary 2 is essentially the same as the bound in [6] derived by
imitating the proof in the real case. Our derivation avoids
technical difficulties associated with such approach such as
the legitimity of changing operations of complex interegra-
tion and differentiation.

Theorem below characterizes the case when an unbiased
estimator that attains the CRB may be found in terms of the
complex score function.

Theorem 2 Assume statistic t = tR + jtI is an unbiased
estimator of θ. Then, t attains the CRB if and only if

∇θ∗ ln f(z; θ) = Iθ(t − θ) + Pθ(t− θ)∗. (10)

If pseudo-information vanishes, i.e. P θ = 0, then t attains
the CRB if and only if ∇θ∗ ln f(z; θ) = Iθ(t − θ).

As an example, consider least squares (LS) estimation
of the parameter θ ∈ Cd in the regression model z = Xθ +
ε ∈ C

n, where X ∈ C
n×d is fixed (known) full column

rank design matrix and the error term ε ∈ C
n has generar-

alized complex Gaussian distribution [10] with E[ε] = 0,
Cov[ ε ] = σ2In and Pcov[ ε ] = τIn, where τ ∈ C and
σ2 > 0 are known scalars. If τ = 0, then ε has conven-
tional circular Gaussian distribution. Then p.d.f. of z then
is f(z; θ) = π−n|Γ|−1/2 exp{− 1

2 ε̂HΓ−1ε̂}, where Γ is the
augmented matrix of Cov[ ε ] and Pcov[ ε ] and ε̂ is the aug-
mented vector of ε = z − Xθ. The LS-estimate (LSE) of
θ is t = (XHX)−1XHz and it is unbiased; see [1], Chap-
ter 15 for details. The log-likelihood (ignoring the additive
contant terms not depending on the unknown parameter) is

ln f(z; θ) = −bεHε +
b

2
	∗εT ε +

b

2
	εHε∗,

where b = σ2/(σ4 − |τ |2) and 	 = τ/σ2. The complex
gradient of ln f becomes

∇θ∗ ln f(z; θ) = b{XHε − 	XHε∗}
and Iθ = bXHX and Pθ = −b	XHX∗ are obtained for
information matrix and pseudo-information matrix, respec-
tively. If τ = 0, then Pθ = 0, and it is easy to see that
LSE t attains the bound on the covariance matrix (since
Cov[ t ] = σ2(XHX)−1 = I−1

θ ) and hence due to Corol-
lary 1[b] it attains the CRB. However, if τ �= 0 (i.e. the error
terms have non-circular Gaussian distribution), the CRB is
not attained. Indeed R−1

θ is equal to Cov[ t ] only if τ = 0.

6. CRAMER-RAO LOWER BOUND FOR
CONSTRAINED PARAMETERS

In the constrained parameter problem, l < k complex con-
staints are imposed on θ as follows

c(θ) = a(α, β) + jb(α, β) = 0.

Assume that the Jacobian matrix of c̄(θ̄) = (a(θ̄)T ,b(θ̄)T )T ,
denoted by Dc̄ ∈ R2l×2k, exists and has full rank 2l. In the
constrained case, the constrained CRB [3, 4] gives the lower
bound on the covariance matrix of t̄ by stating that under
some regularity conditions

Cov[ t̄ ] ≥ Dḡ CRB(θ̄)DT
ḡ , (11)

where

CRB(θ̄) = J−1
θ̄

− J−1
θ̄

DT
c̄

(
Dc̄ J−1

θ̄
DT

c̄

)−1
Dc̄ J−1

θ .

It follows by Lemma 1 and (4) that (11) is equivalent with

〈Cov[ t̄ ]〉C = Cov[ t̂ ] ≥ Dg 〈CRB(θ̄)〉C DH
g .

Similarly, using Lemma 1 and eq.’s (4) and (6) we may write
CRB(θ̄) into a following complex form

〈CRB(θ̄)〉C = J −1
θ − J −1

θ DT
c

(Dc J −1
θ DH

c

)−1Dc J −1
θ ,

where Dc is the 2l × 2k complex Jacobian of c, i.e. the
augmented matrix of ∂c/∂θ and ∂c/∂θ∗. See also [8] who
consider the case that FIM is singular, i.e. not invertible.
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7. CONCLUSIONS

Complex form of the unconstrained and constrained CRB
was derived. Derived complex form of the CRB is based
on complex FIM and complex Jacobian matrix. The cal-
culation of these quantities is essentially similar to the real
case. Hence the complex CRB is oftentimes much easier to
calculate than its real form which looses the simple descrip-
tion of the statistic/parameters offered by complex number
notations.

8. PROOFS OF THE RESULTS

Proof of Lemma 1. Properties [a]-[e] are immediate or al-
most immediate.
[f] It is easy to verify that the eigenvalues of 〈G〉C are twice
the eigenvalues of G. Next recall that any complex hermi-
tian (or real symmetric) matrix is positive semidefinite ⇔
all its eigenvalues are non-negative (e.g. Th. 7.2.1. in [15]).
This gives the claim.

Proof of Corollary 2. If a matrix A is positive semidefinite,
then any principal sub-matrix of A is positive semidefinite
as well (c.f. [15]). Therefore,

[Cov[ t̂ ]]1:d ≥ [DgJ −1
θ DH

g ]1:d, (12)

where [A]1:d denotes the principal d × d sub-matrix of ma-
trix A obtained by including the rows and columns 1, . . . , d.
Now, [Cov[ t̂ ]]1:d = Cov[ t ] and the matrix on the RHS of
(12) can be found to be of the stated form after substituting
the expression (8) for J −1

θ in (12). If t is unbiased esti-
mator, i.e. g(θ) = θ, then ∂g/∂θ = ∂θ/∂θ = Id and
∂g/∂θ∗ = ∂θ/∂θ∗ = 0 and thus the expression simplifies
to Cov[ t ] ≥ R−1

θ . �
Proof of Theorem 2. Recall that a statistic t̄ = (tT

R, tT
I )T ∈

R2k that is an unbiased estimator of θ̄ = (αT , βT )T ∈
R2k attains the CRB if and only if (see e.g. [1]) ∇ θ̄ ln f =
Jθ̄(t̄ − θ̄). Thus,

∇θ̄ ln f = (1/2)M2k · [2M−1
2k Jθ̄M2k] · [M−1

2k (t̄− θ̄)], i.e.(∇α ln f
∇β ln f

)
=

(
Ik Ik

−jIk jIk

)
·
( Iθ Pθ

Pθ
∗ Iθ

∗

)
·
(

t − θ
(t − θ)∗

)
.

Hence

∇θ∗ ln f =
1
2

(
Ik jIk

) (∇α ln f
∇β ln f

)

is equal to Iθ(t − θ) + Pθ(t − θ)∗. �
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