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On the Circularity of a Complex Random Variable
Esa Ollila, Member, IEEE

Abstract—An important characteristic of a complex random
variable is the so-called circularity property or lack of it.
We study the properties of the degree of circularity based on
second-order moments, called circularity quotient, that is shown
to possess an intuitive geometrical interpretation: the modulus and
phase of its principal square-root are equal to the eccentricity and
angle of orientation of the ellipse defined by the covariance matrix
of the real and imaginary part of . Hence, when the eccentricity
approaches the minimum zero (ellipse is a circle), the circularity
quotient vanishes; when the eccentricity approaches the maximum
one, the circularity quotient lies on the unit complex circle. Con-
nection with the correlation coefficient is established and bounds
on given the circularity quotient (and vice versa) are derived. A
generalized likelihood ratio test (GLRT) of circularity assuming
complex normal sample is shown to be a function of the modulus
of the circularity quotient with asymptotic �

�
distribution.

Index Terms—Circularity coefficient, complex random variable,
correlation coefficient, eccentricity, EVD, noncircular random
variable.

I. INTRODUCTION

C OMPLEX-VALUED (I/Q) signals play a central role in
many application areas including communications and

array signal processing. An important statistical characteri-
zation of a complex random variable (r.va.) is the so-called
circularity property (or properness) or lack of it (noncircularity,
nonproperness); see, e.g., [1]–[3]. Circular r.va. has vanishing
pseudo-variance, namely, r.va. is statistically uncorrelated with
its complex-conjugate. For example, -QAM with
and 8-PSK modulated communications signals are circular,
but some other commonly used modulation schemes (such as
BPSK, AM, or PAM) lead to noncircular signals. Transceiver
imperfections or interference from other signal sources may
also lead to noncircular observed signals. Commonly, the
additive sensor noise is modeled as circular complex Gaussian,
but alternative (more flexible) models exist [4], [5]. The circu-
larity/noncircularity property of the signals can be exploited
in designing wireless transceivers or array processors such
as beamformers, DOA algorithms, blind source separation
methods, etc. See [2], [3], and [6]–[10] to cite only a few.
Hence, statistical tests of circularity are also of great interest;
see [5] and [11].

In this letter, the complex-valued measure of circularity based
on second-order moments of a complex random variable

, called the circularity quotient , is studied. This measure
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has appeared with different names in the literature (cf. [3], [8],
and [11]), but a detailed study of its properties is still lacking.
We show that possesses an intuitive geometrical interpreta-
tion (Th. 1): its modulus equals the squared eccentricity
of the ellipse defined by the covariance matrix of ,
while its argument (phase) is twice the orientation angle
of the ellipse. The connection with the correlation coefficient

is established and bounds on given (and
vice versa) are derived (cf. Theorem 2, 3). Finally, a general-
ized likelihood ratio test assuming complex normal sample is
shown to be a function of the modulus of the circularity quo-
tient with asymptotic distribution (chi-squared distribution
with two degrees of freedom). Throughout, geometrical aspects
are emphasized.

Notations: Symbol denotes the modulus ,
where is the complex conjugate of and
the imaginary unit. Recall that any nonzero complex number
has a unique (polar) representation, , where

is called the (principal) argument of and de-
noted by ; if , then by convention.
Then is called the principal square-root of .
Let denote the closed unit disk and

its boundary, the unit circle. Let
denote the open unit upper half-disk

and the
open unit lower half-disk. Sign function is defined as

, 1, 0 if .

II. COMPLEX RANDOM VARIABLES: PRELIMINARIES

Denote by the composite real random vector
(r.v.) formed by stacking the real part and imaginary
part of . The distribution of is identified with
that of , i.e., . Hence, the
probability density function (p.d.f.) of is identified with the
p.d.f. of , so . The mean of is defined
as . For simplicity of presentation, we
assume that (otherwise, replace by ). We
assume that is nondegenerate, i.e., is not a constant equal to
zero.

The most commonly made symmetry assumption in the sta-
tistical signal processing literature is that of circular symmetry
[1]. Complex r.va. is said to be circular if has the same distri-
bution as , . The p.d.f. then satisfies
for some nonnegative function and normalizing constant

. Hence, the regions of constant contours are circles in the
complex plane.

Denote the 2 2 real covariance matrix of the composite real
r.v. by

(1)

The variance of a complex r.va.

(2)
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does not bear any information about the correlation between the
real and the imaginary part of , but this information can be
retrieved from the pseudo-variance of

Variance together with pseudo-variance carry all the second-
order information since

(3)

Circular r.va. has the property that its pseudo-variance van-
ishes, (i.e., and ), i.e., it is proper.

R.va. has zero-mean circular complex normal
distribution if , i.e., and are zero-mean
independent identically distributed (i.i.d.) real normal variates
with variance . Thus, , , and the p.d.f.

. R.va. is said
to have complex normal (CN) distribution if ,
i.e., no structure on is assumed. The bivariate normal den-
sity can be written neatly in complex form [4] via
and . We shall write . Thus, circular CN
distribution is a special case of CN distribution with .

Denote the eigenvalue decomposition (EVD) of the covari-
ance matrix of by , where
denotes the orthogonal matrix of eigenvectors of and

denotes the diagonal matrix of respective ordered
eigenvalues, i.e., . To avoid the sign ambiguity
of eigenvectors, we define the first (resp. second) eigenvector to
have positive first coordinate (resp. positive second coordinate),
i.e.

The triple thus determines the EVD of . If ,
then EVD is unique; if , i.e., and

, then cannot be determined and is arbitrary. Variance and
pseudo-variance can be linked with the EVD as is shown next.

Lemma 1: In terms of the EVD triple , we can
express the variance as and the pseudo-variance
as , i.e., and .

Proof: Clearly, .
From the EVD , we obtain the identities

, ,
and , where we used that

. Hence,
, where we used that

.

III. MEASURE OF CIRCULARITY

The complex covariance between complex r.va.’s and
is defined as . Thus, and

.
Definition 1: Circularity quotient of a r.va.
(with finite variance) is defined as the quotient between the

pseudo-variance and the variance

Its (unique) polar representation induces quantities
called the circularity coefficient of and

called the circularity angle of .

Note that can be described as a measure of correlation be-
tween and . The term circularity coefficient for is coined
from [3] while the terms noncircularity rate and noncircularity
phase were used for and , respectively, in [8]. Observe that

for all , meaning that circularity
coefficient remains invariant under invertible linear trans-
form. In fact, circularity coefficient is the canonical correlation
between and [11].

For a positive definite , define , and con-
sider the ellipse (with center at the origin)

(4)

that defines, where the constant controls the
size of the ellipse. Its major axis (resp. minor axis) has end
points at (resp. ), and thus, deter-
mines the orientation of the ellipse. If , then

, where denotes the th quantile of
-distribution [12]. This means that if is a random

sample from , then roughly 90% of the points in
the complex plane will lie inside the ellipse .

The eccentricity

is a classical measure for the shape of the ellipse. A circle is a
special case of an ellipse with (i.e., and

) that has zero eccentricity, while as the ellipse becomes more
elongated (i.e., when ), the eccentricity approaches
one. Note that the variance measures scale of the
ellipse. Alternatives scale measures are the geometric mean of
the eigenvalues and the mean of the eigenvalues whose ratio

(5)

(with equality if and only if ) can be related to eccen-
tricity via . The next theorem provides a geomet-
rical interpretation for the circularity quotient.

Theorem 1: In terms of and , and
. Hence, , i.e., the circularity quotient

lies inside or on the unit circle, and .
Proof: Since , we have that

by Lemma 1. Since and
(Lemma 1), we observe that . Note that

, and hence, .
Hence, eccentricity and orientation of the ellipse can

be calculated as and . Graphically,
the shape and orientation of the ellipse is visualized by plot-
ting in the complex plane. The closer is to
the unit circle the more elongated is the ellipse while the phase

gives its orientation. Consider a random sample
from with (so ).

This means that ,
, and . Fig. 1 depicts such a sample

of length when . Also plotted is the ellipse
. As we can see, approximately 95% of the points

lie inside or on the ellipse. In the subplot (in the upper-left-hand
corner), we have plotted , i.e., the square root of the sample
circularity quotient with

and being
the ML-estimates of the eccentricity and orientation

of the ellipse.
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Fig. 1. Random sample of length � � ��� from����� �� ���� with � � ���.
The EVD triple is �� � � � 	� � ��������� 
��� and the ellipse � �� � is
shown with solid line. Subplot in the upper-left-hand corner depicts �	
 � �
	�� .

Next we link the circularity quotient of with the
correlation coefficient

where finite nonzero variances are assumed. Recall that
with equality if and only if is a linear function of . Also note
that there are two possible sources of noncircularity: and
have unequal variances, and/or and are correlated.

Theorem 2: Circularity quotient of a complex r.va.
satisfies:

(a) and are uncorrelated
with equal variances .

(b) is equal to zero, and if
is equal to zero ( does not exist). Furthermore,

is a linear function of .
(c) For : , or .
(d) For :

.
(e) , and .

Proof:
(a) Note that which in turn by Theorem 1

holds if and only if
and .

(b) Observe that and
(i.e., with probability one).

Similarly, (i.e., w.p.
1). More generally, which in turn by
Theorem 1 holds if and only if

or (w.p. 1), or for some .
Thus, for some
(i.e., ).

(c) For :
.

Fig. 2. Pictorial presentation of Theorem 2 with some exemplary points of 
 .
Recall that 
 � 
, i.e., 
 lies inside or on the unit circle �
.

(d) For :
. If , then

and ,
i.e., .

(e) Observe that if (i.e., ) and
. Note that . The

fact that shows by (b)-part of the Theorem that
. Proof for the case proceeds similarly.

Fig. 2 summarizes the findings of Theorem 2. In general, a
scatter plot of r.va.’s distributed as with (resp. )
looks the “least circular” (resp. “most circular”) in the complex
plane. Note that (i.e., ) if is purely real-
valued such as BPSK modulated communication signal, or if the
signal lies on a line in the scatter plot (also called constellation
or I/Q diagram) as is the case for BPSK, ASK, AM, or PAM-
modulated communications signals.

The next theorem shows the explicit connection between
and and derives simple bounds on them.

Theorem 3: Assume that exists (i.e., and are nondegen-
erate with finite variances).

(a) Connection between and circularity quotient
of is

where and
.

(b) Assume that . Then and
with equality if and only if (i.e.,

) or (i.e., ).
Proof: First we note that the assumption that exists im-

plies that by Theorem 2(b).
(a) Using (3), we get

Since and ,
we write the first stated form for . The
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Fig. 3. Graphical illustration of the relation of � with � � � � given by
Theorem 3. In the example, � � ���� , i.e., � � ��� and � � ����.

second form follows since , i.e.,
and . We can write the first

form as

This gives the last form for since sign
.

(b) Note that
and (i.e., ). Note that

since . This together with the second
form for indicate that . Then note
that since .
Hence, the equality is obtained if and only
if . Based on the second form for , equality is
obtained if and only if which
holds true if and only if [i.e., by
Theorem 2(b)], or [i.e., by Theorem
2(d)].

Fig. 3 elucidates the relationship of with as stated in
Theorem 3. In general, the larger the triangle formed by con-
necting the end points and of the diameter of
the circle with the point , the larger is . Since and

(cf. Theorem 1), the bound on can also be written
as , that is, is always smaller than the squared
eccentricity multiplied by the sign of the orientation of the el-
lipse. The bound on and the fact that provide the
following upper and lower bounds for the circularity coefficient

: when and when .
See also [13] for bounds in the vector case. The bounds in [13]
are however useful only in the vector case since the assumption
about the knowledge of the eigenvalues and (and hence
of ) of the covariance matrix , provide exact knowledge of
in the scalar case as by Theorem 1.

IV. GENERALIZED LIKELIHOOD RATIO
TEST (GLRT) OF CIRCULARITY

Statistical hypothesis test of circularity of the sample
is equivalent with the test of

sphericity of the composite sample . Hence,
a test of sphericity of the composite sample is also a test
of circularity. Naturally, this holds only for samples in .
If is a random sample from , i.e.,

is a random sample from , then the GRLT
decision statistic for testing (i.e., ) against
a general alternative is [12]

where is the sample covariance matrix
and is the sample version of (5), i.e., the ratio of the geometric
mean and the mean of the eigenvalues and of . Further-
more, if is true, then in distribution [12].
Since and by Theorem 1, we have
the following result.

Theorem 4: and, under ,
in distribution.

The test that rejects whenever exceeds the
quantile is thus GLRT with asymptotic level (e.g.,

). See also [5] and[11] for GLRT of circularity in -variate
case. However, the asymptotic distribution of GLRT

was not derived in [5] and [11].
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